1/*	$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $	*/
2
3/*
4 * Copyright 2012 Red Hat Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Ben Skeggs
25 */
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: nouveau_nvkm_subdev_clk_nv50.c,v 1.3 2021/12/18 23:45:39 riastradh Exp $");
28
29#include "nv50.h"
30#include "pll.h"
31#include "seq.h"
32
33#include <subdev/bios.h>
34#include <subdev/bios/pll.h>
35
36static u32
37read_div(struct nv50_clk *clk)
38{
39	struct nvkm_device *device = clk->base.subdev.device;
40	switch (device->chipset) {
41	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
42	case 0x84:
43	case 0x86:
44	case 0x98:
45	case 0xa0:
46		return nvkm_rd32(device, 0x004700);
47	case 0x92:
48	case 0x94:
49	case 0x96:
50		return nvkm_rd32(device, 0x004800);
51	default:
52		return 0x00000000;
53	}
54}
55
56static u32
57read_pll_src(struct nv50_clk *clk, u32 base)
58{
59	struct nvkm_subdev *subdev = &clk->base.subdev;
60	struct nvkm_device *device = subdev->device;
61	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
62	u32 rsel = nvkm_rd32(device, 0x00e18c);
63	int P, N, M, id;
64
65	switch (device->chipset) {
66	case 0x50:
67	case 0xa0:
68		switch (base) {
69		case 0x4020:
70		case 0x4028: id = !!(rsel & 0x00000004); break;
71		case 0x4008: id = !!(rsel & 0x00000008); break;
72		case 0x4030: id = 0; break;
73		default:
74			nvkm_error(subdev, "ref: bad pll %06x\n", base);
75			return 0;
76		}
77
78		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
79		ref *=  (coef & 0x01000000) ? 2 : 4;
80		P    =  (coef & 0x00070000) >> 16;
81		N    = ((coef & 0x0000ff00) >> 8) + 1;
82		M    = ((coef & 0x000000ff) >> 0) + 1;
83		break;
84	case 0x84:
85	case 0x86:
86	case 0x92:
87		coef = nvkm_rd32(device, 0x00e81c);
88		P    = (coef & 0x00070000) >> 16;
89		N    = (coef & 0x0000ff00) >> 8;
90		M    = (coef & 0x000000ff) >> 0;
91		break;
92	case 0x94:
93	case 0x96:
94	case 0x98:
95		rsel = nvkm_rd32(device, 0x00c050);
96		switch (base) {
97		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
98		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
99		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
100		case 0x4030: rsel = 3; break;
101		default:
102			nvkm_error(subdev, "ref: bad pll %06x\n", base);
103			return 0;
104		}
105
106		switch (rsel) {
107		case 0: id = 1; break;
108		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
109		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
110		case 3: id = 0; break;
111		}
112
113		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
114		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
115		P   += (coef & 0x00070000) >> 16;
116		N    = (coef & 0x0000ff00) >> 8;
117		M    = (coef & 0x000000ff) >> 0;
118		break;
119	default:
120		BUG();
121	}
122
123	if (M)
124		return (ref * N / M) >> P;
125
126	return 0;
127}
128
129static u32
130read_pll_ref(struct nv50_clk *clk, u32 base)
131{
132	struct nvkm_subdev *subdev = &clk->base.subdev;
133	struct nvkm_device *device = subdev->device;
134	u32 src, mast = nvkm_rd32(device, 0x00c040);
135
136	switch (base) {
137	case 0x004028:
138		src = !!(mast & 0x00200000);
139		break;
140	case 0x004020:
141		src = !!(mast & 0x00400000);
142		break;
143	case 0x004008:
144		src = !!(mast & 0x00010000);
145		break;
146	case 0x004030:
147		src = !!(mast & 0x02000000);
148		break;
149	case 0x00e810:
150		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
151	default:
152		nvkm_error(subdev, "bad pll %06x\n", base);
153		return 0;
154	}
155
156	if (src)
157		return nvkm_clk_read(&clk->base, nv_clk_src_href);
158
159	return read_pll_src(clk, base);
160}
161
162static u32
163read_pll(struct nv50_clk *clk, u32 base)
164{
165	struct nvkm_device *device = clk->base.subdev.device;
166	u32 mast = nvkm_rd32(device, 0x00c040);
167	u32 ctrl = nvkm_rd32(device, base + 0);
168	u32 coef = nvkm_rd32(device, base + 4);
169	u32 ref = read_pll_ref(clk, base);
170	u32 freq = 0;
171	int N1, N2, M1, M2;
172
173	if (base == 0x004028 && (mast & 0x00100000)) {
174		/* wtf, appears to only disable post-divider on gt200 */
175		if (device->chipset != 0xa0)
176			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
177	}
178
179	N2 = (coef & 0xff000000) >> 24;
180	M2 = (coef & 0x00ff0000) >> 16;
181	N1 = (coef & 0x0000ff00) >> 8;
182	M1 = (coef & 0x000000ff);
183	if ((ctrl & 0x80000000) && M1) {
184		freq = ref * N1 / M1;
185		if ((ctrl & 0x40000100) == 0x40000000) {
186			if (M2)
187				freq = freq * N2 / M2;
188			else
189				freq = 0;
190		}
191	}
192
193	return freq;
194}
195
196int
197nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
198{
199	struct nv50_clk *clk = nv50_clk(base);
200	struct nvkm_subdev *subdev = &clk->base.subdev;
201	struct nvkm_device *device = subdev->device;
202	u32 mast = nvkm_rd32(device, 0x00c040);
203	u32 P = 0;
204
205	switch (src) {
206	case nv_clk_src_crystal:
207		return device->crystal;
208	case nv_clk_src_href:
209		return 100000; /* PCIE reference clock */
210	case nv_clk_src_hclk:
211		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
212	case nv_clk_src_hclkm3:
213		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
214	case nv_clk_src_hclkm3d2:
215		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
216	case nv_clk_src_host:
217		switch (mast & 0x30000000) {
218		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
219		case 0x10000000: break;
220		case 0x20000000: /* !0x50 */
221		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
222		}
223		break;
224	case nv_clk_src_core:
225		if (!(mast & 0x00100000))
226			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
227		switch (mast & 0x00000003) {
228		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
229		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
230		case 0x00000002: return read_pll(clk, 0x004020) >> P;
231		case 0x00000003: return read_pll(clk, 0x004028) >> P;
232		}
233		break;
234	case nv_clk_src_shader:
235		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
236		switch (mast & 0x00000030) {
237		case 0x00000000:
238			if (mast & 0x00000080)
239				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
240			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
241		case 0x00000010: break;
242		case 0x00000020: return read_pll(clk, 0x004028) >> P;
243		case 0x00000030: return read_pll(clk, 0x004020) >> P;
244		}
245		break;
246	case nv_clk_src_mem:
247		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
248		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
249			switch (mast & 0x0000c000) {
250			case 0x00000000:
251				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
252			case 0x00008000:
253			case 0x0000c000:
254				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
255			}
256		} else {
257			return read_pll(clk, 0x004008) >> P;
258		}
259		break;
260	case nv_clk_src_vdec:
261		P = (read_div(clk) & 0x00000700) >> 8;
262		switch (device->chipset) {
263		case 0x84:
264		case 0x86:
265		case 0x92:
266		case 0x94:
267		case 0x96:
268		case 0xa0:
269			switch (mast & 0x00000c00) {
270			case 0x00000000:
271				if (device->chipset == 0xa0) /* wtf?? */
272					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
273				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
274			case 0x00000400:
275				return 0;
276			case 0x00000800:
277				if (mast & 0x01000000)
278					return read_pll(clk, 0x004028) >> P;
279				return read_pll(clk, 0x004030) >> P;
280			case 0x00000c00:
281				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
282			}
283			break;
284		case 0x98:
285			switch (mast & 0x00000c00) {
286			case 0x00000000:
287				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
288			case 0x00000400:
289				return 0;
290			case 0x00000800:
291				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
292			case 0x00000c00:
293				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
294			}
295			break;
296		}
297		break;
298	case nv_clk_src_dom6:
299		switch (device->chipset) {
300		case 0x50:
301		case 0xa0:
302			return read_pll(clk, 0x00e810) >> 2;
303		case 0x84:
304		case 0x86:
305		case 0x92:
306		case 0x94:
307		case 0x96:
308		case 0x98:
309			P = (read_div(clk) & 0x00000007) >> 0;
310			switch (mast & 0x0c000000) {
311			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
312			case 0x04000000: break;
313			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
314			case 0x0c000000:
315				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
316			}
317			break;
318		default:
319			break;
320		}
321	default:
322		break;
323	}
324
325	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
326	return -EINVAL;
327}
328
329static u32
330calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
331{
332	struct nvkm_subdev *subdev = &clk->base.subdev;
333	struct nvbios_pll pll;
334	int ret;
335
336	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
337	if (ret)
338		return 0;
339
340	pll.vco2.max_freq = 0;
341	pll.refclk = read_pll_ref(clk, reg);
342	if (!pll.refclk)
343		return 0;
344
345	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
346}
347
348static inline u32
349calc_div(u32 src, u32 target, int *div)
350{
351	u32 clk0 = src, clk1 = src;
352	for (*div = 0; *div <= 7; (*div)++) {
353		if (clk0 <= target) {
354			clk1 = clk0 << (*div ? 1 : 0);
355			break;
356		}
357		clk0 >>= 1;
358	}
359
360	if (target - clk0 <= clk1 - target)
361		return clk0;
362	(*div)--;
363	return clk1;
364}
365
366static inline u32
367clk_same(u32 a, u32 b)
368{
369	return ((a / 1000) == (b / 1000));
370}
371
372int
373nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
374{
375	struct nv50_clk *clk = nv50_clk(base);
376	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
377	struct nvkm_subdev *subdev = &clk->base.subdev;
378	struct nvkm_device *device = subdev->device;
379	const int shader = cstate->domain[nv_clk_src_shader];
380	const int core = cstate->domain[nv_clk_src_core];
381	const int vdec = cstate->domain[nv_clk_src_vdec];
382	const int dom6 = cstate->domain[nv_clk_src_dom6];
383	u32 mastm = 0, mastv = 0;
384	u32 divsm = 0, divsv = 0;
385	int N, M, P1, P2;
386	int freq, out;
387
388	/* prepare a hwsq script from which we'll perform the reclock */
389	out = clk_init(hwsq, subdev);
390	if (out)
391		return out;
392
393	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
394	clk_nsec(hwsq, 8000);
395	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
396	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
397
398	/* vdec: avoid modifying xpll until we know exactly how the other
399	 * clock domains work, i suspect at least some of them can also be
400	 * tied to xpll...
401	 */
402	if (vdec) {
403		/* see how close we can get using nvclk as a source */
404		freq = calc_div(core, vdec, &P1);
405
406		/* see how close we can get using xpll/hclk as a source */
407		if (device->chipset != 0x98)
408			out = read_pll(clk, 0x004030);
409		else
410			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
411		out = calc_div(out, vdec, &P2);
412
413		/* select whichever gets us closest */
414		if (abs(vdec - freq) <= abs(vdec - out)) {
415			if (device->chipset != 0x98)
416				mastv |= 0x00000c00;
417			divsv |= P1 << 8;
418		} else {
419			mastv |= 0x00000800;
420			divsv |= P2 << 8;
421		}
422
423		mastm |= 0x00000c00;
424		divsm |= 0x00000700;
425	}
426
427	/* dom6: nfi what this is, but we're limited to various combinations
428	 * of the host clock frequency
429	 */
430	if (dom6) {
431		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
432			mastv |= 0x00000000;
433		} else
434		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
435			mastv |= 0x08000000;
436		} else {
437			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
438			calc_div(freq, dom6, &P1);
439
440			mastv |= 0x0c000000;
441			divsv |= P1;
442		}
443
444		mastm |= 0x0c000000;
445		divsm |= 0x00000007;
446	}
447
448	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
449	 * and then switch to target clocks
450	 */
451	clk_mask(hwsq, mast, mastm, 0x00000000);
452	clk_mask(hwsq, divs, divsm, divsv);
453	clk_mask(hwsq, mast, mastm, mastv);
454
455	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
456	 * sclk to hclk) before reprogramming
457	 */
458	if (device->chipset < 0x92)
459		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
460	else
461		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
462
463	/* core: for the moment at least, always use nvpll */
464	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
465	if (freq == 0)
466		return -ERANGE;
467
468	clk_mask(hwsq, nvpll[0], 0xc03f0100,
469				 0x80000000 | (P1 << 19) | (P1 << 16));
470	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
471
472	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
473	 * very careful that the shader clock is at least twice the core, or
474	 * some chipsets will be very unhappy.  i expect most or all of these
475	 * cases will be handled by tying to nvclk, but it's possible there's
476	 * corners
477	 */
478	if (P1-- && shader == (core << 1)) {
479		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
480		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
481	} else {
482		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
483		if (freq == 0)
484			return -ERANGE;
485
486		clk_mask(hwsq, spll[0], 0xc03f0100,
487					0x80000000 | (P1 << 19) | (P1 << 16));
488		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
489		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
490	}
491
492	/* restore normal operation */
493	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
494	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
495	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
496	return 0;
497}
498
499int
500nv50_clk_prog(struct nvkm_clk *base)
501{
502	struct nv50_clk *clk = nv50_clk(base);
503	return clk_exec(&clk->hwsq, true);
504}
505
506void
507nv50_clk_tidy(struct nvkm_clk *base)
508{
509	struct nv50_clk *clk = nv50_clk(base);
510	clk_exec(&clk->hwsq, false);
511}
512
513int
514nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
515	      int index, bool allow_reclock, struct nvkm_clk **pclk)
516{
517	struct nv50_clk *clk;
518	int ret;
519
520	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
521		return -ENOMEM;
522	ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
523	*pclk = &clk->base;
524	if (ret)
525		return ret;
526
527	clk->hwsq.r_fifo = hwsq_reg(0x002504);
528	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
529	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
530	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
531	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
532	switch (device->chipset) {
533	case 0x92:
534	case 0x94:
535	case 0x96:
536		clk->hwsq.r_divs = hwsq_reg(0x004800);
537		break;
538	default:
539		clk->hwsq.r_divs = hwsq_reg(0x004700);
540		break;
541	}
542	clk->hwsq.r_mast = hwsq_reg(0x00c040);
543	return 0;
544}
545
546static const struct nvkm_clk_func
547nv50_clk = {
548	.read = nv50_clk_read,
549	.calc = nv50_clk_calc,
550	.prog = nv50_clk_prog,
551	.tidy = nv50_clk_tidy,
552	.domains = {
553		{ nv_clk_src_crystal, 0xff },
554		{ nv_clk_src_href   , 0xff },
555		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
556		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
557		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
558		{ nv_clk_src_max }
559	}
560};
561
562int
563nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
564{
565	return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
566}
567