1/*	$NetBSD: amdgpu_ci_smumgr.c,v 1.4 2021/12/19 10:59:37 riastradh Exp $	*/
2
3/*
4 * Copyright 2017 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25#include <sys/cdefs.h>
26__KERNEL_RCSID(0, "$NetBSD: amdgpu_ci_smumgr.c,v 1.4 2021/12/19 10:59:37 riastradh Exp $");
27
28#include <linux/module.h>
29#include <linux/slab.h>
30#include <linux/fb.h>
31#include "linux/delay.h"
32#include <linux/types.h>
33#include <linux/pci.h>
34
35#include "smumgr.h"
36#include "pp_debug.h"
37#include "ci_smumgr.h"
38#include "ppsmc.h"
39#include "smu7_hwmgr.h"
40#include "hardwaremanager.h"
41#include "ppatomctrl.h"
42#include "cgs_common.h"
43#include "atombios.h"
44#include "pppcielanes.h"
45
46#include "smu/smu_7_0_1_d.h"
47#include "smu/smu_7_0_1_sh_mask.h"
48
49#include "dce/dce_8_0_d.h"
50#include "dce/dce_8_0_sh_mask.h"
51
52#include "bif/bif_4_1_d.h"
53#include "bif/bif_4_1_sh_mask.h"
54
55#include "gca/gfx_7_2_d.h"
56#include "gca/gfx_7_2_sh_mask.h"
57
58#include "gmc/gmc_7_1_d.h"
59#include "gmc/gmc_7_1_sh_mask.h"
60
61#include "processpptables.h"
62
63#define MC_CG_ARB_FREQ_F0           0x0a
64#define MC_CG_ARB_FREQ_F1           0x0b
65#define MC_CG_ARB_FREQ_F2           0x0c
66#define MC_CG_ARB_FREQ_F3           0x0d
67
68#define SMC_RAM_END 0x40000
69
70#define CISLAND_MINIMUM_ENGINE_CLOCK 800
71#define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
72
73static const struct ci_pt_defaults defaults_hawaii_xt = {
74	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
75	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
76	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
77};
78
79static const struct ci_pt_defaults defaults_hawaii_pro = {
80	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
81	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
82	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
83};
84
85static const struct ci_pt_defaults defaults_bonaire_xt = {
86	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
87	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
88	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
89};
90
91
92static const struct ci_pt_defaults defaults_saturn_xt = {
93	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
94	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
95	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
96};
97
98
99static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
100					uint32_t smc_addr, uint32_t limit)
101{
102	if ((0 != (3 & smc_addr))
103		|| ((smc_addr + 3) >= limit)) {
104		pr_err("smc_addr invalid \n");
105		return -EINVAL;
106	}
107
108	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
109	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
110	return 0;
111}
112
113static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
114				const uint8_t *src, uint32_t byte_count, uint32_t limit)
115{
116	int result;
117	uint32_t data = 0;
118	uint32_t original_data;
119	uint32_t addr = 0;
120	uint32_t extra_shift;
121
122	if ((3 & smc_start_address)
123		|| ((smc_start_address + byte_count) >= limit)) {
124		pr_err("smc_start_address invalid \n");
125		return -EINVAL;
126	}
127
128	addr = smc_start_address;
129
130	while (byte_count >= 4) {
131	/* Bytes are written into the SMC address space with the MSB first. */
132		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
133
134		result = ci_set_smc_sram_address(hwmgr, addr, limit);
135
136		if (0 != result)
137			return result;
138
139		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
140
141		src += 4;
142		byte_count -= 4;
143		addr += 4;
144	}
145
146	if (0 != byte_count) {
147
148		data = 0;
149
150		result = ci_set_smc_sram_address(hwmgr, addr, limit);
151
152		if (0 != result)
153			return result;
154
155
156		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
157
158		extra_shift = 8 * (4 - byte_count);
159
160		while (byte_count > 0) {
161			/* Bytes are written into the SMC addres space with the MSB first. */
162			data = (0x100 * data) + *src++;
163			byte_count--;
164		}
165
166		data <<= extra_shift;
167
168		data |= (original_data & ~((~0UL) << extra_shift));
169
170		result = ci_set_smc_sram_address(hwmgr, addr, limit);
171
172		if (0 != result)
173			return result;
174
175		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
176	}
177
178	return 0;
179}
180
181
182static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
183{
184	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
185
186	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
187
188	return 0;
189}
190
191bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
192{
193	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
194			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
195	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
196			CGS_IND_REG__SMC, ixSMC_PC_C)));
197}
198
199static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
200				uint32_t *value, uint32_t limit)
201{
202	int result;
203
204	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
205
206	if (result)
207		return result;
208
209	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
210	return 0;
211}
212
213static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
214{
215	int ret;
216
217	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
218	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
219
220	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
221
222	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
223
224	if (ret != 1)
225		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
226
227	return 0;
228}
229
230static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
231					uint16_t msg, uint32_t parameter)
232{
233	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
234	return ci_send_msg_to_smc(hwmgr, msg);
235}
236
237static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
238{
239	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
240	struct amdgpu_device *adev = hwmgr->adev;
241	uint32_t dev_id;
242
243	dev_id = adev->pdev->device;
244
245	switch (dev_id) {
246	case 0x67BA:
247	case 0x66B1:
248		smu_data->power_tune_defaults = &defaults_hawaii_pro;
249		break;
250	case 0x67B8:
251	case 0x66B0:
252		smu_data->power_tune_defaults = &defaults_hawaii_xt;
253		break;
254	case 0x6640:
255	case 0x6641:
256	case 0x6646:
257	case 0x6647:
258		smu_data->power_tune_defaults = &defaults_saturn_xt;
259		break;
260	case 0x6649:
261	case 0x6650:
262	case 0x6651:
263	case 0x6658:
264	case 0x665C:
265	case 0x665D:
266	case 0x67A0:
267	case 0x67A1:
268	case 0x67A2:
269	case 0x67A8:
270	case 0x67A9:
271	case 0x67AA:
272	case 0x67B9:
273	case 0x67BE:
274	default:
275		smu_data->power_tune_defaults = &defaults_bonaire_xt;
276		break;
277	}
278}
279
280static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
281	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
282	uint32_t clock, uint32_t *vol)
283{
284	uint32_t i = 0;
285
286	if (allowed_clock_voltage_table->count == 0)
287		return -EINVAL;
288
289	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
290		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
291			*vol = allowed_clock_voltage_table->entries[i].v;
292			return 0;
293		}
294	}
295
296	*vol = allowed_clock_voltage_table->entries[i - 1].v;
297	return 0;
298}
299
300static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
301		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
302{
303	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
304	struct pp_atomctrl_clock_dividers_vi dividers;
305	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
306	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
307	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
308	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
309	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
310	uint32_t ref_clock;
311	uint32_t ref_divider;
312	uint32_t fbdiv;
313	int result;
314
315	/* get the engine clock dividers for this clock value */
316	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
317
318	PP_ASSERT_WITH_CODE(result == 0,
319			"Error retrieving Engine Clock dividers from VBIOS.",
320			return result);
321
322	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
323	ref_clock = atomctrl_get_reference_clock(hwmgr);
324	ref_divider = 1 + dividers.uc_pll_ref_div;
325
326	/* low 14 bits is fraction and high 12 bits is divider */
327	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
328
329	/* SPLL_FUNC_CNTL setup */
330	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
331			SPLL_REF_DIV, dividers.uc_pll_ref_div);
332	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
333			SPLL_PDIV_A,  dividers.uc_pll_post_div);
334
335	/* SPLL_FUNC_CNTL_3 setup*/
336	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
337			SPLL_FB_DIV, fbdiv);
338
339	/* set to use fractional accumulation*/
340	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
341			SPLL_DITHEN, 1);
342
343	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
344				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
345		struct pp_atomctrl_internal_ss_info ss_info;
346		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
347
348		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
349				vco_freq, &ss_info)) {
350			uint32_t clk_s = ref_clock * 5 /
351					(ref_divider * ss_info.speed_spectrum_rate);
352			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
353					fbdiv / (clk_s * 10000);
354
355			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
356					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
357			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
358					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
359			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
360					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
361		}
362	}
363
364	sclk->SclkFrequency        = clock;
365	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
366	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
367	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
368	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
369	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
370
371	return 0;
372}
373
374static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
375				const struct phm_phase_shedding_limits_table *pl,
376					uint32_t sclk, uint32_t *p_shed)
377{
378	unsigned int i;
379
380	/* use the minimum phase shedding */
381	*p_shed = 1;
382
383	for (i = 0; i < pl->count; i++) {
384		if (sclk < pl->entries[i].Sclk) {
385			*p_shed = i;
386			break;
387		}
388	}
389}
390
391static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
392			uint32_t clock_insr)
393{
394	uint8_t i;
395	uint32_t temp;
396	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
397
398	if (clock < min) {
399		pr_info("Engine clock can't satisfy stutter requirement!\n");
400		return 0;
401	}
402	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
403		temp = clock >> i;
404
405		if (temp >= min || i == 0)
406			break;
407	}
408	return i;
409}
410
411static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
412		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
413{
414	int result;
415	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
416
417
418	result = ci_calculate_sclk_params(hwmgr, clock, level);
419
420	/* populate graphics levels */
421	result = ci_get_dependency_volt_by_clk(hwmgr,
422			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
423			(uint32_t *)(&level->MinVddc));
424	if (result) {
425		pr_err("vdd_dep_on_sclk table is NULL\n");
426		return result;
427	}
428
429	level->SclkFrequency = clock;
430	level->MinVddcPhases = 1;
431
432	if (data->vddc_phase_shed_control)
433		ci_populate_phase_value_based_on_sclk(hwmgr,
434				hwmgr->dyn_state.vddc_phase_shed_limits_table,
435				clock,
436				&level->MinVddcPhases);
437
438	level->ActivityLevel = data->current_profile_setting.sclk_activity;
439	level->CcPwrDynRm = 0;
440	level->CcPwrDynRm1 = 0;
441	level->EnabledForActivity = 0;
442	/* this level can be used for throttling.*/
443	level->EnabledForThrottle = 1;
444	level->UpH = data->current_profile_setting.sclk_up_hyst;
445	level->DownH = data->current_profile_setting.sclk_down_hyst;
446	level->VoltageDownH = 0;
447	level->PowerThrottle = 0;
448
449
450	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
451			PHM_PlatformCaps_SclkDeepSleep))
452		level->DeepSleepDivId =
453				ci_get_sleep_divider_id_from_clock(clock,
454						CISLAND_MINIMUM_ENGINE_CLOCK);
455
456	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
457	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
458
459	if (0 == result) {
460		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
461		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
462		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
463		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
464		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
465		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
466		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
467		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
468		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
469		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
470	}
471
472	return result;
473}
474
475static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
476{
477	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
479	struct smu7_dpm_table *dpm_table = &data->dpm_table;
480	int result = 0;
481	uint32_t array = smu_data->dpm_table_start +
482			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
483	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
484			SMU7_MAX_LEVELS_GRAPHICS;
485	struct SMU7_Discrete_GraphicsLevel *levels =
486			smu_data->smc_state_table.GraphicsLevel;
487	uint32_t i;
488
489	for (i = 0; i < dpm_table->sclk_table.count; i++) {
490		result = ci_populate_single_graphic_level(hwmgr,
491				dpm_table->sclk_table.dpm_levels[i].value,
492				&levels[i]);
493		if (result)
494			return result;
495		if (i > 1)
496			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
497		if (i == (dpm_table->sclk_table.count - 1))
498			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
499				PPSMC_DISPLAY_WATERMARK_HIGH;
500	}
501
502	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
503
504	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
505	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
506		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
507
508	result = ci_copy_bytes_to_smc(hwmgr, array,
509				   (u8 *)levels, array_size,
510				   SMC_RAM_END);
511
512	return result;
513
514}
515
516static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
517{
518	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
519	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
520
521	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
522	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
523	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
524	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
525
526	return 0;
527}
528
529static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
530{
531	uint16_t tdc_limit;
532	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
533	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
534
535	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
536	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
537			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
538	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
539			defaults->tdc_vddc_throttle_release_limit_perc;
540	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
541
542	return 0;
543}
544
545static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
546{
547	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
548	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
549	uint32_t temp;
550
551	if (ci_read_smc_sram_dword(hwmgr,
552			fuse_table_offset +
553			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
554			(uint32_t *)&temp, SMC_RAM_END))
555		PP_ASSERT_WITH_CODE(false,
556				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
557				return -EINVAL);
558	else
559		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
560
561	return 0;
562}
563
564static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
565{
566	uint16_t tmp;
567	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
568
569	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
570		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
571		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
572	else
573		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
574
575	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
576
577	return 0;
578}
579
580static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
581{
582	int i;
583	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
584	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
585	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
586	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
587
588	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
589			    "The CAC Leakage table does not exist!", return -EINVAL);
590	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
591			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
592	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
593			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
594
595	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
596		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
597			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
598			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
599			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
600		} else {
601			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
602			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
603		}
604	}
605
606	return 0;
607}
608
609static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
610{
611	int i;
612	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
613	uint8_t *vid = smu_data->power_tune_table.VddCVid;
614	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
615
616	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
617		"There should never be more than 8 entries for VddcVid!!!",
618		return -EINVAL);
619
620	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
621		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
622
623	return 0;
624}
625
626static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
627{
628	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
629	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
630	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
631	int i, min, max;
632
633	min = max = hi_vid[0];
634	for (i = 0; i < 8; i++) {
635		if (0 != hi_vid[i]) {
636			if (min > hi_vid[i])
637				min = hi_vid[i];
638			if (max < hi_vid[i])
639				max = hi_vid[i];
640		}
641
642		if (0 != lo_vid[i]) {
643			if (min > lo_vid[i])
644				min = lo_vid[i];
645			if (max < lo_vid[i])
646				max = lo_vid[i];
647		}
648	}
649
650	if ((min == 0) || (max == 0))
651		return -EINVAL;
652	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
653	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
654
655	return 0;
656}
657
658static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
659{
660	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
661	uint16_t HiSidd;
662	uint16_t LoSidd;
663	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
664
665	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
666	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
667
668	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
669			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
670	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
671			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
672
673	return 0;
674}
675
676static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
677{
678	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
679	uint32_t pm_fuse_table_offset;
680	int ret = 0;
681
682	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
683			PHM_PlatformCaps_PowerContainment)) {
684		if (ci_read_smc_sram_dword(hwmgr,
685				SMU7_FIRMWARE_HEADER_LOCATION +
686				offsetof(SMU7_Firmware_Header, PmFuseTable),
687				&pm_fuse_table_offset, SMC_RAM_END)) {
688			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
689			return -EINVAL;
690		}
691
692		/* DW0 - DW3 */
693		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
694		/* DW4 - DW5 */
695		ret |= ci_populate_vddc_vid(hwmgr);
696		/* DW6 */
697		ret |= ci_populate_svi_load_line(hwmgr);
698		/* DW7 */
699		ret |= ci_populate_tdc_limit(hwmgr);
700		/* DW8 */
701		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
702
703		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
704
705		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
706
707		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
708		if (ret)
709			return ret;
710
711		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
712				(uint8_t *)&smu_data->power_tune_table,
713				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
714	}
715	return ret;
716}
717
718static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
719{
720	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
721	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
722	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
723	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
724	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
725	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
726	const uint16_t *def1, *def2;
727	int i, j, k;
728
729	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
730	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
731
732	dpm_table->DTETjOffset = 0;
733	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
734	dpm_table->GpuTjHyst = 8;
735
736	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
737
738	if (ppm) {
739		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
740		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
741	} else {
742		dpm_table->PPM_PkgPwrLimit = 0;
743		dpm_table->PPM_TemperatureLimit = 0;
744	}
745
746	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
747	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
748
749	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
750	def1 = defaults->bapmti_r;
751	def2 = defaults->bapmti_rc;
752
753	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
754		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
755			for (k = 0; k < SMU7_DTE_SINKS; k++) {
756				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
757				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
758				def1++;
759				def2++;
760			}
761		}
762	}
763
764	return 0;
765}
766
767static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
768		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
769		uint16_t *lo)
770{
771	uint16_t v_index;
772	bool vol_found = false;
773	*hi = tab->value * VOLTAGE_SCALE;
774	*lo = tab->value * VOLTAGE_SCALE;
775
776	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
777			"The SCLK/VDDC Dependency Table does not exist.\n",
778			return -EINVAL);
779
780	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
781		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
782		return 0;
783	}
784
785	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
786		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
787			vol_found = true;
788			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
789				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
790				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
791			} else {
792				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
793				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
794				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
795			}
796			break;
797		}
798	}
799
800	if (!vol_found) {
801		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
802			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
803				vol_found = true;
804				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
805					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
806					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
807				} else {
808					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
809					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
810					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
811				}
812				break;
813			}
814		}
815
816		if (!vol_found)
817			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
818	}
819
820	return 0;
821}
822
823static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
824		pp_atomctrl_voltage_table_entry *tab,
825		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
826{
827	int result;
828
829	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
830			&smc_voltage_tab->StdVoltageHiSidd,
831			&smc_voltage_tab->StdVoltageLoSidd);
832	if (result) {
833		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
834		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
835	}
836
837	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
838	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
839	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
840
841	return 0;
842}
843
844static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
845			SMU7_Discrete_DpmTable *table)
846{
847	unsigned int count;
848	int result;
849	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
850
851	table->VddcLevelCount = data->vddc_voltage_table.count;
852	for (count = 0; count < table->VddcLevelCount; count++) {
853		result = ci_populate_smc_voltage_table(hwmgr,
854				&(data->vddc_voltage_table.entries[count]),
855				&(table->VddcLevel[count]));
856		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
857
858		/* GPIO voltage control */
859		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
860			table->VddcLevel[count].Smio = (uint8_t) count;
861			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
862			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
863		} else {
864			table->VddcLevel[count].Smio = 0;
865		}
866	}
867
868	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
869
870	return 0;
871}
872
873static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
874			SMU7_Discrete_DpmTable *table)
875{
876	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
877	uint32_t count;
878	int result;
879
880	table->VddciLevelCount = data->vddci_voltage_table.count;
881
882	for (count = 0; count < table->VddciLevelCount; count++) {
883		result = ci_populate_smc_voltage_table(hwmgr,
884				&(data->vddci_voltage_table.entries[count]),
885				&(table->VddciLevel[count]));
886		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
887		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
888			table->VddciLevel[count].Smio = (uint8_t) count;
889			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
890			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
891		} else {
892			table->VddciLevel[count].Smio = 0;
893		}
894	}
895
896	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
897
898	return 0;
899}
900
901static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
902			SMU7_Discrete_DpmTable *table)
903{
904	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
905	uint32_t count;
906	int result;
907
908	table->MvddLevelCount = data->mvdd_voltage_table.count;
909
910	for (count = 0; count < table->MvddLevelCount; count++) {
911		result = ci_populate_smc_voltage_table(hwmgr,
912				&(data->mvdd_voltage_table.entries[count]),
913				&table->MvddLevel[count]);
914		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
915		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
916			table->MvddLevel[count].Smio = (uint8_t) count;
917			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
918			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
919		} else {
920			table->MvddLevel[count].Smio = 0;
921		}
922	}
923
924	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
925
926	return 0;
927}
928
929
930static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
931	SMU7_Discrete_DpmTable *table)
932{
933	int result;
934
935	result = ci_populate_smc_vddc_table(hwmgr, table);
936	PP_ASSERT_WITH_CODE(0 == result,
937			"can not populate VDDC voltage table to SMC", return -EINVAL);
938
939	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
940	PP_ASSERT_WITH_CODE(0 == result,
941			"can not populate VDDCI voltage table to SMC", return -EINVAL);
942
943	result = ci_populate_smc_mvdd_table(hwmgr, table);
944	PP_ASSERT_WITH_CODE(0 == result,
945			"can not populate MVDD voltage table to SMC", return -EINVAL);
946
947	return 0;
948}
949
950static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
951		struct SMU7_Discrete_Ulv *state)
952{
953	uint32_t voltage_response_time, ulv_voltage;
954	int result;
955	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
956
957	state->CcPwrDynRm = 0;
958	state->CcPwrDynRm1 = 0;
959
960	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
961	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
962
963	if (ulv_voltage == 0) {
964		data->ulv_supported = false;
965		return 0;
966	}
967
968	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
969		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
970		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
971			state->VddcOffset = 0;
972		else
973			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
974			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
975	} else {
976		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
977		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
978			state->VddcOffsetVid = 0;
979		else  /* used in SVI2 Mode */
980			state->VddcOffsetVid = (uint8_t)(
981					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
982						* VOLTAGE_VID_OFFSET_SCALE2
983						/ VOLTAGE_VID_OFFSET_SCALE1);
984	}
985	state->VddcPhase = 1;
986
987	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
988	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
989	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
990
991	return 0;
992}
993
994static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
995		 SMU7_Discrete_Ulv *ulv_level)
996{
997	return ci_populate_ulv_level(hwmgr, ulv_level);
998}
999
1000static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1001{
1002	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1004	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1005	uint32_t i;
1006
1007/* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1008	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1009		table->LinkLevel[i].PcieGenSpeed  =
1010			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1011		table->LinkLevel[i].PcieLaneCount =
1012			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1013		table->LinkLevel[i].EnabledForActivity = 1;
1014		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1015		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1016	}
1017
1018	smu_data->smc_state_table.LinkLevelCount =
1019		(uint8_t)dpm_table->pcie_speed_table.count;
1020	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1021		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1022
1023	return 0;
1024}
1025
1026static int ci_calculate_mclk_params(
1027		struct pp_hwmgr *hwmgr,
1028		uint32_t memory_clock,
1029		SMU7_Discrete_MemoryLevel *mclk,
1030		bool strobe_mode,
1031		bool dllStateOn
1032		)
1033{
1034	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1035	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1036	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1037	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1038	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1039	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1040	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1041	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1042	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1043	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1044
1045	pp_atomctrl_memory_clock_param mpll_param;
1046	int result;
1047
1048	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1049				memory_clock, &mpll_param, strobe_mode);
1050	PP_ASSERT_WITH_CODE(0 == result,
1051		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1052
1053	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1054
1055	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1056							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1057	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1058							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1059	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1060							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1061
1062	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1063							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1064
1065	if (data->is_memory_gddr5) {
1066		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1067								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1068		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1069								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1070	}
1071
1072	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1073			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1074		pp_atomctrl_internal_ss_info ss_info;
1075		uint32_t freq_nom;
1076		uint32_t tmp;
1077		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1078
1079		/* for GDDR5 for all modes and DDR3 */
1080		if (1 == mpll_param.qdr)
1081			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1082		else
1083			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1084
1085		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1086		tmp = (freq_nom / reference_clock);
1087		tmp = tmp * tmp;
1088
1089		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1090			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1091			uint32_t clkv =
1092				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1093							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1094
1095			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1096			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1097		}
1098	}
1099
1100	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1102	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1103		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1104	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1105		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1106
1107
1108	mclk->MclkFrequency   = memory_clock;
1109	mclk->MpllFuncCntl    = mpll_func_cntl;
1110	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1111	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1112	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1113	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1114	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1115	mclk->DllCntl         = dll_cntl;
1116	mclk->MpllSs1         = mpll_ss1;
1117	mclk->MpllSs2         = mpll_ss2;
1118
1119	return 0;
1120}
1121
1122static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1123		bool strobe_mode)
1124{
1125	uint8_t mc_para_index;
1126
1127	if (strobe_mode) {
1128		if (memory_clock < 12500)
1129			mc_para_index = 0x00;
1130		else if (memory_clock > 47500)
1131			mc_para_index = 0x0f;
1132		else
1133			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1134	} else {
1135		if (memory_clock < 65000)
1136			mc_para_index = 0x00;
1137		else if (memory_clock > 135000)
1138			mc_para_index = 0x0f;
1139		else
1140			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1141	}
1142
1143	return mc_para_index;
1144}
1145
1146static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1147{
1148	uint8_t mc_para_index;
1149
1150	if (memory_clock < 10000)
1151		mc_para_index = 0;
1152	else if (memory_clock >= 80000)
1153		mc_para_index = 0x0f;
1154	else
1155		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1156
1157	return mc_para_index;
1158}
1159
1160static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1161					uint32_t memory_clock, uint32_t *p_shed)
1162{
1163	unsigned int i;
1164
1165	*p_shed = 1;
1166
1167	for (i = 0; i < pl->count; i++) {
1168		if (memory_clock < pl->entries[i].Mclk) {
1169			*p_shed = i;
1170			break;
1171		}
1172	}
1173
1174	return 0;
1175}
1176
1177static int ci_populate_single_memory_level(
1178		struct pp_hwmgr *hwmgr,
1179		uint32_t memory_clock,
1180		SMU7_Discrete_MemoryLevel *memory_level
1181		)
1182{
1183	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1184	int result = 0;
1185	bool dll_state_on;
1186	uint32_t mclk_edc_wr_enable_threshold = 40000;
1187	uint32_t mclk_edc_enable_threshold = 40000;
1188	uint32_t mclk_strobe_mode_threshold = 40000;
1189
1190	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1191		result = ci_get_dependency_volt_by_clk(hwmgr,
1192			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1193		PP_ASSERT_WITH_CODE((0 == result),
1194			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1195	}
1196
1197	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1198		result = ci_get_dependency_volt_by_clk(hwmgr,
1199				hwmgr->dyn_state.vddci_dependency_on_mclk,
1200				memory_clock,
1201				&memory_level->MinVddci);
1202		PP_ASSERT_WITH_CODE((0 == result),
1203			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1204	}
1205
1206	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1207		result = ci_get_dependency_volt_by_clk(hwmgr,
1208				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1209				memory_clock,
1210				&memory_level->MinMvdd);
1211		PP_ASSERT_WITH_CODE((0 == result),
1212			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1213	}
1214
1215	memory_level->MinVddcPhases = 1;
1216
1217	if (data->vddc_phase_shed_control) {
1218		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1219				memory_clock, &memory_level->MinVddcPhases);
1220	}
1221
1222	memory_level->EnabledForThrottle = 1;
1223	memory_level->EnabledForActivity = 1;
1224	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1225	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1226	memory_level->VoltageDownH = 0;
1227
1228	/* Indicates maximum activity level for this performance level.*/
1229	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1230	memory_level->StutterEnable = 0;
1231	memory_level->StrobeEnable = 0;
1232	memory_level->EdcReadEnable = 0;
1233	memory_level->EdcWriteEnable = 0;
1234	memory_level->RttEnable = 0;
1235
1236	/* default set to low watermark. Highest level will be set to high later.*/
1237	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1238
1239	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1240	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1241
1242	/* stutter mode not support on ci */
1243
1244	/* decide strobe mode*/
1245	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1246		(memory_clock <= mclk_strobe_mode_threshold);
1247
1248	/* decide EDC mode and memory clock ratio*/
1249	if (data->is_memory_gddr5) {
1250		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1251					memory_level->StrobeEnable);
1252
1253		if ((mclk_edc_enable_threshold != 0) &&
1254				(memory_clock > mclk_edc_enable_threshold)) {
1255			memory_level->EdcReadEnable = 1;
1256		}
1257
1258		if ((mclk_edc_wr_enable_threshold != 0) &&
1259				(memory_clock > mclk_edc_wr_enable_threshold)) {
1260			memory_level->EdcWriteEnable = 1;
1261		}
1262
1263		if (memory_level->StrobeEnable) {
1264			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1265					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1266				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1267			else
1268				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1269		} else
1270			dll_state_on = data->dll_default_on;
1271	} else {
1272		memory_level->StrobeRatio =
1273			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1274		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1275	}
1276
1277	result = ci_calculate_mclk_params(hwmgr,
1278		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1279
1280	if (0 == result) {
1281		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1282		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1283		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1284		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1285		/* MCLK frequency in units of 10KHz*/
1286		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1287		/* Indicates maximum activity level for this performance level.*/
1288		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1289		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1290		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1291		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1292		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1293		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1294		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1295		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1296		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1297		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1298	}
1299
1300	return result;
1301}
1302
1303static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1304{
1305	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1306	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1307	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1308	int result;
1309	struct amdgpu_device *adev = hwmgr->adev;
1310	uint32_t dev_id;
1311
1312	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1313	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1314	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1315	uint32_t i;
1316
1317	memset(levels, 0x00, level_array_size);
1318
1319	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1320		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1321			"can not populate memory level as memory clock is zero", return -EINVAL);
1322		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1323			&(smu_data->smc_state_table.MemoryLevel[i]));
1324		if (0 != result)
1325			return result;
1326	}
1327
1328	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1329
1330	dev_id = adev->pdev->device;
1331
1332	if ((dpm_table->mclk_table.count >= 2)
1333		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1334		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1335				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1336		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1337				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1338	}
1339	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1340	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1341
1342	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1343	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1344	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1345
1346	result = ci_copy_bytes_to_smc(hwmgr,
1347		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1348		SMC_RAM_END);
1349
1350	return result;
1351}
1352
1353static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1354					SMU7_Discrete_VoltageLevel *voltage)
1355{
1356	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1357
1358	uint32_t i = 0;
1359
1360	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1361		/* find mvdd value which clock is more than request */
1362		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1363			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1364				/* Always round to higher voltage. */
1365				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1366				break;
1367			}
1368		}
1369
1370		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1371			"MVDD Voltage is outside the supported range.", return -EINVAL);
1372
1373	} else {
1374		return -EINVAL;
1375	}
1376
1377	return 0;
1378}
1379
1380static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1381	SMU7_Discrete_DpmTable *table)
1382{
1383	int result = 0;
1384	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1385	struct pp_atomctrl_clock_dividers_vi dividers;
1386
1387	SMU7_Discrete_VoltageLevel voltage_level;
1388	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1389	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1390	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1391	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1392
1393
1394	/* The ACPI state should not do DPM on DC (or ever).*/
1395	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1396
1397	if (data->acpi_vddc)
1398		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1399	else
1400		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1401
1402	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1403	/* assign zero for now*/
1404	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1405
1406	/* get the engine clock dividers for this clock value*/
1407	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1408		table->ACPILevel.SclkFrequency,  &dividers);
1409
1410	PP_ASSERT_WITH_CODE(result == 0,
1411		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1412
1413	/* divider ID for required SCLK*/
1414	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1415	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1416	table->ACPILevel.DeepSleepDivId = 0;
1417
1418	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1419							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1420	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1421							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1422	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1423							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1424
1425	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1426	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1427	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1428	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1429	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1430	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1431	table->ACPILevel.CcPwrDynRm = 0;
1432	table->ACPILevel.CcPwrDynRm1 = 0;
1433
1434	/* For various features to be enabled/disabled while this level is active.*/
1435	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1436	/* SCLK frequency in units of 10KHz*/
1437	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1438	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1439	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1440	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1441	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1442	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1443	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1444	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1445	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1446
1447
1448	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1449	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1450	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1451
1452	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1453		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1454	else {
1455		if (data->acpi_vddci != 0)
1456			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1457		else
1458			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1459	}
1460
1461	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1462		table->MemoryACPILevel.MinMvdd =
1463			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1464	else
1465		table->MemoryACPILevel.MinMvdd = 0;
1466
1467	/* Force reset on DLL*/
1468	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1469		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1470	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1471		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1472
1473	/* Disable DLL in ACPIState*/
1474	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1475		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1476	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1477		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1478
1479	/* Enable DLL bypass signal*/
1480	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1481		DLL_CNTL, MRDCK0_BYPASS, 0);
1482	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1483		DLL_CNTL, MRDCK1_BYPASS, 0);
1484
1485	table->MemoryACPILevel.DllCntl            =
1486		PP_HOST_TO_SMC_UL(dll_cntl);
1487	table->MemoryACPILevel.MclkPwrmgtCntl     =
1488		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1489	table->MemoryACPILevel.MpllAdFuncCntl     =
1490		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1491	table->MemoryACPILevel.MpllDqFuncCntl     =
1492		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1493	table->MemoryACPILevel.MpllFuncCntl       =
1494		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1495	table->MemoryACPILevel.MpllFuncCntl_1     =
1496		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1497	table->MemoryACPILevel.MpllFuncCntl_2     =
1498		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1499	table->MemoryACPILevel.MpllSs1            =
1500		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1501	table->MemoryACPILevel.MpllSs2            =
1502		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1503
1504	table->MemoryACPILevel.EnabledForThrottle = 0;
1505	table->MemoryACPILevel.EnabledForActivity = 0;
1506	table->MemoryACPILevel.UpH = 0;
1507	table->MemoryACPILevel.DownH = 100;
1508	table->MemoryACPILevel.VoltageDownH = 0;
1509	/* Indicates maximum activity level for this performance level.*/
1510	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1511
1512	table->MemoryACPILevel.StutterEnable = 0;
1513	table->MemoryACPILevel.StrobeEnable = 0;
1514	table->MemoryACPILevel.EdcReadEnable = 0;
1515	table->MemoryACPILevel.EdcWriteEnable = 0;
1516	table->MemoryACPILevel.RttEnable = 0;
1517
1518	return result;
1519}
1520
1521static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1522					SMU7_Discrete_DpmTable *table)
1523{
1524	int result = 0;
1525	uint8_t count;
1526	struct pp_atomctrl_clock_dividers_vi dividers;
1527	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1528		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1529
1530	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1531
1532	for (count = 0; count < table->UvdLevelCount; count++) {
1533		table->UvdLevel[count].VclkFrequency =
1534					uvd_table->entries[count].vclk;
1535		table->UvdLevel[count].DclkFrequency =
1536					uvd_table->entries[count].dclk;
1537		table->UvdLevel[count].MinVddc =
1538					uvd_table->entries[count].v * VOLTAGE_SCALE;
1539		table->UvdLevel[count].MinVddcPhases = 1;
1540
1541		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1542				table->UvdLevel[count].VclkFrequency, &dividers);
1543		PP_ASSERT_WITH_CODE((0 == result),
1544				"can not find divide id for Vclk clock", return result);
1545
1546		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1547
1548		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1549				table->UvdLevel[count].DclkFrequency, &dividers);
1550		PP_ASSERT_WITH_CODE((0 == result),
1551				"can not find divide id for Dclk clock", return result);
1552
1553		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1554		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1555		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1556		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1557	}
1558
1559	return result;
1560}
1561
1562static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1563		SMU7_Discrete_DpmTable *table)
1564{
1565	int result = -EINVAL;
1566	uint8_t count;
1567	struct pp_atomctrl_clock_dividers_vi dividers;
1568	struct phm_vce_clock_voltage_dependency_table *vce_table =
1569				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1570
1571	table->VceLevelCount = (uint8_t)(vce_table->count);
1572	table->VceBootLevel = 0;
1573
1574	for (count = 0; count < table->VceLevelCount; count++) {
1575		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1576		table->VceLevel[count].MinVoltage =
1577				vce_table->entries[count].v * VOLTAGE_SCALE;
1578		table->VceLevel[count].MinPhases = 1;
1579
1580		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1581				table->VceLevel[count].Frequency, &dividers);
1582		PP_ASSERT_WITH_CODE((0 == result),
1583				"can not find divide id for VCE engine clock",
1584				return result);
1585
1586		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1587
1588		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1589		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1590	}
1591	return result;
1592}
1593
1594static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1595					SMU7_Discrete_DpmTable *table)
1596{
1597	int result = -EINVAL;
1598	uint8_t count;
1599	struct pp_atomctrl_clock_dividers_vi dividers;
1600	struct phm_acp_clock_voltage_dependency_table *acp_table =
1601				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1602
1603	table->AcpLevelCount = (uint8_t)(acp_table->count);
1604	table->AcpBootLevel = 0;
1605
1606	for (count = 0; count < table->AcpLevelCount; count++) {
1607		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1608		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1609		table->AcpLevel[count].MinPhases = 1;
1610
1611		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1612				table->AcpLevel[count].Frequency, &dividers);
1613		PP_ASSERT_WITH_CODE((0 == result),
1614				"can not find divide id for engine clock", return result);
1615
1616		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1617
1618		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1619		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1620	}
1621	return result;
1622}
1623
1624static int ci_populate_memory_timing_parameters(
1625		struct pp_hwmgr *hwmgr,
1626		uint32_t engine_clock,
1627		uint32_t memory_clock,
1628		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1629		)
1630{
1631	uint32_t dramTiming;
1632	uint32_t dramTiming2;
1633	uint32_t burstTime;
1634	int result;
1635
1636	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1637				engine_clock, memory_clock);
1638
1639	PP_ASSERT_WITH_CODE(result == 0,
1640		"Error calling VBIOS to set DRAM_TIMING.", return result);
1641
1642	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1643	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1644	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1645
1646	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1647	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1648	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1649
1650	return 0;
1651}
1652
1653static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1654{
1655	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1656	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1657	int result = 0;
1658	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1659	uint32_t i, j;
1660
1661	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1662
1663	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1664		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1665			result = ci_populate_memory_timing_parameters
1666				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1667				 data->dpm_table.mclk_table.dpm_levels[j].value,
1668				 &arb_regs.entries[i][j]);
1669
1670			if (0 != result)
1671				break;
1672		}
1673	}
1674
1675	if (0 == result) {
1676		result = ci_copy_bytes_to_smc(
1677				hwmgr,
1678				smu_data->arb_table_start,
1679				(uint8_t *)&arb_regs,
1680				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1681				SMC_RAM_END
1682				);
1683	}
1684
1685	return result;
1686}
1687
1688static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1689			SMU7_Discrete_DpmTable *table)
1690{
1691	int result = 0;
1692	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1693	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1694
1695	table->GraphicsBootLevel = 0;
1696	table->MemoryBootLevel = 0;
1697
1698	/* find boot level from dpm table*/
1699	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1700			data->vbios_boot_state.sclk_bootup_value,
1701			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1702
1703	if (0 != result) {
1704		smu_data->smc_state_table.GraphicsBootLevel = 0;
1705		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1706		result = 0;
1707	}
1708
1709	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1710		data->vbios_boot_state.mclk_bootup_value,
1711		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1712
1713	if (0 != result) {
1714		smu_data->smc_state_table.MemoryBootLevel = 0;
1715		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1716		result = 0;
1717	}
1718
1719	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1720	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1721	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1722
1723	return result;
1724}
1725
1726static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1727				 SMU7_Discrete_MCRegisters *mc_reg_table)
1728{
1729	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1730
1731	uint32_t i, j;
1732
1733	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1734		if (smu_data->mc_reg_table.validflag & 1<<j) {
1735			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1736				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1737			mc_reg_table->address[i].s0 =
1738				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1739			mc_reg_table->address[i].s1 =
1740				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1741			i++;
1742		}
1743	}
1744
1745	mc_reg_table->last = (uint8_t)i;
1746
1747	return 0;
1748}
1749
1750static void ci_convert_mc_registers(
1751	const struct ci_mc_reg_entry *entry,
1752	SMU7_Discrete_MCRegisterSet *data,
1753	uint32_t num_entries, uint32_t valid_flag)
1754{
1755	uint32_t i, j;
1756
1757	for (i = 0, j = 0; j < num_entries; j++) {
1758		if (valid_flag & 1<<j) {
1759			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1760			i++;
1761		}
1762	}
1763}
1764
1765static int ci_convert_mc_reg_table_entry_to_smc(
1766		struct pp_hwmgr *hwmgr,
1767		const uint32_t memory_clock,
1768		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1769		)
1770{
1771	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1772	uint32_t i = 0;
1773
1774	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1775		if (memory_clock <=
1776			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1777			break;
1778		}
1779	}
1780
1781	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1782		--i;
1783
1784	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1785				mc_reg_table_data, smu_data->mc_reg_table.last,
1786				smu_data->mc_reg_table.validflag);
1787
1788	return 0;
1789}
1790
1791static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1792		SMU7_Discrete_MCRegisters *mc_regs)
1793{
1794	int result = 0;
1795	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1796	int res;
1797	uint32_t i;
1798
1799	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1800		res = ci_convert_mc_reg_table_entry_to_smc(
1801				hwmgr,
1802				data->dpm_table.mclk_table.dpm_levels[i].value,
1803				&mc_regs->data[i]
1804				);
1805
1806		if (0 != res)
1807			result = res;
1808	}
1809
1810	return result;
1811}
1812
1813static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1814{
1815	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1816	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1817	uint32_t address;
1818	int32_t result;
1819
1820	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1821		return 0;
1822
1823
1824	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1825
1826	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1827
1828	if (result != 0)
1829		return result;
1830
1831	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1832
1833	return  ci_copy_bytes_to_smc(hwmgr, address,
1834				 (uint8_t *)&smu_data->mc_regs.data[0],
1835				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1836				SMC_RAM_END);
1837}
1838
1839static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1840{
1841	int result;
1842	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1843
1844	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1845	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1846	PP_ASSERT_WITH_CODE(0 == result,
1847		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1848
1849	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1850	PP_ASSERT_WITH_CODE(0 == result,
1851		"Failed to initialize MCRegTable for driver state!", return result;);
1852
1853	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1854			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1855}
1856
1857static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1858{
1859	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1860	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1861	uint8_t count, level;
1862
1863	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1864
1865	for (level = 0; level < count; level++) {
1866		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1867			 >= data->vbios_boot_state.sclk_bootup_value) {
1868			smu_data->smc_state_table.GraphicsBootLevel = level;
1869			break;
1870		}
1871	}
1872
1873	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1874
1875	for (level = 0; level < count; level++) {
1876		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1877			>= data->vbios_boot_state.mclk_bootup_value) {
1878			smu_data->smc_state_table.MemoryBootLevel = level;
1879			break;
1880		}
1881	}
1882
1883	return 0;
1884}
1885
1886static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1887					    SMU7_Discrete_DpmTable *table)
1888{
1889	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1890
1891	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1892		table->SVI2Enable = 1;
1893	else
1894		table->SVI2Enable = 0;
1895	return 0;
1896}
1897
1898static int ci_start_smc(struct pp_hwmgr *hwmgr)
1899{
1900	/* set smc instruct start point at 0x0 */
1901	ci_program_jump_on_start(hwmgr);
1902
1903	/* enable smc clock */
1904	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1905
1906	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1907
1908	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1909				 INTERRUPTS_ENABLED, 1);
1910
1911	return 0;
1912}
1913
1914static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1915{
1916	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1917	uint16_t config;
1918
1919	config = VR_SVI2_PLANE_1;
1920	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1921
1922	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1923		config = VR_SVI2_PLANE_2;
1924		table->VRConfig |= config;
1925	} else {
1926		pr_info("VDDCshould be on SVI2 controller!");
1927	}
1928
1929	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1930		config = VR_SVI2_PLANE_2;
1931		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1932	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1933		config = VR_SMIO_PATTERN_1;
1934		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1935	}
1936
1937	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1938		config = VR_SMIO_PATTERN_2;
1939		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1940	}
1941
1942	return 0;
1943}
1944
1945static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1946{
1947	int result;
1948	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1949	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1950	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1951	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1952	u32 i;
1953
1954	ci_initialize_power_tune_defaults(hwmgr);
1955	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1956
1957	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1958		ci_populate_smc_voltage_tables(hwmgr, table);
1959
1960	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1961			PHM_PlatformCaps_AutomaticDCTransition))
1962		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1963
1964
1965	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1966			PHM_PlatformCaps_StepVddc))
1967		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1968
1969	if (data->is_memory_gddr5)
1970		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1971
1972	if (data->ulv_supported) {
1973		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1974		PP_ASSERT_WITH_CODE(0 == result,
1975			"Failed to initialize ULV state!", return result);
1976
1977		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1978			ixCG_ULV_PARAMETER, 0x40035);
1979	}
1980
1981	result = ci_populate_all_graphic_levels(hwmgr);
1982	PP_ASSERT_WITH_CODE(0 == result,
1983		"Failed to initialize Graphics Level!", return result);
1984
1985	result = ci_populate_all_memory_levels(hwmgr);
1986	PP_ASSERT_WITH_CODE(0 == result,
1987		"Failed to initialize Memory Level!", return result);
1988
1989	result = ci_populate_smc_link_level(hwmgr, table);
1990	PP_ASSERT_WITH_CODE(0 == result,
1991		"Failed to initialize Link Level!", return result);
1992
1993	result = ci_populate_smc_acpi_level(hwmgr, table);
1994	PP_ASSERT_WITH_CODE(0 == result,
1995		"Failed to initialize ACPI Level!", return result);
1996
1997	result = ci_populate_smc_vce_level(hwmgr, table);
1998	PP_ASSERT_WITH_CODE(0 == result,
1999		"Failed to initialize VCE Level!", return result);
2000
2001	result = ci_populate_smc_acp_level(hwmgr, table);
2002	PP_ASSERT_WITH_CODE(0 == result,
2003		"Failed to initialize ACP Level!", return result);
2004
2005	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2006	/* need to populate the  ARB settings for the initial state. */
2007	result = ci_program_memory_timing_parameters(hwmgr);
2008	PP_ASSERT_WITH_CODE(0 == result,
2009		"Failed to Write ARB settings for the initial state.", return result);
2010
2011	result = ci_populate_smc_uvd_level(hwmgr, table);
2012	PP_ASSERT_WITH_CODE(0 == result,
2013		"Failed to initialize UVD Level!", return result);
2014
2015	table->UvdBootLevel  = 0;
2016	table->VceBootLevel  = 0;
2017	table->AcpBootLevel  = 0;
2018	table->SamuBootLevel  = 0;
2019
2020	table->GraphicsBootLevel = 0;
2021	table->MemoryBootLevel = 0;
2022
2023	result = ci_populate_smc_boot_level(hwmgr, table);
2024	PP_ASSERT_WITH_CODE(0 == result,
2025		"Failed to initialize Boot Level!", return result);
2026
2027	result = ci_populate_smc_initial_state(hwmgr);
2028	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2029
2030	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2031	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2032
2033	table->UVDInterval = 1;
2034	table->VCEInterval = 1;
2035	table->ACPInterval = 1;
2036	table->SAMUInterval = 1;
2037	table->GraphicsVoltageChangeEnable  = 1;
2038	table->GraphicsThermThrottleEnable  = 1;
2039	table->GraphicsInterval = 1;
2040	table->VoltageInterval  = 1;
2041	table->ThermalInterval  = 1;
2042
2043	table->TemperatureLimitHigh =
2044		(data->thermal_temp_setting.temperature_high *
2045		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2046	table->TemperatureLimitLow =
2047		(data->thermal_temp_setting.temperature_low *
2048		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2049
2050	table->MemoryVoltageChangeEnable  = 1;
2051	table->MemoryInterval  = 1;
2052	table->VoltageResponseTime  = 0;
2053	table->VddcVddciDelta = 4000;
2054	table->PhaseResponseTime  = 0;
2055	table->MemoryThermThrottleEnable  = 1;
2056
2057	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2058			"There must be 1 or more PCIE levels defined in PPTable.",
2059			return -EINVAL);
2060
2061	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2062	table->PCIeGenInterval = 1;
2063
2064	result = ci_populate_vr_config(hwmgr, table);
2065	PP_ASSERT_WITH_CODE(0 == result,
2066			"Failed to populate VRConfig setting!", return result);
2067	data->vr_config = table->VRConfig;
2068
2069	ci_populate_smc_svi2_config(hwmgr, table);
2070
2071	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2072		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2073
2074	table->ThermGpio  = 17;
2075	table->SclkStepSize = 0x4000;
2076	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2077		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2078		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2079				PHM_PlatformCaps_RegulatorHot);
2080	} else {
2081		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2082		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2083				PHM_PlatformCaps_RegulatorHot);
2084	}
2085
2086	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2087
2088	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2089	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2090	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2091	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2092	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2093	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2094	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2095	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2096	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2097	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2098	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2099	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2100
2101	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2102	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2103	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2104
2105	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2106	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2107					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2108					(uint8_t *)&(table->SystemFlags),
2109					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2110					SMC_RAM_END);
2111
2112	PP_ASSERT_WITH_CODE(0 == result,
2113		"Failed to upload dpm data to SMC memory!", return result;);
2114
2115	result = ci_populate_initial_mc_reg_table(hwmgr);
2116	PP_ASSERT_WITH_CODE((0 == result),
2117		"Failed to populate initialize MC Reg table!", return result);
2118
2119	result = ci_populate_pm_fuses(hwmgr);
2120	PP_ASSERT_WITH_CODE(0 == result,
2121			"Failed to  populate PM fuses to SMC memory!", return result);
2122
2123	ci_start_smc(hwmgr);
2124
2125	return 0;
2126}
2127
2128static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2129{
2130	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2131	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2132	uint32_t duty100;
2133	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2134	uint16_t fdo_min, slope1, slope2;
2135	uint32_t reference_clock;
2136	int res __unused;
2137	uint64_t tmp64;
2138
2139	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2140		return 0;
2141
2142	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2143		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2144			PHM_PlatformCaps_MicrocodeFanControl);
2145		return 0;
2146	}
2147
2148	if (0 == ci_data->fan_table_start) {
2149		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2150		return 0;
2151	}
2152
2153	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2154
2155	if (0 == duty100) {
2156		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2157		return 0;
2158	}
2159
2160	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2161	do_div(tmp64, 10000);
2162	fdo_min = (uint16_t)tmp64;
2163
2164	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2165	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2166
2167	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2168	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2169
2170	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2171	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2172
2173	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2174	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2175	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2176
2177	fan_table.Slope1 = cpu_to_be16(slope1);
2178	fan_table.Slope2 = cpu_to_be16(slope2);
2179
2180	fan_table.FdoMin = cpu_to_be16(fdo_min);
2181
2182	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2183
2184	fan_table.HystUp = cpu_to_be16(1);
2185
2186	fan_table.HystSlope = cpu_to_be16(1);
2187
2188	fan_table.TempRespLim = cpu_to_be16(5);
2189
2190	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2191
2192	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2193
2194	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2195
2196	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2197
2198	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2199
2200	return 0;
2201}
2202
2203static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2204{
2205	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2206
2207	if (data->need_update_smu7_dpm_table &
2208			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2209		return ci_program_memory_timing_parameters(hwmgr);
2210
2211	return 0;
2212}
2213
2214static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2215{
2216	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2217	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2218
2219	int result = 0;
2220	uint32_t low_sclk_interrupt_threshold = 0;
2221
2222	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2223			PHM_PlatformCaps_SclkThrottleLowNotification)
2224		&& (data->low_sclk_interrupt_threshold != 0)) {
2225		low_sclk_interrupt_threshold =
2226				data->low_sclk_interrupt_threshold;
2227
2228		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2229
2230		result = ci_copy_bytes_to_smc(
2231				hwmgr,
2232				smu_data->dpm_table_start +
2233				offsetof(SMU7_Discrete_DpmTable,
2234					LowSclkInterruptT),
2235				(uint8_t *)&low_sclk_interrupt_threshold,
2236				sizeof(uint32_t),
2237				SMC_RAM_END);
2238	}
2239
2240	result = ci_update_and_upload_mc_reg_table(hwmgr);
2241
2242	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2243
2244	result = ci_program_mem_timing_parameters(hwmgr);
2245	PP_ASSERT_WITH_CODE((result == 0),
2246			"Failed to program memory timing parameters!",
2247			);
2248
2249	return result;
2250}
2251
2252static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2253{
2254	switch (type) {
2255	case SMU_SoftRegisters:
2256		switch (member) {
2257		case HandshakeDisables:
2258			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2259		case VoltageChangeTimeout:
2260			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2261		case AverageGraphicsActivity:
2262			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2263		case AverageMemoryActivity:
2264			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2265		case PreVBlankGap:
2266			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2267		case VBlankTimeout:
2268			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2269		case DRAM_LOG_ADDR_H:
2270			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2271		case DRAM_LOG_ADDR_L:
2272			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2273		case DRAM_LOG_PHY_ADDR_H:
2274			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2275		case DRAM_LOG_PHY_ADDR_L:
2276			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2277		case DRAM_LOG_BUFF_SIZE:
2278			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2279		}
2280		break;
2281	case SMU_Discrete_DpmTable:
2282		switch (member) {
2283		case LowSclkInterruptThreshold:
2284			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2285		}
2286		break;
2287	}
2288	pr_debug("can't get the offset of type %x member %x\n", type, member);
2289	return 0;
2290}
2291
2292static uint32_t ci_get_mac_definition(uint32_t value)
2293{
2294	switch (value) {
2295	case SMU_MAX_LEVELS_GRAPHICS:
2296		return SMU7_MAX_LEVELS_GRAPHICS;
2297	case SMU_MAX_LEVELS_MEMORY:
2298		return SMU7_MAX_LEVELS_MEMORY;
2299	case SMU_MAX_LEVELS_LINK:
2300		return SMU7_MAX_LEVELS_LINK;
2301	case SMU_MAX_ENTRIES_SMIO:
2302		return SMU7_MAX_ENTRIES_SMIO;
2303	case SMU_MAX_LEVELS_VDDC:
2304		return SMU7_MAX_LEVELS_VDDC;
2305	case SMU_MAX_LEVELS_VDDCI:
2306		return SMU7_MAX_LEVELS_VDDCI;
2307	case SMU_MAX_LEVELS_MVDD:
2308		return SMU7_MAX_LEVELS_MVDD;
2309	}
2310
2311	pr_debug("can't get the mac of %x\n", value);
2312	return 0;
2313}
2314
2315static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2316{
2317	uint32_t byte_count, start_addr;
2318	uint8_t *src;
2319	uint32_t data;
2320
2321	struct cgs_firmware_info info = {0};
2322
2323	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2324
2325	hwmgr->is_kicker = info.is_kicker;
2326	hwmgr->smu_version = info.version;
2327	byte_count = info.image_size;
2328	src = (uint8_t *)info.kptr;
2329	start_addr = info.ucode_start_address;
2330
2331	if  (byte_count > SMC_RAM_END) {
2332		pr_err("SMC address is beyond the SMC RAM area.\n");
2333		return -EINVAL;
2334	}
2335
2336	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2337	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2338
2339	for (; byte_count >= 4; byte_count -= 4) {
2340		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2341		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2342		src += 4;
2343	}
2344	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2345
2346	if (0 != byte_count) {
2347		pr_err("SMC size must be divisible by 4\n");
2348		return -EINVAL;
2349	}
2350
2351	return 0;
2352}
2353
2354static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2355{
2356	if (ci_is_smc_ram_running(hwmgr)) {
2357		pr_info("smc is running, no need to load smc firmware\n");
2358		return 0;
2359	}
2360	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2361			boot_seq_done, 1);
2362	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2363			pre_fetcher_en, 1);
2364
2365	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2366	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2367	return ci_load_smc_ucode(hwmgr);
2368}
2369
2370static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2371{
2372	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2373	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2374
2375	uint32_t tmp = 0;
2376	int result;
2377	bool error = false;
2378
2379	if (ci_upload_firmware(hwmgr))
2380		return -EINVAL;
2381
2382	result = ci_read_smc_sram_dword(hwmgr,
2383				SMU7_FIRMWARE_HEADER_LOCATION +
2384				offsetof(SMU7_Firmware_Header, DpmTable),
2385				&tmp, SMC_RAM_END);
2386
2387	if (0 == result)
2388		ci_data->dpm_table_start = tmp;
2389
2390	error |= (0 != result);
2391
2392	result = ci_read_smc_sram_dword(hwmgr,
2393				SMU7_FIRMWARE_HEADER_LOCATION +
2394				offsetof(SMU7_Firmware_Header, SoftRegisters),
2395				&tmp, SMC_RAM_END);
2396
2397	if (0 == result) {
2398		data->soft_regs_start = tmp;
2399		ci_data->soft_regs_start = tmp;
2400	}
2401
2402	error |= (0 != result);
2403
2404	result = ci_read_smc_sram_dword(hwmgr,
2405				SMU7_FIRMWARE_HEADER_LOCATION +
2406				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2407				&tmp, SMC_RAM_END);
2408
2409	if (0 == result)
2410		ci_data->mc_reg_table_start = tmp;
2411
2412	result = ci_read_smc_sram_dword(hwmgr,
2413				SMU7_FIRMWARE_HEADER_LOCATION +
2414				offsetof(SMU7_Firmware_Header, FanTable),
2415				&tmp, SMC_RAM_END);
2416
2417	if (0 == result)
2418		ci_data->fan_table_start = tmp;
2419
2420	error |= (0 != result);
2421
2422	result = ci_read_smc_sram_dword(hwmgr,
2423				SMU7_FIRMWARE_HEADER_LOCATION +
2424				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2425				&tmp, SMC_RAM_END);
2426
2427	if (0 == result)
2428		ci_data->arb_table_start = tmp;
2429
2430	error |= (0 != result);
2431
2432	result = ci_read_smc_sram_dword(hwmgr,
2433				SMU7_FIRMWARE_HEADER_LOCATION +
2434				offsetof(SMU7_Firmware_Header, Version),
2435				&tmp, SMC_RAM_END);
2436
2437	if (0 == result)
2438		hwmgr->microcode_version_info.SMC = tmp;
2439
2440	error |= (0 != result);
2441
2442	return error ? 1 : 0;
2443}
2444
2445static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2446{
2447	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2448}
2449
2450static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2451{
2452	bool result = true;
2453
2454	switch (in_reg) {
2455	case  mmMC_SEQ_RAS_TIMING:
2456		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2457		break;
2458
2459	case  mmMC_SEQ_DLL_STBY:
2460		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2461		break;
2462
2463	case  mmMC_SEQ_G5PDX_CMD0:
2464		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2465		break;
2466
2467	case  mmMC_SEQ_G5PDX_CMD1:
2468		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2469		break;
2470
2471	case  mmMC_SEQ_G5PDX_CTRL:
2472		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2473		break;
2474
2475	case mmMC_SEQ_CAS_TIMING:
2476		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2477		break;
2478
2479	case mmMC_SEQ_MISC_TIMING:
2480		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2481		break;
2482
2483	case mmMC_SEQ_MISC_TIMING2:
2484		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2485		break;
2486
2487	case mmMC_SEQ_PMG_DVS_CMD:
2488		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2489		break;
2490
2491	case mmMC_SEQ_PMG_DVS_CTL:
2492		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2493		break;
2494
2495	case mmMC_SEQ_RD_CTL_D0:
2496		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2497		break;
2498
2499	case mmMC_SEQ_RD_CTL_D1:
2500		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2501		break;
2502
2503	case mmMC_SEQ_WR_CTL_D0:
2504		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2505		break;
2506
2507	case mmMC_SEQ_WR_CTL_D1:
2508		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2509		break;
2510
2511	case mmMC_PMG_CMD_EMRS:
2512		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2513		break;
2514
2515	case mmMC_PMG_CMD_MRS:
2516		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2517		break;
2518
2519	case mmMC_PMG_CMD_MRS1:
2520		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2521		break;
2522
2523	case mmMC_SEQ_PMG_TIMING:
2524		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2525		break;
2526
2527	case mmMC_PMG_CMD_MRS2:
2528		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2529		break;
2530
2531	case mmMC_SEQ_WR_CTL_2:
2532		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2533		break;
2534
2535	default:
2536		result = false;
2537		break;
2538	}
2539
2540	return result;
2541}
2542
2543static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2544{
2545	uint32_t i;
2546	uint16_t address;
2547
2548	for (i = 0; i < table->last; i++) {
2549		table->mc_reg_address[i].s0 =
2550			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2551			? address : table->mc_reg_address[i].s1;
2552	}
2553	return 0;
2554}
2555
2556static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2557					struct ci_mc_reg_table *ni_table)
2558{
2559	uint8_t i, j;
2560
2561	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2562		"Invalid VramInfo table.", return -EINVAL);
2563	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2564		"Invalid VramInfo table.", return -EINVAL);
2565
2566	for (i = 0; i < table->last; i++)
2567		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2568
2569	ni_table->last = table->last;
2570
2571	for (i = 0; i < table->num_entries; i++) {
2572		ni_table->mc_reg_table_entry[i].mclk_max =
2573			table->mc_reg_table_entry[i].mclk_max;
2574		for (j = 0; j < table->last; j++) {
2575			ni_table->mc_reg_table_entry[i].mc_data[j] =
2576				table->mc_reg_table_entry[i].mc_data[j];
2577		}
2578	}
2579
2580	ni_table->num_entries = table->num_entries;
2581
2582	return 0;
2583}
2584
2585static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2586					struct ci_mc_reg_table *table)
2587{
2588	uint8_t i, j, k;
2589	uint32_t temp_reg;
2590	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2591
2592	for (i = 0, j = table->last; i < table->last; i++) {
2593		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2594			"Invalid VramInfo table.", return -EINVAL);
2595
2596		switch (table->mc_reg_address[i].s1) {
2597
2598		case mmMC_SEQ_MISC1:
2599			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2600			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2601			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2602			for (k = 0; k < table->num_entries; k++) {
2603				table->mc_reg_table_entry[k].mc_data[j] =
2604					((temp_reg & 0xffff0000)) |
2605					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2606			}
2607			j++;
2608
2609			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2610				"Invalid VramInfo table.", return -EINVAL);
2611			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2612			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2613			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2614			for (k = 0; k < table->num_entries; k++) {
2615				table->mc_reg_table_entry[k].mc_data[j] =
2616					(temp_reg & 0xffff0000) |
2617					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2618
2619				if (!data->is_memory_gddr5)
2620					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2621			}
2622			j++;
2623
2624			if (!data->is_memory_gddr5) {
2625				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2626					"Invalid VramInfo table.", return -EINVAL);
2627				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2628				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2629				for (k = 0; k < table->num_entries; k++) {
2630					table->mc_reg_table_entry[k].mc_data[j] =
2631						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2632				}
2633				j++;
2634			}
2635
2636			break;
2637
2638		case mmMC_SEQ_RESERVE_M:
2639			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2640			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2641			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2642			for (k = 0; k < table->num_entries; k++) {
2643				table->mc_reg_table_entry[k].mc_data[j] =
2644					(temp_reg & 0xffff0000) |
2645					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2646			}
2647			j++;
2648			break;
2649
2650		default:
2651			break;
2652		}
2653
2654	}
2655
2656	table->last = j;
2657
2658	return 0;
2659}
2660
2661static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2662{
2663	uint8_t i, j;
2664
2665	for (i = 0; i < table->last; i++) {
2666		for (j = 1; j < table->num_entries; j++) {
2667			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2668				table->mc_reg_table_entry[j].mc_data[i]) {
2669				table->validflag |= (1 << i);
2670				break;
2671			}
2672		}
2673	}
2674
2675	return 0;
2676}
2677
2678static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2679{
2680	int result;
2681	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2682	pp_atomctrl_mc_reg_table *table;
2683	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2684	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2685
2686	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2687
2688	if (NULL == table)
2689		return -ENOMEM;
2690
2691	/* Program additional LP registers that are no longer programmed by VBIOS */
2692	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2693	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2694	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2695	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2696	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2697	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2698	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2699	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2700	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2701	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2702	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2703	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2704	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2705	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2706	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2707	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2708	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2709	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2710	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2711	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2712
2713	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2714
2715	if (0 == result)
2716		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2717
2718	if (0 == result) {
2719		ci_set_s0_mc_reg_index(ni_table);
2720		result = ci_set_mc_special_registers(hwmgr, ni_table);
2721	}
2722
2723	if (0 == result)
2724		ci_set_valid_flag(ni_table);
2725
2726	kfree(table);
2727
2728	return result;
2729}
2730
2731static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2732{
2733	return ci_is_smc_ram_running(hwmgr);
2734}
2735
2736static int ci_smu_init(struct pp_hwmgr *hwmgr)
2737{
2738	struct ci_smumgr *ci_priv = NULL;
2739
2740	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2741
2742	if (ci_priv == NULL)
2743		return -ENOMEM;
2744
2745	hwmgr->smu_backend = ci_priv;
2746
2747	return 0;
2748}
2749
2750static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2751{
2752	kfree(hwmgr->smu_backend);
2753	hwmgr->smu_backend = NULL;
2754	return 0;
2755}
2756
2757static int ci_start_smu(struct pp_hwmgr *hwmgr)
2758{
2759	return 0;
2760}
2761
2762static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2763				void *profile_setting)
2764{
2765	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2766	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2767			(hwmgr->smu_backend);
2768	struct profile_mode_setting *setting;
2769	struct SMU7_Discrete_GraphicsLevel *levels =
2770			smu_data->smc_state_table.GraphicsLevel;
2771	uint32_t array = smu_data->dpm_table_start +
2772			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2773
2774	uint32_t mclk_array = smu_data->dpm_table_start +
2775			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2776	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2777			smu_data->smc_state_table.MemoryLevel;
2778	uint32_t i;
2779	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2780
2781	if (profile_setting == NULL)
2782		return -EINVAL;
2783
2784	setting = (struct profile_mode_setting *)profile_setting;
2785
2786	if (setting->bupdate_sclk) {
2787		if (!data->sclk_dpm_key_disabled)
2788			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2789		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2790			if (levels[i].ActivityLevel !=
2791				cpu_to_be16(setting->sclk_activity)) {
2792				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2793
2794				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2795						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2796				offset = clk_activity_offset & ~0x3;
2797				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2798				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2799				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2800
2801			}
2802			if (levels[i].UpH != setting->sclk_up_hyst ||
2803				levels[i].DownH != setting->sclk_down_hyst) {
2804				levels[i].UpH = setting->sclk_up_hyst;
2805				levels[i].DownH = setting->sclk_down_hyst;
2806				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2807						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2808				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2809						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2810				offset = up_hyst_offset & ~0x3;
2811				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2812				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2813				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2814				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2815			}
2816		}
2817		if (!data->sclk_dpm_key_disabled)
2818			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2819	}
2820
2821	if (setting->bupdate_mclk) {
2822		if (!data->mclk_dpm_key_disabled)
2823			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2824		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2825			if (mclk_levels[i].ActivityLevel !=
2826				cpu_to_be16(setting->mclk_activity)) {
2827				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2828
2829				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2830						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2831				offset = clk_activity_offset & ~0x3;
2832				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2833				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2834				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2835
2836			}
2837			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2838				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2839				mclk_levels[i].UpH = setting->mclk_up_hyst;
2840				mclk_levels[i].DownH = setting->mclk_down_hyst;
2841				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2842						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2843				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2844						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2845				offset = up_hyst_offset & ~0x3;
2846				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2847				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2848				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2849				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2850			}
2851		}
2852		if (!data->mclk_dpm_key_disabled)
2853			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2854	}
2855	return 0;
2856}
2857
2858static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2859{
2860	struct amdgpu_device *adev = hwmgr->adev;
2861	struct smu7_hwmgr *data = hwmgr->backend;
2862	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2863	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2864			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2865	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2866					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2867					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2868					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2869	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2870						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2871	int32_t i;
2872
2873	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2874		smu_data->smc_state_table.UvdBootLevel = 0;
2875	else
2876		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2877
2878	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2879				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2880
2881	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2882
2883	for (i = uvd_table->count - 1; i >= 0; i--) {
2884		if (uvd_table->entries[i].v <= max_vddc)
2885			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2886		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2887			break;
2888	}
2889	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2890				data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2891
2892	return 0;
2893}
2894
2895static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2896{
2897	struct amdgpu_device *adev = hwmgr->adev;
2898	struct smu7_hwmgr *data = hwmgr->backend;
2899	struct phm_vce_clock_voltage_dependency_table *vce_table =
2900			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2901	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2902					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2903					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2904					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2905	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2906						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2907	int32_t i;
2908
2909	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2910				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2911
2912	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2913
2914	for (i = vce_table->count - 1; i >= 0; i--) {
2915		if (vce_table->entries[i].v <= max_vddc)
2916			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2917		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2918			break;
2919	}
2920	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2921				data->dpm_level_enable_mask.vce_dpm_enable_mask);
2922
2923	return 0;
2924}
2925
2926static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2927{
2928	switch (type) {
2929	case SMU_UVD_TABLE:
2930		ci_update_uvd_smc_table(hwmgr);
2931		break;
2932	case SMU_VCE_TABLE:
2933		ci_update_vce_smc_table(hwmgr);
2934		break;
2935	default:
2936		break;
2937	}
2938	return 0;
2939}
2940
2941const struct pp_smumgr_func ci_smu_funcs = {
2942	.name = "ci_smu",
2943	.smu_init = ci_smu_init,
2944	.smu_fini = ci_smu_fini,
2945	.start_smu = ci_start_smu,
2946	.check_fw_load_finish = NULL,
2947	.request_smu_load_fw = NULL,
2948	.request_smu_load_specific_fw = NULL,
2949	.send_msg_to_smc = ci_send_msg_to_smc,
2950	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2951	.download_pptable_settings = NULL,
2952	.upload_pptable_settings = NULL,
2953	.get_offsetof = ci_get_offsetof,
2954	.process_firmware_header = ci_process_firmware_header,
2955	.init_smc_table = ci_init_smc_table,
2956	.update_sclk_threshold = ci_update_sclk_threshold,
2957	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2958	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2959	.populate_all_memory_levels = ci_populate_all_memory_levels,
2960	.get_mac_definition = ci_get_mac_definition,
2961	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2962	.is_dpm_running = ci_is_dpm_running,
2963	.update_dpm_settings = ci_update_dpm_settings,
2964	.update_smc_table = ci_update_smc_table,
2965};
2966