1/*	$NetBSD: amdgpu_ppatomctrl.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
2
3/*
4 * Copyright 2015 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25#include <sys/cdefs.h>
26__KERNEL_RCSID(0, "$NetBSD: amdgpu_ppatomctrl.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
27
28#include "pp_debug.h"
29#include <linux/module.h>
30#include <linux/slab.h>
31#include <linux/delay.h>
32#include "atom.h"
33#include "ppatomctrl.h"
34#include "atombios.h"
35#include "cgs_common.h"
36#include "ppevvmath.h"
37
38#define MEM_ID_MASK           0xff000000
39#define MEM_ID_SHIFT          24
40#define CLOCK_RANGE_MASK      0x00ffffff
41#define CLOCK_RANGE_SHIFT     0
42#define LOW_NIBBLE_MASK       0xf
43#define DATA_EQU_PREV         0
44#define DATA_FROM_TABLE       4
45
46union voltage_object_info {
47	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
48	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
49	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
50};
51
52static int atomctrl_retrieve_ac_timing(
53		uint8_t index,
54		ATOM_INIT_REG_BLOCK *reg_block,
55		pp_atomctrl_mc_reg_table *table)
56{
57	uint32_t i, j;
58	uint8_t tmem_id;
59	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
60		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
61
62	uint8_t num_ranges = 0;
63
64	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
65			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
66		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
67
68		if (index == tmem_id) {
69			table->mc_reg_table_entry[num_ranges].mclk_max =
70				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
71						CLOCK_RANGE_SHIFT);
72
73			for (i = 0, j = 1; i < table->last; i++) {
74				if ((table->mc_reg_address[i].uc_pre_reg_data &
75							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
76					table->mc_reg_table_entry[num_ranges].mc_data[i] =
77						(uint32_t)*((uint32_t *)reg_data + j);
78					j++;
79				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
80							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
81					table->mc_reg_table_entry[num_ranges].mc_data[i] =
82						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
83				}
84			}
85			num_ranges++;
86		}
87
88		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
89			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
90	}
91
92	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
93			"Invalid VramInfo table.", return -1);
94	table->num_entries = num_ranges;
95
96	return 0;
97}
98
99/**
100 * Get memory clock AC timing registers index from VBIOS table
101 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
102 * @param    reg_block the address ATOM_INIT_REG_BLOCK
103 * @param    table the address of MCRegTable
104 * @return   0
105 */
106static int atomctrl_set_mc_reg_address_table(
107		ATOM_INIT_REG_BLOCK *reg_block,
108		pp_atomctrl_mc_reg_table *table)
109{
110	uint8_t i = 0;
111	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
112			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
113	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
114
115	num_entries--;        /* subtract 1 data end mark entry */
116
117	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
118			"Invalid VramInfo table.", return -1);
119
120	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
121	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
122			(i < num_entries)) {
123		table->mc_reg_address[i].s1 =
124			(uint16_t)(le16_to_cpu(format->usRegIndex));
125		table->mc_reg_address[i].uc_pre_reg_data =
126			format->ucPreRegDataLength;
127
128		i++;
129		format = (ATOM_INIT_REG_INDEX_FORMAT *)
130			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
131	}
132
133	table->last = i;
134	return 0;
135}
136
137int atomctrl_initialize_mc_reg_table(
138		struct pp_hwmgr *hwmgr,
139		uint8_t module_index,
140		pp_atomctrl_mc_reg_table *table)
141{
142	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
143	ATOM_INIT_REG_BLOCK *reg_block;
144	int result = 0;
145	u8 frev, crev;
146	u16 size;
147
148	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
149		smu_atom_get_data_table(hwmgr->adev,
150				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
151
152	if (module_index >= vram_info->ucNumOfVRAMModule) {
153		pr_err("Invalid VramInfo table.");
154		result = -1;
155	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
156		pr_err("Invalid VramInfo table.");
157		result = -1;
158	}
159
160	if (0 == result) {
161		reg_block = (ATOM_INIT_REG_BLOCK *)
162			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
163		result = atomctrl_set_mc_reg_address_table(reg_block, table);
164	}
165
166	if (0 == result) {
167		result = atomctrl_retrieve_ac_timing(module_index,
168					reg_block, table);
169	}
170
171	return result;
172}
173
174/**
175 * Set DRAM timings based on engine clock and memory clock.
176 */
177int atomctrl_set_engine_dram_timings_rv770(
178		struct pp_hwmgr *hwmgr,
179		uint32_t engine_clock,
180		uint32_t memory_clock)
181{
182	struct amdgpu_device *adev = hwmgr->adev;
183
184	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
185
186	/* They are both in 10KHz Units. */
187	engine_clock_parameters.ulTargetEngineClock =
188		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
189			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
190
191	/* in 10 khz units.*/
192	engine_clock_parameters.sReserved.ulClock =
193		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
194
195	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
196			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
197			(uint32_t *)&engine_clock_parameters);
198}
199
200/**
201 * Private Function to get the PowerPlay Table Address.
202 * WARNING: The tabled returned by this function is in
203 * dynamically allocated memory.
204 * The caller has to release if by calling kfree.
205 */
206static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
207{
208	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
209	u8 frev, crev;
210	u16 size;
211	union voltage_object_info *voltage_info;
212
213	voltage_info = (union voltage_object_info *)
214		smu_atom_get_data_table(device, index,
215			&size, &frev, &crev);
216
217	if (voltage_info != NULL)
218		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
219	else
220		return NULL;
221}
222
223static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
224		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
225		uint8_t voltage_type, uint8_t voltage_mode)
226{
227	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
228	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
229	const uint8_t *start = (const uint8_t *)voltage_object_info_table;
230
231	while (offset < size) {
232		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
233			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
234
235		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
236			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
237			return voltage_object;
238
239		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
240	}
241
242	return NULL;
243}
244
245/** atomctrl_get_memory_pll_dividers_si().
246 *
247 * @param hwmgr                 input parameter: pointer to HwMgr
248 * @param clock_value             input parameter: memory clock
249 * @param dividers                 output parameter: memory PLL dividers
250 * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
251 */
252int atomctrl_get_memory_pll_dividers_si(
253		struct pp_hwmgr *hwmgr,
254		uint32_t clock_value,
255		pp_atomctrl_memory_clock_param *mpll_param,
256		bool strobe_mode)
257{
258	struct amdgpu_device *adev = hwmgr->adev;
259	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
260	int result;
261
262	mpll_parameters.ulClock = cpu_to_le32(clock_value);
263	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
264
265	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
266		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
267		(uint32_t *)&mpll_parameters);
268
269	if (0 == result) {
270		mpll_param->mpll_fb_divider.clk_frac =
271			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
272		mpll_param->mpll_fb_divider.cl_kf =
273			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
274		mpll_param->mpll_post_divider =
275			(uint32_t)mpll_parameters.ucPostDiv;
276		mpll_param->vco_mode =
277			(uint32_t)(mpll_parameters.ucPllCntlFlag &
278					MPLL_CNTL_FLAG_VCO_MODE_MASK);
279		mpll_param->yclk_sel =
280			(uint32_t)((mpll_parameters.ucPllCntlFlag &
281						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
282		mpll_param->qdr =
283			(uint32_t)((mpll_parameters.ucPllCntlFlag &
284						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
285		mpll_param->half_rate =
286			(uint32_t)((mpll_parameters.ucPllCntlFlag &
287						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
288		mpll_param->dll_speed =
289			(uint32_t)(mpll_parameters.ucDllSpeed);
290		mpll_param->bw_ctrl =
291			(uint32_t)(mpll_parameters.ucBWCntl);
292	}
293
294	return result;
295}
296
297/** atomctrl_get_memory_pll_dividers_vi().
298 *
299 * @param hwmgr                 input parameter: pointer to HwMgr
300 * @param clock_value             input parameter: memory clock
301 * @param dividers               output parameter: memory PLL dividers
302 */
303int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
304		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
305{
306	struct amdgpu_device *adev = hwmgr->adev;
307	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
308	int result;
309
310	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
311
312	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
313			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
314			(uint32_t *)&mpll_parameters);
315
316	if (!result)
317		mpll_param->mpll_post_divider =
318				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
319
320	return result;
321}
322
323int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
324					uint32_t clock_value,
325					pp_atomctrl_memory_clock_param_ai *mpll_param)
326{
327	struct amdgpu_device *adev = hwmgr->adev;
328	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
329	int result;
330
331	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
332
333	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
334			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
335			(uint32_t *)&mpll_parameters);
336
337	/* VEGAM's mpll takes sometime to finish computing */
338	udelay(10);
339
340	if (!result) {
341		mpll_param->ulMclk_fcw_int =
342			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
343		mpll_param->ulMclk_fcw_frac =
344			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
345		mpll_param->ulClock =
346			le32_to_cpu(mpll_parameters.ulClock.ulClock);
347		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
348	}
349
350	return result;
351}
352
353int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
354					  uint32_t clock_value,
355					  pp_atomctrl_clock_dividers_kong *dividers)
356{
357	struct amdgpu_device *adev = hwmgr->adev;
358	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
359	int result;
360
361	pll_parameters.ulClock = cpu_to_le32(clock_value);
362
363	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
364		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
365		(uint32_t *)&pll_parameters);
366
367	if (0 == result) {
368		dividers->pll_post_divider = pll_parameters.ucPostDiv;
369		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
370	}
371
372	return result;
373}
374
375int atomctrl_get_engine_pll_dividers_vi(
376		struct pp_hwmgr *hwmgr,
377		uint32_t clock_value,
378		pp_atomctrl_clock_dividers_vi *dividers)
379{
380	struct amdgpu_device *adev = hwmgr->adev;
381	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
382	int result;
383
384	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
385	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
386
387	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
388		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
389		(uint32_t *)&pll_patameters);
390
391	if (0 == result) {
392		dividers->pll_post_divider =
393			pll_patameters.ulClock.ucPostDiv;
394		dividers->real_clock =
395			le32_to_cpu(pll_patameters.ulClock.ulClock);
396
397		dividers->ul_fb_div.ul_fb_div_frac =
398			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
399		dividers->ul_fb_div.ul_fb_div =
400			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
401
402		dividers->uc_pll_ref_div =
403			pll_patameters.ucPllRefDiv;
404		dividers->uc_pll_post_div =
405			pll_patameters.ucPllPostDiv;
406		dividers->uc_pll_cntl_flag =
407			pll_patameters.ucPllCntlFlag;
408	}
409
410	return result;
411}
412
413int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
414		uint32_t clock_value,
415		pp_atomctrl_clock_dividers_ai *dividers)
416{
417	struct amdgpu_device *adev = hwmgr->adev;
418	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
419	int result;
420
421	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
422	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
423
424	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
425		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
426		(uint32_t *)&pll_patameters);
427
428	if (0 == result) {
429		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
430		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
431		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
432		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
433		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
434		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
435		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
436		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
437		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
438		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
439		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
440	}
441	return result;
442}
443
444int atomctrl_get_dfs_pll_dividers_vi(
445		struct pp_hwmgr *hwmgr,
446		uint32_t clock_value,
447		pp_atomctrl_clock_dividers_vi *dividers)
448{
449	struct amdgpu_device *adev = hwmgr->adev;
450	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
451	int result;
452
453	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
454	pll_patameters.ulClock.ucPostDiv =
455		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
456
457	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
458		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
459		(uint32_t *)&pll_patameters);
460
461	if (0 == result) {
462		dividers->pll_post_divider =
463			pll_patameters.ulClock.ucPostDiv;
464		dividers->real_clock =
465			le32_to_cpu(pll_patameters.ulClock.ulClock);
466
467		dividers->ul_fb_div.ul_fb_div_frac =
468			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
469		dividers->ul_fb_div.ul_fb_div =
470			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
471
472		dividers->uc_pll_ref_div =
473			pll_patameters.ucPllRefDiv;
474		dividers->uc_pll_post_div =
475			pll_patameters.ucPllPostDiv;
476		dividers->uc_pll_cntl_flag =
477			pll_patameters.ucPllCntlFlag;
478	}
479
480	return result;
481}
482
483/**
484 * Get the reference clock in 10KHz
485 */
486uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
487{
488	ATOM_FIRMWARE_INFO *fw_info;
489	u8 frev, crev;
490	u16 size;
491	uint32_t clock;
492
493	fw_info = (ATOM_FIRMWARE_INFO *)
494		smu_atom_get_data_table(hwmgr->adev,
495			GetIndexIntoMasterTable(DATA, FirmwareInfo),
496			&size, &frev, &crev);
497
498	if (fw_info == NULL)
499		clock = 2700;
500	else
501		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
502
503	return clock;
504}
505
506/**
507 * Returns true if the given voltage type is controlled by GPIO pins.
508 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
509 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
510 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
511 */
512bool atomctrl_is_voltage_controlled_by_gpio_v3(
513		struct pp_hwmgr *hwmgr,
514		uint8_t voltage_type,
515		uint8_t voltage_mode)
516{
517	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
518		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
519	bool ret;
520
521	PP_ASSERT_WITH_CODE((NULL != voltage_info),
522			"Could not find Voltage Table in BIOS.", return false;);
523
524	ret = (NULL != atomctrl_lookup_voltage_type_v3
525			(voltage_info, voltage_type, voltage_mode)) ? true : false;
526
527	return ret;
528}
529
530int atomctrl_get_voltage_table_v3(
531		struct pp_hwmgr *hwmgr,
532		uint8_t voltage_type,
533		uint8_t voltage_mode,
534		pp_atomctrl_voltage_table *voltage_table)
535{
536	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
537		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
538	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
539	unsigned int i;
540
541	PP_ASSERT_WITH_CODE((NULL != voltage_info),
542			"Could not find Voltage Table in BIOS.", return -1;);
543
544	voltage_object = atomctrl_lookup_voltage_type_v3
545		(voltage_info, voltage_type, voltage_mode);
546
547	if (voltage_object == NULL)
548		return -1;
549
550	PP_ASSERT_WITH_CODE(
551			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
552			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
553			"Too many voltage entries!",
554			return -1;
555			);
556
557	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
558		voltage_table->entries[i].value =
559			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
560		voltage_table->entries[i].smio_low =
561			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
562	}
563
564	voltage_table->mask_low    =
565		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
566	voltage_table->count      =
567		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
568	voltage_table->phase_delay =
569		voltage_object->asGpioVoltageObj.ucPhaseDelay;
570
571	return 0;
572}
573
574static bool atomctrl_lookup_gpio_pin(
575		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
576		const uint32_t pinId,
577		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
578{
579	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
580	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
581	uint8_t *start = (uint8_t *)gpio_lookup_table;
582
583	while (offset < size) {
584		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
585			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
586
587		if (pinId == pin_assignment->ucGPIO_ID) {
588			gpio_pin_assignment->uc_gpio_pin_bit_shift =
589				pin_assignment->ucGpioPinBitShift;
590			gpio_pin_assignment->us_gpio_pin_aindex =
591				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
592			return true;
593		}
594
595		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
596	}
597
598	return false;
599}
600
601/**
602 * Private Function to get the PowerPlay Table Address.
603 * WARNING: The tabled returned by this function is in
604 * dynamically allocated memory.
605 * The caller has to release if by calling kfree.
606 */
607static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
608{
609	u8 frev, crev;
610	u16 size;
611	void *table_address;
612
613	table_address = (ATOM_GPIO_PIN_LUT *)
614		smu_atom_get_data_table(device,
615				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
616				&size, &frev, &crev);
617
618	PP_ASSERT_WITH_CODE((NULL != table_address),
619			"Error retrieving BIOS Table Address!", return NULL;);
620
621	return (ATOM_GPIO_PIN_LUT *)table_address;
622}
623
624/**
625 * Returns 1 if the given pin id find in lookup table.
626 */
627bool atomctrl_get_pp_assign_pin(
628		struct pp_hwmgr *hwmgr,
629		const uint32_t pinId,
630		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
631{
632	bool bRet = false;
633	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
634		get_gpio_lookup_table(hwmgr->adev);
635
636	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
637			"Could not find GPIO lookup Table in BIOS.", return false);
638
639	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
640		gpio_pin_assignment);
641
642	return bRet;
643}
644
645int atomctrl_calculate_voltage_evv_on_sclk(
646		struct pp_hwmgr *hwmgr,
647		uint8_t voltage_type,
648		uint32_t sclk,
649		uint16_t virtual_voltage_Id,
650		uint16_t *voltage,
651		uint16_t dpm_level,
652		bool debug)
653{
654	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
655	struct amdgpu_device *adev = hwmgr->adev;
656	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
657	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
658	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
659	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
660	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
661	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
662	EFUSE_INPUT_PARAMETER sInput_FuseValues;
663	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
664
665	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
666	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
667	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
668	fInt fLkg_FT, repeat;
669	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
670	fInt fRLL_LoadLine, fPowerDPMx __unused, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
671	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
672	fInt fSclk_margin, fSclk, fEVV_V;
673	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
674	uint32_t ul_FT_Lkg_V0NORM;
675	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
676	fInt fRoots[2];
677	fInt fStepSize = GetScaledFraction(625, 100000);
678
679	int result;
680
681	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
682			smu_atom_get_data_table(hwmgr->adev,
683					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
684					NULL, NULL, NULL);
685
686	if (!getASICProfilingInfo)
687		return -1;
688
689	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
690	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
691	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
692		return -1;
693
694	/*-----------------------------------------------------------
695	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
696	 *-----------------------------------------------------------
697	 */
698	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
699
700	switch (dpm_level) {
701	case 1:
702		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
703		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
704		break;
705	case 2:
706		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
707		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
708		break;
709	case 3:
710		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
711		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
712		break;
713	case 4:
714		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
715		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
716		break;
717	case 5:
718		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
719		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
720		break;
721	case 6:
722		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
723		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
724		break;
725	case 7:
726		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
727		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
728		break;
729	default:
730		pr_err("DPM Level not supported\n");
731		fPowerDPMx = Convert_ULONG_ToFraction(1);
732		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
733	}
734
735	/*-------------------------
736	 * DECODING FUSE VALUES
737	 * ------------------------
738	 */
739	/*Decode RO_Fused*/
740	sRO_fuse = getASICProfilingInfo->sRoFuse;
741
742	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
743	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
744	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
745
746	sOutput_FuseValues.sEfuse = sInput_FuseValues;
747
748	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
749			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
750			(uint32_t *)&sOutput_FuseValues);
751
752	if (result)
753		return result;
754
755	/* Finally, the actual fuse value */
756	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
757	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
758	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
759	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
760
761	sCACm_fuse = getASICProfilingInfo->sCACm;
762
763	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
764	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
765	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
766
767	sOutput_FuseValues.sEfuse = sInput_FuseValues;
768
769	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
770			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
771			(uint32_t *)&sOutput_FuseValues);
772
773	if (result)
774		return result;
775
776	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
777	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
778	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
779
780	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
781
782	sCACb_fuse = getASICProfilingInfo->sCACb;
783
784	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
785	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
786	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
787	sOutput_FuseValues.sEfuse = sInput_FuseValues;
788
789	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
790			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
791			(uint32_t *)&sOutput_FuseValues);
792
793	if (result)
794		return result;
795
796	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
797	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
798	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
799
800	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
801
802	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
803
804	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
805	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
806	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
807
808	sOutput_FuseValues.sEfuse = sInput_FuseValues;
809
810	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
811			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
812			(uint32_t *)&sOutput_FuseValues);
813
814	if (result)
815		return result;
816
817	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
818	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
819	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
820
821	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
822			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
823
824	sKv_m_fuse = getASICProfilingInfo->sKv_m;
825
826	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
827	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
828	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
829
830	sOutput_FuseValues.sEfuse = sInput_FuseValues;
831
832	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
833			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
834			(uint32_t *)&sOutput_FuseValues);
835	if (result)
836		return result;
837
838	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
839	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
840	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
841	fRange = fMultiply(fRange, ConvertToFraction(-1));
842
843	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
844			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
845
846	sKv_b_fuse = getASICProfilingInfo->sKv_b;
847
848	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
849	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
850	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
851	sOutput_FuseValues.sEfuse = sInput_FuseValues;
852
853	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
854			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
855			(uint32_t *)&sOutput_FuseValues);
856
857	if (result)
858		return result;
859
860	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
861	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
862	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
863
864	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
865			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
866
867	/* Decoding the Leakage - No special struct container */
868	/*
869	 * usLkgEuseIndex=56
870	 * ucLkgEfuseBitLSB=6
871	 * ucLkgEfuseLength=10
872	 * ulLkgEncodeLn_MaxDivMin=69077
873	 * ulLkgEncodeMax=1000000
874	 * ulLkgEncodeMin=1000
875	 * ulEfuseLogisticAlpha=13
876	 */
877
878	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
879	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
880	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
881
882	sOutput_FuseValues.sEfuse = sInput_FuseValues;
883
884	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
885			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
886			(uint32_t *)&sOutput_FuseValues);
887
888	if (result)
889		return result;
890
891	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
892	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
893	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
894
895	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
896			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
897	fLkg_FT = fFT_Lkg_V0NORM;
898
899	/*-------------------------------------------
900	 * PART 2 - Grabbing all required values
901	 *-------------------------------------------
902	 */
903	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
904			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
905	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
906			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
907	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
908			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
909	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
910			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
911	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
912			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
913	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
914			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
915	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
916			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
917	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
918			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
919
920	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
921	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
922	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
923
924	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
925
926	fMargin_FMAX_mean = GetScaledFraction(
927		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
928	fMargin_Plat_mean = GetScaledFraction(
929		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
930	fMargin_FMAX_sigma = GetScaledFraction(
931		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
932	fMargin_Plat_sigma = GetScaledFraction(
933		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
934
935	fMargin_DC_sigma = GetScaledFraction(
936		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
937	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
938
939	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
940	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
941	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
942	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
943	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
944
945	fSclk = GetScaledFraction(sclk, 100);
946
947	fV_max = fDivide(GetScaledFraction(
948				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
949	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
950	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
951	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
952	fV_FT = fDivide(GetScaledFraction(
953				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
954	fV_min = fDivide(GetScaledFraction(
955				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
956
957	/*-----------------------
958	 * PART 3
959	 *-----------------------
960	 */
961
962	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
963	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
964	fC_Term = fAdd(fMargin_RO_c,
965			fAdd(fMultiply(fSM_A0, fLkg_FT),
966			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
967			fAdd(fMultiply(fSM_A3, fSclk),
968			fSubtract(fSM_A7, fRO_fused)))));
969
970	fVDDC_base = fSubtract(fRO_fused,
971			fSubtract(fMargin_RO_c,
972					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
973	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
974
975	repeat = fSubtract(fVDDC_base,
976			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
977
978	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
979			fGetSquare(repeat)),
980			fAdd(fMultiply(fMargin_RO_b, repeat),
981			fMargin_RO_c));
982
983	fDC_SCLK = fSubtract(fRO_fused,
984			fSubtract(fRO_DC_margin,
985			fSubtract(fSM_A3,
986			fMultiply(fSM_A2, repeat))));
987	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
988
989	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
990
991	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
992	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
993	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
994	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
995
996	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
997	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
998	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
999
1000	fSclk_margin = fAdd(fMicro_FMAX,
1001			fAdd(fMicro_CR,
1002			fAdd(fMargin_fixed,
1003			fSqrt(fAdd(fSquared_Sigma_FMAX,
1004			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1005	/*
1006	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1007	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1008	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1009	 */
1010
1011	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1012	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1013	fC_Term = fAdd(fRO_DC_margin,
1014			fAdd(fMultiply(fSM_A0, fLkg_FT),
1015			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1016			fAdd(fSclk, fSclk_margin)),
1017			fAdd(fMultiply(fSM_A3,
1018			fAdd(fSclk, fSclk_margin)),
1019			fSubtract(fSM_A7, fRO_fused)))));
1020
1021	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1022
1023	if (GreaterThan(fRoots[0], fRoots[1]))
1024		fEVV_V = fRoots[1];
1025	else
1026		fEVV_V = fRoots[0];
1027
1028	if (GreaterThan(fV_min, fEVV_V))
1029		fEVV_V = fV_min;
1030	else if (GreaterThan(fEVV_V, fV_max))
1031		fEVV_V = fSubtract(fV_max, fStepSize);
1032
1033	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1034
1035	/*-----------------
1036	 * PART 4
1037	 *-----------------
1038	 */
1039
1040	fV_x = fV_min;
1041
1042	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1043		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1044				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1045				fGetSquare(fV_x)), fDerateTDP);
1046
1047		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1048				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1049				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1050		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1051				fKt_Beta_fused, fT_prod)));
1052		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1053				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1054		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1055				fKt_Beta_fused, fT_FT)));
1056
1057		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1058
1059		fTDP_Current = fDivide(fTDP_Power, fV_x);
1060
1061		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1062				ConvertToFraction(10)));
1063
1064		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1065
1066		if (GreaterThan(fV_max, fV_NL) &&
1067			(GreaterThan(fV_NL, fEVV_V) ||
1068			Equal(fV_NL, fEVV_V))) {
1069			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1070
1071			*voltage = (uint16_t)fV_NL.partial.real;
1072			break;
1073		} else
1074			fV_x = fAdd(fV_x, fStepSize);
1075	}
1076
1077	return result;
1078}
1079
1080/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1081 * @param hwmgr	input: pointer to hwManager
1082 * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1083 * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1084 *		which is define in PPTable SCLK/VDDC dependence
1085 *				table associated with this virtual_voltage_Id
1086 * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1087 * @param voltage		       output: real voltage level in unit of mv
1088 */
1089int atomctrl_get_voltage_evv_on_sclk(
1090		struct pp_hwmgr *hwmgr,
1091		uint8_t voltage_type,
1092		uint32_t sclk, uint16_t virtual_voltage_Id,
1093		uint16_t *voltage)
1094{
1095	struct amdgpu_device *adev = hwmgr->adev;
1096	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1097	int result;
1098
1099	get_voltage_info_param_space.ucVoltageType   =
1100		voltage_type;
1101	get_voltage_info_param_space.ucVoltageMode   =
1102		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1103	get_voltage_info_param_space.usVoltageLevel  =
1104		cpu_to_le16(virtual_voltage_Id);
1105	get_voltage_info_param_space.ulSCLKFreq      =
1106		cpu_to_le32(sclk);
1107
1108	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1109			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1110			(uint32_t *)&get_voltage_info_param_space);
1111
1112	*voltage = result ? 0 :
1113			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1114				(&get_voltage_info_param_space))->usVoltageLevel);
1115
1116	return result;
1117}
1118
1119/**
1120 * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1121 * @param hwmgr	input: pointer to hwManager
1122 * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1123 * @param voltage		       output: real voltage level in unit of mv
1124 */
1125int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1126			     uint16_t virtual_voltage_id,
1127			     uint16_t *voltage)
1128{
1129	struct amdgpu_device *adev = hwmgr->adev;
1130	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1131	int result;
1132	int entry_id;
1133
1134	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1135	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1136		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1137			/* found */
1138			break;
1139		}
1140	}
1141
1142	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1143	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1144	        return -EINVAL;
1145	}
1146
1147	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1148	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1149	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1150	get_voltage_info_param_space.ulSCLKFreq =
1151		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1152
1153	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1154			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1155			(uint32_t *)&get_voltage_info_param_space);
1156
1157	if (0 != result)
1158		return result;
1159
1160	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1161				(&get_voltage_info_param_space))->usVoltageLevel);
1162
1163	return result;
1164}
1165
1166/**
1167 * Get the mpll reference clock in 10KHz
1168 */
1169uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1170{
1171	ATOM_COMMON_TABLE_HEADER *fw_info;
1172	uint32_t clock;
1173	u8 frev, crev;
1174	u16 size;
1175
1176	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1177		smu_atom_get_data_table(hwmgr->adev,
1178				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1179				&size, &frev, &crev);
1180
1181	if (fw_info == NULL)
1182		clock = 2700;
1183	else {
1184		if ((fw_info->ucTableFormatRevision == 2) &&
1185			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1186			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1187				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1188			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1189		} else {
1190			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1191				(ATOM_FIRMWARE_INFO *)fw_info;
1192			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1193		}
1194	}
1195
1196	return clock;
1197}
1198
1199/**
1200 * Get the asic internal spread spectrum table
1201 */
1202static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1203{
1204	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1205	u8 frev, crev;
1206	u16 size;
1207
1208	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1209		smu_atom_get_data_table(device,
1210			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1211			&size, &frev, &crev);
1212
1213	return table;
1214}
1215
1216/**
1217 * Get the asic internal spread spectrum assignment
1218 */
1219static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1220		const uint8_t clockSource,
1221		const uint32_t clockSpeed,
1222		pp_atomctrl_internal_ss_info *ssEntry)
1223{
1224	ATOM_ASIC_INTERNAL_SS_INFO *table;
1225	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1226	int entry_found = 0;
1227
1228	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1229
1230	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1231
1232	if (NULL == table)
1233		return -1;
1234
1235	ssInfo = &table->asSpreadSpectrum[0];
1236
1237	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1238		le16_to_cpu(table->sHeader.usStructureSize)) {
1239		if ((clockSource == ssInfo->ucClockIndication) &&
1240			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1241			entry_found = 1;
1242			break;
1243		}
1244
1245		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1246				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1247	}
1248
1249	if (entry_found) {
1250		ssEntry->speed_spectrum_percentage =
1251			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1252		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1253
1254		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1255			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1256			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1257			ssEntry->speed_spectrum_rate /= 100;
1258		}
1259
1260		switch (ssInfo->ucSpreadSpectrumMode) {
1261		case 0:
1262			ssEntry->speed_spectrum_mode =
1263				pp_atomctrl_spread_spectrum_mode_down;
1264			break;
1265		case 1:
1266			ssEntry->speed_spectrum_mode =
1267				pp_atomctrl_spread_spectrum_mode_center;
1268			break;
1269		default:
1270			ssEntry->speed_spectrum_mode =
1271				pp_atomctrl_spread_spectrum_mode_down;
1272			break;
1273		}
1274	}
1275
1276	return entry_found ? 0 : 1;
1277}
1278
1279/**
1280 * Get the memory clock spread spectrum info
1281 */
1282int atomctrl_get_memory_clock_spread_spectrum(
1283		struct pp_hwmgr *hwmgr,
1284		const uint32_t memory_clock,
1285		pp_atomctrl_internal_ss_info *ssInfo)
1286{
1287	return asic_internal_ss_get_ss_asignment(hwmgr,
1288			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1289}
1290/**
1291 * Get the engine clock spread spectrum info
1292 */
1293int atomctrl_get_engine_clock_spread_spectrum(
1294		struct pp_hwmgr *hwmgr,
1295		const uint32_t engine_clock,
1296		pp_atomctrl_internal_ss_info *ssInfo)
1297{
1298	return asic_internal_ss_get_ss_asignment(hwmgr,
1299			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1300}
1301
1302int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1303		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1304{
1305	struct amdgpu_device *adev = hwmgr->adev;
1306	int result;
1307	READ_EFUSE_VALUE_PARAMETER efuse_param;
1308
1309	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1310	efuse_param.sEfuse.ucBitShift = (uint8_t)
1311			(start_index - ((start_index / 32) * 32));
1312	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1313			((end_index - start_index) + 1);
1314
1315	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1316			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1317			(uint32_t *)&efuse_param);
1318	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1319
1320	return result;
1321}
1322
1323int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1324			      uint8_t level)
1325{
1326	struct amdgpu_device *adev = hwmgr->adev;
1327	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1328	int result;
1329
1330	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1331		memory_clock & SET_CLOCK_FREQ_MASK;
1332	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1333		ADJUST_MC_SETTING_PARAM;
1334	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1335
1336	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1337		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1338		(uint32_t *)&memory_clock_parameters);
1339
1340	return result;
1341}
1342
1343int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1344				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1345{
1346	struct amdgpu_device *adev = hwmgr->adev;
1347	int result;
1348	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1349
1350	get_voltage_info_param_space.ucVoltageType = voltage_type;
1351	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1352	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1353	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1354
1355	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1356			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1357			(uint32_t *)&get_voltage_info_param_space);
1358
1359	*voltage = result ? 0 :
1360		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1361
1362	return result;
1363}
1364
1365int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1366{
1367
1368	int i;
1369	u8 frev, crev;
1370	u16 size;
1371
1372	ATOM_SMU_INFO_V2_1 *psmu_info =
1373		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1374			GetIndexIntoMasterTable(DATA, SMU_Info),
1375			&size, &frev, &crev);
1376
1377
1378	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1379		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1380		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1381		table->entry[i].usFcw_pcc =
1382			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1383		table->entry[i].usFcw_trans_upper =
1384			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1385		table->entry[i].usRcw_trans_lower =
1386			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1387	}
1388
1389	return 0;
1390}
1391
1392int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1393				  struct pp_atom_ctrl__avfs_parameters *param)
1394{
1395	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1396
1397	if (param == NULL)
1398		return -EINVAL;
1399
1400	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1401			smu_atom_get_data_table(hwmgr->adev,
1402					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1403					NULL, NULL, NULL);
1404	if (!profile)
1405		return -1;
1406
1407	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1408	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1409	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1410	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1411	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1412	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1413	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1414	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1415	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1416	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1417	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1418	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1419	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1420	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1421	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1422	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1423	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1424	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1425	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1426	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1427	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1428	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1429	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1430	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1431	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1432
1433	return 0;
1434}
1435
1436int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1437				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1438				uint16_t *load_line)
1439{
1440	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1441		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1442
1443	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1444
1445	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1446			"Could not find Voltage Table in BIOS.", return -EINVAL);
1447
1448	voltage_object = atomctrl_lookup_voltage_type_v3
1449		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1450
1451	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1452	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1453	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1454
1455	return 0;
1456}
1457
1458int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1459{
1460	struct amdgpu_device *adev = hwmgr->adev;
1461	SET_VOLTAGE_PS_ALLOCATION allocation;
1462	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1463			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1464	int result;
1465
1466	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1467
1468	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1469			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1470			(uint32_t *)voltage_parameters);
1471
1472	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1473
1474	return result;
1475}
1476
1477int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1478					uint16_t *vddc, uint16_t *vddci,
1479					uint16_t virtual_voltage_id,
1480					uint16_t efuse_voltage_id)
1481{
1482	int i, j;
1483	int ix;
1484	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1485	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1486
1487	*vddc = 0;
1488	*vddci = 0;
1489
1490	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1491
1492	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1493			smu_atom_get_data_table(hwmgr->adev,
1494					ix,
1495					NULL, NULL, NULL);
1496	if (!profile)
1497		return -EINVAL;
1498
1499	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1500		(profile->asHeader.ucTableContentRevision >= 1) &&
1501		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1502		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1503		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1504		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1505		if (profile->ucElbVDDC_Num > 0) {
1506			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1507				if (vddc_id_buf[i] == virtual_voltage_id) {
1508					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1509						if (efuse_voltage_id <= leakage_bin[j]) {
1510							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1511							break;
1512						}
1513					}
1514					break;
1515				}
1516			}
1517		}
1518
1519		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1520		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1521		if (profile->ucElbVDDCI_Num > 0) {
1522			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1523				if (vddci_id_buf[i] == virtual_voltage_id) {
1524					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1525						if (efuse_voltage_id <= leakage_bin[j]) {
1526							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1527							break;
1528						}
1529					}
1530					break;
1531				}
1532			}
1533		}
1534	}
1535
1536	return 0;
1537}
1538
1539void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1540							uint32_t *min_vddc)
1541{
1542	void *profile;
1543
1544	profile = smu_atom_get_data_table(hwmgr->adev,
1545					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1546					NULL, NULL, NULL);
1547
1548	if (profile) {
1549		switch (hwmgr->chip_id) {
1550		case CHIP_TONGA:
1551		case CHIP_FIJI:
1552			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1553			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1554			return;
1555		case CHIP_POLARIS11:
1556		case CHIP_POLARIS10:
1557		case CHIP_POLARIS12:
1558			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1559			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1560			return;
1561		default:
1562			break;
1563		}
1564	}
1565	*max_vddc = 0;
1566	*min_vddc = 0;
1567}
1568