1/*	$NetBSD: amdgpu_vegam_smumgr.c,v 1.2 2021/12/18 23:45:27 riastradh Exp $	*/
2
3/*
4 * Copyright 2017 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25#include <sys/cdefs.h>
26__KERNEL_RCSID(0, "$NetBSD: amdgpu_vegam_smumgr.c,v 1.2 2021/12/18 23:45:27 riastradh Exp $");
27
28#include "pp_debug.h"
29#include "smumgr.h"
30#include "smu_ucode_xfer_vi.h"
31#include "vegam_smumgr.h"
32#include "smu/smu_7_1_3_d.h"
33#include "smu/smu_7_1_3_sh_mask.h"
34#include "gmc/gmc_8_1_d.h"
35#include "gmc/gmc_8_1_sh_mask.h"
36#include "oss/oss_3_0_d.h"
37#include "gca/gfx_8_0_d.h"
38#include "bif/bif_5_0_d.h"
39#include "bif/bif_5_0_sh_mask.h"
40#include "ppatomctrl.h"
41#include "cgs_common.h"
42#include "smu7_ppsmc.h"
43
44#include "smu7_dyn_defaults.h"
45
46#include "smu7_hwmgr.h"
47#include "hardwaremanager.h"
48#include "atombios.h"
49#include "pppcielanes.h"
50
51#include "dce/dce_11_2_d.h"
52#include "dce/dce_11_2_sh_mask.h"
53
54#define PPVEGAM_TARGETACTIVITY_DFLT                     50
55
56#define VOLTAGE_VID_OFFSET_SCALE1   625
57#define VOLTAGE_VID_OFFSET_SCALE2   100
58#define POWERTUNE_DEFAULT_SET_MAX    1
59#define VDDC_VDDCI_DELTA            200
60#define MC_CG_ARB_FREQ_F1           0x0b
61
62#define STRAP_ASIC_RO_LSB    2168
63#define STRAP_ASIC_RO_MSB    2175
64
65#define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
66#define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
67
68static const struct vegam_pt_defaults
69vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
70	/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
71	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
72	{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
73	{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
74	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
75};
76
77static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
78			{VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
79			{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
80			{VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
81			{VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
82			{VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
83			{VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
84			{VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
85			{VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
86
87static int vegam_smu_init(struct pp_hwmgr *hwmgr)
88{
89	struct vegam_smumgr *smu_data;
90
91	smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
92	if (smu_data == NULL)
93		return -ENOMEM;
94
95	hwmgr->smu_backend = smu_data;
96
97	if (smu7_init(hwmgr)) {
98		kfree(smu_data);
99		return -EINVAL;
100	}
101
102	return 0;
103}
104
105static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
106{
107	int result = 0;
108
109	/* Wait for smc boot up */
110	/* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
111
112	/* Assert reset */
113	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
114					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
115
116	result = smu7_upload_smu_firmware_image(hwmgr);
117	if (result != 0)
118		return result;
119
120	/* Clear status */
121	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
122
123	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
124					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
125
126	/* De-assert reset */
127	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
128					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
129
130
131	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
132
133
134	/* Call Test SMU message with 0x20000 offset to trigger SMU start */
135	smu7_send_msg_to_smc_offset(hwmgr);
136
137	/* Wait done bit to be set */
138	/* Check pass/failed indicator */
139
140	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
141
142	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
143						SMU_STATUS, SMU_PASS))
144		PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
145
146	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
147
148	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
149					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
150
151	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
152					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
153
154	/* Wait for firmware to initialize */
155	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156
157	return result;
158}
159
160static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161{
162	int result = 0;
163
164	/* wait for smc boot up */
165	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
166
167	/* Clear firmware interrupt enable flag */
168	/* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
169	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170				ixFIRMWARE_FLAGS, 0);
171
172	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
173					SMC_SYSCON_RESET_CNTL,
174					rst_reg, 1);
175
176	result = smu7_upload_smu_firmware_image(hwmgr);
177	if (result != 0)
178		return result;
179
180	/* Set smc instruct start point at 0x0 */
181	smu7_program_jump_on_start(hwmgr);
182
183	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
184					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
185
186	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
187					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
188
189	/* Wait for firmware to initialize */
190
191	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
192					FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
193
194	return result;
195}
196
197static int vegam_start_smu(struct pp_hwmgr *hwmgr)
198{
199	int result = 0;
200	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
201
202	/* Only start SMC if SMC RAM is not running */
203	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
204		smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
205				CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
206		smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
207				hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
208
209		/* Check if SMU is running in protected mode */
210		if (smu_data->protected_mode == 0)
211			result = vegam_start_smu_in_non_protection_mode(hwmgr);
212		else
213			result = vegam_start_smu_in_protection_mode(hwmgr);
214
215		if (result != 0)
216			PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
217	}
218
219	/* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
220	smu7_read_smc_sram_dword(hwmgr,
221			SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
222			&(smu_data->smu7_data.soft_regs_start),
223			0x40000);
224
225	result = smu7_request_smu_load_fw(hwmgr);
226
227	return result;
228}
229
230static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
231{
232	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
233	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
234	uint32_t tmp;
235	int result;
236	bool error = false;
237
238	result = smu7_read_smc_sram_dword(hwmgr,
239			SMU7_FIRMWARE_HEADER_LOCATION +
240			offsetof(SMU75_Firmware_Header, DpmTable),
241			&tmp, SMC_RAM_END);
242
243	if (0 == result)
244		smu_data->smu7_data.dpm_table_start = tmp;
245
246	error |= (0 != result);
247
248	result = smu7_read_smc_sram_dword(hwmgr,
249			SMU7_FIRMWARE_HEADER_LOCATION +
250			offsetof(SMU75_Firmware_Header, SoftRegisters),
251			&tmp, SMC_RAM_END);
252
253	if (!result) {
254		data->soft_regs_start = tmp;
255		smu_data->smu7_data.soft_regs_start = tmp;
256	}
257
258	error |= (0 != result);
259
260	result = smu7_read_smc_sram_dword(hwmgr,
261			SMU7_FIRMWARE_HEADER_LOCATION +
262			offsetof(SMU75_Firmware_Header, mcRegisterTable),
263			&tmp, SMC_RAM_END);
264
265	if (!result)
266		smu_data->smu7_data.mc_reg_table_start = tmp;
267
268	result = smu7_read_smc_sram_dword(hwmgr,
269			SMU7_FIRMWARE_HEADER_LOCATION +
270			offsetof(SMU75_Firmware_Header, FanTable),
271			&tmp, SMC_RAM_END);
272
273	if (!result)
274		smu_data->smu7_data.fan_table_start = tmp;
275
276	error |= (0 != result);
277
278	result = smu7_read_smc_sram_dword(hwmgr,
279			SMU7_FIRMWARE_HEADER_LOCATION +
280			offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
281			&tmp, SMC_RAM_END);
282
283	if (!result)
284		smu_data->smu7_data.arb_table_start = tmp;
285
286	error |= (0 != result);
287
288	result = smu7_read_smc_sram_dword(hwmgr,
289			SMU7_FIRMWARE_HEADER_LOCATION +
290			offsetof(SMU75_Firmware_Header, Version),
291			&tmp, SMC_RAM_END);
292
293	if (!result)
294		hwmgr->microcode_version_info.SMC = tmp;
295
296	error |= (0 != result);
297
298	return error ? -1 : 0;
299}
300
301static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
302{
303	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
304			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
305			? true : false;
306}
307
308static uint32_t vegam_get_mac_definition(uint32_t value)
309{
310	switch (value) {
311	case SMU_MAX_LEVELS_GRAPHICS:
312		return SMU75_MAX_LEVELS_GRAPHICS;
313	case SMU_MAX_LEVELS_MEMORY:
314		return SMU75_MAX_LEVELS_MEMORY;
315	case SMU_MAX_LEVELS_LINK:
316		return SMU75_MAX_LEVELS_LINK;
317	case SMU_MAX_ENTRIES_SMIO:
318		return SMU75_MAX_ENTRIES_SMIO;
319	case SMU_MAX_LEVELS_VDDC:
320		return SMU75_MAX_LEVELS_VDDC;
321	case SMU_MAX_LEVELS_VDDGFX:
322		return SMU75_MAX_LEVELS_VDDGFX;
323	case SMU_MAX_LEVELS_VDDCI:
324		return SMU75_MAX_LEVELS_VDDCI;
325	case SMU_MAX_LEVELS_MVDD:
326		return SMU75_MAX_LEVELS_MVDD;
327	case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
328		return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
329				SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
330	}
331
332	pr_warn("can't get the mac of %x\n", value);
333	return 0;
334}
335
336static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
337{
338	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
339	uint32_t mm_boot_level_offset, mm_boot_level_value;
340	struct phm_ppt_v1_information *table_info =
341			(struct phm_ppt_v1_information *)(hwmgr->pptable);
342
343	smu_data->smc_state_table.UvdBootLevel = 0;
344	if (table_info->mm_dep_table->count > 0)
345		smu_data->smc_state_table.UvdBootLevel =
346				(uint8_t) (table_info->mm_dep_table->count - 1);
347	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
348						UvdBootLevel);
349	mm_boot_level_offset /= 4;
350	mm_boot_level_offset *= 4;
351	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
352			CGS_IND_REG__SMC, mm_boot_level_offset);
353	mm_boot_level_value &= 0x00FFFFFF;
354	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
355	cgs_write_ind_register(hwmgr->device,
356			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
357
358	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
359			PHM_PlatformCaps_UVDDPM) ||
360		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
361			PHM_PlatformCaps_StablePState))
362		smum_send_msg_to_smc_with_parameter(hwmgr,
363				PPSMC_MSG_UVDDPM_SetEnabledMask,
364				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
365	return 0;
366}
367
368static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
369{
370	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
371	uint32_t mm_boot_level_offset, mm_boot_level_value;
372	struct phm_ppt_v1_information *table_info =
373			(struct phm_ppt_v1_information *)(hwmgr->pptable);
374
375	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
376					PHM_PlatformCaps_StablePState))
377		smu_data->smc_state_table.VceBootLevel =
378			(uint8_t) (table_info->mm_dep_table->count - 1);
379	else
380		smu_data->smc_state_table.VceBootLevel = 0;
381
382	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
383					offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
384	mm_boot_level_offset /= 4;
385	mm_boot_level_offset *= 4;
386	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
387			CGS_IND_REG__SMC, mm_boot_level_offset);
388	mm_boot_level_value &= 0xFF00FFFF;
389	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
390	cgs_write_ind_register(hwmgr->device,
391			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
392
393	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
394		smum_send_msg_to_smc_with_parameter(hwmgr,
395				PPSMC_MSG_VCEDPM_SetEnabledMask,
396				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
397	return 0;
398}
399
400static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
401{
402	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
403	struct phm_ppt_v1_information *table_info =
404			(struct phm_ppt_v1_information *)(hwmgr->pptable);
405	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
406	int max_entry, i;
407
408	max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
409						SMU75_MAX_LEVELS_LINK :
410						pcie_table->count;
411	/* Setup BIF_SCLK levels */
412	for (i = 0; i < max_entry; i++)
413		smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
414	return 0;
415}
416
417static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
418{
419	switch (type) {
420	case SMU_UVD_TABLE:
421		vegam_update_uvd_smc_table(hwmgr);
422		break;
423	case SMU_VCE_TABLE:
424		vegam_update_vce_smc_table(hwmgr);
425		break;
426	case SMU_BIF_TABLE:
427		vegam_update_bif_smc_table(hwmgr);
428		break;
429	default:
430		break;
431	}
432	return 0;
433}
434
435static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
436{
437	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
438	struct  phm_ppt_v1_information *table_info =
439			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
440
441	if (table_info &&
442			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
443			table_info->cac_dtp_table->usPowerTuneDataSetID)
444		smu_data->power_tune_defaults =
445				&vegam_power_tune_data_set_array
446				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
447	else
448		smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
449
450}
451
452static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
453			SMU75_Discrete_DpmTable *table)
454{
455	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
456	uint32_t count, level;
457
458	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
459		count = data->mvdd_voltage_table.count;
460		if (count > SMU_MAX_SMIO_LEVELS)
461			count = SMU_MAX_SMIO_LEVELS;
462		for (level = 0; level < count; level++) {
463			table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
464					data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
465			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
466			table->SmioTable2.Pattern[level].Smio =
467				(uint8_t) level;
468			table->Smio[level] |=
469				data->mvdd_voltage_table.entries[level].smio_low;
470		}
471		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
472
473		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
474	}
475
476	return 0;
477}
478
479static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
480					struct SMU75_Discrete_DpmTable *table)
481{
482	uint32_t count, level;
483	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
484
485	count = data->vddci_voltage_table.count;
486
487	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
488		if (count > SMU_MAX_SMIO_LEVELS)
489			count = SMU_MAX_SMIO_LEVELS;
490		for (level = 0; level < count; ++level) {
491			table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
492					data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
493			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
494
495			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
496		}
497	}
498
499	table->SmioMask1 = data->vddci_voltage_table.mask_low;
500
501	return 0;
502}
503
504static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
505		struct SMU75_Discrete_DpmTable *table)
506{
507	uint32_t count;
508	uint8_t index;
509	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
510	struct phm_ppt_v1_information *table_info =
511			(struct phm_ppt_v1_information *)(hwmgr->pptable);
512	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
513			table_info->vddc_lookup_table;
514	/* tables is already swapped, so in order to use the value from it,
515	 * we need to swap it back.
516	 * We are populating vddc CAC data to BapmVddc table
517	 * in split and merged mode
518	 */
519	for (count = 0; count < lookup_table->count; count++) {
520		index = phm_get_voltage_index(lookup_table,
521				data->vddc_voltage_table.entries[count].value);
522		table->BapmVddcVidLoSidd[count] =
523				convert_to_vid(lookup_table->entries[index].us_cac_low);
524		table->BapmVddcVidHiSidd[count] =
525				convert_to_vid(lookup_table->entries[index].us_cac_mid);
526		table->BapmVddcVidHiSidd2[count] =
527				convert_to_vid(lookup_table->entries[index].us_cac_high);
528	}
529
530	return 0;
531}
532
533static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
534		struct SMU75_Discrete_DpmTable *table)
535{
536	vegam_populate_smc_vddci_table(hwmgr, table);
537	vegam_populate_smc_mvdd_table(hwmgr, table);
538	vegam_populate_cac_table(hwmgr, table);
539
540	return 0;
541}
542
543static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
544		struct SMU75_Discrete_Ulv *state)
545{
546	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
547	struct phm_ppt_v1_information *table_info =
548			(struct phm_ppt_v1_information *)(hwmgr->pptable);
549
550	state->CcPwrDynRm = 0;
551	state->CcPwrDynRm1 = 0;
552
553	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
554	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
555			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
556
557	state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
558
559	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
560	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
561	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
562
563	return 0;
564}
565
566static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
567		struct SMU75_Discrete_DpmTable *table)
568{
569	return vegam_populate_ulv_level(hwmgr, &table->Ulv);
570}
571
572static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
573		struct SMU75_Discrete_DpmTable *table)
574{
575	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
576	struct vegam_smumgr *smu_data =
577			(struct vegam_smumgr *)(hwmgr->smu_backend);
578	struct smu7_dpm_table *dpm_table = &data->dpm_table;
579	int i;
580
581	/* Index (dpm_table->pcie_speed_table.count)
582	 * is reserved for PCIE boot level. */
583	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
584		table->LinkLevel[i].PcieGenSpeed  =
585				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
586		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
587				dpm_table->pcie_speed_table.dpm_levels[i].param1);
588		table->LinkLevel[i].EnabledForActivity = 1;
589		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
590		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
591		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
592	}
593
594	smu_data->smc_state_table.LinkLevelCount =
595			(uint8_t)dpm_table->pcie_speed_table.count;
596
597/* To Do move to hwmgr */
598	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
599			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
600
601	return 0;
602}
603
604static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
605		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
606		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
607{
608	uint32_t i;
609	uint16_t vddci;
610	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
611
612	*voltage = *mvdd = 0;
613
614	/* clock - voltage dependency table is empty table */
615	if (dep_table->count == 0)
616		return -EINVAL;
617
618	for (i = 0; i < dep_table->count; i++) {
619		/* find first sclk bigger than request */
620		if (dep_table->entries[i].clk >= clock) {
621			*voltage |= (dep_table->entries[i].vddc *
622					VOLTAGE_SCALE) << VDDC_SHIFT;
623			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
624				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
625						VOLTAGE_SCALE) << VDDCI_SHIFT;
626			else if (dep_table->entries[i].vddci)
627				*voltage |= (dep_table->entries[i].vddci *
628						VOLTAGE_SCALE) << VDDCI_SHIFT;
629			else {
630				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
631						(dep_table->entries[i].vddc -
632								(uint16_t)VDDC_VDDCI_DELTA));
633				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
634			}
635
636			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
637				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
638					VOLTAGE_SCALE;
639			else if (dep_table->entries[i].mvdd)
640				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
641					VOLTAGE_SCALE;
642
643			*voltage |= 1 << PHASES_SHIFT;
644			return 0;
645		}
646	}
647
648	/* sclk is bigger than max sclk in the dependence table */
649	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
650	vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
651			(dep_table->entries[i - 1].vddc -
652					(uint16_t)VDDC_VDDCI_DELTA));
653
654	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
655		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
656				VOLTAGE_SCALE) << VDDCI_SHIFT;
657	else if (dep_table->entries[i - 1].vddci)
658		*voltage |= (dep_table->entries[i - 1].vddci *
659				VOLTAGE_SCALE) << VDDC_SHIFT;
660	else
661		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
662
663	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
664		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
665	else if (dep_table->entries[i].mvdd)
666		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
667
668	return 0;
669}
670
671static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
672				   SMU75_Discrete_DpmTable  *table)
673{
674	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
675	uint32_t i, ref_clk;
676
677	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
678
679	ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
680
681	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
682		for (i = 0; i < NUM_SCLK_RANGE; i++) {
683			table->SclkFcwRangeTable[i].vco_setting =
684					range_table_from_vbios.entry[i].ucVco_setting;
685			table->SclkFcwRangeTable[i].postdiv =
686					range_table_from_vbios.entry[i].ucPostdiv;
687			table->SclkFcwRangeTable[i].fcw_pcc =
688					range_table_from_vbios.entry[i].usFcw_pcc;
689
690			table->SclkFcwRangeTable[i].fcw_trans_upper =
691					range_table_from_vbios.entry[i].usFcw_trans_upper;
692			table->SclkFcwRangeTable[i].fcw_trans_lower =
693					range_table_from_vbios.entry[i].usRcw_trans_lower;
694
695			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
696			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
697			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
698		}
699		return;
700	}
701
702	for (i = 0; i < NUM_SCLK_RANGE; i++) {
703		smu_data->range_table[i].trans_lower_frequency =
704				(ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
705		smu_data->range_table[i].trans_upper_frequency =
706				(ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
707
708		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
709		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
710		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
711
712		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
713		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
714
715		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
716		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
717		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
718	}
719}
720
721static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
722		uint32_t clock, SMU_SclkSetting *sclk_setting)
723{
724	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
725	const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
726	struct pp_atomctrl_clock_dividers_ai dividers;
727	uint32_t ref_clock;
728	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
729	uint8_t i;
730	int result;
731	uint64_t temp;
732
733	sclk_setting->SclkFrequency = clock;
734	/* get the engine clock dividers for this clock value */
735	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
736	if (result == 0) {
737		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
738		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
739		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
740		sclk_setting->PllRange = dividers.ucSclkPllRange;
741		sclk_setting->Sclk_slew_rate = 0x400;
742		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
743		sclk_setting->Pcc_down_slew_rate = 0xffff;
744		sclk_setting->SSc_En = dividers.ucSscEnable;
745		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
746		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
747		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
748		return result;
749	}
750
751	ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
752
753	for (i = 0; i < NUM_SCLK_RANGE; i++) {
754		if (clock > smu_data->range_table[i].trans_lower_frequency
755		&& clock <= smu_data->range_table[i].trans_upper_frequency) {
756			sclk_setting->PllRange = i;
757			break;
758		}
759	}
760
761	sclk_setting->Fcw_int = (uint16_t)
762			((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
763					ref_clock);
764	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
765	temp <<= 0x10;
766	do_div(temp, ref_clock);
767	sclk_setting->Fcw_frac = temp & 0xffff;
768
769	pcc_target_percent = 10; /*  Hardcode 10% for now. */
770	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
771	sclk_setting->Pcc_fcw_int = (uint16_t)
772			((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
773					ref_clock);
774
775	ss_target_percent = 2; /*  Hardcode 2% for now. */
776	sclk_setting->SSc_En = 0;
777	if (ss_target_percent) {
778		sclk_setting->SSc_En = 1;
779		ss_target_freq = clock - (clock * ss_target_percent / 100);
780		sclk_setting->Fcw1_int = (uint16_t)
781				((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
782						ref_clock);
783		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
784		temp <<= 0x10;
785		do_div(temp, ref_clock);
786		sclk_setting->Fcw1_frac = temp & 0xffff;
787	}
788
789	return 0;
790}
791
792static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
793		uint32_t clock_insr)
794{
795	uint8_t i;
796	uint32_t temp;
797	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
798
799	PP_ASSERT_WITH_CODE((clock >= min),
800			"Engine clock can't satisfy stutter requirement!",
801			return 0);
802	for (i = 31;  ; i--) {
803		temp = clock / (i + 1);
804
805		if (temp >= min || i == 0)
806			break;
807	}
808	return i;
809}
810
811static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
812		uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
813{
814	int result;
815	/* PP_Clocks minClocks; */
816	uint32_t mvdd;
817	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
818	struct phm_ppt_v1_information *table_info =
819			(struct phm_ppt_v1_information *)(hwmgr->pptable);
820	SMU_SclkSetting curr_sclk_setting = { 0 };
821
822	result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
823
824	/* populate graphics levels */
825	result = vegam_get_dependency_volt_by_clk(hwmgr,
826			table_info->vdd_dep_on_sclk, clock,
827			&level->MinVoltage, &mvdd);
828
829	PP_ASSERT_WITH_CODE((0 == result),
830			"can not find VDDC voltage value for "
831			"VDDC engine clock dependency table",
832			return result);
833	level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
834
835	level->CcPwrDynRm = 0;
836	level->CcPwrDynRm1 = 0;
837	level->EnabledForActivity = 0;
838	level->EnabledForThrottle = 1;
839	level->VoltageDownHyst = 0;
840	level->PowerThrottle = 0;
841	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
842
843	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
844		level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
845								hwmgr->display_config->min_core_set_clock_in_sr);
846
847	level->SclkSetting = curr_sclk_setting;
848
849	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
850	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
851	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
852	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
853	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
854	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
855	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
856	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
857	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
858	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
859	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
860	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
861	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
862	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
863	return 0;
864}
865
866static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
867{
868	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
869	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
870	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
871	struct phm_ppt_v1_information *table_info =
872			(struct phm_ppt_v1_information *)(hwmgr->pptable);
873	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
874	uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
875	int result = 0;
876	uint32_t array = smu_data->smu7_data.dpm_table_start +
877			offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
878	uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
879			SMU75_MAX_LEVELS_GRAPHICS;
880	struct SMU75_Discrete_GraphicsLevel *levels =
881			smu_data->smc_state_table.GraphicsLevel;
882	uint32_t i, max_entry;
883	uint8_t hightest_pcie_level_enabled = 0,
884		lowest_pcie_level_enabled = 0,
885		mid_pcie_level_enabled = 0,
886		count = 0;
887
888	vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
889
890	for (i = 0; i < dpm_table->sclk_table.count; i++) {
891
892		result = vegam_populate_single_graphic_level(hwmgr,
893				dpm_table->sclk_table.dpm_levels[i].value,
894				&(smu_data->smc_state_table.GraphicsLevel[i]));
895		if (result)
896			return result;
897
898		levels[i].UpHyst = (uint8_t)
899				(SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
900		levels[i].DownHyst = (uint8_t)
901				(SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
902		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
903		if (i > 1)
904			levels[i].DeepSleepDivId = 0;
905	}
906	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
907					PHM_PlatformCaps_SPLLShutdownSupport))
908		smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
909
910	smu_data->smc_state_table.GraphicsDpmLevelCount =
911			(uint8_t)dpm_table->sclk_table.count;
912	hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
913			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
914
915	for (i = 0; i < dpm_table->sclk_table.count; i++)
916		levels[i].EnabledForActivity =
917				(hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
918
919	if (pcie_table != NULL) {
920		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
921				"There must be 1 or more PCIE levels defined in PPTable.",
922				return -EINVAL);
923		max_entry = pcie_entry_cnt - 1;
924		for (i = 0; i < dpm_table->sclk_table.count; i++)
925			levels[i].pcieDpmLevel =
926					(uint8_t) ((i < max_entry) ? i : max_entry);
927	} else {
928		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
929				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
930						(1 << (hightest_pcie_level_enabled + 1))) != 0))
931			hightest_pcie_level_enabled++;
932
933		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
934				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
935						(1 << lowest_pcie_level_enabled)) == 0))
936			lowest_pcie_level_enabled++;
937
938		while ((count < hightest_pcie_level_enabled) &&
939				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
940						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
941			count++;
942
943		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
944				hightest_pcie_level_enabled ?
945						(lowest_pcie_level_enabled + 1 + count) :
946						hightest_pcie_level_enabled;
947
948		/* set pcieDpmLevel to hightest_pcie_level_enabled */
949		for (i = 2; i < dpm_table->sclk_table.count; i++)
950			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
951
952		/* set pcieDpmLevel to lowest_pcie_level_enabled */
953		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
954
955		/* set pcieDpmLevel to mid_pcie_level_enabled */
956		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
957	}
958	/* level count will send to smc once at init smc table and never change */
959	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
960			(uint32_t)array_size, SMC_RAM_END);
961
962	return result;
963}
964
965static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
966		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
967{
968	struct pp_atomctrl_memory_clock_param_ai mpll_param;
969
970	PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
971			clock, &mpll_param),
972			"Failed to retrieve memory pll parameter.",
973			return -EINVAL);
974
975	mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
976	mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
977	mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
978	mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
979
980	return 0;
981}
982
983static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
984		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
985{
986	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
987	struct phm_ppt_v1_information *table_info =
988			(struct phm_ppt_v1_information *)(hwmgr->pptable);
989	int result = 0;
990	uint32_t mclk_stutter_mode_threshold = 60000;
991
992
993	if (table_info->vdd_dep_on_mclk) {
994		result = vegam_get_dependency_volt_by_clk(hwmgr,
995				table_info->vdd_dep_on_mclk, clock,
996				&mem_level->MinVoltage, &mem_level->MinMvdd);
997		PP_ASSERT_WITH_CODE(!result,
998				"can not find MinVddc voltage value from memory "
999				"VDDC voltage dependency table", return result);
1000	}
1001
1002	result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
1003	PP_ASSERT_WITH_CODE(!result,
1004			"Failed to calculate mclk params.",
1005			return -EINVAL);
1006
1007	mem_level->EnabledForThrottle = 1;
1008	mem_level->EnabledForActivity = 0;
1009	mem_level->VoltageDownHyst = 0;
1010	mem_level->ActivityLevel = (uint16_t)
1011			(MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
1012	mem_level->StutterEnable = false;
1013	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1014
1015	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1016	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1017
1018	if (mclk_stutter_mode_threshold &&
1019		(clock <= mclk_stutter_mode_threshold) &&
1020		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1021				STUTTER_ENABLE) & 0x1))
1022		mem_level->StutterEnable = true;
1023
1024	if (!result) {
1025		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1026		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1027		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
1028		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
1029		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1030		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1031	}
1032
1033	return result;
1034}
1035
1036static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1037{
1038	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1039	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1040	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
1041	int result;
1042	/* populate MCLK dpm table to SMU7 */
1043	uint32_t array = smu_data->smu7_data.dpm_table_start +
1044			offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
1045	uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
1046			SMU75_MAX_LEVELS_MEMORY;
1047	struct SMU75_Discrete_MemoryLevel *levels =
1048			smu_data->smc_state_table.MemoryLevel;
1049	uint32_t i;
1050
1051	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1052		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1053				"can not populate memory level as memory clock is zero",
1054				return -EINVAL);
1055		result = vegam_populate_single_memory_level(hwmgr,
1056				dpm_table->mclk_table.dpm_levels[i].value,
1057				&levels[i]);
1058
1059		if (result)
1060			return result;
1061
1062		levels[i].UpHyst = (uint8_t)
1063				(MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
1064		levels[i].DownHyst = (uint8_t)
1065				(MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
1066	}
1067
1068	smu_data->smc_state_table.MemoryDpmLevelCount =
1069			(uint8_t)dpm_table->mclk_table.count;
1070	hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1071			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1072
1073	for (i = 0; i < dpm_table->mclk_table.count; i++)
1074		levels[i].EnabledForActivity =
1075				(hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
1076
1077	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1078			PPSMC_DISPLAY_WATERMARK_HIGH;
1079
1080	/* level count will send to smc once at init smc table and never change */
1081	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1082			(uint32_t)array_size, SMC_RAM_END);
1083
1084	return result;
1085}
1086
1087static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1088		uint32_t mclk, SMIO_Pattern *smio_pat)
1089{
1090	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1091	struct phm_ppt_v1_information *table_info =
1092			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1093	uint32_t i = 0;
1094
1095	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1096		/* find mvdd value which clock is more than request */
1097		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1098			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1099				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1100				break;
1101			}
1102		}
1103		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1104				"MVDD Voltage is outside the supported range.",
1105				return -EINVAL);
1106	} else
1107		return -EINVAL;
1108
1109	return 0;
1110}
1111
1112static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1113		SMU75_Discrete_DpmTable *table)
1114{
1115	int result = 0;
1116	uint32_t sclk_frequency;
1117	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1118	struct phm_ppt_v1_information *table_info =
1119			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1120	SMIO_Pattern vol_level;
1121	uint32_t mvdd;
1122
1123	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1124
1125	/* Get MinVoltage and Frequency from DPM0,
1126	 * already converted to SMC_UL */
1127	sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1128	result = vegam_get_dependency_volt_by_clk(hwmgr,
1129			table_info->vdd_dep_on_sclk,
1130			sclk_frequency,
1131			&table->ACPILevel.MinVoltage, &mvdd);
1132	PP_ASSERT_WITH_CODE(!result,
1133			"Cannot find ACPI VDDC voltage value "
1134			"in Clock Dependency Table",
1135			);
1136
1137	result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
1138			&(table->ACPILevel.SclkSetting));
1139	PP_ASSERT_WITH_CODE(!result,
1140			"Error retrieving Engine Clock dividers from VBIOS.",
1141			return result);
1142
1143	table->ACPILevel.DeepSleepDivId = 0;
1144	table->ACPILevel.CcPwrDynRm = 0;
1145	table->ACPILevel.CcPwrDynRm1 = 0;
1146
1147	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1148	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1149	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1150	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1151
1152	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1153	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1154	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1155	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1156	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1157	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1158	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1159	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1160	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1161	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1162
1163
1164	/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1165	table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
1166	result = vegam_get_dependency_volt_by_clk(hwmgr,
1167			table_info->vdd_dep_on_mclk,
1168			table->MemoryACPILevel.MclkFrequency,
1169			&table->MemoryACPILevel.MinVoltage, &mvdd);
1170	PP_ASSERT_WITH_CODE((0 == result),
1171			"Cannot find ACPI VDDCI voltage value "
1172			"in Clock Dependency Table",
1173			);
1174
1175	if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
1176		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1177	else
1178		table->MemoryACPILevel.MinMvdd = 0;
1179
1180	table->MemoryACPILevel.StutterEnable = false;
1181
1182	table->MemoryACPILevel.EnabledForThrottle = 0;
1183	table->MemoryACPILevel.EnabledForActivity = 0;
1184	table->MemoryACPILevel.UpHyst = 0;
1185	table->MemoryACPILevel.DownHyst = 100;
1186	table->MemoryACPILevel.VoltageDownHyst = 0;
1187	table->MemoryACPILevel.ActivityLevel =
1188		PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1189
1190	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1191	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1192
1193	return result;
1194}
1195
1196static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1197		SMU75_Discrete_DpmTable *table)
1198{
1199	int result = -EINVAL;
1200	uint8_t count;
1201	struct pp_atomctrl_clock_dividers_vi dividers;
1202	struct phm_ppt_v1_information *table_info =
1203			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1204	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1205			table_info->mm_dep_table;
1206	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1207	uint32_t vddci;
1208
1209	table->VceLevelCount = (uint8_t)(mm_table->count);
1210	table->VceBootLevel = 0;
1211
1212	for (count = 0; count < table->VceLevelCount; count++) {
1213		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1214		table->VceLevel[count].MinVoltage = 0;
1215		table->VceLevel[count].MinVoltage |=
1216				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1217
1218		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1219			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1220						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1221		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1222			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1223		else
1224			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1225
1226
1227		table->VceLevel[count].MinVoltage |=
1228				(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1229		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1230
1231		/*retrieve divider value for VBIOS */
1232		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1233				table->VceLevel[count].Frequency, &dividers);
1234		PP_ASSERT_WITH_CODE((0 == result),
1235				"can not find divide id for VCE engine clock",
1236				return result);
1237
1238		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1239
1240		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1241		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1242	}
1243	return result;
1244}
1245
1246static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1247		int32_t eng_clock, int32_t mem_clock,
1248		SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
1249{
1250	uint32_t dram_timing;
1251	uint32_t dram_timing2;
1252	uint32_t burst_time;
1253	uint32_t rfsh_rate;
1254	uint32_t misc3;
1255
1256	int result;
1257
1258	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1259			eng_clock, mem_clock);
1260	PP_ASSERT_WITH_CODE(result == 0,
1261			"Error calling VBIOS to set DRAM_TIMING.",
1262			return result);
1263
1264	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1265	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1266	burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1267	rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
1268	misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
1269
1270	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1271	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1272	arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
1273	arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
1274	arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
1275
1276	return 0;
1277}
1278
1279static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1280{
1281	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1282	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1283	struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
1284	uint32_t i, j;
1285	int result = 0;
1286
1287	memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
1288
1289	for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
1290		for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
1291			result = vegam_populate_memory_timing_parameters(hwmgr,
1292					hw_data->dpm_table.sclk_table.dpm_levels[i].value,
1293					hw_data->dpm_table.mclk_table.dpm_levels[j].value,
1294					&arb_regs.entries[i][j]);
1295			if (result)
1296				return result;
1297		}
1298	}
1299
1300	result = smu7_copy_bytes_to_smc(
1301			hwmgr,
1302			smu_data->smu7_data.arb_table_start,
1303			(uint8_t *)&arb_regs,
1304			sizeof(SMU75_Discrete_MCArbDramTimingTable),
1305			SMC_RAM_END);
1306	return result;
1307}
1308
1309static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1310		struct SMU75_Discrete_DpmTable *table)
1311{
1312	int result = -EINVAL;
1313	uint8_t count;
1314	struct pp_atomctrl_clock_dividers_vi dividers;
1315	struct phm_ppt_v1_information *table_info =
1316			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1317	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1318			table_info->mm_dep_table;
1319	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1320	uint32_t vddci;
1321
1322	table->UvdLevelCount = (uint8_t)(mm_table->count);
1323	table->UvdBootLevel = 0;
1324
1325	for (count = 0; count < table->UvdLevelCount; count++) {
1326		table->UvdLevel[count].MinVoltage = 0;
1327		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1328		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1329		table->UvdLevel[count].MinVoltage |=
1330				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1331
1332		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
1333			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
1334						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1335		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1336			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
1337		else
1338			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
1339
1340		table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1341		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1342
1343		/* retrieve divider value for VBIOS */
1344		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1345				table->UvdLevel[count].VclkFrequency, &dividers);
1346		PP_ASSERT_WITH_CODE((0 == result),
1347				"can not find divide id for Vclk clock", return result);
1348
1349		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1350
1351		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1352				table->UvdLevel[count].DclkFrequency, &dividers);
1353		PP_ASSERT_WITH_CODE((0 == result),
1354				"can not find divide id for Dclk clock", return result);
1355
1356		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1357
1358		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1359		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1360		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1361	}
1362
1363	return result;
1364}
1365
1366static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1367		struct SMU75_Discrete_DpmTable *table)
1368{
1369	int result = 0;
1370	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1371
1372	table->GraphicsBootLevel = 0;
1373	table->MemoryBootLevel = 0;
1374
1375	/* find boot level from dpm table */
1376	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1377			data->vbios_boot_state.sclk_bootup_value,
1378			(uint32_t *)&(table->GraphicsBootLevel));
1379	if (result)
1380		return result;
1381
1382	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1383			data->vbios_boot_state.mclk_bootup_value,
1384			(uint32_t *)&(table->MemoryBootLevel));
1385
1386	if (result)
1387		return result;
1388
1389	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1390			VOLTAGE_SCALE;
1391	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1392			VOLTAGE_SCALE;
1393	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1394			VOLTAGE_SCALE;
1395
1396	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1397	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1398	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1399
1400	return 0;
1401}
1402
1403static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1404{
1405	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1406	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1407	struct phm_ppt_v1_information *table_info =
1408			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1409	uint8_t count, level;
1410
1411	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1412
1413	for (level = 0; level < count; level++) {
1414		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1415				hw_data->vbios_boot_state.sclk_bootup_value) {
1416			smu_data->smc_state_table.GraphicsBootLevel = level;
1417			break;
1418		}
1419	}
1420
1421	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1422	for (level = 0; level < count; level++) {
1423		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1424				hw_data->vbios_boot_state.mclk_bootup_value) {
1425			smu_data->smc_state_table.MemoryBootLevel = level;
1426			break;
1427		}
1428	}
1429
1430	return 0;
1431}
1432
1433static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
1434{
1435	uint32_t tmp;
1436	tmp = raw_setting * 4096 / 100;
1437	return (uint16_t)tmp;
1438}
1439
1440static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1441{
1442	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1443
1444	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1445	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1446	struct phm_ppt_v1_information *table_info =
1447			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1448	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1449	struct pp_advance_fan_control_parameters *fan_table =
1450			&hwmgr->thermal_controller.advanceFanControlParameters;
1451	int i, j, k;
1452	const uint16_t *pdef1;
1453	const uint16_t *pdef2;
1454
1455	table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1456	table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
1457
1458	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1459				"Target Operating Temp is out of Range!",
1460				);
1461
1462	table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
1463			cac_dtp_table->usTargetOperatingTemp * 256);
1464	table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
1465			cac_dtp_table->usTemperatureLimitHotspot * 256);
1466	table->FanGainEdge = PP_HOST_TO_SMC_US(
1467			scale_fan_gain_settings(fan_table->usFanGainEdge));
1468	table->FanGainHotspot = PP_HOST_TO_SMC_US(
1469			scale_fan_gain_settings(fan_table->usFanGainHotspot));
1470
1471	pdef1 = defaults->BAPMTI_R;
1472	pdef2 = defaults->BAPMTI_RC;
1473
1474	for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
1475		for (j = 0; j < SMU75_DTE_SOURCES; j++) {
1476			for (k = 0; k < SMU75_DTE_SINKS; k++) {
1477				table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
1478				table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
1479				pdef1++;
1480				pdef2++;
1481			}
1482		}
1483	}
1484
1485	return 0;
1486}
1487
1488static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1489{
1490	uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
1491	struct vegam_smumgr *smu_data =
1492			(struct vegam_smumgr *)(hwmgr->smu_backend);
1493
1494	uint8_t i, stretch_amount, volt_offset = 0;
1495	struct phm_ppt_v1_information *table_info =
1496			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1497	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1498			table_info->vdd_dep_on_sclk;
1499	uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1;
1500
1501	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1502
1503	atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
1504			mask, &efuse);
1505
1506	min = 1200;
1507	max = 2500;
1508
1509	ro = efuse * (max - min) / 255 + min;
1510
1511	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1512	for (i = 0; i < sclk_table->count; i++) {
1513		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1514				sclk_table->entries[i].cks_enable << i;
1515		volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
1516				136418 - (ro - 70) * 1000000) /
1517				(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
1518		volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
1519				3232 - (ro - 65) * 1000000) /
1520				(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
1521
1522		if (volt_without_cks >= volt_with_cks)
1523			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1524					sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
1525
1526		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1527	}
1528
1529	smu_data->smc_state_table.LdoRefSel =
1530			(table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
1531			table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
1532	/* Populate CKS Lookup Table */
1533	if (!(stretch_amount == 1 || stretch_amount == 2 ||
1534	      stretch_amount == 5 || stretch_amount == 3 ||
1535	      stretch_amount == 4)) {
1536		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1537				PHM_PlatformCaps_ClockStretcher);
1538		PP_ASSERT_WITH_CODE(false,
1539				"Stretch Amount in PPTable not supported\n",
1540				return -EINVAL);
1541	}
1542
1543	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1544	value &= 0xFFFFFFFE;
1545	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1546
1547	return 0;
1548}
1549
1550static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
1551{
1552	uint32_t efuse;
1553
1554	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1555			ixSMU_EFUSE_0 + (49 * 4));
1556	efuse &= 0x00000001;
1557
1558	if (efuse)
1559		return true;
1560
1561	return false;
1562}
1563
1564static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
1565{
1566	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1567	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1568
1569	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1570	int result = 0;
1571	struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
1572	AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
1573	AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
1574	uint32_t tmp, i;
1575
1576	struct phm_ppt_v1_information *table_info =
1577			(struct phm_ppt_v1_information *)hwmgr->pptable;
1578	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1579			table_info->vdd_dep_on_sclk;
1580
1581	if (!hwmgr->avfs_supported)
1582		return 0;
1583
1584	result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
1585
1586	if (0 == result) {
1587		table->BTCGB_VDROOP_TABLE[0].a0 =
1588				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
1589		table->BTCGB_VDROOP_TABLE[0].a1 =
1590				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
1591		table->BTCGB_VDROOP_TABLE[0].a2 =
1592				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
1593		table->BTCGB_VDROOP_TABLE[1].a0 =
1594				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
1595		table->BTCGB_VDROOP_TABLE[1].a1 =
1596				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
1597		table->BTCGB_VDROOP_TABLE[1].a2 =
1598				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
1599		table->AVFSGB_FUSE_TABLE[0].m1 =
1600				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
1601		table->AVFSGB_FUSE_TABLE[0].m2 =
1602				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
1603		table->AVFSGB_FUSE_TABLE[0].b =
1604				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
1605		table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
1606		table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
1607		table->AVFSGB_FUSE_TABLE[1].m1 =
1608				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1609		table->AVFSGB_FUSE_TABLE[1].m2 =
1610				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1611		table->AVFSGB_FUSE_TABLE[1].b =
1612				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1613		table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
1614		table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
1615		table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
1616		AVFS_meanNsigma.Aconstant[0] =
1617				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
1618		AVFS_meanNsigma.Aconstant[1] =
1619				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
1620		AVFS_meanNsigma.Aconstant[2] =
1621				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
1622		AVFS_meanNsigma.DC_tol_sigma =
1623				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
1624		AVFS_meanNsigma.Platform_mean =
1625				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
1626		AVFS_meanNsigma.PSM_Age_CompFactor =
1627				PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
1628		AVFS_meanNsigma.Platform_sigma =
1629				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
1630
1631		for (i = 0; i < sclk_table->count; i++) {
1632			AVFS_meanNsigma.Static_Voltage_Offset[i] =
1633					(uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
1634			AVFS_SclkOffset.Sclk_Offset[i] =
1635					PP_HOST_TO_SMC_US((uint16_t)
1636							(sclk_table->entries[i].sclk_offset) / 100);
1637		}
1638
1639		result = smu7_read_smc_sram_dword(hwmgr,
1640				SMU7_FIRMWARE_HEADER_LOCATION +
1641				offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
1642				&tmp, SMC_RAM_END);
1643		smu7_copy_bytes_to_smc(hwmgr,
1644					tmp,
1645					(uint8_t *)&AVFS_meanNsigma,
1646					sizeof(AVFS_meanNsigma_t),
1647					SMC_RAM_END);
1648
1649		result = smu7_read_smc_sram_dword(hwmgr,
1650				SMU7_FIRMWARE_HEADER_LOCATION +
1651				offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
1652				&tmp, SMC_RAM_END);
1653		smu7_copy_bytes_to_smc(hwmgr,
1654					tmp,
1655					(uint8_t *)&AVFS_SclkOffset,
1656					sizeof(AVFS_Sclk_Offset_t),
1657					SMC_RAM_END);
1658
1659		data->avfs_vdroop_override_setting =
1660				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
1661				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
1662				(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
1663				(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
1664		data->apply_avfs_cks_off_voltage =
1665				(avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
1666	}
1667	return result;
1668}
1669
1670static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
1671		struct SMU75_Discrete_DpmTable *table)
1672{
1673	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1674	struct vegam_smumgr *smu_data =
1675			(struct vegam_smumgr *)(hwmgr->smu_backend);
1676	uint16_t config;
1677
1678	config = VR_MERGED_WITH_VDDC;
1679	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1680
1681	/* Set Vddc Voltage Controller */
1682	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1683		config = VR_SVI2_PLANE_1;
1684		table->VRConfig |= config;
1685	} else {
1686		PP_ASSERT_WITH_CODE(false,
1687				"VDDC should be on SVI2 control in merged mode!",
1688				);
1689	}
1690	/* Set Vddci Voltage Controller */
1691	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1692		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1693		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1694	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1695		config = VR_SMIO_PATTERN_1;
1696		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1697	} else {
1698		config = VR_STATIC_VOLTAGE;
1699		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1700	}
1701	/* Set Mvdd Voltage Controller */
1702	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1703		if (config != VR_SVI2_PLANE_2) {
1704			config = VR_SVI2_PLANE_2;
1705			table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1706			cgs_write_ind_register(hwmgr->device,
1707					CGS_IND_REG__SMC,
1708					smu_data->smu7_data.soft_regs_start +
1709					offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1710					0x1);
1711		} else {
1712			PP_ASSERT_WITH_CODE(false,
1713					"SVI2 Plane 2 is already taken, set MVDD as Static",);
1714			config = VR_STATIC_VOLTAGE;
1715			table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1716		}
1717	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1718		config = VR_SMIO_PATTERN_2;
1719		table->VRConfig = (config << VRCONF_MVDD_SHIFT);
1720		cgs_write_ind_register(hwmgr->device,
1721				CGS_IND_REG__SMC,
1722				smu_data->smu7_data.soft_regs_start +
1723				offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
1724				0x1);
1725	} else {
1726		config = VR_STATIC_VOLTAGE;
1727		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1728	}
1729
1730	return 0;
1731}
1732
1733static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1734{
1735	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1736	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1737
1738	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
1739	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
1740	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1741	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1742
1743	return 0;
1744}
1745
1746static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1747{
1748	uint16_t tdc_limit;
1749	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1750	struct phm_ppt_v1_information *table_info =
1751			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1752	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1753
1754	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
1755	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1756			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1757	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1758			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
1759	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
1760
1761	return 0;
1762}
1763
1764static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1765{
1766	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1767	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
1768	uint32_t temp;
1769
1770	if (smu7_read_smc_sram_dword(hwmgr,
1771			fuse_table_offset +
1772			offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
1773			(uint32_t *)&temp, SMC_RAM_END))
1774		PP_ASSERT_WITH_CODE(false,
1775				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
1776				return -EINVAL);
1777	else {
1778		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
1779		smu_data->power_tune_table.LPMLTemperatureMin =
1780				(uint8_t)((temp >> 16) & 0xff);
1781		smu_data->power_tune_table.LPMLTemperatureMax =
1782				(uint8_t)((temp >> 8) & 0xff);
1783		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
1784	}
1785	return 0;
1786}
1787
1788static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1789{
1790	int i;
1791	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1792
1793	/* Currently not used. Set all to zero. */
1794	for (i = 0; i < 16; i++)
1795		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1796
1797	return 0;
1798}
1799
1800static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1801{
1802	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1803
1804/* TO DO move to hwmgr */
1805	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
1806		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
1807		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
1808			hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
1809
1810	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
1811				hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
1812	return 0;
1813}
1814
1815static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1816{
1817	int i;
1818	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1819
1820	/* Currently not used. Set all to zero. */
1821	for (i = 0; i < 16; i++)
1822		smu_data->power_tune_table.GnbLPML[i] = 0;
1823
1824	return 0;
1825}
1826
1827static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1828{
1829	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1830	struct phm_ppt_v1_information *table_info =
1831			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1832	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1833	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1834	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1835
1836	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1837	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1838
1839	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1840			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1841	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1842			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1843
1844	return 0;
1845}
1846
1847static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1848{
1849	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1850	uint32_t pm_fuse_table_offset;
1851
1852	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1853			PHM_PlatformCaps_PowerContainment)) {
1854		if (smu7_read_smc_sram_dword(hwmgr,
1855				SMU7_FIRMWARE_HEADER_LOCATION +
1856				offsetof(SMU75_Firmware_Header, PmFuseTable),
1857				&pm_fuse_table_offset, SMC_RAM_END))
1858			PP_ASSERT_WITH_CODE(false,
1859					"Attempt to get pm_fuse_table_offset Failed!",
1860					return -EINVAL);
1861
1862		if (vegam_populate_svi_load_line(hwmgr))
1863			PP_ASSERT_WITH_CODE(false,
1864					"Attempt to populate SviLoadLine Failed!",
1865					return -EINVAL);
1866
1867		if (vegam_populate_tdc_limit(hwmgr))
1868			PP_ASSERT_WITH_CODE(false,
1869					"Attempt to populate TDCLimit Failed!", return -EINVAL);
1870
1871		if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
1872			PP_ASSERT_WITH_CODE(false,
1873					"Attempt to populate TdcWaterfallCtl, "
1874					"LPMLTemperature Min and Max Failed!",
1875					return -EINVAL);
1876
1877		if (0 != vegam_populate_temperature_scaler(hwmgr))
1878			PP_ASSERT_WITH_CODE(false,
1879					"Attempt to populate LPMLTemperatureScaler Failed!",
1880					return -EINVAL);
1881
1882		if (vegam_populate_fuzzy_fan(hwmgr))
1883			PP_ASSERT_WITH_CODE(false,
1884					"Attempt to populate Fuzzy Fan Control parameters Failed!",
1885					return -EINVAL);
1886
1887		if (vegam_populate_gnb_lpml(hwmgr))
1888			PP_ASSERT_WITH_CODE(false,
1889					"Attempt to populate GnbLPML Failed!",
1890					return -EINVAL);
1891
1892		if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
1893			PP_ASSERT_WITH_CODE(false,
1894					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
1895					"Sidd Failed!", return -EINVAL);
1896
1897		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
1898				(uint8_t *)&smu_data->power_tune_table,
1899				(sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
1900				SMC_RAM_END))
1901			PP_ASSERT_WITH_CODE(false,
1902					"Attempt to download PmFuseTable Failed!",
1903					return -EINVAL);
1904	}
1905	return 0;
1906}
1907
1908static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
1909{
1910	struct amdgpu_device *adev = hwmgr->adev;
1911
1912	smum_send_msg_to_smc_with_parameter(hwmgr,
1913					    PPSMC_MSG_EnableModeSwitchRLCNotification,
1914					    adev->gfx.cu_info.number);
1915
1916	return 0;
1917}
1918
1919static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
1920{
1921	int result;
1922	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
1923	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
1924
1925	struct phm_ppt_v1_information *table_info =
1926			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1927	struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1928	uint8_t i;
1929	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1930	struct phm_ppt_v1_gpio_table *gpio_table =
1931			(struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
1932	pp_atomctrl_clock_dividers_vi dividers;
1933
1934	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1935			PHM_PlatformCaps_AutomaticDCTransition);
1936
1937	vegam_initialize_power_tune_defaults(hwmgr);
1938
1939	if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
1940		vegam_populate_smc_voltage_tables(hwmgr, table);
1941
1942	table->SystemFlags = 0;
1943	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1944			PHM_PlatformCaps_AutomaticDCTransition))
1945		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1946
1947	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1948			PHM_PlatformCaps_StepVddc))
1949		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1950
1951	if (hw_data->is_memory_gddr5)
1952		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1953
1954	if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
1955		result = vegam_populate_ulv_state(hwmgr, table);
1956		PP_ASSERT_WITH_CODE(!result,
1957				"Failed to initialize ULV state!", return result);
1958		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1959				ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
1960	}
1961
1962	result = vegam_populate_smc_link_level(hwmgr, table);
1963	PP_ASSERT_WITH_CODE(!result,
1964			"Failed to initialize Link Level!", return result);
1965
1966	result = vegam_populate_all_graphic_levels(hwmgr);
1967	PP_ASSERT_WITH_CODE(!result,
1968			"Failed to initialize Graphics Level!", return result);
1969
1970	result = vegam_populate_all_memory_levels(hwmgr);
1971	PP_ASSERT_WITH_CODE(!result,
1972			"Failed to initialize Memory Level!", return result);
1973
1974	result = vegam_populate_smc_acpi_level(hwmgr, table);
1975	PP_ASSERT_WITH_CODE(!result,
1976			"Failed to initialize ACPI Level!", return result);
1977
1978	result = vegam_populate_smc_vce_level(hwmgr, table);
1979	PP_ASSERT_WITH_CODE(!result,
1980			"Failed to initialize VCE Level!", return result);
1981
1982	/* Since only the initial state is completely set up at this point
1983	 * (the other states are just copies of the boot state) we only
1984	 * need to populate the  ARB settings for the initial state.
1985	 */
1986	result = vegam_program_memory_timing_parameters(hwmgr);
1987	PP_ASSERT_WITH_CODE(!result,
1988			"Failed to Write ARB settings for the initial state.", return result);
1989
1990	result = vegam_populate_smc_uvd_level(hwmgr, table);
1991	PP_ASSERT_WITH_CODE(!result,
1992			"Failed to initialize UVD Level!", return result);
1993
1994	result = vegam_populate_smc_boot_level(hwmgr, table);
1995	PP_ASSERT_WITH_CODE(!result,
1996			"Failed to initialize Boot Level!", return result);
1997
1998	result = vegam_populate_smc_initial_state(hwmgr);
1999	PP_ASSERT_WITH_CODE(!result,
2000			"Failed to initialize Boot State!", return result);
2001
2002	result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
2003	PP_ASSERT_WITH_CODE(!result,
2004			"Failed to populate BAPM Parameters!", return result);
2005
2006	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2007			PHM_PlatformCaps_ClockStretcher)) {
2008		result = vegam_populate_clock_stretcher_data_table(hwmgr);
2009		PP_ASSERT_WITH_CODE(!result,
2010				"Failed to populate Clock Stretcher Data Table!",
2011				return result);
2012	}
2013
2014	result = vegam_populate_avfs_parameters(hwmgr);
2015	PP_ASSERT_WITH_CODE(!result,
2016			"Failed to populate AVFS Parameters!", return result;);
2017
2018	table->CurrSclkPllRange = 0xff;
2019	table->GraphicsVoltageChangeEnable  = 1;
2020	table->GraphicsThermThrottleEnable  = 1;
2021	table->GraphicsInterval = 1;
2022	table->VoltageInterval  = 1;
2023	table->ThermalInterval  = 1;
2024	table->TemperatureLimitHigh =
2025			table_info->cac_dtp_table->usTargetOperatingTemp *
2026			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2027	table->TemperatureLimitLow  =
2028			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2029			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2030	table->MemoryVoltageChangeEnable = 1;
2031	table->MemoryInterval = 1;
2032	table->VoltageResponseTime = 0;
2033	table->PhaseResponseTime = 0;
2034	table->MemoryThermThrottleEnable = 1;
2035
2036	PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
2037			"There must be 1 or more PCIE levels defined in PPTable.",
2038			return -EINVAL);
2039	table->PCIeBootLinkLevel =
2040			hw_data->dpm_table.pcie_speed_table.count;
2041	table->PCIeGenInterval = 1;
2042	table->VRConfig = 0;
2043
2044	result = vegam_populate_vr_config(hwmgr, table);
2045	PP_ASSERT_WITH_CODE(!result,
2046			"Failed to populate VRConfig setting!", return result);
2047
2048	table->ThermGpio = 17;
2049	table->SclkStepSize = 0x4000;
2050
2051	if (atomctrl_get_pp_assign_pin(hwmgr,
2052			VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2053		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2054		if (gpio_table)
2055			table->VRHotLevel =
2056					table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
2057	} else {
2058		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2059		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2060				PHM_PlatformCaps_RegulatorHot);
2061	}
2062
2063	if (atomctrl_get_pp_assign_pin(hwmgr,
2064			PP_AC_DC_SWITCH_GPIO_PINID,	&gpio_pin)) {
2065		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2067				PHM_PlatformCaps_AutomaticDCTransition) &&
2068				!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme))
2069			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2070					PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
2071	} else {
2072		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2073		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2074				PHM_PlatformCaps_AutomaticDCTransition);
2075	}
2076
2077	/* Thermal Output GPIO */
2078	if (atomctrl_get_pp_assign_pin(hwmgr,
2079			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
2080		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2081
2082		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2083		 * since VBIOS will program this register to set 'inactive state',
2084		 * driver can then determine 'active state' from this and
2085		 * program SMU with correct polarity
2086		 */
2087		table->ThermOutPolarity =
2088				(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2089				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2090		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2091
2092		/* if required, combine VRHot/PCC with thermal out GPIO */
2093		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2094				PHM_PlatformCaps_RegulatorHot) &&
2095			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2096				PHM_PlatformCaps_CombinePCCWithThermalSignal))
2097			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2098	} else {
2099		table->ThermOutGpio = 17;
2100		table->ThermOutPolarity = 1;
2101		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2102	}
2103
2104	/* Populate BIF_SCLK levels into SMC DPM table */
2105	for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
2106		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2107				smu_data->bif_sclk_table[i], &dividers);
2108		PP_ASSERT_WITH_CODE(!result,
2109				"Can not find DFS divide id for Sclk",
2110				return result);
2111
2112		if (i == 0)
2113			table->Ulv.BifSclkDfs =
2114					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2115		else
2116			table->LinkLevel[i - 1].BifSclkDfs =
2117					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
2118	}
2119
2120	for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
2121		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2122
2123	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2124	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2125	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2126	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2127	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2128	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2129	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2130	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2131	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2132	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2133
2134	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2135	result = smu7_copy_bytes_to_smc(hwmgr,
2136			smu_data->smu7_data.dpm_table_start +
2137			offsetof(SMU75_Discrete_DpmTable, SystemFlags),
2138			(uint8_t *)&(table->SystemFlags),
2139			sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
2140			SMC_RAM_END);
2141	PP_ASSERT_WITH_CODE(!result,
2142			"Failed to upload dpm data to SMC memory!", return result);
2143
2144	result = vegam_populate_pm_fuses(hwmgr);
2145	PP_ASSERT_WITH_CODE(!result,
2146			"Failed to  populate PM fuses to SMC memory!", return result);
2147
2148	result = vegam_enable_reconfig_cus(hwmgr);
2149	PP_ASSERT_WITH_CODE(!result,
2150			"Failed to enable reconfigurable CUs!", return result);
2151
2152	return 0;
2153}
2154
2155static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
2156{
2157	switch (type) {
2158	case SMU_SoftRegisters:
2159		switch (member) {
2160		case HandshakeDisables:
2161			return offsetof(SMU75_SoftRegisters, HandshakeDisables);
2162		case VoltageChangeTimeout:
2163			return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
2164		case AverageGraphicsActivity:
2165			return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
2166		case AverageMemoryActivity:
2167			return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
2168		case PreVBlankGap:
2169			return offsetof(SMU75_SoftRegisters, PreVBlankGap);
2170		case VBlankTimeout:
2171			return offsetof(SMU75_SoftRegisters, VBlankTimeout);
2172		case UcodeLoadStatus:
2173			return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
2174		case DRAM_LOG_ADDR_H:
2175			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
2176		case DRAM_LOG_ADDR_L:
2177			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
2178		case DRAM_LOG_PHY_ADDR_H:
2179			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2180		case DRAM_LOG_PHY_ADDR_L:
2181			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2182		case DRAM_LOG_BUFF_SIZE:
2183			return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2184		}
2185		break;
2186	case SMU_Discrete_DpmTable:
2187		switch (member) {
2188		case UvdBootLevel:
2189			return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
2190		case VceBootLevel:
2191			return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
2192		case LowSclkInterruptThreshold:
2193			return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
2194		}
2195		break;
2196	}
2197	pr_warn("can't get the offset of type %x member %x\n", type, member);
2198	return 0;
2199}
2200
2201static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2202{
2203	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204
2205	if (data->need_update_smu7_dpm_table &
2206		(DPMTABLE_OD_UPDATE_SCLK +
2207		DPMTABLE_UPDATE_SCLK +
2208		DPMTABLE_UPDATE_MCLK))
2209		return vegam_program_memory_timing_parameters(hwmgr);
2210
2211	return 0;
2212}
2213
2214static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2215{
2216	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2217	struct vegam_smumgr *smu_data =
2218			(struct vegam_smumgr *)(hwmgr->smu_backend);
2219	int result = 0;
2220	uint32_t low_sclk_interrupt_threshold = 0;
2221
2222	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2223			PHM_PlatformCaps_SclkThrottleLowNotification)
2224	    && (data->low_sclk_interrupt_threshold != 0)) {
2225		low_sclk_interrupt_threshold =
2226				data->low_sclk_interrupt_threshold;
2227
2228		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2229
2230		result = smu7_copy_bytes_to_smc(
2231				hwmgr,
2232				smu_data->smu7_data.dpm_table_start +
2233				offsetof(SMU75_Discrete_DpmTable,
2234					LowSclkInterruptThreshold),
2235				(uint8_t *)&low_sclk_interrupt_threshold,
2236				sizeof(uint32_t),
2237				SMC_RAM_END);
2238	}
2239	PP_ASSERT_WITH_CODE((result == 0),
2240			"Failed to update SCLK threshold!", return result);
2241
2242	result = vegam_program_mem_timing_parameters(hwmgr);
2243	PP_ASSERT_WITH_CODE((result == 0),
2244			"Failed to program memory timing parameters!",
2245			);
2246
2247	return result;
2248}
2249
2250int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2251{
2252	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253	int ret;
2254
2255	if (!hwmgr->avfs_supported)
2256		return 0;
2257
2258	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs);
2259	if (!ret) {
2260		if (data->apply_avfs_cks_off_voltage)
2261			ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage);
2262	}
2263
2264	return ret;
2265}
2266
2267static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2268{
2269	PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
2270			"VBIOS fan info is not correct!",
2271			);
2272	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2273			PHM_PlatformCaps_MicrocodeFanControl);
2274	return 0;
2275}
2276
2277const struct pp_smumgr_func vegam_smu_funcs = {
2278	.name = "vegam_smu",
2279	.smu_init = vegam_smu_init,
2280	.smu_fini = smu7_smu_fini,
2281	.start_smu = vegam_start_smu,
2282	.check_fw_load_finish = smu7_check_fw_load_finish,
2283	.request_smu_load_fw = smu7_reload_firmware,
2284	.request_smu_load_specific_fw = NULL,
2285	.send_msg_to_smc = smu7_send_msg_to_smc,
2286	.send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
2287	.process_firmware_header = vegam_process_firmware_header,
2288	.is_dpm_running = vegam_is_dpm_running,
2289	.get_mac_definition = vegam_get_mac_definition,
2290	.update_smc_table = vegam_update_smc_table,
2291	.init_smc_table = vegam_init_smc_table,
2292	.get_offsetof = vegam_get_offsetof,
2293	.populate_all_graphic_levels = vegam_populate_all_graphic_levels,
2294	.populate_all_memory_levels = vegam_populate_all_memory_levels,
2295	.update_sclk_threshold = vegam_update_sclk_threshold,
2296	.is_hw_avfs_present = vegam_is_hw_avfs_present,
2297	.thermal_avfs_enable = vegam_thermal_avfs_enable,
2298	.thermal_setup_fan_table = vegam_thermal_setup_fan_table,
2299};
2300