1/*	$NetBSD: if_ural.c,v 1.66 2022/08/20 19:11:08 thorpej Exp $ */
2/*	$FreeBSD: /repoman/r/ncvs/src/sys/dev/usb/if_ural.c,v 1.40 2006/06/02 23:14:40 sam Exp $	*/
3
4/*-
5 * Copyright (c) 2005, 2006
6 *	Damien Bergamini <damien.bergamini@free.fr>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21/*-
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
24 */
25
26#include <sys/cdefs.h>
27__KERNEL_RCSID(0, "$NetBSD: if_ural.c,v 1.66 2022/08/20 19:11:08 thorpej Exp $");
28
29#ifdef _KERNEL_OPT
30#include "opt_usb.h"
31#endif
32
33#include <sys/param.h>
34#include <sys/sockio.h>
35#include <sys/sysctl.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/socket.h>
39#include <sys/systm.h>
40#include <sys/conf.h>
41#include <sys/device.h>
42
43#include <sys/bus.h>
44#include <machine/endian.h>
45#include <sys/intr.h>
46
47#include <net/bpf.h>
48#include <net/if.h>
49#include <net/if_arp.h>
50#include <net/if_dl.h>
51#include <net/if_ether.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54
55#include <netinet/in.h>
56#include <netinet/in_systm.h>
57#include <netinet/in_var.h>
58#include <netinet/ip.h>
59
60#include <net80211/ieee80211_netbsd.h>
61#include <net80211/ieee80211_var.h>
62#include <net80211/ieee80211_amrr.h>
63#include <net80211/ieee80211_radiotap.h>
64
65#include <dev/usb/usb.h>
66#include <dev/usb/usbdi.h>
67#include <dev/usb/usbdi_util.h>
68#include <dev/usb/usbdevs.h>
69
70#include <dev/usb/if_uralreg.h>
71#include <dev/usb/if_uralvar.h>
72
73#ifdef URAL_DEBUG
74#define DPRINTF(x)	do { if (ural_debug) printf x; } while (0)
75#define DPRINTFN(n, x)	do { if (ural_debug >= (n)) printf x; } while (0)
76int ural_debug = 0;
77#else
78#define DPRINTF(x)
79#define DPRINTFN(n, x)
80#endif
81
82/* various supported device vendors/products */
83static const struct usb_devno ural_devs[] = {
84	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_ASUSTEK_WL167G },
85	{ USB_VENDOR_ASUSTEK,		USB_PRODUCT_RALINK_RT2570 },
86	{ USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D7050 },
87	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54G },
88	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_WUSB54GP },
89	{ USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_HU200TS },
90	{ USB_VENDOR_CONCEPTRONIC,	USB_PRODUCT_CONCEPTRONIC_C54RU },
91	{ USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DWLG122 },
92	{ USB_VENDOR_GIGABYTE,		USB_PRODUCT_GIGABYTE_GNWBKG },
93	{ USB_VENDOR_GUILLEMOT,		USB_PRODUCT_GUILLEMOT_HWGUSB254 },
94	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54 },
95	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54AI },
96	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_KG54YB },
97	{ USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_NINWIFI },
98	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6861 },
99	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6865 },
100	{ USB_VENDOR_MSI,		USB_PRODUCT_MSI_MS6869 },
101	{ USB_VENDOR_NOVATECH,		USB_PRODUCT_NOVATECH_NV902W },
102	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570 },
103	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_2 },
104	{ USB_VENDOR_RALINK,		USB_PRODUCT_RALINK_RT2570_3 },
105	{ USB_VENDOR_SMC,		USB_PRODUCT_SMC_2862WG },
106	{ USB_VENDOR_SPHAIRON,		USB_PRODUCT_SPHAIRON_UB801R },
107	{ USB_VENDOR_SURECOM,		USB_PRODUCT_SURECOM_EP9001G },
108	{ USB_VENDOR_VTECH,		USB_PRODUCT_VTECH_RT2570 },
109	{ USB_VENDOR_ZINWELL,		USB_PRODUCT_ZINWELL_ZWXG261 },
110};
111
112Static int		ural_alloc_tx_list(struct ural_softc *);
113Static void		ural_free_tx_list(struct ural_softc *);
114Static int		ural_alloc_rx_list(struct ural_softc *);
115Static void		ural_free_rx_list(struct ural_softc *);
116Static int		ural_media_change(struct ifnet *);
117Static void		ural_next_scan(void *);
118Static void		ural_task(void *);
119Static int		ural_newstate(struct ieee80211com *,
120			    enum ieee80211_state, int);
121Static int		ural_rxrate(struct ural_rx_desc *);
122Static void		ural_txeof(struct usbd_xfer *, void *,
123			    usbd_status);
124Static void		ural_rxeof(struct usbd_xfer *, void *,
125			    usbd_status);
126Static int		ural_ack_rate(struct ieee80211com *, int);
127Static uint16_t		ural_txtime(int, int, uint32_t);
128Static uint8_t		ural_plcp_signal(int);
129Static void		ural_setup_tx_desc(struct ural_softc *,
130			    struct ural_tx_desc *, uint32_t, int, int);
131Static int		ural_tx_bcn(struct ural_softc *, struct mbuf *,
132			    struct ieee80211_node *);
133Static int		ural_tx_mgt(struct ural_softc *, struct mbuf *,
134			    struct ieee80211_node *);
135Static int		ural_tx_data(struct ural_softc *, struct mbuf *,
136			    struct ieee80211_node *);
137Static void		ural_start(struct ifnet *);
138Static void		ural_watchdog(struct ifnet *);
139Static int		ural_reset(struct ifnet *);
140Static int		ural_ioctl(struct ifnet *, u_long, void *);
141Static void		ural_set_testmode(struct ural_softc *);
142Static void		ural_eeprom_read(struct ural_softc *, uint16_t, void *,
143			    int);
144Static uint16_t		ural_read(struct ural_softc *, uint16_t);
145Static void		ural_read_multi(struct ural_softc *, uint16_t, void *,
146			    int);
147Static void		ural_write(struct ural_softc *, uint16_t, uint16_t);
148Static void		ural_write_multi(struct ural_softc *, uint16_t, void *,
149			    int);
150Static void		ural_bbp_write(struct ural_softc *, uint8_t, uint8_t);
151Static uint8_t		ural_bbp_read(struct ural_softc *, uint8_t);
152Static void		ural_rf_write(struct ural_softc *, uint8_t, uint32_t);
153Static void		ural_set_chan(struct ural_softc *,
154			    struct ieee80211_channel *);
155Static void		ural_disable_rf_tune(struct ural_softc *);
156Static void		ural_enable_tsf_sync(struct ural_softc *);
157Static void		ural_update_slot(struct ifnet *);
158Static void		ural_set_txpreamble(struct ural_softc *);
159Static void		ural_set_basicrates(struct ural_softc *);
160Static void		ural_set_bssid(struct ural_softc *, uint8_t *);
161Static void		ural_set_macaddr(struct ural_softc *, uint8_t *);
162Static void		ural_update_promisc(struct ural_softc *);
163Static const char	*ural_get_rf(int);
164Static void		ural_read_eeprom(struct ural_softc *);
165Static int		ural_bbp_init(struct ural_softc *);
166Static void		ural_set_txantenna(struct ural_softc *, int);
167Static void		ural_set_rxantenna(struct ural_softc *, int);
168Static int		ural_init(struct ifnet *);
169Static void		ural_stop(struct ifnet *, int);
170Static void		ural_amrr_start(struct ural_softc *,
171			    struct ieee80211_node *);
172Static void		ural_amrr_timeout(void *);
173Static void		ural_amrr_update(struct usbd_xfer *, void *,
174			    usbd_status status);
175
176/*
177 * Default values for MAC registers; values taken from the reference driver.
178 */
179static const struct {
180	uint16_t	reg;
181	uint16_t	val;
182} ural_def_mac[] = {
183	{ RAL_TXRX_CSR5,  0x8c8d },
184	{ RAL_TXRX_CSR6,  0x8b8a },
185	{ RAL_TXRX_CSR7,  0x8687 },
186	{ RAL_TXRX_CSR8,  0x0085 },
187	{ RAL_MAC_CSR13,  0x1111 },
188	{ RAL_MAC_CSR14,  0x1e11 },
189	{ RAL_TXRX_CSR21, 0xe78f },
190	{ RAL_MAC_CSR9,   0xff1d },
191	{ RAL_MAC_CSR11,  0x0002 },
192	{ RAL_MAC_CSR22,  0x0053 },
193	{ RAL_MAC_CSR15,  0x0000 },
194	{ RAL_MAC_CSR8,   0x0780 },
195	{ RAL_TXRX_CSR19, 0x0000 },
196	{ RAL_TXRX_CSR18, 0x005a },
197	{ RAL_PHY_CSR2,   0x0000 },
198	{ RAL_TXRX_CSR0,  0x1ec0 },
199	{ RAL_PHY_CSR4,   0x000f }
200};
201
202/*
203 * Default values for BBP registers; values taken from the reference driver.
204 */
205static const struct {
206	uint8_t	reg;
207	uint8_t	val;
208} ural_def_bbp[] = {
209	{  3, 0x02 },
210	{  4, 0x19 },
211	{ 14, 0x1c },
212	{ 15, 0x30 },
213	{ 16, 0xac },
214	{ 17, 0x48 },
215	{ 18, 0x18 },
216	{ 19, 0xff },
217	{ 20, 0x1e },
218	{ 21, 0x08 },
219	{ 22, 0x08 },
220	{ 23, 0x08 },
221	{ 24, 0x80 },
222	{ 25, 0x50 },
223	{ 26, 0x08 },
224	{ 27, 0x23 },
225	{ 30, 0x10 },
226	{ 31, 0x2b },
227	{ 32, 0xb9 },
228	{ 34, 0x12 },
229	{ 35, 0x50 },
230	{ 39, 0xc4 },
231	{ 40, 0x02 },
232	{ 41, 0x60 },
233	{ 53, 0x10 },
234	{ 54, 0x18 },
235	{ 56, 0x08 },
236	{ 57, 0x10 },
237	{ 58, 0x08 },
238	{ 61, 0x60 },
239	{ 62, 0x10 },
240	{ 75, 0xff }
241};
242
243/*
244 * Default values for RF register R2 indexed by channel numbers.
245 */
246static const uint32_t ural_rf2522_r2[] = {
247	0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
248	0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
249};
250
251static const uint32_t ural_rf2523_r2[] = {
252	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
253	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
254};
255
256static const uint32_t ural_rf2524_r2[] = {
257	0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
258	0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
259};
260
261static const uint32_t ural_rf2525_r2[] = {
262	0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
263	0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
264};
265
266static const uint32_t ural_rf2525_hi_r2[] = {
267	0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
268	0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
269};
270
271static const uint32_t ural_rf2525e_r2[] = {
272	0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
273	0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
274};
275
276static const uint32_t ural_rf2526_hi_r2[] = {
277	0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
278	0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
279};
280
281static const uint32_t ural_rf2526_r2[] = {
282	0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
283	0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
284};
285
286/*
287 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
288 * values taken from the reference driver.
289 */
290static const struct {
291	uint8_t		chan;
292	uint32_t	r1;
293	uint32_t	r2;
294	uint32_t	r4;
295} ural_rf5222[] = {
296	{   1, 0x08808, 0x0044d, 0x00282 },
297	{   2, 0x08808, 0x0044e, 0x00282 },
298	{   3, 0x08808, 0x0044f, 0x00282 },
299	{   4, 0x08808, 0x00460, 0x00282 },
300	{   5, 0x08808, 0x00461, 0x00282 },
301	{   6, 0x08808, 0x00462, 0x00282 },
302	{   7, 0x08808, 0x00463, 0x00282 },
303	{   8, 0x08808, 0x00464, 0x00282 },
304	{   9, 0x08808, 0x00465, 0x00282 },
305	{  10, 0x08808, 0x00466, 0x00282 },
306	{  11, 0x08808, 0x00467, 0x00282 },
307	{  12, 0x08808, 0x00468, 0x00282 },
308	{  13, 0x08808, 0x00469, 0x00282 },
309	{  14, 0x08808, 0x0046b, 0x00286 },
310
311	{  36, 0x08804, 0x06225, 0x00287 },
312	{  40, 0x08804, 0x06226, 0x00287 },
313	{  44, 0x08804, 0x06227, 0x00287 },
314	{  48, 0x08804, 0x06228, 0x00287 },
315	{  52, 0x08804, 0x06229, 0x00287 },
316	{  56, 0x08804, 0x0622a, 0x00287 },
317	{  60, 0x08804, 0x0622b, 0x00287 },
318	{  64, 0x08804, 0x0622c, 0x00287 },
319
320	{ 100, 0x08804, 0x02200, 0x00283 },
321	{ 104, 0x08804, 0x02201, 0x00283 },
322	{ 108, 0x08804, 0x02202, 0x00283 },
323	{ 112, 0x08804, 0x02203, 0x00283 },
324	{ 116, 0x08804, 0x02204, 0x00283 },
325	{ 120, 0x08804, 0x02205, 0x00283 },
326	{ 124, 0x08804, 0x02206, 0x00283 },
327	{ 128, 0x08804, 0x02207, 0x00283 },
328	{ 132, 0x08804, 0x02208, 0x00283 },
329	{ 136, 0x08804, 0x02209, 0x00283 },
330	{ 140, 0x08804, 0x0220a, 0x00283 },
331
332	{ 149, 0x08808, 0x02429, 0x00281 },
333	{ 153, 0x08808, 0x0242b, 0x00281 },
334	{ 157, 0x08808, 0x0242d, 0x00281 },
335	{ 161, 0x08808, 0x0242f, 0x00281 }
336};
337
338static int	ural_match(device_t, cfdata_t, void *);
339static void	ural_attach(device_t, device_t, void *);
340static int	ural_detach(device_t, int);
341static int	ural_activate(device_t, enum devact);
342
343CFATTACH_DECL_NEW(ural, sizeof(struct ural_softc), ural_match, ural_attach,
344    ural_detach, ural_activate);
345
346static int
347ural_match(device_t parent, cfdata_t match, void *aux)
348{
349	struct usb_attach_arg *uaa = aux;
350
351	return (usb_lookup(ural_devs, uaa->uaa_vendor, uaa->uaa_product) != NULL) ?
352	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
353}
354
355static void
356ural_attach(device_t parent, device_t self, void *aux)
357{
358	struct ural_softc *sc = device_private(self);
359	struct usb_attach_arg *uaa = aux;
360	struct ieee80211com *ic = &sc->sc_ic;
361	struct ifnet *ifp = &sc->sc_if;
362	usb_interface_descriptor_t *id;
363	usb_endpoint_descriptor_t *ed;
364	usbd_status error;
365	char *devinfop;
366	int i;
367
368	sc->sc_dev = self;
369	sc->sc_udev = uaa->uaa_device;
370	sc->sc_init_state = URAL_INIT_NONE;
371
372	aprint_naive("\n");
373	aprint_normal("\n");
374
375	devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
376	aprint_normal_dev(self, "%s\n", devinfop);
377	usbd_devinfo_free(devinfop);
378
379	error = usbd_set_config_no(sc->sc_udev, RAL_CONFIG_NO, 0);
380	if (error != 0) {
381		aprint_error_dev(self, "failed to set configuration"
382		    ", err=%s\n", usbd_errstr(error));
383		return;
384	}
385
386	/* get the first interface handle */
387	error = usbd_device2interface_handle(sc->sc_udev, RAL_IFACE_INDEX,
388	    &sc->sc_iface);
389	if (error != 0) {
390		aprint_error_dev(self, "could not get interface handle\n");
391		return;
392	}
393
394	/*
395	 * Find endpoints.
396	 */
397	id = usbd_get_interface_descriptor(sc->sc_iface);
398
399	sc->sc_rx_no = sc->sc_tx_no = -1;
400	for (i = 0; i < id->bNumEndpoints; i++) {
401		ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
402		if (ed == NULL) {
403			aprint_error_dev(self,
404			    "no endpoint descriptor for %d\n", i);
405			return;
406		}
407
408		if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
409		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
410			sc->sc_rx_no = ed->bEndpointAddress;
411		else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
412		    UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
413			sc->sc_tx_no = ed->bEndpointAddress;
414	}
415	if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
416		aprint_error_dev(self, "missing endpoint\n");
417		return;
418	}
419
420	usb_init_task(&sc->sc_task, ural_task, sc, 0);
421	callout_init(&sc->sc_scan_ch, 0);
422	sc->amrr.amrr_min_success_threshold = 1;
423	sc->amrr.amrr_max_success_threshold = 15;
424	callout_init(&sc->sc_amrr_ch, 0);
425
426	/* retrieve RT2570 rev. no */
427	sc->asic_rev = ural_read(sc, RAL_MAC_CSR0);
428
429	/* retrieve MAC address and various other things from EEPROM */
430	ural_read_eeprom(sc);
431
432	aprint_normal_dev(self, "MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
433	    sc->asic_rev, ural_get_rf(sc->rf_rev));
434
435	ifp->if_softc = sc;
436	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
437	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
438	ifp->if_init = ural_init;
439	ifp->if_ioctl = ural_ioctl;
440	ifp->if_start = ural_start;
441	ifp->if_watchdog = ural_watchdog;
442	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
443	IFQ_SET_READY(&ifp->if_snd);
444
445	ic->ic_ifp = ifp;
446	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
447	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
448	ic->ic_state = IEEE80211_S_INIT;
449
450	/* set device capabilities */
451	ic->ic_caps =
452	    IEEE80211_C_IBSS |		/* IBSS mode supported */
453	    IEEE80211_C_MONITOR |	/* monitor mode supported */
454	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
455	    IEEE80211_C_TXPMGT |	/* tx power management */
456	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
457	    IEEE80211_C_SHSLOT |	/* short slot time supported */
458	    IEEE80211_C_WPA;		/* 802.11i */
459
460	if (sc->rf_rev == RAL_RF_5222) {
461		/* set supported .11a rates */
462		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
463
464		/* set supported .11a channels */
465		for (i = 36; i <= 64; i += 4) {
466			ic->ic_channels[i].ic_freq =
467			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
468			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
469		}
470		for (i = 100; i <= 140; i += 4) {
471			ic->ic_channels[i].ic_freq =
472			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
473			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
474		}
475		for (i = 149; i <= 161; i += 4) {
476			ic->ic_channels[i].ic_freq =
477			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
478			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
479		}
480	}
481
482	/* set supported .11b and .11g rates */
483	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
484	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
485
486	/* set supported .11b and .11g channels (1 through 14) */
487	for (i = 1; i <= 14; i++) {
488		ic->ic_channels[i].ic_freq =
489		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
490		ic->ic_channels[i].ic_flags =
491		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
492		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
493	}
494
495	if_attach(ifp);
496	ieee80211_ifattach(ic);
497	ic->ic_reset = ural_reset;
498
499	/* override state transition machine */
500	sc->sc_newstate = ic->ic_newstate;
501	ic->ic_newstate = ural_newstate;
502
503	/* XXX media locking needs revisiting */
504	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
505	ieee80211_media_init_with_lock(ic,
506	    ural_media_change, ieee80211_media_status, &sc->sc_media_mtx);
507
508	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
509	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
510
511	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
512	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
513	sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
514
515	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
516	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
517	sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
518
519	ieee80211_announce(ic);
520
521	sc->sc_init_state = URAL_INIT_INITED;
522
523	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
524
525	if (!pmf_device_register(self, NULL, NULL))
526		aprint_error_dev(self, "couldn't establish power handler\n");
527
528	return;
529}
530
531static int
532ural_detach(device_t self, int flags)
533{
534	struct ural_softc *sc = device_private(self);
535	struct ieee80211com *ic = &sc->sc_ic;
536	struct ifnet *ifp = &sc->sc_if;
537	int s;
538
539	if (sc->sc_init_state < URAL_INIT_INITED)
540		return 0;
541
542	pmf_device_deregister(self);
543
544	s = splusb();
545
546	ural_stop(ifp, 1);
547	callout_halt(&sc->sc_scan_ch, NULL);
548	callout_halt(&sc->sc_amrr_ch, NULL);
549	usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
550
551	bpf_detach(ifp);
552	ieee80211_ifdetach(ic);
553	if_detach(ifp);
554
555	splx(s);
556
557	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
558
559	return 0;
560}
561
562Static int
563ural_alloc_tx_list(struct ural_softc *sc)
564{
565	struct ural_tx_data *data;
566	int i, error;
567
568	sc->tx_queued = 0;
569
570	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
571		data = &sc->tx_data[i];
572
573		data->sc = sc;
574		error = usbd_create_xfer(sc->sc_tx_pipeh,
575		    RAL_TX_DESC_SIZE + MCLBYTES, USBD_FORCE_SHORT_XFER, 0,
576		    &data->xfer);
577		if (error) {
578			printf("%s: could not allocate tx xfer\n",
579			    device_xname(sc->sc_dev));
580			goto fail;
581		}
582
583		data->buf = usbd_get_buffer(data->xfer);
584	}
585
586	return 0;
587
588fail:	ural_free_tx_list(sc);
589	return error;
590}
591
592Static void
593ural_free_tx_list(struct ural_softc *sc)
594{
595	struct ural_tx_data *data;
596	int i;
597
598	for (i = 0; i < RAL_TX_LIST_COUNT; i++) {
599		data = &sc->tx_data[i];
600
601		if (data->xfer != NULL) {
602			usbd_destroy_xfer(data->xfer);
603			data->xfer = NULL;
604		}
605
606		if (data->ni != NULL) {
607			ieee80211_free_node(data->ni);
608			data->ni = NULL;
609		}
610	}
611}
612
613Static int
614ural_alloc_rx_list(struct ural_softc *sc)
615{
616	struct ural_rx_data *data;
617	int i, error;
618
619	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
620		data = &sc->rx_data[i];
621
622		data->sc = sc;
623
624		error = usbd_create_xfer(sc->sc_rx_pipeh, MCLBYTES,
625		    0, 0, &data->xfer);
626		if (error) {
627			printf("%s: could not allocate rx xfer\n",
628			    device_xname(sc->sc_dev));
629			goto fail;
630		}
631
632		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
633		if (data->m == NULL) {
634			printf("%s: could not allocate rx mbuf\n",
635			    device_xname(sc->sc_dev));
636			error = ENOMEM;
637			goto fail;
638		}
639
640		MCLGET(data->m, M_DONTWAIT);
641		if (!(data->m->m_flags & M_EXT)) {
642			printf("%s: could not allocate rx mbuf cluster\n",
643			    device_xname(sc->sc_dev));
644			error = ENOMEM;
645			goto fail;
646		}
647
648		data->buf = mtod(data->m, uint8_t *);
649	}
650
651	return 0;
652
653fail:	ural_free_rx_list(sc);
654	return error;
655}
656
657Static void
658ural_free_rx_list(struct ural_softc *sc)
659{
660	struct ural_rx_data *data;
661	int i;
662
663	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
664		data = &sc->rx_data[i];
665
666		if (data->xfer != NULL) {
667			usbd_destroy_xfer(data->xfer);
668			data->xfer = NULL;
669		}
670
671		if (data->m != NULL) {
672			m_freem(data->m);
673			data->m = NULL;
674		}
675	}
676}
677
678Static int
679ural_media_change(struct ifnet *ifp)
680{
681	int error;
682
683	error = ieee80211_media_change(ifp);
684	if (error != ENETRESET)
685		return error;
686
687	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
688		ural_init(ifp);
689
690	return 0;
691}
692
693/*
694 * This function is called periodically (every 200ms) during scanning to
695 * switch from one channel to another.
696 */
697Static void
698ural_next_scan(void *arg)
699{
700	struct ural_softc *sc = arg;
701	struct ieee80211com *ic = &sc->sc_ic;
702
703	if (ic->ic_state == IEEE80211_S_SCAN)
704		ieee80211_next_scan(ic);
705}
706
707Static void
708ural_task(void *arg)
709{
710	struct ural_softc *sc = arg;
711	struct ieee80211com *ic = &sc->sc_ic;
712	enum ieee80211_state ostate;
713	struct ieee80211_node *ni;
714	struct mbuf *m;
715
716	ostate = ic->ic_state;
717
718	switch (sc->sc_state) {
719	case IEEE80211_S_INIT:
720		if (ostate == IEEE80211_S_RUN) {
721			/* abort TSF synchronization */
722			ural_write(sc, RAL_TXRX_CSR19, 0);
723
724			/* force tx led to stop blinking */
725			ural_write(sc, RAL_MAC_CSR20, 0);
726		}
727		break;
728
729	case IEEE80211_S_SCAN:
730		ural_set_chan(sc, ic->ic_curchan);
731		callout_reset(&sc->sc_scan_ch, hz / 5, ural_next_scan, sc);
732		break;
733
734	case IEEE80211_S_AUTH:
735		ural_set_chan(sc, ic->ic_curchan);
736		break;
737
738	case IEEE80211_S_ASSOC:
739		ural_set_chan(sc, ic->ic_curchan);
740		break;
741
742	case IEEE80211_S_RUN:
743		ural_set_chan(sc, ic->ic_curchan);
744
745		ni = ic->ic_bss;
746
747		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
748			ural_update_slot(ic->ic_ifp);
749			ural_set_txpreamble(sc);
750			ural_set_basicrates(sc);
751			ural_set_bssid(sc, ni->ni_bssid);
752		}
753
754		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
755		    ic->ic_opmode == IEEE80211_M_IBSS) {
756			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
757			if (m == NULL) {
758				printf("%s: could not allocate beacon\n",
759				    device_xname(sc->sc_dev));
760				return;
761			}
762
763			if (ural_tx_bcn(sc, m, ni) != 0) {
764				m_freem(m);
765				printf("%s: could not send beacon\n",
766				    device_xname(sc->sc_dev));
767				return;
768			}
769
770			/* beacon is no longer needed */
771			m_freem(m);
772		}
773
774		/* make tx led blink on tx (controlled by ASIC) */
775		ural_write(sc, RAL_MAC_CSR20, 1);
776
777		if (ic->ic_opmode != IEEE80211_M_MONITOR)
778			ural_enable_tsf_sync(sc);
779
780		/* enable automatic rate adaptation in STA mode */
781		if (ic->ic_opmode == IEEE80211_M_STA &&
782		    ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE)
783			ural_amrr_start(sc, ni);
784
785		break;
786	}
787
788	sc->sc_newstate(ic, sc->sc_state, -1);
789}
790
791Static int
792ural_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
793    int arg)
794{
795	struct ural_softc *sc = ic->ic_ifp->if_softc;
796
797	/*
798	 * XXXSMP: This does not wait for the task, if it is in flight,
799	 * to complete.  If this code works at all, it must rely on the
800	 * kernel lock to serialize with the USB task thread.
801	 */
802	usb_rem_task(sc->sc_udev, &sc->sc_task);
803	callout_stop(&sc->sc_scan_ch);
804	callout_stop(&sc->sc_amrr_ch);
805
806	/* do it in a process context */
807	sc->sc_state = nstate;
808	usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
809
810	return 0;
811}
812
813/* quickly determine if a given rate is CCK or OFDM */
814#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
815
816#define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
817#define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
818
819#define RAL_SIFS		10	/* us */
820
821#define RAL_RXTX_TURNAROUND	5	/* us */
822
823/*
824 * This function is only used by the Rx radiotap code.
825 */
826Static int
827ural_rxrate(struct ural_rx_desc *desc)
828{
829	if (le32toh(desc->flags) & RAL_RX_OFDM) {
830		/* reverse function of ural_plcp_signal */
831		switch (desc->rate) {
832		case 0xb:	return 12;
833		case 0xf:	return 18;
834		case 0xa:	return 24;
835		case 0xe:	return 36;
836		case 0x9:	return 48;
837		case 0xd:	return 72;
838		case 0x8:	return 96;
839		case 0xc:	return 108;
840		}
841	} else {
842		if (desc->rate == 10)
843			return 2;
844		if (desc->rate == 20)
845			return 4;
846		if (desc->rate == 55)
847			return 11;
848		if (desc->rate == 110)
849			return 22;
850	}
851	return 2;	/* should not get there */
852}
853
854Static void
855ural_txeof(struct usbd_xfer *xfer, void * priv,
856    usbd_status status)
857{
858	struct ural_tx_data *data = priv;
859	struct ural_softc *sc = data->sc;
860	struct ifnet *ifp = &sc->sc_if;
861	int s;
862
863	if (status != USBD_NORMAL_COMPLETION) {
864		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
865			return;
866
867		printf("%s: could not transmit buffer: %s\n",
868		    device_xname(sc->sc_dev), usbd_errstr(status));
869
870		if (status == USBD_STALLED)
871			usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
872
873		if_statinc(ifp, if_oerrors);
874		return;
875	}
876
877	s = splnet();
878
879	m_freem(data->m);
880	data->m = NULL;
881	ieee80211_free_node(data->ni);
882	data->ni = NULL;
883
884	sc->tx_queued--;
885	if_statinc(ifp, if_opackets);
886
887	DPRINTFN(10, ("tx done\n"));
888
889	sc->sc_tx_timer = 0;
890	ifp->if_flags &= ~IFF_OACTIVE;
891	ural_start(ifp);
892
893	splx(s);
894}
895
896Static void
897ural_rxeof(struct usbd_xfer *xfer, void * priv, usbd_status status)
898{
899	struct ural_rx_data *data = priv;
900	struct ural_softc *sc = data->sc;
901	struct ieee80211com *ic = &sc->sc_ic;
902	struct ifnet *ifp = &sc->sc_if;
903	struct ural_rx_desc *desc;
904	struct ieee80211_frame *wh;
905	struct ieee80211_node *ni;
906	struct mbuf *mnew, *m;
907	int s, len;
908
909	if (status != USBD_NORMAL_COMPLETION) {
910		if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
911			return;
912
913		if (status == USBD_STALLED)
914			usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
915		goto skip;
916	}
917
918	usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
919
920	if (len < RAL_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
921		DPRINTF(("%s: xfer too short %d\n", device_xname(sc->sc_dev),
922		    len));
923		if_statinc(ifp, if_ierrors);
924		goto skip;
925	}
926
927	/* rx descriptor is located at the end */
928	desc = (struct ural_rx_desc *)(data->buf + len - RAL_RX_DESC_SIZE);
929
930	if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
931	    (le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
932		/*
933		 * This should not happen since we did not request to receive
934		 * those frames when we filled RAL_TXRX_CSR2.
935		 */
936		DPRINTFN(5, ("PHY or CRC error\n"));
937		if_statinc(ifp, if_ierrors);
938		goto skip;
939	}
940
941	MGETHDR(mnew, M_DONTWAIT, MT_DATA);
942	if (mnew == NULL) {
943		if_statinc(ifp, if_ierrors);
944		goto skip;
945	}
946
947	MCLGET(mnew, M_DONTWAIT);
948	if (!(mnew->m_flags & M_EXT)) {
949		if_statinc(ifp, if_ierrors);
950		m_freem(mnew);
951		goto skip;
952	}
953
954	m = data->m;
955	data->m = mnew;
956	data->buf = mtod(data->m, uint8_t *);
957
958	/* finalize mbuf */
959	m_set_rcvif(m, ifp);
960	m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
961	m->m_flags |= M_HASFCS;	/* h/w leaves FCS */
962
963	s = splnet();
964
965	if (sc->sc_drvbpf != NULL) {
966		struct ural_rx_radiotap_header *tap = &sc->sc_rxtap;
967
968		tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
969		tap->wr_rate = ural_rxrate(desc);
970		tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
971		tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
972		tap->wr_antenna = sc->rx_ant;
973		tap->wr_antsignal = desc->rssi;
974
975		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
976	}
977
978	wh = mtod(m, struct ieee80211_frame *);
979	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
980
981	/* send the frame to the 802.11 layer */
982	ieee80211_input(ic, m, ni, desc->rssi, 0);
983
984	/* node is no longer needed */
985	ieee80211_free_node(ni);
986
987	splx(s);
988
989	DPRINTFN(15, ("rx done\n"));
990
991skip:	/* setup a new transfer */
992	usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
993	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
994	usbd_transfer(xfer);
995}
996
997/*
998 * Return the expected ack rate for a frame transmitted at rate `rate'.
999 * XXX: this should depend on the destination node basic rate set.
1000 */
1001Static int
1002ural_ack_rate(struct ieee80211com *ic, int rate)
1003{
1004	switch (rate) {
1005	/* CCK rates */
1006	case 2:
1007		return 2;
1008	case 4:
1009	case 11:
1010	case 22:
1011		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1012
1013	/* OFDM rates */
1014	case 12:
1015	case 18:
1016		return 12;
1017	case 24:
1018	case 36:
1019		return 24;
1020	case 48:
1021	case 72:
1022	case 96:
1023	case 108:
1024		return 48;
1025	}
1026
1027	/* default to 1Mbps */
1028	return 2;
1029}
1030
1031/*
1032 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1033 * The function automatically determines the operating mode depending on the
1034 * given rate. `flags' indicates whether short preamble is in use or not.
1035 */
1036Static uint16_t
1037ural_txtime(int len, int rate, uint32_t flags)
1038{
1039	uint16_t txtime;
1040
1041	if (RAL_RATE_IS_OFDM(rate)) {
1042		/* IEEE Std 802.11g-2003, pp. 37 */
1043		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1044		txtime = 16 + 4 + 4 * txtime + 6;
1045	} else {
1046		/* IEEE Std 802.11b-1999, pp. 28 */
1047		txtime = (16 * len + rate - 1) / rate;
1048		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1049			txtime +=  72 + 24;
1050		else
1051			txtime += 144 + 48;
1052	}
1053	return txtime;
1054}
1055
1056Static uint8_t
1057ural_plcp_signal(int rate)
1058{
1059	switch (rate) {
1060	/* CCK rates (returned values are device-dependent) */
1061	case 2:		return 0x0;
1062	case 4:		return 0x1;
1063	case 11:	return 0x2;
1064	case 22:	return 0x3;
1065
1066	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1067	case 12:	return 0xb;
1068	case 18:	return 0xf;
1069	case 24:	return 0xa;
1070	case 36:	return 0xe;
1071	case 48:	return 0x9;
1072	case 72:	return 0xd;
1073	case 96:	return 0x8;
1074	case 108:	return 0xc;
1075
1076	/* unsupported rates (should not get there) */
1077	default:	return 0xff;
1078	}
1079}
1080
1081Static void
1082ural_setup_tx_desc(struct ural_softc *sc, struct ural_tx_desc *desc,
1083    uint32_t flags, int len, int rate)
1084{
1085	struct ieee80211com *ic = &sc->sc_ic;
1086	uint16_t plcp_length;
1087	int remainder;
1088
1089	desc->flags = htole32(flags);
1090	desc->flags |= htole32(RAL_TX_NEWSEQ);
1091	desc->flags |= htole32(len << 16);
1092
1093	desc->wme = htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1094	desc->wme |= htole16(RAL_IVOFFSET(sizeof(struct ieee80211_frame)));
1095
1096	/* setup PLCP fields */
1097	desc->plcp_signal  = ural_plcp_signal(rate);
1098	desc->plcp_service = 4;
1099
1100	len += IEEE80211_CRC_LEN;
1101	if (RAL_RATE_IS_OFDM(rate)) {
1102		desc->flags |= htole32(RAL_TX_OFDM);
1103
1104		plcp_length = len & 0xfff;
1105		desc->plcp_length_hi = plcp_length >> 6;
1106		desc->plcp_length_lo = plcp_length & 0x3f;
1107	} else {
1108		plcp_length = (16 * len + rate - 1) / rate;
1109		if (rate == 22) {
1110			remainder = (16 * len) % 22;
1111			if (remainder != 0 && remainder < 7)
1112				desc->plcp_service |= RAL_PLCP_LENGEXT;
1113		}
1114		desc->plcp_length_hi = plcp_length >> 8;
1115		desc->plcp_length_lo = plcp_length & 0xff;
1116
1117		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1118			desc->plcp_signal |= 0x08;
1119	}
1120
1121	desc->iv = 0;
1122	desc->eiv = 0;
1123}
1124
1125#define RAL_TX_TIMEOUT	5000
1126
1127Static int
1128ural_tx_bcn(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1129{
1130	struct ural_tx_desc *desc;
1131	struct usbd_xfer *xfer;
1132	uint8_t cmd = 0;
1133	usbd_status error;
1134	uint8_t *buf;
1135	int xferlen, rate;
1136
1137	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1138
1139	/* xfer length needs to be a multiple of two! */
1140	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1141
1142	error = usbd_create_xfer(sc->sc_tx_pipeh, xferlen,
1143	    USBD_FORCE_SHORT_XFER, 0, &xfer);
1144	if (error)
1145		return error;
1146
1147	buf = usbd_get_buffer(xfer);
1148
1149	usbd_setup_xfer(xfer, NULL, &cmd, sizeof(cmd), USBD_FORCE_SHORT_XFER,
1150	    RAL_TX_TIMEOUT, NULL);
1151
1152	error = usbd_sync_transfer(xfer);
1153	if (error != 0) {
1154		usbd_destroy_xfer(xfer);
1155		return error;
1156	}
1157
1158	desc = (struct ural_tx_desc *)buf;
1159
1160	m_copydata(m0, 0, m0->m_pkthdr.len, buf + RAL_TX_DESC_SIZE);
1161	ural_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
1162	    m0->m_pkthdr.len, rate);
1163
1164	DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1165	    m0->m_pkthdr.len, rate, xferlen));
1166
1167	usbd_setup_xfer(xfer, NULL, buf, xferlen, USBD_FORCE_SHORT_XFER,
1168	    RAL_TX_TIMEOUT, NULL);
1169
1170	error = usbd_sync_transfer(xfer);
1171	usbd_destroy_xfer(xfer);
1172
1173	return error;
1174}
1175
1176Static int
1177ural_tx_mgt(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1178{
1179	struct ieee80211com *ic = &sc->sc_ic;
1180	struct ural_tx_desc *desc;
1181	struct ural_tx_data *data;
1182	struct ieee80211_frame *wh;
1183	struct ieee80211_key *k;
1184	uint32_t flags = 0;
1185	uint16_t dur;
1186	usbd_status error;
1187	int xferlen, rate;
1188
1189	data = &sc->tx_data[0];
1190	desc = (struct ural_tx_desc *)data->buf;
1191
1192	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1193
1194	wh = mtod(m0, struct ieee80211_frame *);
1195
1196	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1197		k = ieee80211_crypto_encap(ic, ni, m0);
1198		if (k == NULL) {
1199			m_freem(m0);
1200			return ENOBUFS;
1201		}
1202	}
1203
1204	data->m = m0;
1205	data->ni = ni;
1206
1207	wh = mtod(m0, struct ieee80211_frame *);
1208
1209	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1210		flags |= RAL_TX_ACK;
1211
1212		dur = ural_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
1213		*(uint16_t *)wh->i_dur = htole16(dur);
1214
1215		/* tell hardware to add timestamp for probe responses */
1216		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1217		    IEEE80211_FC0_TYPE_MGT &&
1218		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1219		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1220			flags |= RAL_TX_TIMESTAMP;
1221	}
1222
1223	if (sc->sc_drvbpf != NULL) {
1224		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1225
1226		tap->wt_flags = 0;
1227		tap->wt_rate = rate;
1228		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1229		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1230		tap->wt_antenna = sc->tx_ant;
1231
1232		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1233	}
1234
1235	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1236	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1237
1238	/* align end on a 2-bytes boundary */
1239	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1240
1241	/*
1242	 * No space left in the last URB to store the extra 2 bytes, force
1243	 * sending of another URB.
1244	 */
1245	if ((xferlen % 64) == 0)
1246		xferlen += 2;
1247
1248	DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1249	    m0->m_pkthdr.len, rate, xferlen));
1250
1251	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1252	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1253
1254	error = usbd_transfer(data->xfer);
1255	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1256		m_freem(m0);
1257		return error;
1258	}
1259
1260	sc->tx_queued++;
1261
1262	return 0;
1263}
1264
1265Static int
1266ural_tx_data(struct ural_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1267{
1268	struct ieee80211com *ic = &sc->sc_ic;
1269	struct ural_tx_desc *desc;
1270	struct ural_tx_data *data;
1271	struct ieee80211_frame *wh;
1272	struct ieee80211_key *k;
1273	uint32_t flags = 0;
1274	uint16_t dur;
1275	usbd_status error;
1276	int xferlen, rate;
1277
1278	wh = mtod(m0, struct ieee80211_frame *);
1279
1280	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE)
1281		rate = ic->ic_bss->ni_rates.rs_rates[ic->ic_fixed_rate];
1282	else
1283		rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1284
1285	rate &= IEEE80211_RATE_VAL;
1286
1287	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1288		k = ieee80211_crypto_encap(ic, ni, m0);
1289		if (k == NULL) {
1290			m_freem(m0);
1291			return ENOBUFS;
1292		}
1293
1294		/* packet header may have moved, reset our local pointer */
1295		wh = mtod(m0, struct ieee80211_frame *);
1296	}
1297
1298	data = &sc->tx_data[0];
1299	desc = (struct ural_tx_desc *)data->buf;
1300
1301	data->m = m0;
1302	data->ni = ni;
1303
1304	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1305		flags |= RAL_TX_ACK;
1306		flags |= RAL_TX_RETRY(7);
1307
1308		dur = ural_txtime(RAL_ACK_SIZE, ural_ack_rate(ic, rate),
1309		    ic->ic_flags) + RAL_SIFS;
1310		*(uint16_t *)wh->i_dur = htole16(dur);
1311	}
1312
1313	if (sc->sc_drvbpf != NULL) {
1314		struct ural_tx_radiotap_header *tap = &sc->sc_txtap;
1315
1316		tap->wt_flags = 0;
1317		tap->wt_rate = rate;
1318		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1319		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1320		tap->wt_antenna = sc->tx_ant;
1321
1322		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
1323	}
1324
1325	m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RAL_TX_DESC_SIZE);
1326	ural_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate);
1327
1328	/* align end on a 2-bytes boundary */
1329	xferlen = (RAL_TX_DESC_SIZE + m0->m_pkthdr.len + 1) & ~1;
1330
1331	/*
1332	 * No space left in the last URB to store the extra 2 bytes, force
1333	 * sending of another URB.
1334	 */
1335	if ((xferlen % 64) == 0)
1336		xferlen += 2;
1337
1338	DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1339	    m0->m_pkthdr.len, rate, xferlen));
1340	usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
1341	    USBD_FORCE_SHORT_XFER, RAL_TX_TIMEOUT, ural_txeof);
1342
1343	error = usbd_transfer(data->xfer);
1344	if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS)
1345		return error;
1346
1347	sc->tx_queued++;
1348
1349	return 0;
1350}
1351
1352Static void
1353ural_start(struct ifnet *ifp)
1354{
1355	struct ural_softc *sc = ifp->if_softc;
1356	struct ieee80211com *ic = &sc->sc_ic;
1357	struct mbuf *m0;
1358	struct ether_header *eh;
1359	struct ieee80211_node *ni;
1360
1361	for (;;) {
1362		IF_POLL(&ic->ic_mgtq, m0);
1363		if (m0 != NULL) {
1364			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1365				ifp->if_flags |= IFF_OACTIVE;
1366				break;
1367			}
1368			IF_DEQUEUE(&ic->ic_mgtq, m0);
1369
1370			ni = M_GETCTX(m0, struct ieee80211_node *);
1371			M_CLEARCTX(m0);
1372			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1373			if (ural_tx_mgt(sc, m0, ni) != 0)
1374				break;
1375
1376		} else {
1377			if (ic->ic_state != IEEE80211_S_RUN)
1378				break;
1379			IFQ_POLL(&ifp->if_snd, m0);
1380			if (m0 == NULL)
1381				break;
1382			if (sc->tx_queued >= RAL_TX_LIST_COUNT) {
1383				ifp->if_flags |= IFF_OACTIVE;
1384				break;
1385			}
1386			IFQ_DEQUEUE(&ifp->if_snd, m0);
1387
1388			if (m0->m_len < sizeof(struct ether_header) &&
1389			    !(m0 = m_pullup(m0, sizeof(struct ether_header))))
1390				continue;
1391
1392			eh = mtod(m0, struct ether_header *);
1393			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1394			if (ni == NULL) {
1395				m_freem(m0);
1396				continue;
1397			}
1398			bpf_mtap(ifp, m0, BPF_D_OUT);
1399			m0 = ieee80211_encap(ic, m0, ni);
1400			if (m0 == NULL) {
1401				ieee80211_free_node(ni);
1402				continue;
1403			}
1404			bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
1405			if (ural_tx_data(sc, m0, ni) != 0) {
1406				ieee80211_free_node(ni);
1407				if_statinc(ifp, if_oerrors);
1408				break;
1409			}
1410		}
1411
1412		sc->sc_tx_timer = 5;
1413		ifp->if_timer = 1;
1414	}
1415}
1416
1417Static void
1418ural_watchdog(struct ifnet *ifp)
1419{
1420	struct ural_softc *sc = ifp->if_softc;
1421	struct ieee80211com *ic = &sc->sc_ic;
1422
1423	ifp->if_timer = 0;
1424
1425	if (sc->sc_tx_timer > 0) {
1426		if (--sc->sc_tx_timer == 0) {
1427			printf("%s: device timeout\n", device_xname(sc->sc_dev));
1428			/*ural_init(sc); XXX needs a process context! */
1429			if_statinc(ifp, if_oerrors);
1430			return;
1431		}
1432		ifp->if_timer = 1;
1433	}
1434
1435	ieee80211_watchdog(ic);
1436}
1437
1438/*
1439 * This function allows for fast channel switching in monitor mode (used by
1440 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1441 * generate a new beacon frame.
1442 */
1443Static int
1444ural_reset(struct ifnet *ifp)
1445{
1446	struct ural_softc *sc = ifp->if_softc;
1447	struct ieee80211com *ic = &sc->sc_ic;
1448
1449	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1450		return ENETRESET;
1451
1452	ural_set_chan(sc, ic->ic_curchan);
1453
1454	return 0;
1455}
1456
1457Static int
1458ural_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1459{
1460#define IS_RUNNING(ifp) \
1461	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
1462
1463	struct ural_softc *sc = ifp->if_softc;
1464	struct ieee80211com *ic = &sc->sc_ic;
1465	int s, error = 0;
1466
1467	s = splnet();
1468
1469	switch (cmd) {
1470	case SIOCSIFFLAGS:
1471		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472			break;
1473		/* XXX re-use ether_ioctl() */
1474		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1475		case IFF_UP|IFF_RUNNING:
1476			ural_update_promisc(sc);
1477			break;
1478		case IFF_UP:
1479			ural_init(ifp);
1480			break;
1481		case IFF_RUNNING:
1482			ural_stop(ifp, 1);
1483			break;
1484		case 0:
1485			break;
1486		}
1487		break;
1488
1489	case SIOCADDMULTI:
1490	case SIOCDELMULTI:
1491		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1492			error = 0;
1493		}
1494		break;
1495
1496	default:
1497		error = ieee80211_ioctl(ic, cmd, data);
1498	}
1499
1500	if (error == ENETRESET) {
1501		if (IS_RUNNING(ifp) &&
1502			(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1503			ural_init(ifp);
1504		error = 0;
1505	}
1506
1507	splx(s);
1508
1509	return error;
1510#undef IS_RUNNING
1511}
1512
1513Static void
1514ural_set_testmode(struct ural_softc *sc)
1515{
1516	usb_device_request_t req;
1517	usbd_status error;
1518
1519	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1520	req.bRequest = RAL_VENDOR_REQUEST;
1521	USETW(req.wValue, 4);
1522	USETW(req.wIndex, 1);
1523	USETW(req.wLength, 0);
1524
1525	error = usbd_do_request(sc->sc_udev, &req, NULL);
1526	if (error != 0) {
1527		printf("%s: could not set test mode: %s\n",
1528		    device_xname(sc->sc_dev), usbd_errstr(error));
1529	}
1530}
1531
1532Static void
1533ural_eeprom_read(struct ural_softc *sc, uint16_t addr, void *buf, int len)
1534{
1535	usb_device_request_t req;
1536	usbd_status error;
1537
1538	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1539	req.bRequest = RAL_READ_EEPROM;
1540	USETW(req.wValue, 0);
1541	USETW(req.wIndex, addr);
1542	USETW(req.wLength, len);
1543
1544	error = usbd_do_request(sc->sc_udev, &req, buf);
1545	if (error != 0) {
1546		printf("%s: could not read EEPROM: %s\n",
1547		    device_xname(sc->sc_dev), usbd_errstr(error));
1548	}
1549}
1550
1551Static uint16_t
1552ural_read(struct ural_softc *sc, uint16_t reg)
1553{
1554	usb_device_request_t req;
1555	usbd_status error;
1556	uint16_t val;
1557
1558	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1559	req.bRequest = RAL_READ_MAC;
1560	USETW(req.wValue, 0);
1561	USETW(req.wIndex, reg);
1562	USETW(req.wLength, sizeof(uint16_t));
1563
1564	error = usbd_do_request(sc->sc_udev, &req, &val);
1565	if (error != 0) {
1566		printf("%s: could not read MAC register: %s\n",
1567		    device_xname(sc->sc_dev), usbd_errstr(error));
1568		return 0;
1569	}
1570
1571	return le16toh(val);
1572}
1573
1574Static void
1575ural_read_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1576{
1577	usb_device_request_t req;
1578	usbd_status error;
1579
1580	req.bmRequestType = UT_READ_VENDOR_DEVICE;
1581	req.bRequest = RAL_READ_MULTI_MAC;
1582	USETW(req.wValue, 0);
1583	USETW(req.wIndex, reg);
1584	USETW(req.wLength, len);
1585
1586	error = usbd_do_request(sc->sc_udev, &req, buf);
1587	if (error != 0) {
1588		printf("%s: could not read MAC register: %s\n",
1589		    device_xname(sc->sc_dev), usbd_errstr(error));
1590	}
1591}
1592
1593Static void
1594ural_write(struct ural_softc *sc, uint16_t reg, uint16_t val)
1595{
1596	usb_device_request_t req;
1597	usbd_status error;
1598
1599	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1600	req.bRequest = RAL_WRITE_MAC;
1601	USETW(req.wValue, val);
1602	USETW(req.wIndex, reg);
1603	USETW(req.wLength, 0);
1604
1605	error = usbd_do_request(sc->sc_udev, &req, NULL);
1606	if (error != 0) {
1607		printf("%s: could not write MAC register: %s\n",
1608		    device_xname(sc->sc_dev), usbd_errstr(error));
1609	}
1610}
1611
1612Static void
1613ural_write_multi(struct ural_softc *sc, uint16_t reg, void *buf, int len)
1614{
1615	usb_device_request_t req;
1616	usbd_status error;
1617
1618	req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1619	req.bRequest = RAL_WRITE_MULTI_MAC;
1620	USETW(req.wValue, 0);
1621	USETW(req.wIndex, reg);
1622	USETW(req.wLength, len);
1623
1624	error = usbd_do_request(sc->sc_udev, &req, buf);
1625	if (error != 0) {
1626		printf("%s: could not write MAC register: %s\n",
1627		    device_xname(sc->sc_dev), usbd_errstr(error));
1628	}
1629}
1630
1631Static void
1632ural_bbp_write(struct ural_softc *sc, uint8_t reg, uint8_t val)
1633{
1634	uint16_t tmp;
1635	int ntries;
1636
1637	for (ntries = 0; ntries < 5; ntries++) {
1638		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1639			break;
1640	}
1641	if (ntries == 5) {
1642		printf("%s: could not write to BBP\n", device_xname(sc->sc_dev));
1643		return;
1644	}
1645
1646	tmp = reg << 8 | val;
1647	ural_write(sc, RAL_PHY_CSR7, tmp);
1648}
1649
1650Static uint8_t
1651ural_bbp_read(struct ural_softc *sc, uint8_t reg)
1652{
1653	uint16_t val;
1654	int ntries;
1655
1656	val = RAL_BBP_WRITE | reg << 8;
1657	ural_write(sc, RAL_PHY_CSR7, val);
1658
1659	for (ntries = 0; ntries < 5; ntries++) {
1660		if (!(ural_read(sc, RAL_PHY_CSR8) & RAL_BBP_BUSY))
1661			break;
1662	}
1663	if (ntries == 5) {
1664		printf("%s: could not read BBP\n", device_xname(sc->sc_dev));
1665		return 0;
1666	}
1667
1668	return ural_read(sc, RAL_PHY_CSR7) & 0xff;
1669}
1670
1671Static void
1672ural_rf_write(struct ural_softc *sc, uint8_t reg, uint32_t val)
1673{
1674	uint32_t tmp;
1675	int ntries;
1676
1677	for (ntries = 0; ntries < 5; ntries++) {
1678		if (!(ural_read(sc, RAL_PHY_CSR10) & RAL_RF_LOBUSY))
1679			break;
1680	}
1681	if (ntries == 5) {
1682		printf("%s: could not write to RF\n", device_xname(sc->sc_dev));
1683		return;
1684	}
1685
1686	tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
1687	ural_write(sc, RAL_PHY_CSR9,  tmp & 0xffff);
1688	ural_write(sc, RAL_PHY_CSR10, tmp >> 16);
1689
1690	/* remember last written value in sc */
1691	sc->rf_regs[reg] = val;
1692
1693	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
1694}
1695
1696Static void
1697ural_set_chan(struct ural_softc *sc, struct ieee80211_channel *c)
1698{
1699	struct ieee80211com *ic = &sc->sc_ic;
1700	uint8_t power, tmp;
1701	u_int i, chan;
1702
1703	chan = ieee80211_chan2ieee(ic, c);
1704	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1705		return;
1706
1707	if (IEEE80211_IS_CHAN_2GHZ(c))
1708		power = uimin(sc->txpow[chan - 1], 31);
1709	else
1710		power = 31;
1711
1712	/* adjust txpower using ifconfig settings */
1713	power -= (100 - ic->ic_txpowlimit) / 8;
1714
1715	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
1716
1717	switch (sc->rf_rev) {
1718	case RAL_RF_2522:
1719		ural_rf_write(sc, RAL_RF1, 0x00814);
1720		ural_rf_write(sc, RAL_RF2, ural_rf2522_r2[chan - 1]);
1721		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1722		break;
1723
1724	case RAL_RF_2523:
1725		ural_rf_write(sc, RAL_RF1, 0x08804);
1726		ural_rf_write(sc, RAL_RF2, ural_rf2523_r2[chan - 1]);
1727		ural_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
1728		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1729		break;
1730
1731	case RAL_RF_2524:
1732		ural_rf_write(sc, RAL_RF1, 0x0c808);
1733		ural_rf_write(sc, RAL_RF2, ural_rf2524_r2[chan - 1]);
1734		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1735		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1736		break;
1737
1738	case RAL_RF_2525:
1739		ural_rf_write(sc, RAL_RF1, 0x08808);
1740		ural_rf_write(sc, RAL_RF2, ural_rf2525_hi_r2[chan - 1]);
1741		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1742		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1743
1744		ural_rf_write(sc, RAL_RF1, 0x08808);
1745		ural_rf_write(sc, RAL_RF2, ural_rf2525_r2[chan - 1]);
1746		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1747		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
1748		break;
1749
1750	case RAL_RF_2525E:
1751		ural_rf_write(sc, RAL_RF1, 0x08808);
1752		ural_rf_write(sc, RAL_RF2, ural_rf2525e_r2[chan - 1]);
1753		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1754		ural_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
1755		break;
1756
1757	case RAL_RF_2526:
1758		ural_rf_write(sc, RAL_RF2, ural_rf2526_hi_r2[chan - 1]);
1759		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1760		ural_rf_write(sc, RAL_RF1, 0x08804);
1761
1762		ural_rf_write(sc, RAL_RF2, ural_rf2526_r2[chan - 1]);
1763		ural_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
1764		ural_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
1765		break;
1766
1767	/* dual-band RF */
1768	case RAL_RF_5222:
1769		for (i = 0; ural_rf5222[i].chan != chan; i++);
1770
1771		ural_rf_write(sc, RAL_RF1, ural_rf5222[i].r1);
1772		ural_rf_write(sc, RAL_RF2, ural_rf5222[i].r2);
1773		ural_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
1774		ural_rf_write(sc, RAL_RF4, ural_rf5222[i].r4);
1775		break;
1776	}
1777
1778	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
1779	    ic->ic_state != IEEE80211_S_SCAN) {
1780		/* set Japan filter bit for channel 14 */
1781		tmp = ural_bbp_read(sc, 70);
1782
1783		tmp &= ~RAL_JAPAN_FILTER;
1784		if (chan == 14)
1785			tmp |= RAL_JAPAN_FILTER;
1786
1787		ural_bbp_write(sc, 70, tmp);
1788
1789		/* clear CRC errors */
1790		ural_read(sc, RAL_STA_CSR0);
1791
1792		DELAY(10000);
1793		ural_disable_rf_tune(sc);
1794	}
1795}
1796
1797/*
1798 * Disable RF auto-tuning.
1799 */
1800Static void
1801ural_disable_rf_tune(struct ural_softc *sc)
1802{
1803	uint32_t tmp;
1804
1805	if (sc->rf_rev != RAL_RF_2523) {
1806		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
1807		ural_rf_write(sc, RAL_RF1, tmp);
1808	}
1809
1810	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
1811	ural_rf_write(sc, RAL_RF3, tmp);
1812
1813	DPRINTFN(2, ("disabling RF autotune\n"));
1814}
1815
1816/*
1817 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1818 * synchronization.
1819 */
1820Static void
1821ural_enable_tsf_sync(struct ural_softc *sc)
1822{
1823	struct ieee80211com *ic = &sc->sc_ic;
1824	uint16_t logcwmin, preload, tmp;
1825
1826	/* first, disable TSF synchronization */
1827	ural_write(sc, RAL_TXRX_CSR19, 0);
1828
1829	tmp = (16 * ic->ic_bss->ni_intval) << 4;
1830	ural_write(sc, RAL_TXRX_CSR18, tmp);
1831
1832	logcwmin = (ic->ic_opmode == IEEE80211_M_IBSS) ? 2 : 0;
1833	preload = (ic->ic_opmode == IEEE80211_M_IBSS) ? 320 : 6;
1834	tmp = logcwmin << 12 | preload;
1835	ural_write(sc, RAL_TXRX_CSR20, tmp);
1836
1837	/* finally, enable TSF synchronization */
1838	tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
1839	if (ic->ic_opmode == IEEE80211_M_STA)
1840		tmp |= RAL_ENABLE_TSF_SYNC(1);
1841	else
1842		tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
1843	ural_write(sc, RAL_TXRX_CSR19, tmp);
1844
1845	DPRINTF(("enabling TSF synchronization\n"));
1846}
1847
1848Static void
1849ural_update_slot(struct ifnet *ifp)
1850{
1851	struct ural_softc *sc = ifp->if_softc;
1852	struct ieee80211com *ic = &sc->sc_ic;
1853	uint16_t slottime, sifs, eifs;
1854
1855	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1856
1857	/*
1858	 * These settings may sound a bit inconsistent but this is what the
1859	 * reference driver does.
1860	 */
1861	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1862		sifs = 16 - RAL_RXTX_TURNAROUND;
1863		eifs = 364;
1864	} else {
1865		sifs = 10 - RAL_RXTX_TURNAROUND;
1866		eifs = 64;
1867	}
1868
1869	ural_write(sc, RAL_MAC_CSR10, slottime);
1870	ural_write(sc, RAL_MAC_CSR11, sifs);
1871	ural_write(sc, RAL_MAC_CSR12, eifs);
1872}
1873
1874Static void
1875ural_set_txpreamble(struct ural_softc *sc)
1876{
1877	uint16_t tmp;
1878
1879	tmp = ural_read(sc, RAL_TXRX_CSR10);
1880
1881	tmp &= ~RAL_SHORT_PREAMBLE;
1882	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1883		tmp |= RAL_SHORT_PREAMBLE;
1884
1885	ural_write(sc, RAL_TXRX_CSR10, tmp);
1886}
1887
1888Static void
1889ural_set_basicrates(struct ural_softc *sc)
1890{
1891	struct ieee80211com *ic = &sc->sc_ic;
1892
1893	/* update basic rate set */
1894	if (ic->ic_curmode == IEEE80211_MODE_11B) {
1895		/* 11b basic rates: 1, 2Mbps */
1896		ural_write(sc, RAL_TXRX_CSR11, 0x3);
1897	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1898		/* 11a basic rates: 6, 12, 24Mbps */
1899		ural_write(sc, RAL_TXRX_CSR11, 0x150);
1900	} else {
1901		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1902		ural_write(sc, RAL_TXRX_CSR11, 0x15f);
1903	}
1904}
1905
1906Static void
1907ural_set_bssid(struct ural_softc *sc, uint8_t *bssid)
1908{
1909	uint16_t tmp;
1910
1911	tmp = bssid[0] | bssid[1] << 8;
1912	ural_write(sc, RAL_MAC_CSR5, tmp);
1913
1914	tmp = bssid[2] | bssid[3] << 8;
1915	ural_write(sc, RAL_MAC_CSR6, tmp);
1916
1917	tmp = bssid[4] | bssid[5] << 8;
1918	ural_write(sc, RAL_MAC_CSR7, tmp);
1919
1920	DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid)));
1921}
1922
1923Static void
1924ural_set_macaddr(struct ural_softc *sc, uint8_t *addr)
1925{
1926	uint16_t tmp;
1927
1928	tmp = addr[0] | addr[1] << 8;
1929	ural_write(sc, RAL_MAC_CSR2, tmp);
1930
1931	tmp = addr[2] | addr[3] << 8;
1932	ural_write(sc, RAL_MAC_CSR3, tmp);
1933
1934	tmp = addr[4] | addr[5] << 8;
1935	ural_write(sc, RAL_MAC_CSR4, tmp);
1936
1937	DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr)));
1938}
1939
1940Static void
1941ural_update_promisc(struct ural_softc *sc)
1942{
1943	struct ifnet *ifp = sc->sc_ic.ic_ifp;
1944	uint32_t tmp;
1945
1946	tmp = ural_read(sc, RAL_TXRX_CSR2);
1947
1948	tmp &= ~RAL_DROP_NOT_TO_ME;
1949	if (!(ifp->if_flags & IFF_PROMISC))
1950		tmp |= RAL_DROP_NOT_TO_ME;
1951
1952	ural_write(sc, RAL_TXRX_CSR2, tmp);
1953
1954	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1955	    "entering" : "leaving"));
1956}
1957
1958Static const char *
1959ural_get_rf(int rev)
1960{
1961	switch (rev) {
1962	case RAL_RF_2522:	return "RT2522";
1963	case RAL_RF_2523:	return "RT2523";
1964	case RAL_RF_2524:	return "RT2524";
1965	case RAL_RF_2525:	return "RT2525";
1966	case RAL_RF_2525E:	return "RT2525e";
1967	case RAL_RF_2526:	return "RT2526";
1968	case RAL_RF_5222:	return "RT5222";
1969	default:		return "unknown";
1970	}
1971}
1972
1973Static void
1974ural_read_eeprom(struct ural_softc *sc)
1975{
1976	struct ieee80211com *ic = &sc->sc_ic;
1977	uint16_t val;
1978
1979	ural_eeprom_read(sc, RAL_EEPROM_CONFIG0, &val, 2);
1980	val = le16toh(val);
1981	sc->rf_rev =   (val >> 11) & 0x7;
1982	sc->hw_radio = (val >> 10) & 0x1;
1983	sc->led_mode = (val >> 6)  & 0x7;
1984	sc->rx_ant =   (val >> 4)  & 0x3;
1985	sc->tx_ant =   (val >> 2)  & 0x3;
1986	sc->nb_ant =   val & 0x3;
1987
1988	/* read MAC address */
1989	ural_eeprom_read(sc, RAL_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1990
1991	/* read default values for BBP registers */
1992	ural_eeprom_read(sc, RAL_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1993
1994	/* read Tx power for all b/g channels */
1995	ural_eeprom_read(sc, RAL_EEPROM_TXPOWER, sc->txpow, 14);
1996}
1997
1998Static int
1999ural_bbp_init(struct ural_softc *sc)
2000{
2001	int i, ntries;
2002
2003	/* wait for BBP to be ready */
2004	for (ntries = 0; ntries < 100; ntries++) {
2005		if (ural_bbp_read(sc, RAL_BBP_VERSION) != 0)
2006			break;
2007		DELAY(1000);
2008	}
2009	if (ntries == 100) {
2010		printf("%s: timeout waiting for BBP\n", device_xname(sc->sc_dev));
2011		return EIO;
2012	}
2013
2014	/* initialize BBP registers to default values */
2015	for (i = 0; i < __arraycount(ural_def_bbp); i++)
2016		ural_bbp_write(sc, ural_def_bbp[i].reg, ural_def_bbp[i].val);
2017
2018#if 0
2019	/* initialize BBP registers to values stored in EEPROM */
2020	for (i = 0; i < 16; i++) {
2021		if (sc->bbp_prom[i].reg == 0xff)
2022			continue;
2023		ural_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2024	}
2025#endif
2026
2027	return 0;
2028}
2029
2030Static void
2031ural_set_txantenna(struct ural_softc *sc, int antenna)
2032{
2033	uint16_t tmp;
2034	uint8_t tx;
2035
2036	tx = ural_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
2037	if (antenna == 1)
2038		tx |= RAL_BBP_ANTA;
2039	else if (antenna == 2)
2040		tx |= RAL_BBP_ANTB;
2041	else
2042		tx |= RAL_BBP_DIVERSITY;
2043
2044	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2045	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
2046	    sc->rf_rev == RAL_RF_5222)
2047		tx |= RAL_BBP_FLIPIQ;
2048
2049	ural_bbp_write(sc, RAL_BBP_TX, tx);
2050
2051	/* update values in PHY_CSR5 and PHY_CSR6 */
2052	tmp = ural_read(sc, RAL_PHY_CSR5) & ~0x7;
2053	ural_write(sc, RAL_PHY_CSR5, tmp | (tx & 0x7));
2054
2055	tmp = ural_read(sc, RAL_PHY_CSR6) & ~0x7;
2056	ural_write(sc, RAL_PHY_CSR6, tmp | (tx & 0x7));
2057}
2058
2059Static void
2060ural_set_rxantenna(struct ural_softc *sc, int antenna)
2061{
2062	uint8_t rx;
2063
2064	rx = ural_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
2065	if (antenna == 1)
2066		rx |= RAL_BBP_ANTA;
2067	else if (antenna == 2)
2068		rx |= RAL_BBP_ANTB;
2069	else
2070		rx |= RAL_BBP_DIVERSITY;
2071
2072	/* need to force no I/Q flip for RF 2525e and 2526 */
2073	if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
2074		rx &= ~RAL_BBP_FLIPIQ;
2075
2076	ural_bbp_write(sc, RAL_BBP_RX, rx);
2077}
2078
2079Static int
2080ural_init(struct ifnet *ifp)
2081{
2082	struct ural_softc *sc = ifp->if_softc;
2083	struct ieee80211com *ic = &sc->sc_ic;
2084	struct ieee80211_key *wk;
2085	uint16_t tmp;
2086	usbd_status error;
2087	int i, ntries;
2088
2089	ural_set_testmode(sc);
2090	ural_write(sc, 0x308, 0x00f0);	/* XXX magic */
2091
2092	ural_stop(ifp, 0);
2093
2094	/* initialize MAC registers to default values */
2095	for (i = 0; i < __arraycount(ural_def_mac); i++)
2096		ural_write(sc, ural_def_mac[i].reg, ural_def_mac[i].val);
2097
2098	/* wait for BBP and RF to wake up (this can take a long time!) */
2099	for (ntries = 0; ntries < 100; ntries++) {
2100		tmp = ural_read(sc, RAL_MAC_CSR17);
2101		if ((tmp & (RAL_BBP_AWAKE | RAL_RF_AWAKE)) ==
2102		    (RAL_BBP_AWAKE | RAL_RF_AWAKE))
2103			break;
2104		DELAY(1000);
2105	}
2106	if (ntries == 100) {
2107		printf("%s: timeout waiting for BBP/RF to wakeup\n",
2108		    device_xname(sc->sc_dev));
2109		error = EIO;
2110		goto fail;
2111	}
2112
2113	/* we're ready! */
2114	ural_write(sc, RAL_MAC_CSR1, RAL_HOST_READY);
2115
2116	/* set basic rate set (will be updated later) */
2117	ural_write(sc, RAL_TXRX_CSR11, 0x15f);
2118
2119	error = ural_bbp_init(sc);
2120	if (error != 0)
2121		goto fail;
2122
2123	/* set default BSS channel */
2124	ural_set_chan(sc, ic->ic_curchan);
2125
2126	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2127	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2128
2129	ural_set_txantenna(sc, sc->tx_ant);
2130	ural_set_rxantenna(sc, sc->rx_ant);
2131
2132	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2133	ural_set_macaddr(sc, ic->ic_myaddr);
2134
2135	/*
2136	 * Copy WEP keys into adapter's memory (SEC_CSR0 to SEC_CSR31).
2137	 */
2138	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2139		wk = &ic->ic_crypto.cs_nw_keys[i];
2140		ural_write_multi(sc, wk->wk_keyix * IEEE80211_KEYBUF_SIZE +
2141		    RAL_SEC_CSR0, wk->wk_key, IEEE80211_KEYBUF_SIZE);
2142	}
2143
2144	/*
2145	 * Allocate xfer for AMRR statistics requests.
2146	 */
2147	struct usbd_pipe *pipe0 = usbd_get_pipe0(sc->sc_udev);
2148	error = usbd_create_xfer(pipe0, sizeof(sc->sta), 0, 0, &sc->amrr_xfer);
2149	if (error) {
2150		printf("%s: could not allocate AMRR xfer\n",
2151		    device_xname(sc->sc_dev));
2152		goto fail;
2153	}
2154
2155	/*
2156	 * Open Tx and Rx USB bulk pipes.
2157	 */
2158	error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
2159	    &sc->sc_tx_pipeh);
2160	if (error != 0) {
2161		printf("%s: could not open Tx pipe: %s\n",
2162		    device_xname(sc->sc_dev), usbd_errstr(error));
2163		goto fail;
2164	}
2165
2166	error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
2167	    &sc->sc_rx_pipeh);
2168	if (error != 0) {
2169		printf("%s: could not open Rx pipe: %s\n",
2170		    device_xname(sc->sc_dev), usbd_errstr(error));
2171		goto fail;
2172	}
2173
2174	/*
2175	 * Allocate Tx and Rx xfer queues.
2176	 */
2177	error = ural_alloc_tx_list(sc);
2178	if (error != 0) {
2179		printf("%s: could not allocate Tx list\n",
2180		    device_xname(sc->sc_dev));
2181		goto fail;
2182	}
2183
2184	error = ural_alloc_rx_list(sc);
2185	if (error != 0) {
2186		printf("%s: could not allocate Rx list\n",
2187		    device_xname(sc->sc_dev));
2188		goto fail;
2189	}
2190
2191	/*
2192	 * Start up the receive pipe.
2193	 */
2194	for (i = 0; i < RAL_RX_LIST_COUNT; i++) {
2195		struct ural_rx_data *data = &sc->rx_data[i];
2196
2197		usbd_setup_xfer(data->xfer, data, data->buf, MCLBYTES,
2198		    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, ural_rxeof);
2199		usbd_transfer(data->xfer);
2200	}
2201
2202	/* kick Rx */
2203	tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
2204	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2205		tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
2206		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2207			tmp |= RAL_DROP_TODS;
2208		if (!(ifp->if_flags & IFF_PROMISC))
2209			tmp |= RAL_DROP_NOT_TO_ME;
2210	}
2211	ural_write(sc, RAL_TXRX_CSR2, tmp);
2212
2213	ifp->if_flags &= ~IFF_OACTIVE;
2214	ifp->if_flags |= IFF_RUNNING;
2215
2216	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2217		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2218			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2219	} else
2220		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2221
2222	return 0;
2223
2224fail:	ural_stop(ifp, 1);
2225	return error;
2226}
2227
2228Static void
2229ural_stop(struct ifnet *ifp, int disable)
2230{
2231	struct ural_softc *sc = ifp->if_softc;
2232	struct ieee80211com *ic = &sc->sc_ic;
2233
2234	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2235
2236	sc->sc_tx_timer = 0;
2237	ifp->if_timer = 0;
2238	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2239
2240	/* disable Rx */
2241	ural_write(sc, RAL_TXRX_CSR2, RAL_DISABLE_RX);
2242
2243	/* reset ASIC and BBP (but won't reset MAC registers!) */
2244	ural_write(sc, RAL_MAC_CSR1, RAL_RESET_ASIC | RAL_RESET_BBP);
2245	ural_write(sc, RAL_MAC_CSR1, 0);
2246
2247	if (sc->amrr_xfer != NULL) {
2248		usbd_destroy_xfer(sc->amrr_xfer);
2249		sc->amrr_xfer = NULL;
2250	}
2251
2252	if (sc->sc_rx_pipeh != NULL) {
2253		usbd_abort_pipe(sc->sc_rx_pipeh);
2254	}
2255
2256	if (sc->sc_tx_pipeh != NULL) {
2257		usbd_abort_pipe(sc->sc_tx_pipeh);
2258	}
2259
2260	ural_free_rx_list(sc);
2261	ural_free_tx_list(sc);
2262
2263	if (sc->sc_rx_pipeh != NULL) {
2264		usbd_close_pipe(sc->sc_rx_pipeh);
2265		sc->sc_rx_pipeh = NULL;
2266	}
2267
2268	if (sc->sc_tx_pipeh != NULL) {
2269		usbd_close_pipe(sc->sc_tx_pipeh);
2270		sc->sc_tx_pipeh = NULL;
2271	}
2272}
2273
2274static int
2275ural_activate(device_t self, enum devact act)
2276{
2277	struct ural_softc *sc = device_private(self);
2278
2279	switch (act) {
2280	case DVACT_DEACTIVATE:
2281		if_deactivate(&sc->sc_if);
2282		return 0;
2283	default:
2284		return EOPNOTSUPP;
2285	}
2286}
2287
2288Static void
2289ural_amrr_start(struct ural_softc *sc, struct ieee80211_node *ni)
2290{
2291	int i;
2292
2293	/* clear statistic registers (STA_CSR0 to STA_CSR10) */
2294	ural_read_multi(sc, RAL_STA_CSR0, sc->sta, sizeof(sc->sta));
2295
2296	ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
2297
2298	/* set rate to some reasonable initial value */
2299	for (i = ni->ni_rates.rs_nrates - 1;
2300	     i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
2301	     i--);
2302	ni->ni_txrate = i;
2303
2304	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2305}
2306
2307Static void
2308ural_amrr_timeout(void *arg)
2309{
2310	struct ural_softc *sc = (struct ural_softc *)arg;
2311	usb_device_request_t req;
2312	int s;
2313
2314	s = splusb();
2315
2316	/*
2317	 * Asynchronously read statistic registers (cleared by read).
2318	 */
2319	req.bmRequestType = UT_READ_VENDOR_DEVICE;
2320	req.bRequest = RAL_READ_MULTI_MAC;
2321	USETW(req.wValue, 0);
2322	USETW(req.wIndex, RAL_STA_CSR0);
2323	USETW(req.wLength, sizeof(sc->sta));
2324
2325	usbd_setup_default_xfer(sc->amrr_xfer, sc->sc_udev, sc,
2326	    USBD_DEFAULT_TIMEOUT, &req, sc->sta, sizeof(sc->sta), 0,
2327	    ural_amrr_update);
2328	(void)usbd_transfer(sc->amrr_xfer);
2329
2330	splx(s);
2331}
2332
2333Static void
2334ural_amrr_update(struct usbd_xfer *xfer, void * priv,
2335    usbd_status status)
2336{
2337	struct ural_softc *sc = (struct ural_softc *)priv;
2338	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2339
2340	if (status != USBD_NORMAL_COMPLETION) {
2341		printf("%s: could not retrieve Tx statistics - "
2342		    "cancelling automatic rate control\n",
2343		    device_xname(sc->sc_dev));
2344		return;
2345	}
2346
2347	/* count TX retry-fail as Tx errors */
2348	if_statadd(ifp, if_oerrors, sc->sta[9]);
2349
2350	sc->amn.amn_retrycnt =
2351	    sc->sta[7] +	/* TX one-retry ok count */
2352	    sc->sta[8] +	/* TX more-retry ok count */
2353	    sc->sta[9];		/* TX retry-fail count */
2354
2355	sc->amn.amn_txcnt =
2356	    sc->amn.amn_retrycnt +
2357	    sc->sta[6];		/* TX no-retry ok count */
2358
2359	ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
2360
2361	callout_reset(&sc->sc_amrr_ch, hz, ural_amrr_timeout, sc);
2362}
2363