1/*	$NetBSD: i915_drv.c,v 1.48 2022/09/22 14:37:38 riastradh Exp $	*/
2
3/* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
4 */
5/*
6 *
7 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
8 * All Rights Reserved.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the
12 * "Software"), to deal in the Software without restriction, including
13 * without limitation the rights to use, copy, modify, merge, publish,
14 * distribute, sub license, and/or sell copies of the Software, and to
15 * permit persons to whom the Software is furnished to do so, subject to
16 * the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
25 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
26 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
27 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
28 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 *
30 */
31
32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: i915_drv.c,v 1.48 2022/09/22 14:37:38 riastradh Exp $");
34
35#include <linux/acpi.h>
36#include <linux/device.h>
37#include <linux/oom.h>
38#include <linux/module.h>
39#include <linux/pci.h>
40#include <linux/pm.h>
41#include <linux/pm_runtime.h>
42#include <linux/pnp.h>
43#include <linux/slab.h>
44#include <linux/vga_switcheroo.h>
45#include <linux/vt.h>
46#include <acpi/video.h>
47
48#include <drm/drm_atomic_helper.h>
49#include <drm/drm_ioctl.h>
50#include <drm/drm_irq.h>
51#include <drm/drm_pci.h>
52#include <drm/drm_probe_helper.h>
53#include <drm/i915_drm.h>
54
55#include "display/intel_acpi.h"
56#include "display/intel_audio.h"
57#include "display/intel_bw.h"
58#include "display/intel_cdclk.h"
59#include "display/intel_display_types.h"
60#include "display/intel_dp.h"
61#include "display/intel_fbdev.h"
62#include "display/intel_hotplug.h"
63#include "display/intel_overlay.h"
64#include "display/intel_pipe_crc.h"
65#include "display/intel_sprite.h"
66#include "display/intel_vga.h"
67
68#include "gem/i915_gem_context.h"
69#include "gem/i915_gem_ioctls.h"
70#include "gem/i915_gem_mman.h"
71#include "gt/intel_gt.h"
72#include "gt/intel_gt_pm.h"
73#include "gt/intel_rc6.h"
74
75#include "i915_debugfs.h"
76#include "i915_drv.h"
77#include "i915_irq.h"
78#include "i915_memcpy.h"
79#include "i915_perf.h"
80#include "i915_query.h"
81#include "i915_suspend.h"
82#include "i915_switcheroo.h"
83#include "i915_sysfs.h"
84#include "i915_trace.h"
85#include "i915_vgpu.h"
86#include "intel_csr.h"
87#include "intel_memory_region.h"
88#include "intel_pm.h"
89
90#ifdef __NetBSD__
91#ifdef notyet
92#if defined(__i386__)
93#include "pnpbios.h"
94#endif
95#if NPNPBIOS > 0
96#define CONFIG_PNP
97#endif
98#endif
99#endif
100
101#include <linux/nbsd-namespace.h>
102
103static struct drm_driver driver;
104
105struct vlv_s0ix_state {
106	/* GAM */
107	u32 wr_watermark;
108	u32 gfx_prio_ctrl;
109	u32 arb_mode;
110	u32 gfx_pend_tlb0;
111	u32 gfx_pend_tlb1;
112	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
113	u32 media_max_req_count;
114	u32 gfx_max_req_count;
115	u32 render_hwsp;
116	u32 ecochk;
117	u32 bsd_hwsp;
118	u32 blt_hwsp;
119	u32 tlb_rd_addr;
120
121	/* MBC */
122	u32 g3dctl;
123	u32 gsckgctl;
124	u32 mbctl;
125
126	/* GCP */
127	u32 ucgctl1;
128	u32 ucgctl3;
129	u32 rcgctl1;
130	u32 rcgctl2;
131	u32 rstctl;
132	u32 misccpctl;
133
134	/* GPM */
135	u32 gfxpause;
136	u32 rpdeuhwtc;
137	u32 rpdeuc;
138	u32 ecobus;
139	u32 pwrdwnupctl;
140	u32 rp_down_timeout;
141	u32 rp_deucsw;
142	u32 rcubmabdtmr;
143	u32 rcedata;
144	u32 spare2gh;
145
146	/* Display 1 CZ domain */
147	u32 gt_imr;
148	u32 gt_ier;
149	u32 pm_imr;
150	u32 pm_ier;
151	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
152
153	/* GT SA CZ domain */
154	u32 tilectl;
155	u32 gt_fifoctl;
156	u32 gtlc_wake_ctrl;
157	u32 gtlc_survive;
158	u32 pmwgicz;
159
160	/* Display 2 CZ domain */
161	u32 gu_ctl0;
162	u32 gu_ctl1;
163	u32 pcbr;
164	u32 clock_gate_dis2;
165};
166
167static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
168{
169	int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
170
171	dev_priv->bridge_dev =
172		pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
173	if (!dev_priv->bridge_dev) {
174		DRM_ERROR("bridge device not found\n");
175		return -1;
176	}
177	return 0;
178}
179
180/* Allocate space for the MCH regs if needed, return nonzero on error */
181static int
182intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
183{
184	int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
185#ifdef CONFIG_PNP
186	u32 temp_lo, temp_hi = 0;
187	u64 mchbar_addr;
188#endif
189	int ret;
190
191#ifdef CONFIG_PNP
192	if (INTEL_GEN(dev_priv) >= 4)
193		pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
194	pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
195	mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
196
197	/* If ACPI doesn't have it, assume we need to allocate it ourselves */
198	if (mchbar_addr &&
199	    pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
200		return 0;
201#endif
202
203	/* Get some space for it */
204	dev_priv->mch_res.name = "i915 MCHBAR";
205	dev_priv->mch_res.flags = IORESOURCE_MEM;
206	ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
207				     &dev_priv->mch_res,
208				     MCHBAR_SIZE, MCHBAR_SIZE,
209				     PCIBIOS_MIN_MEM,
210				     0, pcibios_align_resource,
211				     dev_priv->bridge_dev);
212	if (ret) {
213		DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
214		dev_priv->mch_res.start = 0;
215		return ret;
216	}
217
218	if (INTEL_GEN(dev_priv) >= 4)
219		pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
220				       upper_32_bits(dev_priv->mch_res.start));
221
222	pci_write_config_dword(dev_priv->bridge_dev, reg,
223			       lower_32_bits(dev_priv->mch_res.start));
224	return 0;
225}
226
227/* Setup MCHBAR if possible, return true if we should disable it again */
228static void
229intel_setup_mchbar(struct drm_i915_private *dev_priv)
230{
231	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
232	u32 temp;
233	bool enabled;
234
235	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
236		return;
237
238	dev_priv->mchbar_need_disable = false;
239
240	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
241		pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
242		enabled = !!(temp & DEVEN_MCHBAR_EN);
243	} else {
244		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
245		enabled = temp & 1;
246	}
247
248	/* If it's already enabled, don't have to do anything */
249	if (enabled)
250		return;
251
252	if (intel_alloc_mchbar_resource(dev_priv))
253		return;
254
255	dev_priv->mchbar_need_disable = true;
256
257	/* Space is allocated or reserved, so enable it. */
258	if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
259		pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
260				       temp | DEVEN_MCHBAR_EN);
261	} else {
262		pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
263		pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
264	}
265}
266
267static void
268intel_teardown_mchbar(struct drm_i915_private *dev_priv)
269{
270	int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
271
272	if (dev_priv->mchbar_need_disable) {
273		if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
274			u32 deven_val;
275
276			pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
277					      &deven_val);
278			deven_val &= ~DEVEN_MCHBAR_EN;
279			pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
280					       deven_val);
281		} else {
282			u32 mchbar_val;
283
284			pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
285					      &mchbar_val);
286			mchbar_val &= ~1;
287			pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
288					       mchbar_val);
289		}
290	}
291
292	if (dev_priv->mch_res.start)
293		release_resource(&dev_priv->mch_res);
294}
295
296static int i915_driver_modeset_probe(struct drm_i915_private *i915)
297{
298	int ret;
299
300	if (i915_inject_probe_failure(i915))
301		return -ENODEV;
302
303	if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
304		ret = drm_vblank_init(&i915->drm,
305				      INTEL_NUM_PIPES(i915));
306		if (ret)
307			goto out;
308	}
309
310	intel_bios_init(i915);
311
312	ret = intel_vga_register(i915);
313	if (ret)
314		goto out;
315
316#ifdef __NetBSD__
317	intel_register_dsm_handler(i915);
318#else
319	intel_register_dsm_handler();
320#endif
321
322	ret = i915_switcheroo_register(i915);
323	if (ret)
324		goto cleanup_vga_client;
325
326	intel_power_domains_init_hw(i915, false);
327
328	intel_csr_ucode_init(i915);
329
330	ret = intel_irq_install(i915);
331	if (ret)
332		goto cleanup_csr;
333
334	/* Important: The output setup functions called by modeset_init need
335	 * working irqs for e.g. gmbus and dp aux transfers. */
336	ret = intel_modeset_init(i915);
337	if (ret)
338		goto cleanup_irq;
339
340	ret = i915_gem_init(i915);
341	if (ret)
342		goto cleanup_modeset;
343
344	intel_overlay_setup(i915);
345
346	if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
347		return 0;
348
349	ret = intel_fbdev_init(&i915->drm);
350	if (ret)
351		goto cleanup_gem;
352
353	/* Only enable hotplug handling once the fbdev is fully set up. */
354	intel_hpd_init(i915);
355
356	intel_init_ipc(i915);
357
358	return 0;
359
360cleanup_gem:
361	i915_gem_suspend(i915);
362	i915_gem_driver_remove(i915);
363	i915_gem_driver_release(i915);
364cleanup_modeset:
365	intel_modeset_driver_remove(i915);
366cleanup_irq:
367	intel_irq_uninstall(i915);
368cleanup_csr:
369	intel_csr_ucode_fini(i915);
370	intel_power_domains_driver_remove(i915);
371	i915_switcheroo_unregister(i915);
372cleanup_vga_client:
373	intel_vga_unregister(i915);
374out:
375	return ret;
376}
377
378static void i915_driver_modeset_remove(struct drm_i915_private *i915)
379{
380	intel_modeset_driver_remove(i915);
381
382	intel_irq_uninstall(i915);
383
384	intel_bios_driver_remove(i915);
385
386	i915_switcheroo_unregister(i915);
387
388	intel_vga_unregister(i915);
389
390	intel_csr_ucode_fini(i915);
391}
392
393static void intel_init_dpio(struct drm_i915_private *dev_priv)
394{
395	/*
396	 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
397	 * CHV x1 PHY (DP/HDMI D)
398	 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
399	 */
400	if (IS_CHERRYVIEW(dev_priv)) {
401		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
402		DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
403	} else if (IS_VALLEYVIEW(dev_priv)) {
404		DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
405	}
406}
407
408static int i915_workqueues_init(struct drm_i915_private *dev_priv)
409{
410	/*
411	 * The i915 workqueue is primarily used for batched retirement of
412	 * requests (and thus managing bo) once the task has been completed
413	 * by the GPU. i915_retire_requests() is called directly when we
414	 * need high-priority retirement, such as waiting for an explicit
415	 * bo.
416	 *
417	 * It is also used for periodic low-priority events, such as
418	 * idle-timers and recording error state.
419	 *
420	 * All tasks on the workqueue are expected to acquire the dev mutex
421	 * so there is no point in running more than one instance of the
422	 * workqueue at any time.  Use an ordered one.
423	 */
424	dev_priv->wq = alloc_ordered_workqueue("i915", 0);
425	if (dev_priv->wq == NULL)
426		goto out_err;
427
428	dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
429	if (dev_priv->hotplug.dp_wq == NULL)
430		goto out_free_wq;
431
432	return 0;
433
434out_free_wq:
435	destroy_workqueue(dev_priv->wq);
436out_err:
437	DRM_ERROR("Failed to allocate workqueues.\n");
438
439	return -ENOMEM;
440}
441
442static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
443{
444	destroy_workqueue(dev_priv->hotplug.dp_wq);
445	destroy_workqueue(dev_priv->wq);
446}
447
448/*
449 * We don't keep the workarounds for pre-production hardware, so we expect our
450 * driver to fail on these machines in one way or another. A little warning on
451 * dmesg may help both the user and the bug triagers.
452 *
453 * Our policy for removing pre-production workarounds is to keep the
454 * current gen workarounds as a guide to the bring-up of the next gen
455 * (workarounds have a habit of persisting!). Anything older than that
456 * should be removed along with the complications they introduce.
457 */
458static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
459{
460	bool pre = false;
461
462	pre |= IS_HSW_EARLY_SDV(dev_priv);
463	pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
464	pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
465	pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
466
467	if (pre) {
468		DRM_ERROR("This is a pre-production stepping. "
469			  "It may not be fully functional.\n");
470		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
471	}
472}
473
474static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
475{
476	if (!IS_VALLEYVIEW(i915))
477		return 0;
478
479	/* we write all the values in the struct, so no need to zero it out */
480	i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
481				       GFP_KERNEL);
482	if (!i915->vlv_s0ix_state)
483		return -ENOMEM;
484
485	return 0;
486}
487
488static void vlv_free_s0ix_state(struct drm_i915_private *i915)
489{
490	if (!i915->vlv_s0ix_state)
491		return;
492
493	kfree(i915->vlv_s0ix_state);
494	i915->vlv_s0ix_state = NULL;
495}
496
497static void sanitize_gpu(struct drm_i915_private *i915)
498{
499	if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
500		__intel_gt_reset(&i915->gt, ALL_ENGINES);
501}
502
503/**
504 * i915_driver_early_probe - setup state not requiring device access
505 * @dev_priv: device private
506 *
507 * Initialize everything that is a "SW-only" state, that is state not
508 * requiring accessing the device or exposing the driver via kernel internal
509 * or userspace interfaces. Example steps belonging here: lock initialization,
510 * system memory allocation, setting up device specific attributes and
511 * function hooks not requiring accessing the device.
512 */
513static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
514{
515	int ret = 0;
516
517	if (i915_inject_probe_failure(dev_priv))
518		return -ENODEV;
519
520	intel_device_info_subplatform_init(dev_priv);
521
522	intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
523	intel_uncore_init_early(&dev_priv->uncore, dev_priv);
524
525	spin_lock_init(&dev_priv->irq_lock);
526	spin_lock_init(&dev_priv->gpu_error.lock);
527	mutex_init(&dev_priv->backlight_lock);
528
529	mutex_init(&dev_priv->sb_lock);
530	pm_qos_add_request(&dev_priv->sb_qos,
531			   PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
532
533	mutex_init(&dev_priv->av_mutex);
534	mutex_init(&dev_priv->wm.wm_mutex);
535	mutex_init(&dev_priv->pps_mutex);
536	mutex_init(&dev_priv->hdcp_comp_mutex);
537
538	i915_memcpy_init_early(dev_priv);
539	intel_runtime_pm_init_early(&dev_priv->runtime_pm);
540
541	ret = i915_workqueues_init(dev_priv);
542	if (ret < 0)
543		return ret;
544
545	ret = vlv_alloc_s0ix_state(dev_priv);
546	if (ret < 0)
547		goto err_workqueues;
548
549	intel_wopcm_init_early(&dev_priv->wopcm);
550
551	intel_gt_init_early(&dev_priv->gt, dev_priv);
552
553	i915_gem_init_early(dev_priv);
554
555	/* This must be called before any calls to HAS_PCH_* */
556	intel_detect_pch(dev_priv);
557
558	intel_pm_setup(dev_priv);
559	intel_init_dpio(dev_priv);
560	ret = intel_power_domains_init(dev_priv);
561	if (ret < 0)
562		goto err_gem;
563	intel_irq_init(dev_priv);
564	intel_init_display_hooks(dev_priv);
565	intel_init_clock_gating_hooks(dev_priv);
566	intel_init_audio_hooks(dev_priv);
567	intel_display_crc_init(dev_priv);
568
569	intel_detect_preproduction_hw(dev_priv);
570
571	return 0;
572
573err_gem:
574	i915_gem_cleanup_early(dev_priv);
575	intel_gt_driver_late_release(&dev_priv->gt);
576	vlv_free_s0ix_state(dev_priv);
577err_workqueues:
578	i915_workqueues_cleanup(dev_priv);
579	mutex_destroy(&dev_priv->hdcp_comp_mutex);
580	mutex_destroy(&dev_priv->pps_mutex);
581	mutex_destroy(&dev_priv->wm.wm_mutex);
582	mutex_destroy(&dev_priv->av_mutex);
583	mutex_destroy(&dev_priv->sb_lock);
584	mutex_destroy(&dev_priv->backlight_lock);
585	spin_lock_destroy(&dev_priv->gpu_error.lock);
586	spin_lock_destroy(&dev_priv->irq_lock);
587	intel_uncore_fini_early(&dev_priv->uncore, dev_priv);
588	intel_uncore_mmio_debug_fini_early(&dev_priv->mmio_debug);
589	return ret;
590}
591
592/**
593 * i915_driver_late_release - cleanup the setup done in
594 *			       i915_driver_early_probe()
595 * @dev_priv: device private
596 */
597static void i915_driver_late_release(struct drm_i915_private *dev_priv)
598{
599	intel_display_crc_fini(dev_priv);
600	intel_irq_fini(dev_priv);
601	intel_power_domains_cleanup(dev_priv);
602	i915_gem_cleanup_early(dev_priv);
603	intel_gt_driver_late_release(&dev_priv->gt);
604	vlv_free_s0ix_state(dev_priv);
605	i915_workqueues_cleanup(dev_priv);
606
607	pm_qos_remove_request(&dev_priv->sb_qos);
608	mutex_destroy(&dev_priv->hdcp_comp_mutex);
609	mutex_destroy(&dev_priv->pps_mutex);
610	mutex_destroy(&dev_priv->wm.wm_mutex);
611	mutex_destroy(&dev_priv->av_mutex);
612	mutex_destroy(&dev_priv->sb_lock);
613	mutex_destroy(&dev_priv->backlight_lock);
614	spin_lock_destroy(&dev_priv->gpu_error.lock);
615	spin_lock_destroy(&dev_priv->irq_lock);
616	intel_uncore_fini_early(&dev_priv->uncore, dev_priv);
617	intel_uncore_mmio_debug_fini_early(&dev_priv->mmio_debug);
618}
619
620/**
621 * i915_driver_mmio_probe - setup device MMIO
622 * @dev_priv: device private
623 *
624 * Setup minimal device state necessary for MMIO accesses later in the
625 * initialization sequence. The setup here should avoid any other device-wide
626 * side effects or exposing the driver via kernel internal or user space
627 * interfaces.
628 */
629static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
630{
631	int ret;
632
633	if (i915_inject_probe_failure(dev_priv))
634		return -ENODEV;
635
636	if (i915_get_bridge_dev(dev_priv))
637		return -EIO;
638
639	ret = intel_uncore_init_mmio(&dev_priv->uncore);
640	if (ret < 0)
641		goto err_bridge;
642
643	/* Try to make sure MCHBAR is enabled before poking at it */
644	intel_setup_mchbar(dev_priv);
645
646	intel_device_info_init_mmio(dev_priv);
647
648	intel_uncore_prune_mmio_domains(&dev_priv->uncore);
649
650	intel_uc_init_mmio(&dev_priv->gt.uc);
651
652	ret = intel_engines_init_mmio(&dev_priv->gt);
653	if (ret)
654		goto err_uncore;
655
656	/* As early as possible, scrub existing GPU state before clobbering */
657	sanitize_gpu(dev_priv);
658
659	return 0;
660
661err_uncore:
662	intel_teardown_mchbar(dev_priv);
663	intel_uncore_fini_mmio(&dev_priv->uncore);
664err_bridge:
665	pci_dev_put(dev_priv->bridge_dev);
666
667	return ret;
668}
669
670/**
671 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
672 * @dev_priv: device private
673 */
674static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
675{
676	intel_teardown_mchbar(dev_priv);
677	intel_uncore_fini_mmio(&dev_priv->uncore);
678	pci_dev_put(dev_priv->bridge_dev);
679}
680
681static void intel_sanitize_options(struct drm_i915_private *dev_priv)
682{
683	intel_gvt_sanitize_options(dev_priv);
684}
685
686#define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
687
688static const char *intel_dram_type_str(enum intel_dram_type type)
689{
690	static const char * const str[] = {
691		DRAM_TYPE_STR(UNKNOWN),
692		DRAM_TYPE_STR(DDR3),
693		DRAM_TYPE_STR(DDR4),
694		DRAM_TYPE_STR(LPDDR3),
695		DRAM_TYPE_STR(LPDDR4),
696	};
697
698	if (type >= ARRAY_SIZE(str))
699		type = INTEL_DRAM_UNKNOWN;
700
701	return str[type];
702}
703
704#undef DRAM_TYPE_STR
705
706static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
707{
708	return dimm->ranks * 64 / (dimm->width ?: 1);
709}
710
711/* Returns total GB for the whole DIMM */
712static int skl_get_dimm_size(u16 val)
713{
714	return val & SKL_DRAM_SIZE_MASK;
715}
716
717static int skl_get_dimm_width(u16 val)
718{
719	if (skl_get_dimm_size(val) == 0)
720		return 0;
721
722	switch (val & SKL_DRAM_WIDTH_MASK) {
723	case SKL_DRAM_WIDTH_X8:
724	case SKL_DRAM_WIDTH_X16:
725	case SKL_DRAM_WIDTH_X32:
726		val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
727		return 8 << val;
728	default:
729		MISSING_CASE(val);
730		return 0;
731	}
732}
733
734static int skl_get_dimm_ranks(u16 val)
735{
736	if (skl_get_dimm_size(val) == 0)
737		return 0;
738
739	val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
740
741	return val + 1;
742}
743
744/* Returns total GB for the whole DIMM */
745static int cnl_get_dimm_size(u16 val)
746{
747	return (val & CNL_DRAM_SIZE_MASK) / 2;
748}
749
750static int cnl_get_dimm_width(u16 val)
751{
752	if (cnl_get_dimm_size(val) == 0)
753		return 0;
754
755	switch (val & CNL_DRAM_WIDTH_MASK) {
756	case CNL_DRAM_WIDTH_X8:
757	case CNL_DRAM_WIDTH_X16:
758	case CNL_DRAM_WIDTH_X32:
759		val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
760		return 8 << val;
761	default:
762		MISSING_CASE(val);
763		return 0;
764	}
765}
766
767static int cnl_get_dimm_ranks(u16 val)
768{
769	if (cnl_get_dimm_size(val) == 0)
770		return 0;
771
772	val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
773
774	return val + 1;
775}
776
777static bool
778skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
779{
780	/* Convert total GB to Gb per DRAM device */
781	return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
782}
783
784static void
785skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
786		       struct dram_dimm_info *dimm,
787		       int channel, char dimm_name, u16 val)
788{
789	if (INTEL_GEN(dev_priv) >= 10) {
790		dimm->size = cnl_get_dimm_size(val);
791		dimm->width = cnl_get_dimm_width(val);
792		dimm->ranks = cnl_get_dimm_ranks(val);
793	} else {
794		dimm->size = skl_get_dimm_size(val);
795		dimm->width = skl_get_dimm_width(val);
796		dimm->ranks = skl_get_dimm_ranks(val);
797	}
798
799	DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
800		      channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
801		      yesno(skl_is_16gb_dimm(dimm)));
802}
803
804static int
805skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
806			  struct dram_channel_info *ch,
807			  int channel, u32 val)
808{
809	skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
810			       channel, 'L', val & 0xffff);
811	skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
812			       channel, 'S', val >> 16);
813
814	if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
815		DRM_DEBUG_KMS("CH%u not populated\n", channel);
816		return -EINVAL;
817	}
818
819	if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
820		ch->ranks = 2;
821	else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
822		ch->ranks = 2;
823	else
824		ch->ranks = 1;
825
826	ch->is_16gb_dimm =
827		skl_is_16gb_dimm(&ch->dimm_l) ||
828		skl_is_16gb_dimm(&ch->dimm_s);
829
830	DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
831		      channel, ch->ranks, yesno(ch->is_16gb_dimm));
832
833	return 0;
834}
835
836static bool
837intel_is_dram_symmetric(const struct dram_channel_info *ch0,
838			const struct dram_channel_info *ch1)
839{
840	return !memcmp(ch0, ch1, sizeof(*ch0)) &&
841		(ch0->dimm_s.size == 0 ||
842		 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
843}
844
845static int
846skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
847{
848	struct dram_info *dram_info = &dev_priv->dram_info;
849	struct dram_channel_info ch0 = {}, ch1 = {};
850	u32 val;
851	int ret;
852
853	val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
854	ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
855	if (ret == 0)
856		dram_info->num_channels++;
857
858	val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
859	ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
860	if (ret == 0)
861		dram_info->num_channels++;
862
863	if (dram_info->num_channels == 0) {
864		DRM_INFO("Number of memory channels is zero\n");
865		return -EINVAL;
866	}
867
868	/*
869	 * If any of the channel is single rank channel, worst case output
870	 * will be same as if single rank memory, so consider single rank
871	 * memory.
872	 */
873	if (ch0.ranks == 1 || ch1.ranks == 1)
874		dram_info->ranks = 1;
875	else
876		dram_info->ranks = max(ch0.ranks, ch1.ranks);
877
878	if (dram_info->ranks == 0) {
879		DRM_INFO("couldn't get memory rank information\n");
880		return -EINVAL;
881	}
882
883	dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
884
885	dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
886
887	DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
888		      yesno(dram_info->symmetric_memory));
889	return 0;
890}
891
892static enum intel_dram_type
893skl_get_dram_type(struct drm_i915_private *dev_priv)
894{
895	u32 val;
896
897	val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
898
899	switch (val & SKL_DRAM_DDR_TYPE_MASK) {
900	case SKL_DRAM_DDR_TYPE_DDR3:
901		return INTEL_DRAM_DDR3;
902	case SKL_DRAM_DDR_TYPE_DDR4:
903		return INTEL_DRAM_DDR4;
904	case SKL_DRAM_DDR_TYPE_LPDDR3:
905		return INTEL_DRAM_LPDDR3;
906	case SKL_DRAM_DDR_TYPE_LPDDR4:
907		return INTEL_DRAM_LPDDR4;
908	default:
909		MISSING_CASE(val);
910		return INTEL_DRAM_UNKNOWN;
911	}
912}
913
914static int
915skl_get_dram_info(struct drm_i915_private *dev_priv)
916{
917	struct dram_info *dram_info = &dev_priv->dram_info;
918	u32 mem_freq_khz, val;
919	int ret;
920
921	dram_info->type = skl_get_dram_type(dev_priv);
922	DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
923
924	ret = skl_dram_get_channels_info(dev_priv);
925	if (ret)
926		return ret;
927
928	val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
929	mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
930				    SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
931
932	dram_info->bandwidth_kbps = dram_info->num_channels *
933							mem_freq_khz * 8;
934
935	if (dram_info->bandwidth_kbps == 0) {
936		DRM_INFO("Couldn't get system memory bandwidth\n");
937		return -EINVAL;
938	}
939
940	dram_info->valid = true;
941	return 0;
942}
943
944/* Returns Gb per DRAM device */
945static int bxt_get_dimm_size(u32 val)
946{
947	switch (val & BXT_DRAM_SIZE_MASK) {
948	case BXT_DRAM_SIZE_4GBIT:
949		return 4;
950	case BXT_DRAM_SIZE_6GBIT:
951		return 6;
952	case BXT_DRAM_SIZE_8GBIT:
953		return 8;
954	case BXT_DRAM_SIZE_12GBIT:
955		return 12;
956	case BXT_DRAM_SIZE_16GBIT:
957		return 16;
958	default:
959		MISSING_CASE(val);
960		return 0;
961	}
962}
963
964static int bxt_get_dimm_width(u32 val)
965{
966	if (!bxt_get_dimm_size(val))
967		return 0;
968
969	val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
970
971	return 8 << val;
972}
973
974static int bxt_get_dimm_ranks(u32 val)
975{
976	if (!bxt_get_dimm_size(val))
977		return 0;
978
979	switch (val & BXT_DRAM_RANK_MASK) {
980	case BXT_DRAM_RANK_SINGLE:
981		return 1;
982	case BXT_DRAM_RANK_DUAL:
983		return 2;
984	default:
985		MISSING_CASE(val);
986		return 0;
987	}
988}
989
990static enum intel_dram_type bxt_get_dimm_type(u32 val)
991{
992	if (!bxt_get_dimm_size(val))
993		return INTEL_DRAM_UNKNOWN;
994
995	switch (val & BXT_DRAM_TYPE_MASK) {
996	case BXT_DRAM_TYPE_DDR3:
997		return INTEL_DRAM_DDR3;
998	case BXT_DRAM_TYPE_LPDDR3:
999		return INTEL_DRAM_LPDDR3;
1000	case BXT_DRAM_TYPE_DDR4:
1001		return INTEL_DRAM_DDR4;
1002	case BXT_DRAM_TYPE_LPDDR4:
1003		return INTEL_DRAM_LPDDR4;
1004	default:
1005		MISSING_CASE(val);
1006		return INTEL_DRAM_UNKNOWN;
1007	}
1008}
1009
1010static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
1011			      u32 val)
1012{
1013	dimm->width = bxt_get_dimm_width(val);
1014	dimm->ranks = bxt_get_dimm_ranks(val);
1015
1016	/*
1017	 * Size in register is Gb per DRAM device. Convert to total
1018	 * GB to match the way we report this for non-LP platforms.
1019	 */
1020	dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
1021}
1022
1023static int
1024bxt_get_dram_info(struct drm_i915_private *dev_priv)
1025{
1026	struct dram_info *dram_info = &dev_priv->dram_info;
1027	u32 dram_channels;
1028	u32 mem_freq_khz, val;
1029	u8 num_active_channels;
1030	int i;
1031
1032	val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1033	mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1034				    BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1035
1036	dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1037	num_active_channels = hweight32(dram_channels);
1038
1039	/* Each active bit represents 4-byte channel */
1040	dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1041
1042	if (dram_info->bandwidth_kbps == 0) {
1043		DRM_INFO("Couldn't get system memory bandwidth\n");
1044		return -EINVAL;
1045	}
1046
1047	/*
1048	 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1049	 */
1050	for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1051		struct dram_dimm_info dimm;
1052		enum intel_dram_type type;
1053
1054		val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1055		if (val == 0xFFFFFFFF)
1056			continue;
1057
1058		dram_info->num_channels++;
1059
1060		bxt_get_dimm_info(&dimm, val);
1061		type = bxt_get_dimm_type(val);
1062
1063		WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1064			dram_info->type != INTEL_DRAM_UNKNOWN &&
1065			dram_info->type != type);
1066
1067		DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1068			      i - BXT_D_CR_DRP0_DUNIT_START,
1069			      dimm.size, dimm.width, dimm.ranks,
1070			      intel_dram_type_str(type));
1071
1072		/*
1073		 * If any of the channel is single rank channel,
1074		 * worst case output will be same as if single rank
1075		 * memory, so consider single rank memory.
1076		 */
1077		if (dram_info->ranks == 0)
1078			dram_info->ranks = dimm.ranks;
1079		else if (dimm.ranks == 1)
1080			dram_info->ranks = 1;
1081
1082		if (type != INTEL_DRAM_UNKNOWN)
1083			dram_info->type = type;
1084	}
1085
1086	if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1087	    dram_info->ranks == 0) {
1088		DRM_INFO("couldn't get memory information\n");
1089		return -EINVAL;
1090	}
1091
1092	dram_info->valid = true;
1093	return 0;
1094}
1095
1096static void
1097intel_get_dram_info(struct drm_i915_private *dev_priv)
1098{
1099	struct dram_info *dram_info = &dev_priv->dram_info;
1100	int ret;
1101
1102	/*
1103	 * Assume 16Gb DIMMs are present until proven otherwise.
1104	 * This is only used for the level 0 watermark latency
1105	 * w/a which does not apply to bxt/glk.
1106	 */
1107	dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1108
1109	if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1110		return;
1111
1112	if (IS_GEN9_LP(dev_priv))
1113		ret = bxt_get_dram_info(dev_priv);
1114	else
1115		ret = skl_get_dram_info(dev_priv);
1116	if (ret)
1117		return;
1118
1119	DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1120		      dram_info->bandwidth_kbps,
1121		      dram_info->num_channels);
1122
1123	DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1124		      dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1125}
1126
1127static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1128{
1129	static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1130	static const u8 sets[4] = { 1, 1, 2, 2 };
1131
1132	return EDRAM_NUM_BANKS(cap) *
1133		ways[EDRAM_WAYS_IDX(cap)] *
1134		sets[EDRAM_SETS_IDX(cap)];
1135}
1136
1137static void edram_detect(struct drm_i915_private *dev_priv)
1138{
1139	u32 edram_cap = 0;
1140
1141	if (!(IS_HASWELL(dev_priv) ||
1142	      IS_BROADWELL(dev_priv) ||
1143	      INTEL_GEN(dev_priv) >= 9))
1144		return;
1145
1146	edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1147
1148	/* NB: We can't write IDICR yet because we don't have gt funcs set up */
1149
1150	if (!(edram_cap & EDRAM_ENABLED))
1151		return;
1152
1153	/*
1154	 * The needed capability bits for size calculation are not there with
1155	 * pre gen9 so return 128MB always.
1156	 */
1157	if (INTEL_GEN(dev_priv) < 9)
1158		dev_priv->edram_size_mb = 128;
1159	else
1160		dev_priv->edram_size_mb =
1161			gen9_edram_size_mb(dev_priv, edram_cap);
1162
1163	dev_info(dev_priv->drm.dev,
1164		 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1165}
1166
1167/**
1168 * i915_driver_hw_probe - setup state requiring device access
1169 * @dev_priv: device private
1170 *
1171 * Setup state that requires accessing the device, but doesn't require
1172 * exposing the driver via kernel internal or userspace interfaces.
1173 */
1174static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1175{
1176	struct pci_dev *pdev = dev_priv->drm.pdev;
1177	int ret;
1178
1179	if (i915_inject_probe_failure(dev_priv))
1180		return -ENODEV;
1181
1182	intel_device_info_runtime_init(dev_priv);
1183
1184	if (HAS_PPGTT(dev_priv)) {
1185		if (intel_vgpu_active(dev_priv) &&
1186		    !intel_vgpu_has_full_ppgtt(dev_priv)) {
1187			i915_report_error(dev_priv,
1188					  "incompatible vGPU found, support for isolated ppGTT required\n");
1189			return -ENXIO;
1190		}
1191	}
1192
1193	if (HAS_EXECLISTS(dev_priv)) {
1194		/*
1195		 * Older GVT emulation depends upon intercepting CSB mmio,
1196		 * which we no longer use, preferring to use the HWSP cache
1197		 * instead.
1198		 */
1199		if (intel_vgpu_active(dev_priv) &&
1200		    !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1201			i915_report_error(dev_priv,
1202					  "old vGPU host found, support for HWSP emulation required\n");
1203			return -ENXIO;
1204		}
1205	}
1206
1207	intel_sanitize_options(dev_priv);
1208
1209	/* needs to be done before ggtt probe */
1210	edram_detect(dev_priv);
1211
1212	i915_perf_init(dev_priv);
1213
1214	ret = i915_ggtt_probe_hw(dev_priv);
1215	if (ret)
1216		goto err_perf;
1217
1218	ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1219	if (ret)
1220		goto err_ggtt;
1221
1222	ret = i915_ggtt_init_hw(dev_priv);
1223	if (ret)
1224		goto err_ggtt;
1225
1226	ret = intel_memory_regions_hw_probe(dev_priv);
1227	if (ret)
1228		goto err_ggtt;
1229
1230	intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1231
1232	ret = i915_ggtt_enable_hw(dev_priv);
1233	if (ret) {
1234		DRM_ERROR("failed to enable GGTT\n");
1235		goto err_mem_regions;
1236	}
1237
1238	pci_set_master(pdev);
1239
1240#ifndef __NetBSD__
1241	/*
1242	 * We don't have a max segment size, so set it to the max so sg's
1243	 * debugging layer doesn't complain
1244	 */
1245	dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1246#endif
1247
1248#ifndef __NetBSD__		/* Handled in intel_ggtt.c.  */
1249	/* overlay on gen2 is broken and can't address above 1G */
1250	if (IS_GEN(dev_priv, 2)) {
1251		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1252		if (ret) {
1253			DRM_ERROR("failed to set DMA mask\n");
1254
1255			goto err_mem_regions;
1256		}
1257	}
1258
1259	/* 965GM sometimes incorrectly writes to hardware status page (HWS)
1260	 * using 32bit addressing, overwriting memory if HWS is located
1261	 * above 4GB.
1262	 *
1263	 * The documentation also mentions an issue with undefined
1264	 * behaviour if any general state is accessed within a page above 4GB,
1265	 * which also needs to be handled carefully.
1266	 */
1267	if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1268		ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1269
1270		if (ret) {
1271			DRM_ERROR("failed to set DMA mask\n");
1272
1273			goto err_mem_regions;
1274		}
1275	}
1276#endif
1277
1278	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1279			   PM_QOS_DEFAULT_VALUE);
1280
1281	intel_gt_init_workarounds(dev_priv);
1282
1283	/* On the 945G/GM, the chipset reports the MSI capability on the
1284	 * integrated graphics even though the support isn't actually there
1285	 * according to the published specs.  It doesn't appear to function
1286	 * correctly in testing on 945G.
1287	 * This may be a side effect of MSI having been made available for PEG
1288	 * and the registers being closely associated.
1289	 *
1290	 * According to chipset errata, on the 965GM, MSI interrupts may
1291	 * be lost or delayed, and was defeatured. MSI interrupts seem to
1292	 * get lost on g4x as well, and interrupt delivery seems to stay
1293	 * properly dead afterwards. So we'll just disable them for all
1294	 * pre-gen5 chipsets.
1295	 *
1296	 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1297	 * interrupts even when in MSI mode. This results in spurious
1298	 * interrupt warnings if the legacy irq no. is shared with another
1299	 * device. The kernel then disables that interrupt source and so
1300	 * prevents the other device from working properly.
1301	 */
1302	if (INTEL_GEN(dev_priv) >= 5) {
1303		if (pci_enable_msi(pdev) < 0)
1304			DRM_DEBUG_DRIVER("can't enable MSI");
1305	}
1306
1307	ret = intel_gvt_init(dev_priv);
1308	if (ret)
1309		goto err_msi;
1310
1311	intel_opregion_setup(dev_priv);
1312	/*
1313	 * Fill the dram structure to get the system raw bandwidth and
1314	 * dram info. This will be used for memory latency calculation.
1315	 */
1316	intel_get_dram_info(dev_priv);
1317
1318	intel_bw_init_hw(dev_priv);
1319
1320	return 0;
1321
1322err_msi:
1323	if (pdev->msi_enabled)
1324		pci_disable_msi(pdev);
1325	pm_qos_remove_request(&dev_priv->pm_qos);
1326err_mem_regions:
1327	intel_memory_regions_driver_release(dev_priv);
1328err_ggtt:
1329	i915_ggtt_driver_release(dev_priv);
1330err_perf:
1331	i915_perf_fini(dev_priv);
1332	return ret;
1333}
1334
1335/**
1336 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1337 * @dev_priv: device private
1338 */
1339static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1340{
1341	struct pci_dev *pdev = dev_priv->drm.pdev;
1342
1343	i915_perf_fini(dev_priv);
1344
1345	if (pdev->msi_enabled)
1346		pci_disable_msi(pdev);
1347
1348	pm_qos_remove_request(&dev_priv->pm_qos);
1349}
1350
1351/**
1352 * i915_driver_register - register the driver with the rest of the system
1353 * @dev_priv: device private
1354 *
1355 * Perform any steps necessary to make the driver available via kernel
1356 * internal or userspace interfaces.
1357 */
1358static void i915_driver_register(struct drm_i915_private *dev_priv)
1359{
1360	struct drm_device *dev = &dev_priv->drm;
1361
1362	i915_gem_driver_register(dev_priv);
1363	i915_pmu_register(dev_priv);
1364
1365	/*
1366	 * Notify a valid surface after modesetting,
1367	 * when running inside a VM.
1368	 */
1369	if (intel_vgpu_active(dev_priv))
1370		I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1371
1372	/* Reveal our presence to userspace */
1373	if (drm_dev_register(dev, 0) == 0) {
1374		i915_debugfs_register(dev_priv);
1375		i915_setup_sysfs(dev_priv);
1376
1377		/* Depends on sysfs having been initialized */
1378		i915_perf_register(dev_priv);
1379	} else
1380		DRM_ERROR("Failed to register driver for userspace access!\n");
1381
1382	if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1383		/* Must be done after probing outputs */
1384		intel_opregion_register(dev_priv);
1385		acpi_video_register();
1386	}
1387
1388	intel_gt_driver_register(&dev_priv->gt);
1389
1390	intel_audio_init(dev_priv);
1391
1392	/*
1393	 * Some ports require correctly set-up hpd registers for detection to
1394	 * work properly (leading to ghost connected connector status), e.g. VGA
1395	 * on gm45.  Hence we can only set up the initial fbdev config after hpd
1396	 * irqs are fully enabled. We do it last so that the async config
1397	 * cannot run before the connectors are registered.
1398	 */
1399	intel_fbdev_initial_config_async(dev);
1400
1401	/*
1402	 * We need to coordinate the hotplugs with the asynchronous fbdev
1403	 * configuration, for which we use the fbdev->async_cookie.
1404	 */
1405	if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1406		drm_kms_helper_poll_init(dev);
1407
1408	intel_power_domains_enable(dev_priv);
1409	intel_runtime_pm_enable(&dev_priv->runtime_pm);
1410}
1411
1412/**
1413 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1414 * @dev_priv: device private
1415 */
1416static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1417{
1418	intel_runtime_pm_disable(&dev_priv->runtime_pm);
1419	intel_power_domains_disable(dev_priv);
1420
1421	intel_fbdev_unregister(dev_priv);
1422	intel_audio_deinit(dev_priv);
1423
1424	/*
1425	 * After flushing the fbdev (incl. a late async config which will
1426	 * have delayed queuing of a hotplug event), then flush the hotplug
1427	 * events.
1428	 */
1429	drm_kms_helper_poll_fini(&dev_priv->drm);
1430
1431	intel_gt_driver_unregister(&dev_priv->gt);
1432	acpi_video_unregister();
1433	intel_opregion_unregister(dev_priv);
1434
1435	i915_perf_unregister(dev_priv);
1436	i915_pmu_unregister(dev_priv);
1437
1438	i915_teardown_sysfs(dev_priv);
1439	drm_dev_unplug(&dev_priv->drm);
1440
1441	i915_gem_driver_unregister(dev_priv);
1442}
1443
1444static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1445{
1446	if (drm_debug_enabled(DRM_UT_DRIVER)) {
1447		struct drm_printer p = drm_debug_printer("i915 device info:");
1448
1449		drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1450			   INTEL_DEVID(dev_priv),
1451			   INTEL_REVID(dev_priv),
1452			   intel_platform_name(INTEL_INFO(dev_priv)->platform),
1453			   intel_subplatform(RUNTIME_INFO(dev_priv),
1454					     INTEL_INFO(dev_priv)->platform),
1455			   INTEL_GEN(dev_priv));
1456
1457		intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1458		intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1459	}
1460
1461	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1462		DRM_INFO("DRM_I915_DEBUG enabled\n");
1463	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1464		DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1465	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1466		DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1467}
1468
1469static struct drm_i915_private *
1470i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1471{
1472	const struct intel_device_info *match_info =
1473		(struct intel_device_info *)ent->driver_data;
1474	struct intel_device_info *device_info;
1475	struct drm_i915_private *i915;
1476	int err;
1477
1478	i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1479	if (!i915)
1480		return ERR_PTR(-ENOMEM);
1481
1482	err = drm_dev_init(&i915->drm, &driver, pci_dev_dev(pdev));
1483	if (err) {
1484		kfree(i915);
1485		return ERR_PTR(err);
1486	}
1487
1488	i915->drm.dev_private = i915;
1489
1490	i915->drm.pdev = pdev;
1491	pci_set_drvdata(pdev, i915);
1492
1493	/* Setup the write-once "constant" device info */
1494	device_info = mkwrite_device_info(i915);
1495	memcpy(device_info, match_info, sizeof(*device_info));
1496	RUNTIME_INFO(i915)->device_id = pdev->device;
1497
1498	BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1499
1500	return i915;
1501}
1502
1503static void i915_driver_destroy(struct drm_i915_private *i915)
1504{
1505	struct pci_dev *pdev = i915->drm.pdev;
1506
1507	drm_dev_fini(&i915->drm);
1508	kfree(i915);
1509
1510	/* And make sure we never chase our dangling pointer from pci_dev */
1511	pci_set_drvdata(pdev, NULL);
1512}
1513
1514/**
1515 * i915_driver_probe - setup chip and create an initial config
1516 * @pdev: PCI device
1517 * @ent: matching PCI ID entry
1518 *
1519 * The driver probe routine has to do several things:
1520 *   - drive output discovery via intel_modeset_init()
1521 *   - initialize the memory manager
1522 *   - allocate initial config memory
1523 *   - setup the DRM framebuffer with the allocated memory
1524 */
1525int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1526{
1527	const struct intel_device_info *match_info =
1528		(struct intel_device_info *)ent->driver_data;
1529	struct drm_i915_private *dev_priv;
1530	int ret;
1531
1532	dev_priv = i915_driver_create(pdev, ent);
1533	if (IS_ERR(dev_priv))
1534		return PTR_ERR(dev_priv);
1535
1536#ifdef __NetBSD__
1537	ret = drm_pci_attach(&dev_priv->drm, pdev);
1538	if (ret)
1539		goto out_destroy;
1540#endif
1541
1542	/* Disable nuclear pageflip by default on pre-ILK */
1543	if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1544		dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1545
1546	/*
1547	 * Check if we support fake LMEM -- for now we only unleash this for
1548	 * the live selftests(test-and-exit).
1549	 */
1550#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1551	if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1552		if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1553		    i915_modparams.fake_lmem_start) {
1554			mkwrite_device_info(dev_priv)->memory_regions =
1555				REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1556			mkwrite_device_info(dev_priv)->is_dgfx = true;
1557			GEM_BUG_ON(!HAS_LMEM(dev_priv));
1558			GEM_BUG_ON(!IS_DGFX(dev_priv));
1559		}
1560	}
1561#endif
1562
1563#ifndef __NetBSD__		/* XXX done for us */
1564	ret = pci_enable_device(pdev);
1565	if (ret)
1566		goto out_fini;
1567#endif
1568
1569	ret = i915_driver_early_probe(dev_priv);
1570	if (ret < 0)
1571		goto out_pci_disable;
1572
1573	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1574
1575	i915_detect_vgpu(dev_priv);
1576
1577	ret = i915_driver_mmio_probe(dev_priv);
1578	if (ret < 0)
1579		goto out_runtime_pm_put;
1580
1581	ret = i915_driver_hw_probe(dev_priv);
1582	if (ret < 0)
1583		goto out_cleanup_mmio;
1584
1585	ret = i915_driver_modeset_probe(dev_priv);
1586	if (ret < 0)
1587		goto out_cleanup_hw;
1588
1589	i915_driver_register(dev_priv);
1590
1591	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1592
1593	i915_welcome_messages(dev_priv);
1594
1595	return 0;
1596
1597out_cleanup_hw:
1598	i915_driver_hw_remove(dev_priv);
1599	intel_memory_regions_driver_release(dev_priv);
1600	i915_ggtt_driver_release(dev_priv);
1601out_cleanup_mmio:
1602	i915_driver_mmio_release(dev_priv);
1603out_runtime_pm_put:
1604	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1605	i915_driver_late_release(dev_priv);
1606out_pci_disable:
1607#ifndef __NetBSD__
1608	pci_disable_device(pdev);
1609out_fini:
1610#endif
1611	i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1612#ifdef __NetBSD__
1613	drm_pci_detach(&dev_priv->drm);
1614out_destroy:
1615#endif
1616	i915_driver_destroy(dev_priv);
1617	return ret;
1618}
1619
1620void i915_driver_remove(struct drm_i915_private *i915)
1621{
1622	disable_rpm_wakeref_asserts(&i915->runtime_pm);
1623
1624	i915_driver_unregister(i915);
1625
1626	/*
1627	 * After unregistering the device to prevent any new users, cancel
1628	 * all in-flight requests so that we can quickly unbind the active
1629	 * resources.
1630	 */
1631	intel_gt_set_wedged(&i915->gt);
1632
1633	/* Flush any external code that still may be under the RCU lock */
1634	synchronize_rcu();
1635
1636	i915_gem_suspend(i915);
1637
1638	drm_atomic_helper_shutdown(&i915->drm);
1639
1640	intel_gvt_driver_remove(i915);
1641
1642	i915_driver_modeset_remove(i915);
1643
1644	i915_reset_error_state(i915);
1645	i915_gem_driver_remove(i915);
1646
1647	intel_power_domains_driver_remove(i915);
1648
1649	i915_driver_hw_remove(i915);
1650
1651	enable_rpm_wakeref_asserts(&i915->runtime_pm);
1652}
1653
1654static void i915_driver_release(struct drm_device *dev)
1655{
1656	struct drm_i915_private *dev_priv = to_i915(dev);
1657	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1658
1659	disable_rpm_wakeref_asserts(rpm);
1660
1661	i915_gem_driver_release(dev_priv);
1662
1663	intel_memory_regions_driver_release(dev_priv);
1664	i915_ggtt_driver_release(dev_priv);
1665
1666	i915_driver_mmio_release(dev_priv);
1667
1668	enable_rpm_wakeref_asserts(rpm);
1669	intel_runtime_pm_driver_release(rpm);
1670
1671	i915_driver_late_release(dev_priv);
1672#ifdef __NetBSD__
1673	drm_pci_detach(dev);
1674#endif
1675	i915_driver_destroy(dev_priv);
1676}
1677
1678static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1679{
1680	struct drm_i915_private *i915 = to_i915(dev);
1681	int ret;
1682
1683	ret = i915_gem_open(i915, file);
1684	if (ret)
1685		return ret;
1686
1687	return 0;
1688}
1689
1690/**
1691 * i915_driver_lastclose - clean up after all DRM clients have exited
1692 * @dev: DRM device
1693 *
1694 * Take care of cleaning up after all DRM clients have exited.  In the
1695 * mode setting case, we want to restore the kernel's initial mode (just
1696 * in case the last client left us in a bad state).
1697 *
1698 * Additionally, in the non-mode setting case, we'll tear down the GTT
1699 * and DMA structures, since the kernel won't be using them, and clea
1700 * up any GEM state.
1701 */
1702static void i915_driver_lastclose(struct drm_device *dev)
1703{
1704	intel_fbdev_restore_mode(dev);
1705#ifndef __NetBSD__		/* XXX vga */
1706	vga_switcheroo_process_delayed_switch();
1707#endif
1708}
1709
1710static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1711{
1712	struct drm_i915_file_private *file_priv = file->driver_priv;
1713
1714	i915_gem_context_close(file);
1715	i915_gem_release(dev, file);
1716
1717	kfree_rcu(file_priv, rcu);
1718
1719	/* Catch up with all the deferred frees from "this" client */
1720	i915_gem_flush_free_objects(to_i915(dev));
1721}
1722
1723static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1724{
1725	struct drm_device *dev = &dev_priv->drm;
1726	struct intel_encoder *encoder;
1727
1728	drm_modeset_lock_all(dev);
1729	for_each_intel_encoder(dev, encoder)
1730		if (encoder->suspend)
1731			encoder->suspend(encoder);
1732	drm_modeset_unlock_all(dev);
1733}
1734
1735#ifndef __NetBSD__		/* XXX vlv suspend/resume */
1736static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1737			      bool rpm_resume);
1738static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1739#endif
1740
1741static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1742{
1743#if IS_ENABLED(CONFIG_ACPI_SLEEP)
1744	if (acpi_target_system_state() < ACPI_STATE_S3)
1745		return true;
1746#endif
1747	return false;
1748}
1749
1750int i915_drm_prepare(struct drm_device *dev)
1751{
1752	struct drm_i915_private *i915 = to_i915(dev);
1753
1754	/*
1755	 * NB intel_display_suspend() may issue new requests after we've
1756	 * ostensibly marked the GPU as ready-to-sleep here. We need to
1757	 * split out that work and pull it forward so that after point,
1758	 * the GPU is not woken again.
1759	 */
1760	i915_gem_suspend(i915);
1761
1762	return 0;
1763}
1764
1765int i915_drm_suspend(struct drm_device *dev)
1766{
1767	struct drm_i915_private *dev_priv = to_i915(dev);
1768	struct pci_dev *pdev = dev_priv->drm.pdev;
1769	pci_power_t opregion_target_state;
1770
1771	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1772
1773	/* We do a lot of poking in a lot of registers, make sure they work
1774	 * properly. */
1775	intel_power_domains_disable(dev_priv);
1776
1777	drm_kms_helper_poll_disable(dev);
1778
1779#ifdef __NetBSD__		/* pmf handles this for us.  */
1780	__USE(pdev);
1781#else
1782	pci_save_state(pdev);
1783#endif
1784
1785	intel_display_suspend(dev);
1786
1787	intel_dp_mst_suspend(dev_priv);
1788
1789	intel_runtime_pm_disable_interrupts(dev_priv);
1790	intel_hpd_cancel_work(dev_priv);
1791
1792	intel_suspend_encoders(dev_priv);
1793
1794	intel_suspend_hw(dev_priv);
1795
1796	i915_gem_suspend_gtt_mappings(dev_priv);
1797
1798	i915_save_state(dev_priv);
1799
1800	opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1801	intel_opregion_suspend(dev_priv, opregion_target_state);
1802
1803	intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1804
1805	dev_priv->suspend_count++;
1806
1807	intel_csr_ucode_suspend(dev_priv);
1808
1809	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1810
1811	return 0;
1812}
1813
1814static enum i915_drm_suspend_mode
1815get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1816{
1817	if (hibernate)
1818		return I915_DRM_SUSPEND_HIBERNATE;
1819
1820	if (suspend_to_idle(dev_priv))
1821		return I915_DRM_SUSPEND_IDLE;
1822
1823	return I915_DRM_SUSPEND_MEM;
1824}
1825
1826int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1827{
1828	struct drm_i915_private *dev_priv = to_i915(dev);
1829	struct pci_dev *pdev = dev_priv->drm.pdev;
1830	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1831	int ret = 0;
1832
1833	disable_rpm_wakeref_asserts(rpm);
1834
1835	i915_gem_suspend_late(dev_priv);
1836
1837	intel_uncore_suspend(&dev_priv->uncore);
1838
1839	intel_power_domains_suspend(dev_priv,
1840				    get_suspend_mode(dev_priv, hibernation));
1841
1842	intel_display_power_suspend_late(dev_priv);
1843
1844	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1845#ifdef __NetBSD__
1846		ret = 0;
1847#else
1848		ret = vlv_suspend_complete(dev_priv);
1849#endif
1850
1851	if (ret) {
1852		DRM_ERROR("Suspend complete failed: %d\n", ret);
1853		intel_power_domains_resume(dev_priv);
1854
1855		goto out;
1856	}
1857
1858#ifdef __NetBSD__		/* pmf handles this for us.  */
1859	__USE(pdev);
1860#else
1861	pci_disable_device(pdev);
1862	/*
1863	 * During hibernation on some platforms the BIOS may try to access
1864	 * the device even though it's already in D3 and hang the machine. So
1865	 * leave the device in D0 on those platforms and hope the BIOS will
1866	 * power down the device properly. The issue was seen on multiple old
1867	 * GENs with different BIOS vendors, so having an explicit blacklist
1868	 * is inpractical; apply the workaround on everything pre GEN6. The
1869	 * platforms where the issue was seen:
1870	 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1871	 * Fujitsu FSC S7110
1872	 * Acer Aspire 1830T
1873	 */
1874	if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1875		pci_set_power_state(pdev, PCI_D3hot);
1876#endif
1877
1878out:
1879	enable_rpm_wakeref_asserts(rpm);
1880	if (!dev_priv->uncore.user_forcewake_count)
1881		intel_runtime_pm_driver_release(rpm);
1882
1883	return ret;
1884}
1885
1886#ifndef __NetBSD__		/* XXX vga switcheroo */
1887int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1888{
1889	int error;
1890
1891	if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1892			 state.event != PM_EVENT_FREEZE))
1893		return -EINVAL;
1894
1895	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1896		return 0;
1897
1898	error = i915_drm_suspend(&i915->drm);
1899	if (error)
1900		return error;
1901
1902	return i915_drm_suspend_late(&i915->drm, false);
1903}
1904#endif
1905
1906int i915_drm_resume(struct drm_device *dev)
1907{
1908	struct drm_i915_private *dev_priv = to_i915(dev);
1909	int ret;
1910
1911	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1912
1913	sanitize_gpu(dev_priv);
1914
1915	ret = i915_ggtt_enable_hw(dev_priv);
1916	if (ret)
1917		DRM_ERROR("failed to re-enable GGTT\n");
1918
1919	i915_gem_restore_gtt_mappings(dev_priv);
1920	i915_gem_restore_fences(&dev_priv->ggtt);
1921
1922	intel_csr_ucode_resume(dev_priv);
1923
1924	i915_restore_state(dev_priv);
1925	intel_pps_unlock_regs_wa(dev_priv);
1926
1927	intel_init_pch_refclk(dev_priv);
1928
1929	/*
1930	 * Interrupts have to be enabled before any batches are run. If not the
1931	 * GPU will hang. i915_gem_init_hw() will initiate batches to
1932	 * update/restore the context.
1933	 *
1934	 * drm_mode_config_reset() needs AUX interrupts.
1935	 *
1936	 * Modeset enabling in intel_modeset_init_hw() also needs working
1937	 * interrupts.
1938	 */
1939	intel_runtime_pm_enable_interrupts(dev_priv);
1940
1941	drm_mode_config_reset(dev);
1942
1943	i915_gem_resume(dev_priv);
1944
1945	intel_modeset_init_hw(dev_priv);
1946	intel_init_clock_gating(dev_priv);
1947
1948	spin_lock_irq(&dev_priv->irq_lock);
1949	if (dev_priv->display.hpd_irq_setup)
1950		dev_priv->display.hpd_irq_setup(dev_priv);
1951	spin_unlock_irq(&dev_priv->irq_lock);
1952
1953	intel_dp_mst_resume(dev_priv);
1954
1955	intel_display_resume(dev);
1956
1957	drm_kms_helper_poll_enable(dev);
1958
1959	/*
1960	 * ... but also need to make sure that hotplug processing
1961	 * doesn't cause havoc. Like in the driver load code we don't
1962	 * bother with the tiny race here where we might lose hotplug
1963	 * notifications.
1964	 * */
1965	intel_hpd_init(dev_priv);
1966
1967	intel_opregion_resume(dev_priv);
1968
1969	intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1970
1971	intel_power_domains_enable(dev_priv);
1972
1973	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1974
1975	return 0;
1976}
1977
1978int i915_drm_resume_early(struct drm_device *dev)
1979{
1980	struct drm_i915_private *dev_priv = to_i915(dev);
1981#ifndef __NetBSD__
1982	struct pci_dev *pdev = dev_priv->drm.pdev;
1983#endif
1984	int ret = 0;
1985
1986	/*
1987	 * We have a resume ordering issue with the snd-hda driver also
1988	 * requiring our device to be power up. Due to the lack of a
1989	 * parent/child relationship we currently solve this with an early
1990	 * resume hook.
1991	 *
1992	 * FIXME: This should be solved with a special hdmi sink device or
1993	 * similar so that power domains can be employed.
1994	 */
1995
1996	/*
1997	 * Note that we need to set the power state explicitly, since we
1998	 * powered off the device during freeze and the PCI core won't power
1999	 * it back up for us during thaw. Powering off the device during
2000	 * freeze is not a hard requirement though, and during the
2001	 * suspend/resume phases the PCI core makes sure we get here with the
2002	 * device powered on. So in case we change our freeze logic and keep
2003	 * the device powered we can also remove the following set power state
2004	 * call.
2005	 */
2006#ifndef __NetBSD__		/* pmf handles this for us.  */
2007	ret = pci_set_power_state(pdev, PCI_D0);
2008	if (ret) {
2009		DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2010		return ret;
2011	}
2012
2013	/*
2014	 * Note that pci_enable_device() first enables any parent bridge
2015	 * device and only then sets the power state for this device. The
2016	 * bridge enabling is a nop though, since bridge devices are resumed
2017	 * first. The order of enabling power and enabling the device is
2018	 * imposed by the PCI core as described above, so here we preserve the
2019	 * same order for the freeze/thaw phases.
2020	 *
2021	 * TODO: eventually we should remove pci_disable_device() /
2022	 * pci_enable_enable_device() from suspend/resume. Due to how they
2023	 * depend on the device enable refcount we can't anyway depend on them
2024	 * disabling/enabling the device.
2025	 */
2026	if (pci_enable_device(pdev))
2027		return -EIO;
2028#endif
2029
2030	/* XXX pmf probably handles this for us too.  */
2031	pci_set_master(dev->pdev);
2032
2033	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2034
2035	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2036#ifdef __NetBSD__		/* XXX vlv suspend/resume */
2037		ret = 0;
2038#else
2039		ret = vlv_resume_prepare(dev_priv, false);
2040#endif
2041	if (ret)
2042		DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2043			  ret);
2044
2045	intel_uncore_resume_early(&dev_priv->uncore);
2046
2047	intel_gt_check_and_clear_faults(&dev_priv->gt);
2048
2049	intel_display_power_resume_early(dev_priv);
2050
2051	intel_power_domains_resume(dev_priv);
2052
2053	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2054
2055	return ret;
2056}
2057
2058#ifndef __NetBSD__		/* XXX vga switcheroo */
2059int i915_resume_switcheroo(struct drm_i915_private *i915)
2060{
2061	int ret;
2062
2063	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2064		return 0;
2065
2066	ret = i915_drm_resume_early(&i915->drm);
2067	if (ret)
2068		return ret;
2069
2070	return i915_drm_resume(&i915->drm);
2071}
2072
2073static int i915_pm_prepare(struct device *kdev)
2074{
2075	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2076
2077	if (!i915) {
2078		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2079		return -ENODEV;
2080	}
2081
2082	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2083		return 0;
2084
2085	return i915_drm_prepare(&i915->drm);
2086}
2087#endif
2088
2089#ifndef __NetBSD__
2090static int i915_pm_suspend(struct device *kdev)
2091{
2092	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2093
2094	if (!i915) {
2095		dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2096		return -ENODEV;
2097	}
2098
2099	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2100		return 0;
2101
2102	return i915_drm_suspend(&i915->drm);
2103}
2104
2105static int i915_pm_suspend_late(struct device *kdev)
2106{
2107	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2108
2109	/*
2110	 * We have a suspend ordering issue with the snd-hda driver also
2111	 * requiring our device to be power up. Due to the lack of a
2112	 * parent/child relationship we currently solve this with an late
2113	 * suspend hook.
2114	 *
2115	 * FIXME: This should be solved with a special hdmi sink device or
2116	 * similar so that power domains can be employed.
2117	 */
2118	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2119		return 0;
2120
2121	return i915_drm_suspend_late(&i915->drm, false);
2122}
2123
2124static int i915_pm_poweroff_late(struct device *kdev)
2125{
2126	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2127
2128	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2129		return 0;
2130
2131	return i915_drm_suspend_late(&i915->drm, true);
2132}
2133
2134static int i915_pm_resume_early(struct device *kdev)
2135{
2136	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2137
2138	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2139		return 0;
2140
2141	return i915_drm_resume_early(&i915->drm);
2142}
2143
2144static int i915_pm_resume(struct device *kdev)
2145{
2146	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2147
2148	if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2149		return 0;
2150
2151	return i915_drm_resume(&i915->drm);
2152}
2153
2154/* freeze: before creating the hibernation_image */
2155static int i915_pm_freeze(struct device *kdev)
2156{
2157	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2158	int ret;
2159
2160	if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2161		ret = i915_drm_suspend(&i915->drm);
2162		if (ret)
2163			return ret;
2164	}
2165
2166	ret = i915_gem_freeze(i915);
2167	if (ret)
2168		return ret;
2169
2170	return 0;
2171}
2172
2173static int i915_pm_freeze_late(struct device *kdev)
2174{
2175	struct drm_i915_private *i915 = kdev_to_i915(kdev);
2176	int ret;
2177
2178	if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2179		ret = i915_drm_suspend_late(&i915->drm, true);
2180		if (ret)
2181			return ret;
2182	}
2183
2184	ret = i915_gem_freeze_late(i915);
2185	if (ret)
2186		return ret;
2187
2188	return 0;
2189}
2190
2191/* thaw: called after creating the hibernation image, but before turning off. */
2192static int i915_pm_thaw_early(struct device *kdev)
2193{
2194	return i915_pm_resume_early(kdev);
2195}
2196
2197static int i915_pm_thaw(struct device *kdev)
2198{
2199	return i915_pm_resume(kdev);
2200}
2201
2202/* restore: called after loading the hibernation image. */
2203static int i915_pm_restore_early(struct device *kdev)
2204{
2205	return i915_pm_resume_early(kdev);
2206}
2207
2208static int i915_pm_restore(struct device *kdev)
2209{
2210	return i915_pm_resume(kdev);
2211}
2212
2213/*
2214 * Save all Gunit registers that may be lost after a D3 and a subsequent
2215 * S0i[R123] transition. The list of registers needing a save/restore is
2216 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2217 * registers in the following way:
2218 * - Driver: saved/restored by the driver
2219 * - Punit : saved/restored by the Punit firmware
2220 * - No, w/o marking: no need to save/restore, since the register is R/O or
2221 *                    used internally by the HW in a way that doesn't depend
2222 *                    keeping the content across a suspend/resume.
2223 * - Debug : used for debugging
2224 *
2225 * We save/restore all registers marked with 'Driver', with the following
2226 * exceptions:
2227 * - Registers out of use, including also registers marked with 'Debug'.
2228 *   These have no effect on the driver's operation, so we don't save/restore
2229 *   them to reduce the overhead.
2230 * - Registers that are fully setup by an initialization function called from
2231 *   the resume path. For example many clock gating and RPS/RC6 registers.
2232 * - Registers that provide the right functionality with their reset defaults.
2233 *
2234 * TODO: Except for registers that based on the above 3 criteria can be safely
2235 * ignored, we save/restore all others, practically treating the HW context as
2236 * a black-box for the driver. Further investigation is needed to reduce the
2237 * saved/restored registers even further, by following the same 3 criteria.
2238 */
2239static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2240{
2241	struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2242	int i;
2243
2244	if (!s)
2245		return;
2246
2247	/* GAM 0x4000-0x4770 */
2248	s->wr_watermark		= I915_READ(GEN7_WR_WATERMARK);
2249	s->gfx_prio_ctrl	= I915_READ(GEN7_GFX_PRIO_CTRL);
2250	s->arb_mode		= I915_READ(ARB_MODE);
2251	s->gfx_pend_tlb0	= I915_READ(GEN7_GFX_PEND_TLB0);
2252	s->gfx_pend_tlb1	= I915_READ(GEN7_GFX_PEND_TLB1);
2253
2254	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2255		s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2256
2257	s->media_max_req_count	= I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2258	s->gfx_max_req_count	= I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2259
2260	s->render_hwsp		= I915_READ(RENDER_HWS_PGA_GEN7);
2261	s->ecochk		= I915_READ(GAM_ECOCHK);
2262	s->bsd_hwsp		= I915_READ(BSD_HWS_PGA_GEN7);
2263	s->blt_hwsp		= I915_READ(BLT_HWS_PGA_GEN7);
2264
2265	s->tlb_rd_addr		= I915_READ(GEN7_TLB_RD_ADDR);
2266
2267	/* MBC 0x9024-0x91D0, 0x8500 */
2268	s->g3dctl		= I915_READ(VLV_G3DCTL);
2269	s->gsckgctl		= I915_READ(VLV_GSCKGCTL);
2270	s->mbctl		= I915_READ(GEN6_MBCTL);
2271
2272	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2273	s->ucgctl1		= I915_READ(GEN6_UCGCTL1);
2274	s->ucgctl3		= I915_READ(GEN6_UCGCTL3);
2275	s->rcgctl1		= I915_READ(GEN6_RCGCTL1);
2276	s->rcgctl2		= I915_READ(GEN6_RCGCTL2);
2277	s->rstctl		= I915_READ(GEN6_RSTCTL);
2278	s->misccpctl		= I915_READ(GEN7_MISCCPCTL);
2279
2280	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2281	s->gfxpause		= I915_READ(GEN6_GFXPAUSE);
2282	s->rpdeuhwtc		= I915_READ(GEN6_RPDEUHWTC);
2283	s->rpdeuc		= I915_READ(GEN6_RPDEUC);
2284	s->ecobus		= I915_READ(ECOBUS);
2285	s->pwrdwnupctl		= I915_READ(VLV_PWRDWNUPCTL);
2286	s->rp_down_timeout	= I915_READ(GEN6_RP_DOWN_TIMEOUT);
2287	s->rp_deucsw		= I915_READ(GEN6_RPDEUCSW);
2288	s->rcubmabdtmr		= I915_READ(GEN6_RCUBMABDTMR);
2289	s->rcedata		= I915_READ(VLV_RCEDATA);
2290	s->spare2gh		= I915_READ(VLV_SPAREG2H);
2291
2292	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2293	s->gt_imr		= I915_READ(GTIMR);
2294	s->gt_ier		= I915_READ(GTIER);
2295	s->pm_imr		= I915_READ(GEN6_PMIMR);
2296	s->pm_ier		= I915_READ(GEN6_PMIER);
2297
2298	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2299		s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2300
2301	/* GT SA CZ domain, 0x100000-0x138124 */
2302	s->tilectl		= I915_READ(TILECTL);
2303	s->gt_fifoctl		= I915_READ(GTFIFOCTL);
2304	s->gtlc_wake_ctrl	= I915_READ(VLV_GTLC_WAKE_CTRL);
2305	s->gtlc_survive		= I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2306	s->pmwgicz		= I915_READ(VLV_PMWGICZ);
2307
2308	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2309	s->gu_ctl0		= I915_READ(VLV_GU_CTL0);
2310	s->gu_ctl1		= I915_READ(VLV_GU_CTL1);
2311	s->pcbr			= I915_READ(VLV_PCBR);
2312	s->clock_gate_dis2	= I915_READ(VLV_GUNIT_CLOCK_GATE2);
2313
2314	/*
2315	 * Not saving any of:
2316	 * DFT,		0x9800-0x9EC0
2317	 * SARB,	0xB000-0xB1FC
2318	 * GAC,		0x5208-0x524C, 0x14000-0x14C000
2319	 * PCI CFG
2320	 */
2321}
2322
2323static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2324{
2325	struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2326	u32 val;
2327	int i;
2328
2329	if (!s)
2330		return;
2331
2332	/* GAM 0x4000-0x4770 */
2333	I915_WRITE(GEN7_WR_WATERMARK,	s->wr_watermark);
2334	I915_WRITE(GEN7_GFX_PRIO_CTRL,	s->gfx_prio_ctrl);
2335	I915_WRITE(ARB_MODE,		s->arb_mode | (0xffff << 16));
2336	I915_WRITE(GEN7_GFX_PEND_TLB0,	s->gfx_pend_tlb0);
2337	I915_WRITE(GEN7_GFX_PEND_TLB1,	s->gfx_pend_tlb1);
2338
2339	for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2340		I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2341
2342	I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2343	I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2344
2345	I915_WRITE(RENDER_HWS_PGA_GEN7,	s->render_hwsp);
2346	I915_WRITE(GAM_ECOCHK,		s->ecochk);
2347	I915_WRITE(BSD_HWS_PGA_GEN7,	s->bsd_hwsp);
2348	I915_WRITE(BLT_HWS_PGA_GEN7,	s->blt_hwsp);
2349
2350	I915_WRITE(GEN7_TLB_RD_ADDR,	s->tlb_rd_addr);
2351
2352	/* MBC 0x9024-0x91D0, 0x8500 */
2353	I915_WRITE(VLV_G3DCTL,		s->g3dctl);
2354	I915_WRITE(VLV_GSCKGCTL,	s->gsckgctl);
2355	I915_WRITE(GEN6_MBCTL,		s->mbctl);
2356
2357	/* GCP 0x9400-0x9424, 0x8100-0x810C */
2358	I915_WRITE(GEN6_UCGCTL1,	s->ucgctl1);
2359	I915_WRITE(GEN6_UCGCTL3,	s->ucgctl3);
2360	I915_WRITE(GEN6_RCGCTL1,	s->rcgctl1);
2361	I915_WRITE(GEN6_RCGCTL2,	s->rcgctl2);
2362	I915_WRITE(GEN6_RSTCTL,		s->rstctl);
2363	I915_WRITE(GEN7_MISCCPCTL,	s->misccpctl);
2364
2365	/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2366	I915_WRITE(GEN6_GFXPAUSE,	s->gfxpause);
2367	I915_WRITE(GEN6_RPDEUHWTC,	s->rpdeuhwtc);
2368	I915_WRITE(GEN6_RPDEUC,		s->rpdeuc);
2369	I915_WRITE(ECOBUS,		s->ecobus);
2370	I915_WRITE(VLV_PWRDWNUPCTL,	s->pwrdwnupctl);
2371	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2372	I915_WRITE(GEN6_RPDEUCSW,	s->rp_deucsw);
2373	I915_WRITE(GEN6_RCUBMABDTMR,	s->rcubmabdtmr);
2374	I915_WRITE(VLV_RCEDATA,		s->rcedata);
2375	I915_WRITE(VLV_SPAREG2H,	s->spare2gh);
2376
2377	/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2378	I915_WRITE(GTIMR,		s->gt_imr);
2379	I915_WRITE(GTIER,		s->gt_ier);
2380	I915_WRITE(GEN6_PMIMR,		s->pm_imr);
2381	I915_WRITE(GEN6_PMIER,		s->pm_ier);
2382
2383	for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2384		I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2385
2386	/* GT SA CZ domain, 0x100000-0x138124 */
2387	I915_WRITE(TILECTL,			s->tilectl);
2388	I915_WRITE(GTFIFOCTL,			s->gt_fifoctl);
2389	/*
2390	 * Preserve the GT allow wake and GFX force clock bit, they are not
2391	 * be restored, as they are used to control the s0ix suspend/resume
2392	 * sequence by the caller.
2393	 */
2394	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2395	val &= VLV_GTLC_ALLOWWAKEREQ;
2396	val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2397	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2398
2399	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2400	val &= VLV_GFX_CLK_FORCE_ON_BIT;
2401	val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2402	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2403
2404	I915_WRITE(VLV_PMWGICZ,			s->pmwgicz);
2405
2406	/* Gunit-Display CZ domain, 0x182028-0x1821CF */
2407	I915_WRITE(VLV_GU_CTL0,			s->gu_ctl0);
2408	I915_WRITE(VLV_GU_CTL1,			s->gu_ctl1);
2409	I915_WRITE(VLV_PCBR,			s->pcbr);
2410	I915_WRITE(VLV_GUNIT_CLOCK_GATE2,	s->clock_gate_dis2);
2411}
2412
2413static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2414				  u32 mask, u32 val)
2415{
2416	i915_reg_t reg = VLV_GTLC_PW_STATUS;
2417	u32 reg_value;
2418	int ret;
2419
2420	/* The HW does not like us polling for PW_STATUS frequently, so
2421	 * use the sleeping loop rather than risk the busy spin within
2422	 * intel_wait_for_register().
2423	 *
2424	 * Transitioning between RC6 states should be at most 2ms (see
2425	 * valleyview_enable_rps) so use a 3ms timeout.
2426	 */
2427	ret = wait_for(((reg_value =
2428			 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2429		       == val, 3);
2430
2431	/* just trace the final value */
2432	trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2433
2434	return ret;
2435}
2436#endif
2437
2438int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2439{
2440	u32 val;
2441	int err;
2442
2443	val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2444	val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2445	if (force_on)
2446		val |= VLV_GFX_CLK_FORCE_ON_BIT;
2447	I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2448
2449	if (!force_on)
2450		return 0;
2451
2452	err = intel_wait_for_register(&dev_priv->uncore,
2453				      VLV_GTLC_SURVIVABILITY_REG,
2454				      VLV_GFX_CLK_STATUS_BIT,
2455				      VLV_GFX_CLK_STATUS_BIT,
2456				      20);
2457	if (err)
2458		DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2459			  I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2460
2461	return err;
2462}
2463
2464#ifndef __NetBSD__		/* XXX vlv suspend/resume */
2465static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2466{
2467	u32 mask;
2468	u32 val;
2469	int err;
2470
2471	val = I915_READ(VLV_GTLC_WAKE_CTRL);
2472	val &= ~VLV_GTLC_ALLOWWAKEREQ;
2473	if (allow)
2474		val |= VLV_GTLC_ALLOWWAKEREQ;
2475	I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2476	POSTING_READ(VLV_GTLC_WAKE_CTRL);
2477
2478	mask = VLV_GTLC_ALLOWWAKEACK;
2479	val = allow ? mask : 0;
2480
2481	err = vlv_wait_for_pw_status(dev_priv, mask, val);
2482	if (err)
2483		DRM_ERROR("timeout disabling GT waking\n");
2484
2485	return err;
2486}
2487
2488static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2489				  bool wait_for_on)
2490{
2491	u32 mask;
2492	u32 val;
2493
2494	mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2495	val = wait_for_on ? mask : 0;
2496
2497	/*
2498	 * RC6 transitioning can be delayed up to 2 msec (see
2499	 * valleyview_enable_rps), use 3 msec for safety.
2500	 *
2501	 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2502	 * reset and we are trying to force the machine to sleep.
2503	 */
2504	if (vlv_wait_for_pw_status(dev_priv, mask, val))
2505		DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2506				 onoff(wait_for_on));
2507}
2508
2509static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2510{
2511	if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2512		return;
2513
2514	DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2515	I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2516}
2517
2518static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2519{
2520	u32 mask;
2521	int err;
2522
2523	/*
2524	 * Bspec defines the following GT well on flags as debug only, so
2525	 * don't treat them as hard failures.
2526	 */
2527	vlv_wait_for_gt_wells(dev_priv, false);
2528
2529	mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2530	WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2531
2532	vlv_check_no_gt_access(dev_priv);
2533
2534	err = vlv_force_gfx_clock(dev_priv, true);
2535	if (err)
2536		goto err1;
2537
2538	err = vlv_allow_gt_wake(dev_priv, false);
2539	if (err)
2540		goto err2;
2541
2542	vlv_save_gunit_s0ix_state(dev_priv);
2543
2544	err = vlv_force_gfx_clock(dev_priv, false);
2545	if (err)
2546		goto err2;
2547
2548	return 0;
2549
2550err2:
2551	/* For safety always re-enable waking and disable gfx clock forcing */
2552	vlv_allow_gt_wake(dev_priv, true);
2553err1:
2554	vlv_force_gfx_clock(dev_priv, false);
2555
2556	return err;
2557}
2558
2559static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2560				bool rpm_resume)
2561{
2562	int err;
2563	int ret;
2564
2565	/*
2566	 * If any of the steps fail just try to continue, that's the best we
2567	 * can do at this point. Return the first error code (which will also
2568	 * leave RPM permanently disabled).
2569	 */
2570	ret = vlv_force_gfx_clock(dev_priv, true);
2571
2572	vlv_restore_gunit_s0ix_state(dev_priv);
2573
2574	err = vlv_allow_gt_wake(dev_priv, true);
2575	if (!ret)
2576		ret = err;
2577
2578	err = vlv_force_gfx_clock(dev_priv, false);
2579	if (!ret)
2580		ret = err;
2581
2582	vlv_check_no_gt_access(dev_priv);
2583
2584	if (rpm_resume)
2585		intel_init_clock_gating(dev_priv);
2586
2587	return ret;
2588}
2589#endif
2590
2591#ifndef __NetBSD__		/* XXX runtime pm */
2592static int intel_runtime_suspend(struct device *kdev)
2593{
2594	struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2595	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2596	int ret = 0;
2597
2598	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2599		return -ENODEV;
2600
2601	DRM_DEBUG_KMS("Suspending device\n");
2602
2603	disable_rpm_wakeref_asserts(rpm);
2604
2605	/*
2606	 * We are safe here against re-faults, since the fault handler takes
2607	 * an RPM reference.
2608	 */
2609	i915_gem_runtime_suspend(dev_priv);
2610
2611	intel_gt_runtime_suspend(&dev_priv->gt);
2612
2613	intel_runtime_pm_disable_interrupts(dev_priv);
2614
2615	intel_uncore_suspend(&dev_priv->uncore);
2616
2617	intel_display_power_suspend(dev_priv);
2618
2619	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2620#ifndef __NetBSD__		/* XXX vlv suspend/resume */
2621		ret = vlv_suspend_complete(dev_priv);
2622#endif
2623
2624	if (ret) {
2625		DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2626		intel_uncore_runtime_resume(&dev_priv->uncore);
2627
2628		intel_runtime_pm_enable_interrupts(dev_priv);
2629
2630		intel_gt_runtime_resume(&dev_priv->gt);
2631
2632		i915_gem_restore_fences(&dev_priv->ggtt);
2633
2634		enable_rpm_wakeref_asserts(rpm);
2635
2636		return ret;
2637	}
2638
2639	enable_rpm_wakeref_asserts(rpm);
2640	intel_runtime_pm_driver_release(rpm);
2641
2642	if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2643		DRM_ERROR("Unclaimed access detected prior to suspending\n");
2644
2645	rpm->suspended = true;
2646
2647	/*
2648	 * FIXME: We really should find a document that references the arguments
2649	 * used below!
2650	 */
2651	if (IS_BROADWELL(dev_priv)) {
2652		/*
2653		 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2654		 * being detected, and the call we do at intel_runtime_resume()
2655		 * won't be able to restore them. Since PCI_D3hot matches the
2656		 * actual specification and appears to be working, use it.
2657		 */
2658		intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2659	} else {
2660		/*
2661		 * current versions of firmware which depend on this opregion
2662		 * notification have repurposed the D1 definition to mean
2663		 * "runtime suspended" vs. what you would normally expect (D3)
2664		 * to distinguish it from notifications that might be sent via
2665		 * the suspend path.
2666		 */
2667		intel_opregion_notify_adapter(dev_priv, PCI_D1);
2668	}
2669
2670	assert_forcewakes_inactive(&dev_priv->uncore);
2671
2672	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2673		intel_hpd_poll_init(dev_priv);
2674
2675	DRM_DEBUG_KMS("Device suspended\n");
2676	return 0;
2677}
2678
2679static int intel_runtime_resume(struct device *kdev)
2680{
2681	struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2682	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2683	int ret = 0;
2684
2685	if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2686		return -ENODEV;
2687
2688	DRM_DEBUG_KMS("Resuming device\n");
2689
2690	WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2691	disable_rpm_wakeref_asserts(rpm);
2692
2693	intel_opregion_notify_adapter(dev_priv, PCI_D0);
2694	rpm->suspended = false;
2695	if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2696		DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2697
2698	intel_display_power_resume(dev_priv);
2699
2700	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2701		ret = vlv_resume_prepare(dev_priv, true);
2702
2703	intel_uncore_runtime_resume(&dev_priv->uncore);
2704
2705	intel_runtime_pm_enable_interrupts(dev_priv);
2706
2707	/*
2708	 * No point of rolling back things in case of an error, as the best
2709	 * we can do is to hope that things will still work (and disable RPM).
2710	 */
2711	intel_gt_runtime_resume(&dev_priv->gt);
2712	i915_gem_restore_fences(&dev_priv->ggtt);
2713
2714	/*
2715	 * On VLV/CHV display interrupts are part of the display
2716	 * power well, so hpd is reinitialized from there. For
2717	 * everyone else do it here.
2718	 */
2719	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2720		intel_hpd_init(dev_priv);
2721
2722	intel_enable_ipc(dev_priv);
2723
2724	enable_rpm_wakeref_asserts(rpm);
2725
2726	if (ret)
2727		DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2728	else
2729		DRM_DEBUG_KMS("Device resumed\n");
2730
2731	return ret;
2732}
2733#endif
2734
2735#ifndef __NetBSD__
2736const struct dev_pm_ops i915_pm_ops = {
2737	/*
2738	 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2739	 * PMSG_RESUME]
2740	 */
2741	.prepare = i915_pm_prepare,
2742	.suspend = i915_pm_suspend,
2743	.suspend_late = i915_pm_suspend_late,
2744	.resume_early = i915_pm_resume_early,
2745	.resume = i915_pm_resume,
2746
2747	/*
2748	 * S4 event handlers
2749	 * @freeze, @freeze_late    : called (1) before creating the
2750	 *                            hibernation image [PMSG_FREEZE] and
2751	 *                            (2) after rebooting, before restoring
2752	 *                            the image [PMSG_QUIESCE]
2753	 * @thaw, @thaw_early       : called (1) after creating the hibernation
2754	 *                            image, before writing it [PMSG_THAW]
2755	 *                            and (2) after failing to create or
2756	 *                            restore the image [PMSG_RECOVER]
2757	 * @poweroff, @poweroff_late: called after writing the hibernation
2758	 *                            image, before rebooting [PMSG_HIBERNATE]
2759	 * @restore, @restore_early : called after rebooting and restoring the
2760	 *                            hibernation image [PMSG_RESTORE]
2761	 */
2762	.freeze = i915_pm_freeze,
2763	.freeze_late = i915_pm_freeze_late,
2764	.thaw_early = i915_pm_thaw_early,
2765	.thaw = i915_pm_thaw,
2766	.poweroff = i915_pm_suspend,
2767	.poweroff_late = i915_pm_poweroff_late,
2768	.restore_early = i915_pm_restore_early,
2769	.restore = i915_pm_restore,
2770
2771	/* S0ix (via runtime suspend) event handlers */
2772	.runtime_suspend = intel_runtime_suspend,
2773	.runtime_resume = intel_runtime_resume,
2774};
2775
2776static const struct file_operations i915_driver_fops = {
2777	.owner = THIS_MODULE,
2778	.open = drm_open,
2779	.release = drm_release,
2780	.unlocked_ioctl = drm_ioctl,
2781	.mmap = i915_gem_mmap,
2782	.poll = drm_poll,
2783	.read = drm_read,
2784	.compat_ioctl = i915_compat_ioctl,
2785	.llseek = noop_llseek,
2786};
2787#endif	/* defined(__NetBSD__) */
2788
2789static int
2790i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2791			  struct drm_file *file)
2792{
2793	return -ENODEV;
2794}
2795
2796static const struct drm_ioctl_desc i915_ioctls[] = {
2797	DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2798	DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2799	DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2800	DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2801	DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2802	DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2803	DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2804	DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2805	DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2806	DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2807	DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2808	DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2809	DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2810	DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2811	DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2812	DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2813	DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2814	DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2815	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2816	DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2817	DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2818	DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2819	DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2820	DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2821	DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2822	DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2823	DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2824	DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2825	DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2826	DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2827	DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2828	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2829	DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2830	DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2831	DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2832	DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2833	DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2834	DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2835	DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2836	DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2837	DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2838	DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2839	DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2840	DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2841	DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2842	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2843	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2844	DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2845	DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2846	DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2847	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2848	DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2849	DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2850	DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2851	DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2852	DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2853	DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2854	DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2855};
2856
2857static struct drm_driver driver = {
2858	/* Don't use MTRRs here; the Xserver or userspace app should
2859	 * deal with them for Intel hardware.
2860	 */
2861	.driver_features =
2862	    DRIVER_GEM |
2863	    DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2864	.release = i915_driver_release,
2865	.open = i915_driver_open,
2866	.lastclose = i915_driver_lastclose,
2867	.postclose = i915_driver_postclose,
2868
2869	.gem_close_object = i915_gem_close_object,
2870	.gem_free_object_unlocked = i915_gem_free_object,
2871#ifdef __NetBSD__
2872	.request_irq = drm_pci_request_irq,
2873	.free_irq = drm_pci_free_irq,
2874
2875	.mmap_object = &i915_gem_mmap_object,
2876	.gem_uvm_ops = &i915_gem_uvm_ops,
2877#endif
2878
2879
2880	.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2881	.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2882	.gem_prime_export = i915_gem_prime_export,
2883	.gem_prime_import = i915_gem_prime_import,
2884
2885	.get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2886	.get_scanout_position = i915_get_crtc_scanoutpos,
2887
2888	.dumb_create = i915_gem_dumb_create,
2889	.dumb_map_offset = i915_gem_dumb_mmap_offset,
2890
2891	.ioctls = i915_ioctls,
2892	.num_ioctls = ARRAY_SIZE(i915_ioctls),
2893#ifdef __NetBSD__
2894	.fops = NULL,
2895#else
2896	.fops = &i915_driver_fops,
2897#endif
2898	.name = DRIVER_NAME,
2899	.desc = DRIVER_DESC,
2900	.date = DRIVER_DATE,
2901	.major = DRIVER_MAJOR,
2902	.minor = DRIVER_MINOR,
2903	.patchlevel = DRIVER_PATCHLEVEL,
2904};
2905