1/*	$NetBSD: scheduler.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $	*/
2
3/*
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 *    Zhi Wang <zhi.a.wang@intel.com>
27 *
28 * Contributors:
29 *    Ping Gao <ping.a.gao@intel.com>
30 *    Tina Zhang <tina.zhang@intel.com>
31 *    Chanbin Du <changbin.du@intel.com>
32 *    Min He <min.he@intel.com>
33 *    Bing Niu <bing.niu@intel.com>
34 *    Zhenyu Wang <zhenyuw@linux.intel.com>
35 *
36 */
37
38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: scheduler.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $");
40
41#include <linux/kthread.h>
42
43#include "gem/i915_gem_pm.h"
44#include "gt/intel_context.h"
45#include "gt/intel_ring.h"
46
47#include "i915_drv.h"
48#include "i915_gem_gtt.h"
49#include "gvt.h"
50
51#define RING_CTX_OFF(x) \
52	offsetof(struct execlist_ring_context, x)
53
54static void set_context_pdp_root_pointer(
55		struct execlist_ring_context *ring_context,
56		u32 pdp[8])
57{
58	int i;
59
60	for (i = 0; i < 8; i++)
61		ring_context->pdps[i].val = pdp[7 - i];
62}
63
64static void update_shadow_pdps(struct intel_vgpu_workload *workload)
65{
66	struct drm_i915_gem_object *ctx_obj =
67		workload->req->context->state->obj;
68	struct execlist_ring_context *shadow_ring_context;
69	struct page *page;
70
71	if (WARN_ON(!workload->shadow_mm))
72		return;
73
74	if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
75		return;
76
77	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
78	shadow_ring_context = kmap(page);
79	set_context_pdp_root_pointer(shadow_ring_context,
80			(void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
81	kunmap(page);
82}
83
84/*
85 * when populating shadow ctx from guest, we should not overrride oa related
86 * registers, so that they will not be overlapped by guest oa configs. Thus
87 * made it possible to capture oa data from host for both host and guests.
88 */
89static void sr_oa_regs(struct intel_vgpu_workload *workload,
90		u32 *reg_state, bool save)
91{
92	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
93	u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
94	u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
95	int i = 0;
96	u32 flex_mmio[] = {
97		i915_mmio_reg_offset(EU_PERF_CNTL0),
98		i915_mmio_reg_offset(EU_PERF_CNTL1),
99		i915_mmio_reg_offset(EU_PERF_CNTL2),
100		i915_mmio_reg_offset(EU_PERF_CNTL3),
101		i915_mmio_reg_offset(EU_PERF_CNTL4),
102		i915_mmio_reg_offset(EU_PERF_CNTL5),
103		i915_mmio_reg_offset(EU_PERF_CNTL6),
104	};
105
106	if (workload->ring_id != RCS0)
107		return;
108
109	if (save) {
110		workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
111
112		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113			u32 state_offset = ctx_flexeu0 + i * 2;
114
115			workload->flex_mmio[i] = reg_state[state_offset + 1];
116		}
117	} else {
118		reg_state[ctx_oactxctrl] =
119			i915_mmio_reg_offset(GEN8_OACTXCONTROL);
120		reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
121
122		for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
123			u32 state_offset = ctx_flexeu0 + i * 2;
124			u32 mmio = flex_mmio[i];
125
126			reg_state[state_offset] = mmio;
127			reg_state[state_offset + 1] = workload->flex_mmio[i];
128		}
129	}
130}
131
132static int populate_shadow_context(struct intel_vgpu_workload *workload)
133{
134	struct intel_vgpu *vgpu = workload->vgpu;
135	struct intel_gvt *gvt = vgpu->gvt;
136	int ring_id = workload->ring_id;
137	struct drm_i915_gem_object *ctx_obj =
138		workload->req->context->state->obj;
139	struct execlist_ring_context *shadow_ring_context;
140	struct page *page;
141	void *dst;
142	unsigned long context_gpa, context_page_num;
143	int i;
144
145	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
146	shadow_ring_context = kmap(page);
147
148	sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
149#define COPY_REG(name) \
150	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
151		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
152#define COPY_REG_MASKED(name) {\
153		intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
154					      + RING_CTX_OFF(name.val),\
155					      &shadow_ring_context->name.val, 4);\
156		shadow_ring_context->name.val |= 0xffff << 16;\
157	}
158
159	COPY_REG_MASKED(ctx_ctrl);
160	COPY_REG(ctx_timestamp);
161
162	if (ring_id == RCS0) {
163		COPY_REG(bb_per_ctx_ptr);
164		COPY_REG(rcs_indirect_ctx);
165		COPY_REG(rcs_indirect_ctx_offset);
166	}
167#undef COPY_REG
168#undef COPY_REG_MASKED
169
170	intel_gvt_hypervisor_read_gpa(vgpu,
171			workload->ring_context_gpa +
172			sizeof(*shadow_ring_context),
173			(void *)shadow_ring_context +
174			sizeof(*shadow_ring_context),
175			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
176
177	sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
178	kunmap(page);
179
180	if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
181		return 0;
182
183	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
184			workload->ctx_desc.lrca);
185
186	context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
187
188	context_page_num = context_page_num >> PAGE_SHIFT;
189
190	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
191		context_page_num = 19;
192
193	i = 2;
194	while (i < context_page_num) {
195		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
196				(u32)((workload->ctx_desc.lrca + i) <<
197				I915_GTT_PAGE_SHIFT));
198		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
199			gvt_vgpu_err("Invalid guest context descriptor\n");
200			return -EFAULT;
201		}
202
203		page = i915_gem_object_get_page(ctx_obj, i);
204		dst = kmap(page);
205		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
206				I915_GTT_PAGE_SIZE);
207		kunmap(page);
208		i++;
209	}
210	return 0;
211}
212
213static inline bool is_gvt_request(struct i915_request *rq)
214{
215	return intel_context_force_single_submission(rq->context);
216}
217
218static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
219{
220	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
221	u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
222	i915_reg_t reg;
223
224	reg = RING_INSTDONE(ring_base);
225	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
226	reg = RING_ACTHD(ring_base);
227	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
228	reg = RING_ACTHD_UDW(ring_base);
229	vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
230}
231
232static int shadow_context_status_change(struct notifier_block *nb,
233		unsigned long action, void *data)
234{
235	struct i915_request *req = data;
236	struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
237				shadow_ctx_notifier_block[req->engine->id]);
238	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
239	enum intel_engine_id ring_id = req->engine->id;
240	struct intel_vgpu_workload *workload;
241	unsigned long flags;
242
243	if (!is_gvt_request(req)) {
244		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
245		if (action == INTEL_CONTEXT_SCHEDULE_IN &&
246		    scheduler->engine_owner[ring_id]) {
247			/* Switch ring from vGPU to host. */
248			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
249					      NULL, ring_id);
250			scheduler->engine_owner[ring_id] = NULL;
251		}
252		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
253
254		return NOTIFY_OK;
255	}
256
257	workload = scheduler->current_workload[ring_id];
258	if (unlikely(!workload))
259		return NOTIFY_OK;
260
261	switch (action) {
262	case INTEL_CONTEXT_SCHEDULE_IN:
263		spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
264		if (workload->vgpu != scheduler->engine_owner[ring_id]) {
265			/* Switch ring from host to vGPU or vGPU to vGPU. */
266			intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
267					      workload->vgpu, ring_id);
268			scheduler->engine_owner[ring_id] = workload->vgpu;
269		} else
270			gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
271				      ring_id, workload->vgpu->id);
272		spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
273		atomic_set(&workload->shadow_ctx_active, 1);
274		break;
275	case INTEL_CONTEXT_SCHEDULE_OUT:
276		save_ring_hw_state(workload->vgpu, ring_id);
277		atomic_set(&workload->shadow_ctx_active, 0);
278		break;
279	case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
280		save_ring_hw_state(workload->vgpu, ring_id);
281		break;
282	default:
283		WARN_ON(1);
284		return NOTIFY_OK;
285	}
286	wake_up(&workload->shadow_ctx_status_wq);
287	return NOTIFY_OK;
288}
289
290static void
291shadow_context_descriptor_update(struct intel_context *ce,
292				 struct intel_vgpu_workload *workload)
293{
294	u64 desc = ce->lrc_desc;
295
296	/*
297	 * Update bits 0-11 of the context descriptor which includes flags
298	 * like GEN8_CTX_* cached in desc_template
299	 */
300	desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
301	desc |= workload->ctx_desc.addressing_mode <<
302		GEN8_CTX_ADDRESSING_MODE_SHIFT;
303
304	ce->lrc_desc = desc;
305}
306
307static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
308{
309	struct intel_vgpu *vgpu = workload->vgpu;
310	struct i915_request *req = workload->req;
311	void *shadow_ring_buffer_va;
312	u32 *cs;
313	int err;
314
315	if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
316		intel_vgpu_restore_inhibit_context(vgpu, req);
317
318	/*
319	 * To track whether a request has started on HW, we can emit a
320	 * breadcrumb at the beginning of the request and check its
321	 * timeline's HWSP to see if the breadcrumb has advanced past the
322	 * start of this request. Actually, the request must have the
323	 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
324	 * scheduler might get a wrong state of it during reset. Since the
325	 * requests from gvt always set the has_init_breadcrumb flag, here
326	 * need to do the emit_init_breadcrumb for all the requests.
327	 */
328	if (req->engine->emit_init_breadcrumb) {
329		err = req->engine->emit_init_breadcrumb(req);
330		if (err) {
331			gvt_vgpu_err("fail to emit init breadcrumb\n");
332			return err;
333		}
334	}
335
336	/* allocate shadow ring buffer */
337	cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
338	if (IS_ERR(cs)) {
339		gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
340			workload->rb_len);
341		return PTR_ERR(cs);
342	}
343
344	shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
345
346	/* get shadow ring buffer va */
347	workload->shadow_ring_buffer_va = cs;
348
349	memcpy(cs, shadow_ring_buffer_va,
350			workload->rb_len);
351
352	cs += workload->rb_len / sizeof(u32);
353	intel_ring_advance(workload->req, cs);
354
355	return 0;
356}
357
358static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
359{
360	if (!wa_ctx->indirect_ctx.obj)
361		return;
362
363	i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
364	i915_gem_object_put(wa_ctx->indirect_ctx.obj);
365
366	wa_ctx->indirect_ctx.obj = NULL;
367	wa_ctx->indirect_ctx.shadow_va = NULL;
368}
369
370static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
371					  struct intel_context *ce)
372{
373	struct intel_vgpu_mm *mm = workload->shadow_mm;
374	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
375	int i = 0;
376
377	if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378		px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
379	} else {
380		for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381			struct i915_page_directory * const pd =
382				i915_pd_entry(ppgtt->pd, i);
383
384			px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
385		}
386	}
387}
388
389static int
390intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
391{
392	struct intel_vgpu *vgpu = workload->vgpu;
393	struct intel_vgpu_submission *s = &vgpu->submission;
394	struct i915_request *rq;
395
396	if (workload->req)
397		return 0;
398
399	rq = i915_request_create(s->shadow[workload->ring_id]);
400	if (IS_ERR(rq)) {
401		gvt_vgpu_err("fail to allocate gem request\n");
402		return PTR_ERR(rq);
403	}
404
405	workload->req = i915_request_get(rq);
406	return 0;
407}
408
409/**
410 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411 * shadow it as well, include ringbuffer,wa_ctx and ctx.
412 * @workload: an abstract entity for each execlist submission.
413 *
414 * This function is called before the workload submitting to i915, to make
415 * sure the content of the workload is valid.
416 */
417int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418{
419	struct intel_vgpu *vgpu = workload->vgpu;
420	struct intel_vgpu_submission *s = &vgpu->submission;
421	int ret;
422
423	lockdep_assert_held(&vgpu->vgpu_lock);
424
425	if (workload->shadow)
426		return 0;
427
428	if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
429		shadow_context_descriptor_update(s->shadow[workload->ring_id],
430						 workload);
431
432	ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
433	if (ret)
434		return ret;
435
436	if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
437		ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
438		if (ret)
439			goto err_shadow;
440	}
441
442	workload->shadow = true;
443	return 0;
444err_shadow:
445	release_shadow_wa_ctx(&workload->wa_ctx);
446	return ret;
447}
448
449static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
450
451static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
452{
453	struct intel_gvt *gvt = workload->vgpu->gvt;
454	const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
455	struct intel_vgpu_shadow_bb *bb;
456	int ret;
457
458	list_for_each_entry(bb, &workload->shadow_bb, list) {
459		/* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
460		 * is only updated into ring_scan_buffer, not real ring address
461		 * allocated in later copy_workload_to_ring_buffer. pls be noted
462		 * shadow_ring_buffer_va is now pointed to real ring buffer va
463		 * in copy_workload_to_ring_buffer.
464		 */
465
466		if (bb->bb_offset)
467			bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
468				+ bb->bb_offset;
469
470		if (bb->ppgtt) {
471			/* for non-priv bb, scan&shadow is only for
472			 * debugging purpose, so the content of shadow bb
473			 * is the same as original bb. Therefore,
474			 * here, rather than switch to shadow bb's gma
475			 * address, we directly use original batch buffer's
476			 * gma address, and send original bb to hardware
477			 * directly
478			 */
479			if (bb->clflush & CLFLUSH_AFTER) {
480				drm_clflush_virt_range(bb->va,
481						bb->obj->base.size);
482				bb->clflush &= ~CLFLUSH_AFTER;
483			}
484			i915_gem_object_finish_access(bb->obj);
485			bb->accessing = false;
486
487		} else {
488			bb->vma = i915_gem_object_ggtt_pin(bb->obj,
489					NULL, 0, 0, 0);
490			if (IS_ERR(bb->vma)) {
491				ret = PTR_ERR(bb->vma);
492				goto err;
493			}
494
495			/* relocate shadow batch buffer */
496			bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
497			if (gmadr_bytes == 8)
498				bb->bb_start_cmd_va[2] = 0;
499
500			/* No one is going to touch shadow bb from now on. */
501			if (bb->clflush & CLFLUSH_AFTER) {
502				drm_clflush_virt_range(bb->va,
503						bb->obj->base.size);
504				bb->clflush &= ~CLFLUSH_AFTER;
505			}
506
507			ret = i915_gem_object_set_to_gtt_domain(bb->obj,
508								false);
509			if (ret)
510				goto err;
511
512			ret = i915_vma_move_to_active(bb->vma,
513						      workload->req,
514						      0);
515			if (ret)
516				goto err;
517
518			i915_gem_object_finish_access(bb->obj);
519			bb->accessing = false;
520		}
521	}
522	return 0;
523err:
524	release_shadow_batch_buffer(workload);
525	return ret;
526}
527
528static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
529{
530	struct intel_vgpu_workload *workload =
531		container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
532	struct i915_request *rq = workload->req;
533	struct execlist_ring_context *shadow_ring_context =
534		(struct execlist_ring_context *)rq->context->lrc_reg_state;
535
536	shadow_ring_context->bb_per_ctx_ptr.val =
537		(shadow_ring_context->bb_per_ctx_ptr.val &
538		(~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
539	shadow_ring_context->rcs_indirect_ctx.val =
540		(shadow_ring_context->rcs_indirect_ctx.val &
541		(~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
542}
543
544static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
545{
546	struct i915_vma *vma;
547	unsigned char *per_ctx_va =
548		(unsigned char *)wa_ctx->indirect_ctx.shadow_va +
549		wa_ctx->indirect_ctx.size;
550
551	if (wa_ctx->indirect_ctx.size == 0)
552		return 0;
553
554	vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
555				       0, CACHELINE_BYTES, 0);
556	if (IS_ERR(vma))
557		return PTR_ERR(vma);
558
559	/* FIXME: we are not tracking our pinned VMA leaving it
560	 * up to the core to fix up the stray pin_count upon
561	 * free.
562	 */
563
564	wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
565
566	wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
567	memset(per_ctx_va, 0, CACHELINE_BYTES);
568
569	update_wa_ctx_2_shadow_ctx(wa_ctx);
570	return 0;
571}
572
573static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
574{
575	struct intel_vgpu *vgpu = workload->vgpu;
576	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
577	u32 ring_base;
578
579	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
580	vgpu_vreg_t(vgpu, RING_START(ring_base)) = workload->rb_start;
581}
582
583static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
584{
585	struct intel_vgpu_shadow_bb *bb, *pos;
586
587	if (list_empty(&workload->shadow_bb))
588		return;
589
590	bb = list_first_entry(&workload->shadow_bb,
591			struct intel_vgpu_shadow_bb, list);
592
593	list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594		if (bb->obj) {
595			if (bb->accessing)
596				i915_gem_object_finish_access(bb->obj);
597
598			if (bb->va && !IS_ERR(bb->va))
599				i915_gem_object_unpin_map(bb->obj);
600
601			if (bb->vma && !IS_ERR(bb->vma)) {
602				i915_vma_unpin(bb->vma);
603				i915_vma_close(bb->vma);
604			}
605			i915_gem_object_put(bb->obj);
606		}
607		list_del(&bb->list);
608		kfree(bb);
609	}
610}
611
612static int prepare_workload(struct intel_vgpu_workload *workload)
613{
614	struct intel_vgpu *vgpu = workload->vgpu;
615	struct intel_vgpu_submission *s = &vgpu->submission;
616	int ring = workload->ring_id;
617	int ret = 0;
618
619	ret = intel_vgpu_pin_mm(workload->shadow_mm);
620	if (ret) {
621		gvt_vgpu_err("fail to vgpu pin mm\n");
622		return ret;
623	}
624
625	if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
626	    !workload->shadow_mm->ppgtt_mm.shadowed) {
627		gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
628		return -EINVAL;
629	}
630
631	update_shadow_pdps(workload);
632
633	set_context_ppgtt_from_shadow(workload, s->shadow[ring]);
634
635	ret = intel_vgpu_sync_oos_pages(workload->vgpu);
636	if (ret) {
637		gvt_vgpu_err("fail to vgpu sync oos pages\n");
638		goto err_unpin_mm;
639	}
640
641	ret = intel_vgpu_flush_post_shadow(workload->vgpu);
642	if (ret) {
643		gvt_vgpu_err("fail to flush post shadow\n");
644		goto err_unpin_mm;
645	}
646
647	ret = copy_workload_to_ring_buffer(workload);
648	if (ret) {
649		gvt_vgpu_err("fail to generate request\n");
650		goto err_unpin_mm;
651	}
652
653	ret = prepare_shadow_batch_buffer(workload);
654	if (ret) {
655		gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
656		goto err_unpin_mm;
657	}
658
659	ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
660	if (ret) {
661		gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
662		goto err_shadow_batch;
663	}
664
665	if (workload->prepare) {
666		ret = workload->prepare(workload);
667		if (ret)
668			goto err_shadow_wa_ctx;
669	}
670
671	return 0;
672err_shadow_wa_ctx:
673	release_shadow_wa_ctx(&workload->wa_ctx);
674err_shadow_batch:
675	release_shadow_batch_buffer(workload);
676err_unpin_mm:
677	intel_vgpu_unpin_mm(workload->shadow_mm);
678	return ret;
679}
680
681static int dispatch_workload(struct intel_vgpu_workload *workload)
682{
683	struct intel_vgpu *vgpu = workload->vgpu;
684	struct i915_request *rq;
685	int ring_id = workload->ring_id;
686	int ret;
687
688	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
689		ring_id, workload);
690
691	mutex_lock(&vgpu->vgpu_lock);
692
693	ret = intel_gvt_workload_req_alloc(workload);
694	if (ret)
695		goto err_req;
696
697	ret = intel_gvt_scan_and_shadow_workload(workload);
698	if (ret)
699		goto out;
700
701	ret = populate_shadow_context(workload);
702	if (ret) {
703		release_shadow_wa_ctx(&workload->wa_ctx);
704		goto out;
705	}
706
707	ret = prepare_workload(workload);
708out:
709	if (ret) {
710		/* We might still need to add request with
711		 * clean ctx to retire it properly..
712		 */
713		rq = fetch_and_zero(&workload->req);
714		i915_request_put(rq);
715	}
716
717	if (!IS_ERR_OR_NULL(workload->req)) {
718		gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
719				ring_id, workload->req);
720		i915_request_add(workload->req);
721		workload->dispatched = true;
722	}
723err_req:
724	if (ret)
725		workload->status = ret;
726	mutex_unlock(&vgpu->vgpu_lock);
727	return ret;
728}
729
730static struct intel_vgpu_workload *pick_next_workload(
731		struct intel_gvt *gvt, int ring_id)
732{
733	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734	struct intel_vgpu_workload *workload = NULL;
735
736	mutex_lock(&gvt->sched_lock);
737
738	/*
739	 * no current vgpu / will be scheduled out / no workload
740	 * bail out
741	 */
742	if (!scheduler->current_vgpu) {
743		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744		goto out;
745	}
746
747	if (scheduler->need_reschedule) {
748		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749		goto out;
750	}
751
752	if (!scheduler->current_vgpu->active ||
753	    list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754		goto out;
755
756	/*
757	 * still have current workload, maybe the workload disptacher
758	 * fail to submit it for some reason, resubmit it.
759	 */
760	if (scheduler->current_workload[ring_id]) {
761		workload = scheduler->current_workload[ring_id];
762		gvt_dbg_sched("ring id %d still have current workload %p\n",
763				ring_id, workload);
764		goto out;
765	}
766
767	/*
768	 * pick a workload as current workload
769	 * once current workload is set, schedule policy routines
770	 * will wait the current workload is finished when trying to
771	 * schedule out a vgpu.
772	 */
773	scheduler->current_workload[ring_id] = container_of(
774			workload_q_head(scheduler->current_vgpu, ring_id)->next,
775			struct intel_vgpu_workload, list);
776
777	workload = scheduler->current_workload[ring_id];
778
779	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780
781	atomic_inc(&workload->vgpu->submission.running_workload_num);
782out:
783	mutex_unlock(&gvt->sched_lock);
784	return workload;
785}
786
787static void update_guest_context(struct intel_vgpu_workload *workload)
788{
789	struct i915_request *rq = workload->req;
790	struct intel_vgpu *vgpu = workload->vgpu;
791	struct intel_gvt *gvt = vgpu->gvt;
792	struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
793	struct execlist_ring_context *shadow_ring_context;
794	struct page *page;
795	void *src;
796	unsigned long context_gpa, context_page_num;
797	int i;
798	struct drm_i915_private *dev_priv = gvt->dev_priv;
799	u32 ring_base;
800	u32 head, tail;
801	u16 wrap_count;
802
803	gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
804		      workload->ctx_desc.lrca);
805
806	head = workload->rb_head;
807	tail = workload->rb_tail;
808	wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
809
810	if (tail < head) {
811		if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
812			wrap_count = 0;
813		else
814			wrap_count += 1;
815	}
816
817	head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
818
819	ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
820	vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
821	vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
822
823	context_page_num = rq->engine->context_size;
824	context_page_num = context_page_num >> PAGE_SHIFT;
825
826	if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
827		context_page_num = 19;
828
829	i = 2;
830
831	while (i < context_page_num) {
832		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
833				(u32)((workload->ctx_desc.lrca + i) <<
834					I915_GTT_PAGE_SHIFT));
835		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
836			gvt_vgpu_err("invalid guest context descriptor\n");
837			return;
838		}
839
840		page = i915_gem_object_get_page(ctx_obj, i);
841		src = kmap(page);
842		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
843				I915_GTT_PAGE_SIZE);
844		kunmap(page);
845		i++;
846	}
847
848	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
849		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
850
851	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
852	shadow_ring_context = kmap(page);
853
854#define COPY_REG(name) \
855	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
856		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
857
858	COPY_REG(ctx_ctrl);
859	COPY_REG(ctx_timestamp);
860
861#undef COPY_REG
862
863	intel_gvt_hypervisor_write_gpa(vgpu,
864			workload->ring_context_gpa +
865			sizeof(*shadow_ring_context),
866			(void *)shadow_ring_context +
867			sizeof(*shadow_ring_context),
868			I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
869
870	kunmap(page);
871}
872
873void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
874				intel_engine_mask_t engine_mask)
875{
876	struct intel_vgpu_submission *s = &vgpu->submission;
877	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
878	struct intel_engine_cs *engine;
879	struct intel_vgpu_workload *pos, *n;
880	intel_engine_mask_t tmp;
881
882	/* free the unsubmited workloads in the queues. */
883	for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
884		list_for_each_entry_safe(pos, n,
885			&s->workload_q_head[engine->id], list) {
886			list_del_init(&pos->list);
887			intel_vgpu_destroy_workload(pos);
888		}
889		clear_bit(engine->id, s->shadow_ctx_desc_updated);
890	}
891}
892
893static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
894{
895	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
896	struct intel_vgpu_workload *workload =
897		scheduler->current_workload[ring_id];
898	struct intel_vgpu *vgpu = workload->vgpu;
899	struct intel_vgpu_submission *s = &vgpu->submission;
900	struct i915_request *rq = workload->req;
901	int event;
902
903	mutex_lock(&vgpu->vgpu_lock);
904	mutex_lock(&gvt->sched_lock);
905
906	/* For the workload w/ request, needs to wait for the context
907	 * switch to make sure request is completed.
908	 * For the workload w/o request, directly complete the workload.
909	 */
910	if (rq) {
911		wait_event(workload->shadow_ctx_status_wq,
912			   !atomic_read(&workload->shadow_ctx_active));
913
914		/* If this request caused GPU hang, req->fence.error will
915		 * be set to -EIO. Use -EIO to set workload status so
916		 * that when this request caused GPU hang, didn't trigger
917		 * context switch interrupt to guest.
918		 */
919		if (likely(workload->status == -EINPROGRESS)) {
920			if (workload->req->fence.error == -EIO)
921				workload->status = -EIO;
922			else
923				workload->status = 0;
924		}
925
926		if (!workload->status &&
927		    !(vgpu->resetting_eng & BIT(ring_id))) {
928			update_guest_context(workload);
929
930			for_each_set_bit(event, workload->pending_events,
931					 INTEL_GVT_EVENT_MAX)
932				intel_vgpu_trigger_virtual_event(vgpu, event);
933		}
934
935		i915_request_put(fetch_and_zero(&workload->req));
936	}
937
938	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
939			ring_id, workload, workload->status);
940
941	scheduler->current_workload[ring_id] = NULL;
942
943	list_del_init(&workload->list);
944
945	if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
946		/* if workload->status is not successful means HW GPU
947		 * has occurred GPU hang or something wrong with i915/GVT,
948		 * and GVT won't inject context switch interrupt to guest.
949		 * So this error is a vGPU hang actually to the guest.
950		 * According to this we should emunlate a vGPU hang. If
951		 * there are pending workloads which are already submitted
952		 * from guest, we should clean them up like HW GPU does.
953		 *
954		 * if it is in middle of engine resetting, the pending
955		 * workloads won't be submitted to HW GPU and will be
956		 * cleaned up during the resetting process later, so doing
957		 * the workload clean up here doesn't have any impact.
958		 **/
959		intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
960	}
961
962	workload->complete(workload);
963
964	atomic_dec(&s->running_workload_num);
965	wake_up(&scheduler->workload_complete_wq);
966
967	if (gvt->scheduler.need_reschedule)
968		intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
969
970	mutex_unlock(&gvt->sched_lock);
971	mutex_unlock(&vgpu->vgpu_lock);
972}
973
974struct workload_thread_param {
975	struct intel_gvt *gvt;
976	int ring_id;
977};
978
979static int workload_thread(void *priv)
980{
981	struct workload_thread_param *p = (struct workload_thread_param *)priv;
982	struct intel_gvt *gvt = p->gvt;
983	int ring_id = p->ring_id;
984	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
985	struct intel_vgpu_workload *workload = NULL;
986	struct intel_vgpu *vgpu = NULL;
987	int ret;
988	bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
989	DEFINE_WAIT_FUNC(wait, woken_wake_function);
990	struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
991
992	kfree(p);
993
994	gvt_dbg_core("workload thread for ring %d started\n", ring_id);
995
996	while (!kthread_should_stop()) {
997		add_wait_queue(&scheduler->waitq[ring_id], &wait);
998		do {
999			workload = pick_next_workload(gvt, ring_id);
1000			if (workload)
1001				break;
1002			wait_woken(&wait, TASK_INTERRUPTIBLE,
1003				   MAX_SCHEDULE_TIMEOUT);
1004		} while (!kthread_should_stop());
1005		remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1006
1007		if (!workload)
1008			break;
1009
1010		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1011				workload->ring_id, workload,
1012				workload->vgpu->id);
1013
1014		intel_runtime_pm_get(rpm);
1015
1016		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017				workload->ring_id, workload);
1018
1019		if (need_force_wake)
1020			intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021					FORCEWAKE_ALL);
1022		/*
1023		 * Update the vReg of the vGPU which submitted this
1024		 * workload. The vGPU may use these registers for checking
1025		 * the context state. The value comes from GPU commands
1026		 * in this workload.
1027		 */
1028		update_vreg_in_ctx(workload);
1029
1030		ret = dispatch_workload(workload);
1031
1032		if (ret) {
1033			vgpu = workload->vgpu;
1034			gvt_vgpu_err("fail to dispatch workload, skip\n");
1035			goto complete;
1036		}
1037
1038		gvt_dbg_sched("ring id %d wait workload %p\n",
1039				workload->ring_id, workload);
1040		i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1041
1042complete:
1043		gvt_dbg_sched("will complete workload %p, status: %d\n",
1044				workload, workload->status);
1045
1046		complete_current_workload(gvt, ring_id);
1047
1048		if (need_force_wake)
1049			intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1050					FORCEWAKE_ALL);
1051
1052		intel_runtime_pm_put_unchecked(rpm);
1053		if (ret && (vgpu_is_vm_unhealthy(ret)))
1054			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1055	}
1056	return 0;
1057}
1058
1059void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1060{
1061	struct intel_vgpu_submission *s = &vgpu->submission;
1062	struct intel_gvt *gvt = vgpu->gvt;
1063	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1064
1065	if (atomic_read(&s->running_workload_num)) {
1066		gvt_dbg_sched("wait vgpu idle\n");
1067
1068		wait_event(scheduler->workload_complete_wq,
1069				!atomic_read(&s->running_workload_num));
1070	}
1071}
1072
1073void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1074{
1075	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1076	struct intel_engine_cs *engine;
1077	enum intel_engine_id i;
1078
1079	gvt_dbg_core("clean workload scheduler\n");
1080
1081	for_each_engine(engine, gvt->dev_priv, i) {
1082		atomic_notifier_chain_unregister(
1083					&engine->context_status_notifier,
1084					&gvt->shadow_ctx_notifier_block[i]);
1085		kthread_stop(scheduler->thread[i]);
1086	}
1087}
1088
1089int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1090{
1091	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1092	struct workload_thread_param *param = NULL;
1093	struct intel_engine_cs *engine;
1094	enum intel_engine_id i;
1095	int ret;
1096
1097	gvt_dbg_core("init workload scheduler\n");
1098
1099	init_waitqueue_head(&scheduler->workload_complete_wq);
1100
1101	for_each_engine(engine, gvt->dev_priv, i) {
1102		init_waitqueue_head(&scheduler->waitq[i]);
1103
1104		param = kzalloc(sizeof(*param), GFP_KERNEL);
1105		if (!param) {
1106			ret = -ENOMEM;
1107			goto err;
1108		}
1109
1110		param->gvt = gvt;
1111		param->ring_id = i;
1112
1113		scheduler->thread[i] = kthread_run(workload_thread, param,
1114			"gvt workload %d", i);
1115		if (IS_ERR(scheduler->thread[i])) {
1116			gvt_err("fail to create workload thread\n");
1117			ret = PTR_ERR(scheduler->thread[i]);
1118			goto err;
1119		}
1120
1121		gvt->shadow_ctx_notifier_block[i].notifier_call =
1122					shadow_context_status_change;
1123		atomic_notifier_chain_register(&engine->context_status_notifier,
1124					&gvt->shadow_ctx_notifier_block[i]);
1125	}
1126	return 0;
1127err:
1128	intel_gvt_clean_workload_scheduler(gvt);
1129	kfree(param);
1130	param = NULL;
1131	return ret;
1132}
1133
1134static void
1135i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1136				struct i915_ppgtt *ppgtt)
1137{
1138	int i;
1139
1140	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1141		px_dma(ppgtt->pd) = s->i915_context_pml4;
1142	} else {
1143		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1144			struct i915_page_directory * const pd =
1145				i915_pd_entry(ppgtt->pd, i);
1146
1147			px_dma(pd) = s->i915_context_pdps[i];
1148		}
1149	}
1150}
1151
1152/**
1153 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1154 * @vgpu: a vGPU
1155 *
1156 * This function is called when a vGPU is being destroyed.
1157 *
1158 */
1159void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1160{
1161	struct intel_vgpu_submission *s = &vgpu->submission;
1162	struct intel_engine_cs *engine;
1163	enum intel_engine_id id;
1164
1165	intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1166
1167	i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1168	for_each_engine(engine, vgpu->gvt->dev_priv, id)
1169		intel_context_unpin(s->shadow[id]);
1170
1171	kmem_cache_destroy(s->workloads);
1172}
1173
1174
1175/**
1176 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1177 * @vgpu: a vGPU
1178 * @engine_mask: engines expected to be reset
1179 *
1180 * This function is called when a vGPU is being destroyed.
1181 *
1182 */
1183void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1184				 intel_engine_mask_t engine_mask)
1185{
1186	struct intel_vgpu_submission *s = &vgpu->submission;
1187
1188	if (!s->active)
1189		return;
1190
1191	intel_vgpu_clean_workloads(vgpu, engine_mask);
1192	s->ops->reset(vgpu, engine_mask);
1193}
1194
1195static void
1196i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1197			     struct i915_ppgtt *ppgtt)
1198{
1199	int i;
1200
1201	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1202		s->i915_context_pml4 = px_dma(ppgtt->pd);
1203	} else {
1204		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1205			struct i915_page_directory * const pd =
1206				i915_pd_entry(ppgtt->pd, i);
1207
1208			s->i915_context_pdps[i] = px_dma(pd);
1209		}
1210	}
1211}
1212
1213/**
1214 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1215 * @vgpu: a vGPU
1216 *
1217 * This function is called when a vGPU is being created.
1218 *
1219 * Returns:
1220 * Zero on success, negative error code if failed.
1221 *
1222 */
1223int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1224{
1225	struct drm_i915_private *i915 = vgpu->gvt->dev_priv;
1226	struct intel_vgpu_submission *s = &vgpu->submission;
1227	struct intel_engine_cs *engine;
1228	struct i915_ppgtt *ppgtt;
1229	enum intel_engine_id i;
1230	int ret;
1231
1232	ppgtt = i915_ppgtt_create(&i915->gt);
1233	if (IS_ERR(ppgtt))
1234		return PTR_ERR(ppgtt);
1235
1236	i915_context_ppgtt_root_save(s, ppgtt);
1237
1238	for_each_engine(engine, i915, i) {
1239		struct intel_context *ce;
1240
1241		INIT_LIST_HEAD(&s->workload_q_head[i]);
1242		s->shadow[i] = ERR_PTR(-EINVAL);
1243
1244		ce = intel_context_create(engine);
1245		if (IS_ERR(ce)) {
1246			ret = PTR_ERR(ce);
1247			goto out_shadow_ctx;
1248		}
1249
1250		i915_vm_put(ce->vm);
1251		ce->vm = i915_vm_get(&ppgtt->vm);
1252		intel_context_set_single_submission(ce);
1253
1254		if (!USES_GUC_SUBMISSION(i915)) { /* Max ring buffer size */
1255			const unsigned int ring_size = 512 * SZ_4K;
1256
1257			ce->ring = __intel_context_ring_size(ring_size);
1258		}
1259
1260		ret = intel_context_pin(ce);
1261		intel_context_put(ce);
1262		if (ret)
1263			goto out_shadow_ctx;
1264
1265		s->shadow[i] = ce;
1266	}
1267
1268	bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1269
1270	s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1271						  sizeof(struct intel_vgpu_workload), 0,
1272						  SLAB_HWCACHE_ALIGN,
1273						  offsetof(struct intel_vgpu_workload, rb_tail),
1274						  sizeof_field(struct intel_vgpu_workload, rb_tail),
1275						  NULL);
1276
1277	if (!s->workloads) {
1278		ret = -ENOMEM;
1279		goto out_shadow_ctx;
1280	}
1281
1282	atomic_set(&s->running_workload_num, 0);
1283	bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1284
1285	i915_vm_put(&ppgtt->vm);
1286	return 0;
1287
1288out_shadow_ctx:
1289	i915_context_ppgtt_root_restore(s, ppgtt);
1290	for_each_engine(engine, i915, i) {
1291		if (IS_ERR(s->shadow[i]))
1292			break;
1293
1294		intel_context_unpin(s->shadow[i]);
1295		intel_context_put(s->shadow[i]);
1296	}
1297	i915_vm_put(&ppgtt->vm);
1298	return ret;
1299}
1300
1301/**
1302 * intel_vgpu_select_submission_ops - select virtual submission interface
1303 * @vgpu: a vGPU
1304 * @engine_mask: either ALL_ENGINES or target engine mask
1305 * @interface: expected vGPU virtual submission interface
1306 *
1307 * This function is called when guest configures submission interface.
1308 *
1309 * Returns:
1310 * Zero on success, negative error code if failed.
1311 *
1312 */
1313int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1314				     intel_engine_mask_t engine_mask,
1315				     unsigned int interface)
1316{
1317	struct intel_vgpu_submission *s = &vgpu->submission;
1318	const struct intel_vgpu_submission_ops *ops[] = {
1319		[INTEL_VGPU_EXECLIST_SUBMISSION] =
1320			&intel_vgpu_execlist_submission_ops,
1321	};
1322	int ret;
1323
1324	if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1325		return -EINVAL;
1326
1327	if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1328		return -EINVAL;
1329
1330	if (s->active)
1331		s->ops->clean(vgpu, engine_mask);
1332
1333	if (interface == 0) {
1334		s->ops = NULL;
1335		s->virtual_submission_interface = 0;
1336		s->active = false;
1337		gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1338		return 0;
1339	}
1340
1341	ret = ops[interface]->init(vgpu, engine_mask);
1342	if (ret)
1343		return ret;
1344
1345	s->ops = ops[interface];
1346	s->virtual_submission_interface = interface;
1347	s->active = true;
1348
1349	gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1350			vgpu->id, s->ops->name);
1351
1352	return 0;
1353}
1354
1355/**
1356 * intel_vgpu_destroy_workload - destroy a vGPU workload
1357 * @workload: workload to destroy
1358 *
1359 * This function is called when destroy a vGPU workload.
1360 *
1361 */
1362void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1363{
1364	struct intel_vgpu_submission *s = &workload->vgpu->submission;
1365
1366	release_shadow_batch_buffer(workload);
1367	release_shadow_wa_ctx(&workload->wa_ctx);
1368
1369	if (workload->shadow_mm)
1370		intel_vgpu_mm_put(workload->shadow_mm);
1371
1372	kmem_cache_free(s->workloads, workload);
1373}
1374
1375static struct intel_vgpu_workload *
1376alloc_workload(struct intel_vgpu *vgpu)
1377{
1378	struct intel_vgpu_submission *s = &vgpu->submission;
1379	struct intel_vgpu_workload *workload;
1380
1381	workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1382	if (!workload)
1383		return ERR_PTR(-ENOMEM);
1384
1385	INIT_LIST_HEAD(&workload->list);
1386	INIT_LIST_HEAD(&workload->shadow_bb);
1387
1388	init_waitqueue_head(&workload->shadow_ctx_status_wq);
1389	atomic_set(&workload->shadow_ctx_active, 0);
1390
1391	workload->status = -EINPROGRESS;
1392	workload->vgpu = vgpu;
1393
1394	return workload;
1395}
1396
1397#define RING_CTX_OFF(x) \
1398	offsetof(struct execlist_ring_context, x)
1399
1400static void read_guest_pdps(struct intel_vgpu *vgpu,
1401		u64 ring_context_gpa, u32 pdp[8])
1402{
1403	u64 gpa;
1404	int i;
1405
1406	gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1407
1408	for (i = 0; i < 8; i++)
1409		intel_gvt_hypervisor_read_gpa(vgpu,
1410				gpa + i * 8, &pdp[7 - i], 4);
1411}
1412
1413static int prepare_mm(struct intel_vgpu_workload *workload)
1414{
1415	struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1416	struct intel_vgpu_mm *mm;
1417	struct intel_vgpu *vgpu = workload->vgpu;
1418	enum intel_gvt_gtt_type root_entry_type;
1419	u64 pdps[GVT_RING_CTX_NR_PDPS];
1420
1421	switch (desc->addressing_mode) {
1422	case 1: /* legacy 32-bit */
1423		root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1424		break;
1425	case 3: /* legacy 64-bit */
1426		root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1427		break;
1428	default:
1429		gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1430		return -EINVAL;
1431	}
1432
1433	read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1434
1435	mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1436	if (IS_ERR(mm))
1437		return PTR_ERR(mm);
1438
1439	workload->shadow_mm = mm;
1440	return 0;
1441}
1442
1443#define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1444		((a)->lrca == (b)->lrca))
1445
1446/**
1447 * intel_vgpu_create_workload - create a vGPU workload
1448 * @vgpu: a vGPU
1449 * @ring_id: ring index
1450 * @desc: a guest context descriptor
1451 *
1452 * This function is called when creating a vGPU workload.
1453 *
1454 * Returns:
1455 * struct intel_vgpu_workload * on success, negative error code in
1456 * pointer if failed.
1457 *
1458 */
1459struct intel_vgpu_workload *
1460intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1461			   struct execlist_ctx_descriptor_format *desc)
1462{
1463	struct intel_vgpu_submission *s = &vgpu->submission;
1464	struct list_head *q = workload_q_head(vgpu, ring_id);
1465	struct intel_vgpu_workload *last_workload = NULL;
1466	struct intel_vgpu_workload *workload = NULL;
1467	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1468	u64 ring_context_gpa;
1469	u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1470	u32 guest_head;
1471	int ret;
1472
1473	ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1474			(u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1475	if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1476		gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1477		return ERR_PTR(-EINVAL);
1478	}
1479
1480	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1481			RING_CTX_OFF(ring_header.val), &head, 4);
1482
1483	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1484			RING_CTX_OFF(ring_tail.val), &tail, 4);
1485
1486	guest_head = head;
1487
1488	head &= RB_HEAD_OFF_MASK;
1489	tail &= RB_TAIL_OFF_MASK;
1490
1491	list_for_each_entry_reverse(last_workload, q, list) {
1492
1493		if (same_context(&last_workload->ctx_desc, desc)) {
1494			gvt_dbg_el("ring id %d cur workload == last\n",
1495					ring_id);
1496			gvt_dbg_el("ctx head %x real head %lx\n", head,
1497					last_workload->rb_tail);
1498			/*
1499			 * cannot use guest context head pointer here,
1500			 * as it might not be updated at this time
1501			 */
1502			head = last_workload->rb_tail;
1503			break;
1504		}
1505	}
1506
1507	gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1508
1509	/* record some ring buffer register values for scan and shadow */
1510	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1511			RING_CTX_OFF(rb_start.val), &start, 4);
1512	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1513			RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1514	intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1515			RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1516
1517	if (!intel_gvt_ggtt_validate_range(vgpu, start,
1518				_RING_CTL_BUF_SIZE(ctl))) {
1519		gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1520		return ERR_PTR(-EINVAL);
1521	}
1522
1523	workload = alloc_workload(vgpu);
1524	if (IS_ERR(workload))
1525		return workload;
1526
1527	workload->ring_id = ring_id;
1528	workload->ctx_desc = *desc;
1529	workload->ring_context_gpa = ring_context_gpa;
1530	workload->rb_head = head;
1531	workload->guest_rb_head = guest_head;
1532	workload->rb_tail = tail;
1533	workload->rb_start = start;
1534	workload->rb_ctl = ctl;
1535
1536	if (ring_id == RCS0) {
1537		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1538			RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1539		intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1540			RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1541
1542		workload->wa_ctx.indirect_ctx.guest_gma =
1543			indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1544		workload->wa_ctx.indirect_ctx.size =
1545			(indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1546			CACHELINE_BYTES;
1547
1548		if (workload->wa_ctx.indirect_ctx.size != 0) {
1549			if (!intel_gvt_ggtt_validate_range(vgpu,
1550				workload->wa_ctx.indirect_ctx.guest_gma,
1551				workload->wa_ctx.indirect_ctx.size)) {
1552				gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1553				    workload->wa_ctx.indirect_ctx.guest_gma);
1554				kmem_cache_free(s->workloads, workload);
1555				return ERR_PTR(-EINVAL);
1556			}
1557		}
1558
1559		workload->wa_ctx.per_ctx.guest_gma =
1560			per_ctx & PER_CTX_ADDR_MASK;
1561		workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1562		if (workload->wa_ctx.per_ctx.valid) {
1563			if (!intel_gvt_ggtt_validate_range(vgpu,
1564				workload->wa_ctx.per_ctx.guest_gma,
1565				CACHELINE_BYTES)) {
1566				gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1567					workload->wa_ctx.per_ctx.guest_gma);
1568				kmem_cache_free(s->workloads, workload);
1569				return ERR_PTR(-EINVAL);
1570			}
1571		}
1572	}
1573
1574	gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1575			workload, ring_id, head, tail, start, ctl);
1576
1577	ret = prepare_mm(workload);
1578	if (ret) {
1579		kmem_cache_free(s->workloads, workload);
1580		return ERR_PTR(ret);
1581	}
1582
1583	/* Only scan and shadow the first workload in the queue
1584	 * as there is only one pre-allocated buf-obj for shadow.
1585	 */
1586	if (list_empty(workload_q_head(vgpu, ring_id))) {
1587		intel_runtime_pm_get(&dev_priv->runtime_pm);
1588		ret = intel_gvt_scan_and_shadow_workload(workload);
1589		intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1590	}
1591
1592	if (ret) {
1593		if (vgpu_is_vm_unhealthy(ret))
1594			enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1595		intel_vgpu_destroy_workload(workload);
1596		return ERR_PTR(ret);
1597	}
1598
1599	return workload;
1600}
1601
1602/**
1603 * intel_vgpu_queue_workload - Qeue a vGPU workload
1604 * @workload: the workload to queue in
1605 */
1606void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1607{
1608	list_add_tail(&workload->list,
1609		workload_q_head(workload->vgpu, workload->ring_id));
1610	intel_gvt_kick_schedule(workload->vgpu->gvt);
1611	wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1612}
1613