1/*	$NetBSD: i915_gem_gtt.c,v 1.24 2022/08/20 23:19:09 riastradh Exp $	*/
2
3// SPDX-License-Identifier: MIT
4/*
5 * Copyright �� 2010 Daniel Vetter
6 * Copyright �� 2020 Intel Corporation
7 */
8#include <sys/cdefs.h>
9__KERNEL_RCSID(0, "$NetBSD: i915_gem_gtt.c,v 1.24 2022/08/20 23:19:09 riastradh Exp $");
10
11#include <linux/slab.h> /* fault-inject.h is not standalone! */
12
13#include <linux/fault-inject.h>
14#include <linux/log2.h>
15#include <linux/random.h>
16#include <linux/seq_file.h>
17#include <linux/stop_machine.h>
18
19#include <asm/set_memory.h>
20#include <asm/smp.h>
21
22#include <drm/i915_drm.h>
23
24#include "display/intel_frontbuffer.h"
25#include "gt/intel_gt.h"
26#include "gt/intel_gt_requests.h"
27
28#include "i915_drv.h"
29#include "i915_scatterlist.h"
30#include "i915_trace.h"
31#include "i915_vgpu.h"
32
33#ifdef __NetBSD__
34#include <drm/bus_dma_hacks.h>
35#include <x86/machdep.h>
36#include <machine/pte.h>
37#define	_PAGE_PRESENT	PTE_P	/* 0x01 PTE is present */
38#define	_PAGE_RW	PTE_W	/* 0x02 read/write */
39#define	_PAGE_PWT	PTE_PWT	/* 0x08 page write-through */
40#define	_PAGE_PCD	PTE_PCD	/* 0x10 page cache disabled */
41#define	_PAGE_PAT	PTE_PAT	/* 0x80 page attribute table on PTE */
42#endif
43
44int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
45			       struct sg_table *pages)
46{
47	do {
48#ifdef __NetBSD__
49		if (dma_map_sg_attrs(obj->base.dev->dmat,
50				     pages->sgl, pages->nents,
51				     PCI_DMA_BIDIRECTIONAL,
52				     DMA_ATTR_NO_WARN))
53			return 0;
54#else
55		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
56				     pages->sgl, pages->nents,
57				     PCI_DMA_BIDIRECTIONAL,
58				     DMA_ATTR_NO_WARN))
59			return 0;
60#endif
61
62		/*
63		 * If the DMA remap fails, one cause can be that we have
64		 * too many objects pinned in a small remapping table,
65		 * such as swiotlb. Incrementally purge all other objects and
66		 * try again - if there are no more pages to remove from
67		 * the DMA remapper, i915_gem_shrink will return 0.
68		 */
69		GEM_BUG_ON(obj->mm.pages == pages);
70	} while (i915_gem_shrink(to_i915(obj->base.dev),
71				 obj->base.size >> PAGE_SHIFT, NULL,
72				 I915_SHRINK_BOUND |
73				 I915_SHRINK_UNBOUND));
74
75	return -ENOSPC;
76}
77
78void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
79			       struct sg_table *pages)
80{
81	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
82#ifdef __NetBSD__
83	bus_dma_tag_t kdev = dev_priv->drm.dmat;
84#else
85	struct device *kdev = &dev_priv->drm.pdev->dev;
86#endif
87	struct i915_ggtt *ggtt = &dev_priv->ggtt;
88
89	if (unlikely(ggtt->do_idle_maps)) {
90		/* XXX This does not prevent more requests being submitted! */
91		if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
92						     -MAX_SCHEDULE_TIMEOUT)) {
93			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
94			/* Wait a bit, in hopes it avoids the hang */
95			udelay(10);
96		}
97	}
98
99	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
100}
101
102/**
103 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
104 * @vm: the &struct i915_address_space
105 * @node: the &struct drm_mm_node (typically i915_vma.mode)
106 * @size: how much space to allocate inside the GTT,
107 *        must be #I915_GTT_PAGE_SIZE aligned
108 * @offset: where to insert inside the GTT,
109 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
110 *          (@offset + @size) must fit within the address space
111 * @color: color to apply to node, if this node is not from a VMA,
112 *         color must be #I915_COLOR_UNEVICTABLE
113 * @flags: control search and eviction behaviour
114 *
115 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
116 * the address space (using @size and @color). If the @node does not fit, it
117 * tries to evict any overlapping nodes from the GTT, including any
118 * neighbouring nodes if the colors do not match (to ensure guard pages between
119 * differing domains). See i915_gem_evict_for_node() for the gory details
120 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
121 * evicting active overlapping objects, and any overlapping node that is pinned
122 * or marked as unevictable will also result in failure.
123 *
124 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
125 * asked to wait for eviction and interrupted.
126 */
127int i915_gem_gtt_reserve(struct i915_address_space *vm,
128			 struct drm_mm_node *node,
129			 u64 size, u64 offset, unsigned long color,
130			 unsigned int flags)
131{
132	int err;
133
134	GEM_BUG_ON(!size);
135	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
136	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
137	GEM_BUG_ON(range_overflows(offset, size, vm->total));
138	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
139	GEM_BUG_ON(drm_mm_node_allocated(node));
140
141	node->size = size;
142	node->start = offset;
143	node->color = color;
144
145	err = drm_mm_reserve_node(&vm->mm, node);
146	if (err != -ENOSPC)
147		return err;
148
149	if (flags & PIN_NOEVICT)
150		return -ENOSPC;
151
152	err = i915_gem_evict_for_node(vm, node, flags);
153	if (err == 0)
154		err = drm_mm_reserve_node(&vm->mm, node);
155
156	return err;
157}
158
159static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
160{
161	u64 range, addr;
162
163	GEM_BUG_ON(range_overflows(start, len, end));
164	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
165
166	range = round_down(end - len, align) - round_up(start, align);
167	if (range) {
168		if (sizeof(unsigned long) == sizeof(u64)) {
169			addr = get_random_long();
170		} else {
171			addr = get_random_int();
172			if (range > U32_MAX) {
173				addr <<= 32;
174				addr |= get_random_int();
175			}
176		}
177		div64_u64_rem(addr, range, &addr);
178		start += addr;
179	}
180
181	return round_up(start, align);
182}
183
184/**
185 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
186 * @vm: the &struct i915_address_space
187 * @node: the &struct drm_mm_node (typically i915_vma.node)
188 * @size: how much space to allocate inside the GTT,
189 *        must be #I915_GTT_PAGE_SIZE aligned
190 * @alignment: required alignment of starting offset, may be 0 but
191 *             if specified, this must be a power-of-two and at least
192 *             #I915_GTT_MIN_ALIGNMENT
193 * @color: color to apply to node
194 * @start: start of any range restriction inside GTT (0 for all),
195 *         must be #I915_GTT_PAGE_SIZE aligned
196 * @end: end of any range restriction inside GTT (U64_MAX for all),
197 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
198 * @flags: control search and eviction behaviour
199 *
200 * i915_gem_gtt_insert() first searches for an available hole into which
201 * is can insert the node. The hole address is aligned to @alignment and
202 * its @size must then fit entirely within the [@start, @end] bounds. The
203 * nodes on either side of the hole must match @color, or else a guard page
204 * will be inserted between the two nodes (or the node evicted). If no
205 * suitable hole is found, first a victim is randomly selected and tested
206 * for eviction, otherwise then the LRU list of objects within the GTT
207 * is scanned to find the first set of replacement nodes to create the hole.
208 * Those old overlapping nodes are evicted from the GTT (and so must be
209 * rebound before any future use). Any node that is currently pinned cannot
210 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
211 * active and #PIN_NONBLOCK is specified, that node is also skipped when
212 * searching for an eviction candidate. See i915_gem_evict_something() for
213 * the gory details on the eviction algorithm.
214 *
215 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
216 * asked to wait for eviction and interrupted.
217 */
218int i915_gem_gtt_insert(struct i915_address_space *vm,
219			struct drm_mm_node *node,
220			u64 size, u64 alignment, unsigned long color,
221			u64 start, u64 end, unsigned int flags)
222{
223	enum drm_mm_insert_mode mode;
224	u64 offset;
225	int err;
226
227	lockdep_assert_held(&vm->mutex);
228
229	GEM_BUG_ON(!size);
230	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
231	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
232	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
233	GEM_BUG_ON(start >= end);
234	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
235	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
236	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
237	GEM_BUG_ON(drm_mm_node_allocated(node));
238
239	if (unlikely(range_overflows(start, size, end)))
240		return -ENOSPC;
241
242	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
243		return -ENOSPC;
244
245	mode = DRM_MM_INSERT_BEST;
246	if (flags & PIN_HIGH)
247		mode = DRM_MM_INSERT_HIGHEST;
248	if (flags & PIN_MAPPABLE)
249		mode = DRM_MM_INSERT_LOW;
250
251	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
252	 * so we know that we always have a minimum alignment of 4096.
253	 * The drm_mm range manager is optimised to return results
254	 * with zero alignment, so where possible use the optimal
255	 * path.
256	 */
257	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
258	if (alignment <= I915_GTT_MIN_ALIGNMENT)
259		alignment = 0;
260
261	err = drm_mm_insert_node_in_range(&vm->mm, node,
262					  size, alignment, color,
263					  start, end, mode);
264	if (err != -ENOSPC)
265		return err;
266
267	if (mode & DRM_MM_INSERT_ONCE) {
268		err = drm_mm_insert_node_in_range(&vm->mm, node,
269						  size, alignment, color,
270						  start, end,
271						  DRM_MM_INSERT_BEST);
272		if (err != -ENOSPC)
273			return err;
274	}
275
276	if (flags & PIN_NOEVICT)
277		return -ENOSPC;
278
279	/*
280	 * No free space, pick a slot at random.
281	 *
282	 * There is a pathological case here using a GTT shared between
283	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
284	 *
285	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
286	 *         (64k objects)             (448k objects)
287	 *
288	 * Now imagine that the eviction LRU is ordered top-down (just because
289	 * pathology meets real life), and that we need to evict an object to
290	 * make room inside the aperture. The eviction scan then has to walk
291	 * the 448k list before it finds one within range. And now imagine that
292	 * it has to search for a new hole between every byte inside the memcpy,
293	 * for several simultaneous clients.
294	 *
295	 * On a full-ppgtt system, if we have run out of available space, there
296	 * will be lots and lots of objects in the eviction list! Again,
297	 * searching that LRU list may be slow if we are also applying any
298	 * range restrictions (e.g. restriction to low 4GiB) and so, for
299	 * simplicity and similarilty between different GTT, try the single
300	 * random replacement first.
301	 */
302	offset = random_offset(start, end,
303			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
304	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
305	if (err != -ENOSPC)
306		return err;
307
308	if (flags & PIN_NOSEARCH)
309		return -ENOSPC;
310
311	/* Randomly selected placement is pinned, do a search */
312	err = i915_gem_evict_something(vm, size, alignment, color,
313				       start, end, flags);
314	if (err)
315		return err;
316
317	return drm_mm_insert_node_in_range(&vm->mm, node,
318					   size, alignment, color,
319					   start, end, DRM_MM_INSERT_EVICT);
320}
321
322#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
323#include "selftests/i915_gem_gtt.c"
324#endif
325