1/*	$NetBSD: if_axe.c,v 1.151 2022/08/20 14:08:59 riastradh Exp $	*/
2/*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3
4/*
5 * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*
21 * Copyright (c) 1997, 1998, 1999, 2000-2003
22 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 *    notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 *    notice, this list of conditions and the following disclaimer in the
31 *    documentation and/or other materials provided with the distribution.
32 * 3. All advertising materials mentioning features or use of this software
33 *    must display the following acknowledgement:
34 *	This product includes software developed by Bill Paul.
35 * 4. Neither the name of the author nor the names of any co-contributors
36 *    may be used to endorse or promote products derived from this software
37 *    without specific prior written permission.
38 *
39 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49 * THE POSSIBILITY OF SUCH DAMAGE.
50 */
51
52/*
53 * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54 * Used in the LinkSys USB200M and various other adapters.
55 *
56 * Written by Bill Paul <wpaul@windriver.com>
57 * Senior Engineer
58 * Wind River Systems
59 */
60
61/*
62 * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63 * It uses an external PHY (reference designs use a RealTek chip),
64 * and has a 64-bit multicast hash filter. There is some information
65 * missing from the manual which one needs to know in order to make
66 * the chip function:
67 *
68 * - You must set bit 7 in the RX control register, otherwise the
69 *   chip won't receive any packets.
70 * - You must initialize all 3 IPG registers, or you won't be able
71 *   to send any packets.
72 *
73 * Note that this device appears to only support loading the station
74 * address via autoload from the EEPROM (i.e. there's no way to manually
75 * set it).
76 *
77 * (Adam Weinberger wanted me to name this driver if_gir.c.)
78 */
79
80/*
81 * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82 * 2007/02/12, J.R. Oldroyd, fbsd@opal.com
83 *
84 * Manual here:
85 * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86 * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87 */
88
89#include <sys/cdefs.h>
90__KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.151 2022/08/20 14:08:59 riastradh Exp $");
91
92#ifdef _KERNEL_OPT
93#include "opt_usb.h"
94#include "opt_net_mpsafe.h"
95#endif
96
97#include <sys/param.h>
98
99#include <dev/usb/usbnet.h>
100#include <dev/usb/usbhist.h>
101#include <dev/usb/if_axereg.h>
102
103struct axe_type {
104	struct usb_devno	axe_dev;
105	uint16_t		axe_flags;
106};
107
108struct axe_softc {
109	struct usbnet		axe_un;
110
111	/* usbnet:un_flags values */
112#define AX178		__BIT(0)	/* AX88178 */
113#define AX772		__BIT(1)	/* AX88772 */
114#define AX772A		__BIT(2)	/* AX88772A */
115#define AX772B		__BIT(3)	/* AX88772B */
116#define	AXSTD_FRAME	__BIT(12)
117#define	AXCSUM_FRAME	__BIT(13)
118
119	uint8_t			axe_ipgs[3];
120	uint8_t 		axe_phyaddrs[2];
121	uint16_t		sc_pwrcfg;
122	uint16_t		sc_lenmask;
123
124};
125
126#define AXE_IS_178_FAMILY(un)				\
127	((un)->un_flags & (AX178 | AX772 | AX772A | AX772B))
128
129#define AXE_IS_772(un)					\
130	((un)->un_flags & (AX772 | AX772A | AX772B))
131
132#define AXE_IS_172(un) (AXE_IS_178_FAMILY(un) == 0)
133
134#define AX_RXCSUM					\
135    (IFCAP_CSUM_IPv4_Rx | 				\
136     IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
137     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
138
139#define AX_TXCSUM					\
140    (IFCAP_CSUM_IPv4_Tx | 				\
141     IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
142     IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
143
144/*
145 * AXE_178_MAX_FRAME_BURST
146 * max frame burst size for Ax88178 and Ax88772
147 *	0	2048 bytes
148 *	1	4096 bytes
149 *	2	8192 bytes
150 *	3	16384 bytes
151 * use the largest your system can handle without USB stalling.
152 *
153 * NB: 88772 parts appear to generate lots of input errors with
154 * a 2K rx buffer and 8K is only slightly faster than 4K on an
155 * EHCI port on a T42 so change at your own risk.
156 */
157#define AXE_178_MAX_FRAME_BURST	1
158
159
160#ifdef USB_DEBUG
161#ifndef AXE_DEBUG
162#define axedebug 0
163#else
164static int axedebug = 0;
165
166SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
167{
168	int err;
169	const struct sysctlnode *rnode;
170	const struct sysctlnode *cnode;
171
172	err = sysctl_createv(clog, 0, NULL, &rnode,
173	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
174	    SYSCTL_DESCR("axe global controls"),
175	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
176
177	if (err)
178		goto fail;
179
180	/* control debugging printfs */
181	err = sysctl_createv(clog, 0, &rnode, &cnode,
182	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
183	    "debug", SYSCTL_DESCR("Enable debugging output"),
184	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
185	if (err)
186		goto fail;
187
188	return;
189fail:
190	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
191}
192
193#endif /* AXE_DEBUG */
194#endif /* USB_DEBUG */
195
196#define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
197#define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
198#define AXEHIST_FUNC()		USBHIST_FUNC()
199#define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
200
201/*
202 * Various supported device vendors/products.
203 */
204static const struct axe_type axe_devs[] = {
205	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000 }, 0 },
206	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2 }, 0 },
207	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
208	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172 }, 0 },
209	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772 }, AX772 },
210	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A }, AX772 },
211	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B }, AX772B },
212	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1 }, AX772B },
213	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178 }, AX178 },
214	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T }, 0 },
215	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
216	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR }, 0},
217	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2 }, AX772A },
218	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0 },
219	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100 }, 0 },
220	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
221	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
222	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
223	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E }, 0 },
224	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
225	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1 }, 0 },
226	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
227	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9 }, AX772B },
228	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M }, 0 },
229	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
230	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2 }, AX178 },
231	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT }, AX178 },
232	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX }, 0 },
233	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A }, AX772 },
234	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120 }, 0 },
235	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
236	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
237	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029 }, 0 },
238	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
239	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
240	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL }, 0 },
241};
242#define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
243
244static const struct ax88772b_mfb ax88772b_mfb_table[] = {
245	{ 0x8000, 0x8001, 2048 },
246	{ 0x8100, 0x8147, 4096 },
247	{ 0x8200, 0x81EB, 6144 },
248	{ 0x8300, 0x83D7, 8192 },
249	{ 0x8400, 0x851E, 16384 },
250	{ 0x8500, 0x8666, 20480 },
251	{ 0x8600, 0x87AE, 24576 },
252	{ 0x8700, 0x8A3D, 32768 }
253};
254
255static int	axe_match(device_t, cfdata_t, void *);
256static void	axe_attach(device_t, device_t, void *);
257
258CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
259	axe_match, axe_attach, usbnet_detach, usbnet_activate);
260
261static void	axe_uno_stop(struct ifnet *, int);
262static void	axe_uno_mcast(struct ifnet *);
263static int	axe_uno_init(struct ifnet *);
264static int	axe_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
265static int	axe_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
266static void	axe_uno_mii_statchg(struct ifnet *);
267static void	axe_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
268				uint32_t);
269static unsigned axe_uno_tx_prepare(struct usbnet *, struct mbuf *,
270				   struct usbnet_chain *);
271
272static void	axe_ax88178_init(struct axe_softc *);
273static void	axe_ax88772_init(struct axe_softc *);
274static void	axe_ax88772a_init(struct axe_softc *);
275static void	axe_ax88772b_init(struct axe_softc *);
276
277static const struct usbnet_ops axe_ops = {
278	.uno_stop = axe_uno_stop,
279	.uno_mcast = axe_uno_mcast,
280	.uno_read_reg = axe_uno_mii_read_reg,
281	.uno_write_reg = axe_uno_mii_write_reg,
282	.uno_statchg = axe_uno_mii_statchg,
283	.uno_tx_prepare = axe_uno_tx_prepare,
284	.uno_rx_loop = axe_uno_rx_loop,
285	.uno_init = axe_uno_init,
286};
287
288static usbd_status
289axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
290{
291	AXEHIST_FUNC(); AXEHIST_CALLED();
292	struct usbnet * const un = &sc->axe_un;
293	usb_device_request_t req;
294	usbd_status err;
295
296	if (usbnet_isdying(un))
297		return -1;
298
299	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
300
301	if (AXE_CMD_DIR(cmd))
302		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
303	else
304		req.bmRequestType = UT_READ_VENDOR_DEVICE;
305	req.bRequest = AXE_CMD_CMD(cmd);
306	USETW(req.wValue, val);
307	USETW(req.wIndex, index);
308	USETW(req.wLength, AXE_CMD_LEN(cmd));
309
310	err = usbd_do_request(un->un_udev, &req, buf);
311	if (err)
312		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
313
314	return err;
315}
316
317static int
318axe_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
319{
320	AXEHIST_FUNC(); AXEHIST_CALLED();
321	struct axe_softc * const sc = usbnet_softc(un);
322	usbd_status err;
323	uint16_t data;
324
325	DPRINTFN(30, "phy %#jx reg %#jx\n", phy, reg, 0, 0);
326
327	if (un->un_phyno != phy) {
328		*val = 0;
329		return EINVAL;
330	}
331
332	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
333
334	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
335	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
336
337	if (err) {
338		device_printf(un->un_dev, "read PHY failed\n");
339		*val = 0;
340		return EIO;
341	}
342
343	*val = le16toh(data);
344	if (AXE_IS_772(un) && reg == MII_BMSR) {
345		/*
346		 * BMSR of AX88772 indicates that it supports extended
347		 * capability but the extended status register is
348		 * reserved for embedded ethernet PHY. So clear the
349		 * extended capability bit of BMSR.
350		 */
351		*val &= ~BMSR_EXTCAP;
352	}
353
354	DPRINTFN(30, "phy %#jx reg %#jx val %#jx", phy, reg, *val, 0);
355
356	return 0;
357}
358
359static int
360axe_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
361{
362	struct axe_softc * const sc = usbnet_softc(un);
363	usbd_status err;
364	uint16_t aval;
365
366	if (un->un_phyno != phy)
367		return EINVAL;
368
369	aval = htole16(val);
370
371	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
372	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
373	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
374
375	if (err)
376		return EIO;
377	return 0;
378}
379
380static void
381axe_uno_mii_statchg(struct ifnet *ifp)
382{
383	AXEHIST_FUNC(); AXEHIST_CALLED();
384
385	struct usbnet * const un = ifp->if_softc;
386	struct axe_softc * const sc = usbnet_softc(un);
387	struct mii_data *mii = usbnet_mii(un);
388	int val, err;
389
390	if (usbnet_isdying(un))
391		return;
392
393	val = 0;
394	if (AXE_IS_172(un)) {
395		if (mii->mii_media_active & IFM_FDX)
396			val |= AXE_MEDIA_FULL_DUPLEX;
397	} else {
398		if (mii->mii_media_active & IFM_FDX) {
399			val |= AXE_MEDIA_FULL_DUPLEX;
400			if (mii->mii_media_active & IFM_ETH_TXPAUSE)
401				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
402			if (mii->mii_media_active & IFM_ETH_RXPAUSE)
403				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
404		}
405		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
406		if (un->un_flags & AX178)
407			val |= AXE_178_MEDIA_ENCK;
408		switch (IFM_SUBTYPE(mii->mii_media_active)) {
409		case IFM_1000_T:
410			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
411			usbnet_set_link(un, true);
412			break;
413		case IFM_100_TX:
414			val |= AXE_178_MEDIA_100TX;
415			usbnet_set_link(un, true);
416			break;
417		case IFM_10_T:
418			usbnet_set_link(un, true);
419			break;
420		}
421	}
422
423	DPRINTF("val=%#jx", val, 0, 0, 0);
424	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
425	if (err)
426		device_printf(un->un_dev, "media change failed\n");
427}
428
429static void
430axe_uno_mcast(struct ifnet *ifp)
431{
432	AXEHIST_FUNC(); AXEHIST_CALLED();
433	struct usbnet * const un = ifp->if_softc;
434	struct axe_softc * const sc = usbnet_softc(un);
435	struct ethercom *ec = usbnet_ec(un);
436	struct ether_multi *enm;
437	struct ether_multistep step;
438	uint16_t rxmode;
439	uint32_t h = 0;
440	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
441
442	if (usbnet_isdying(un))
443		return;
444
445	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
446		device_printf(un->un_dev, "can't read rxmode");
447		return;
448	}
449	rxmode = le16toh(rxmode);
450
451	rxmode &=
452	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC | AXE_RXCMD_MULTICAST);
453
454	ETHER_LOCK(ec);
455	if (usbnet_ispromisc(un)) {
456		ec->ec_flags |= ETHER_F_ALLMULTI;
457		ETHER_UNLOCK(ec);
458		/* run promisc. mode */
459		rxmode |= AXE_RXCMD_ALLMULTI; /* ??? */
460		rxmode |= AXE_RXCMD_PROMISC;
461		goto update;
462	}
463	ec->ec_flags &= ~ETHER_F_ALLMULTI;
464	ETHER_FIRST_MULTI(step, ec, enm);
465	while (enm != NULL) {
466		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
467			ec->ec_flags |= ETHER_F_ALLMULTI;
468			ETHER_UNLOCK(ec);
469			/* accept all mcast frames */
470			rxmode |= AXE_RXCMD_ALLMULTI;
471			goto update;
472		}
473		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
474		mchash[h >> 29] |= 1U << ((h >> 26) & 7);
475		ETHER_NEXT_MULTI(step, enm);
476	}
477	ETHER_UNLOCK(ec);
478	if (h != 0)
479		rxmode |= AXE_RXCMD_MULTICAST;	/* activate mcast hash filter */
480	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, mchash);
481 update:
482	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
483}
484
485static void
486axe_ax_init(struct usbnet *un)
487{
488	struct axe_softc * const sc = usbnet_softc(un);
489
490	int cmd = AXE_178_CMD_READ_NODEID;
491
492	if (un->un_flags & AX178) {
493		axe_ax88178_init(sc);
494	} else if (un->un_flags & AX772) {
495		axe_ax88772_init(sc);
496	} else if (un->un_flags & AX772A) {
497		axe_ax88772a_init(sc);
498	} else if (un->un_flags & AX772B) {
499		axe_ax88772b_init(sc);
500		return;
501	} else {
502		cmd = AXE_172_CMD_READ_NODEID;
503	}
504
505	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
506		aprint_error_dev(un->un_dev,
507		    "failed to read ethernet address\n");
508	}
509}
510
511
512static void
513axe_reset(struct usbnet *un)
514{
515
516	if (usbnet_isdying(un))
517		return;
518
519	/*
520	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
521	 * if_addr_init -> if_init.  This doesn't mix well with the
522	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
523	 * can fire during the wait and attempt to take softnet_lock and then
524	 * block the softclk thread meaning the wait never ends.
525	 */
526#ifndef NET_MPSAFE
527	/* XXX What to reset? */
528
529	/* Wait a little while for the chip to get its brains in order. */
530	DELAY(1000);
531#else
532	axe_ax_init(un);
533#endif
534}
535
536static int
537axe_get_phyno(struct axe_softc *sc, int sel)
538{
539	int phyno;
540
541	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
542	case PHY_TYPE_100_HOME:
543		/* FALLTHROUGH */
544	case PHY_TYPE_GIG:
545		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
546		break;
547	case PHY_TYPE_SPECIAL:
548		/* FALLTHROUGH */
549	case PHY_TYPE_RSVD:
550		/* FALLTHROUGH */
551	case PHY_TYPE_NON_SUP:
552		/* FALLTHROUGH */
553	default:
554		phyno = -1;
555		break;
556	}
557
558	return phyno;
559}
560
561#define	AXE_GPIO_WRITE(x, y)	do {				\
562	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
563	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
564} while (0)
565
566static void
567axe_ax88178_init(struct axe_softc *sc)
568{
569	AXEHIST_FUNC(); AXEHIST_CALLED();
570	struct usbnet * const un = &sc->axe_un;
571	int gpio0, ledmode, phymode;
572	uint16_t eeprom, val;
573
574	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
575	/* XXX magic */
576	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
577		eeprom = 0xffff;
578	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
579
580	eeprom = le16toh(eeprom);
581
582	DPRINTF("EEPROM is %#jx", eeprom, 0, 0, 0);
583
584	/* if EEPROM is invalid we have to use to GPIO0 */
585	if (eeprom == 0xffff) {
586		phymode = AXE_PHY_MODE_MARVELL;
587		gpio0 = 1;
588		ledmode = 0;
589	} else {
590		phymode = eeprom & 0x7f;
591		gpio0 = (eeprom & 0x80) ? 0 : 1;
592		ledmode = eeprom >> 8;
593	}
594
595	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
596
597	/* Program GPIOs depending on PHY hardware. */
598	switch (phymode) {
599	case AXE_PHY_MODE_MARVELL:
600		if (gpio0 == 1) {
601			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
602			    hz / 32);
603			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
604			    hz / 32);
605			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
606			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
607			    hz / 32);
608		} else {
609			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
610			    AXE_GPIO1_EN, hz / 3);
611			if (ledmode == 1) {
612				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
613				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
614				    hz / 3);
615			} else {
616				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
617				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
618				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
619				    AXE_GPIO2_EN, hz / 4);
620				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
621				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
622			}
623		}
624		break;
625	case AXE_PHY_MODE_CICADA:
626	case AXE_PHY_MODE_CICADA_V2:
627	case AXE_PHY_MODE_CICADA_V2_ASIX:
628		if (gpio0 == 1)
629			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
630			    AXE_GPIO0_EN, hz / 32);
631		else
632			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
633			    AXE_GPIO1_EN, hz / 32);
634		break;
635	case AXE_PHY_MODE_AGERE:
636		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
637		    AXE_GPIO1_EN, hz / 32);
638		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
639		    AXE_GPIO2_EN, hz / 32);
640		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
641		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
642		    AXE_GPIO2_EN, hz / 32);
643		break;
644	case AXE_PHY_MODE_REALTEK_8211CL:
645	case AXE_PHY_MODE_REALTEK_8211BN:
646	case AXE_PHY_MODE_REALTEK_8251CL:
647		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
648		    AXE_GPIO1 | AXE_GPIO1_EN;
649		AXE_GPIO_WRITE(val, hz / 32);
650		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
651		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
652		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
653		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
654			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
655			axe_uno_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
656			axe_uno_mii_read_reg(un, un->un_phyno, 0x0001, &val);
657			axe_uno_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
658			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
659		}
660		break;
661	default:
662		/* Unknown PHY model or no need to program GPIOs. */
663		break;
664	}
665
666	/* soft reset */
667	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
668	usbd_delay_ms(un->un_udev, 150);
669	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
670	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
671	usbd_delay_ms(un->un_udev, 150);
672	/* Enable MII/GMII/RGMII interface to work with external PHY. */
673	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
674	usbd_delay_ms(un->un_udev, 10);
675	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
676}
677
678static void
679axe_ax88772_init(struct axe_softc *sc)
680{
681	AXEHIST_FUNC(); AXEHIST_CALLED();
682	struct usbnet * const un = &sc->axe_un;
683
684	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
685	usbd_delay_ms(un->un_udev, 40);
686
687	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
688		/* ask for the embedded PHY */
689		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
690		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
691		usbd_delay_ms(un->un_udev, 10);
692
693		/* power down and reset state, pin reset state */
694		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
695		usbd_delay_ms(un->un_udev, 60);
696
697		/* power down/reset state, pin operating state */
698		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
699		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
700		usbd_delay_ms(un->un_udev, 150);
701
702		/* power up, reset */
703		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
704
705		/* power up, operating */
706		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
707		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
708	} else {
709		/* ask for external PHY */
710		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
711		    NULL);
712		usbd_delay_ms(un->un_udev, 10);
713
714		/* power down internal PHY */
715		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
716		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
717	}
718
719	usbd_delay_ms(un->un_udev, 150);
720	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
721}
722
723static void
724axe_ax88772_phywake(struct axe_softc *sc)
725{
726	AXEHIST_FUNC(); AXEHIST_CALLED();
727	struct usbnet * const un = &sc->axe_un;
728
729	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
730		/* Manually select internal(embedded) PHY - MAC mode. */
731		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
732		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
733		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
734	} else {
735		/*
736		 * Manually select external PHY - MAC mode.
737		 * Reverse MII/RMII is for AX88772A PHY mode.
738		 */
739		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
740		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
741		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
742	}
743
744	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
745	    AXE_SW_RESET_IPRL, NULL);
746
747	/* T1 = min 500ns everywhere */
748	usbd_delay_ms(un->un_udev, 150);
749
750	/* Take PHY out of power down. */
751	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
752		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
753	} else {
754		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
755	}
756
757	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
758	usbd_delay_ms(un->un_udev, 600);
759
760	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
761
762	/* T3 = 500ns everywhere */
763	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
764	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
765	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
766}
767
768static void
769axe_ax88772a_init(struct axe_softc *sc)
770{
771	AXEHIST_FUNC(); AXEHIST_CALLED();
772
773	/* Reload EEPROM. */
774	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
775	axe_ax88772_phywake(sc);
776	/* Stop MAC. */
777	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
778}
779
780static void
781axe_ax88772b_init(struct axe_softc *sc)
782{
783	AXEHIST_FUNC(); AXEHIST_CALLED();
784	struct usbnet * const un = &sc->axe_un;
785	uint16_t eeprom;
786	int i;
787
788	/* Reload EEPROM. */
789	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
790
791	/*
792	 * Save PHY power saving configuration(high byte) and
793	 * clear EEPROM checksum value(low byte).
794	 */
795	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
796	    &eeprom)) {
797		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
798		return;
799	}
800
801	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
802
803	/*
804	 * Auto-loaded default station address from internal ROM is
805	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
806	 * is required to get real station address.
807	 */
808	uint8_t *eaddr = un->un_eaddr;
809	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
810		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
811		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
812			aprint_error_dev(un->un_dev,
813			    "failed to read eeprom\n");
814		    eeprom = 0;
815		}
816		eeprom = le16toh(eeprom);
817		*eaddr++ = (uint8_t)(eeprom & 0xFF);
818		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
819	}
820	/* Wakeup PHY. */
821	axe_ax88772_phywake(sc);
822	/* Stop MAC. */
823	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
824}
825
826#undef	AXE_GPIO_WRITE
827
828/*
829 * Probe for a AX88172 chip.
830 */
831static int
832axe_match(device_t parent, cfdata_t match, void *aux)
833{
834	struct usb_attach_arg *uaa = aux;
835
836	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
837	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
838}
839
840/*
841 * Attach the interface. Allocate softc structures, do ifmedia
842 * setup and ethernet/BPF attach.
843 */
844static void
845axe_attach(device_t parent, device_t self, void *aux)
846{
847	AXEHIST_FUNC(); AXEHIST_CALLED();
848	USBNET_MII_DECL_DEFAULT(unm);
849	struct axe_softc *sc = device_private(self);
850	struct usbnet * const un = &sc->axe_un;
851	struct usb_attach_arg *uaa = aux;
852	struct usbd_device *dev = uaa->uaa_device;
853	usbd_status err;
854	usb_interface_descriptor_t *id;
855	usb_endpoint_descriptor_t *ed;
856	char *devinfop;
857	unsigned bufsz;
858	int i;
859
860	KASSERT((void *)sc == un);
861
862	aprint_naive("\n");
863	aprint_normal("\n");
864	devinfop = usbd_devinfo_alloc(dev, 0);
865	aprint_normal_dev(self, "%s\n", devinfop);
866	usbd_devinfo_free(devinfop);
867
868	un->un_dev = self;
869	un->un_udev = dev;
870	un->un_sc = sc;
871	un->un_ops = &axe_ops;
872	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
873	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
874	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
875	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
876
877	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
878	if (err) {
879		aprint_error_dev(self, "failed to set configuration"
880		    ", err=%s\n", usbd_errstr(err));
881		return;
882	}
883
884	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
885
886	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
887	if (err) {
888		aprint_error_dev(self, "getting interface handle failed\n");
889		return;
890	}
891
892	id = usbd_get_interface_descriptor(un->un_iface);
893
894	/* decide on what our bufsize will be */
895	if (AXE_IS_172(un))
896		bufsz = AXE_172_BUFSZ;
897	else
898		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
899		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
900	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
901
902	un->un_ed[USBNET_ENDPT_RX] = 0;
903	un->un_ed[USBNET_ENDPT_TX] = 0;
904	un->un_ed[USBNET_ENDPT_INTR] = 0;
905
906	/* Find endpoints. */
907	for (i = 0; i < id->bNumEndpoints; i++) {
908		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
909		if (ed == NULL) {
910			aprint_error_dev(self, "couldn't get ep %d\n", i);
911			return;
912		}
913		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
914		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
915
916		if (dir == UE_DIR_IN && xt == UE_BULK &&
917		    un->un_ed[USBNET_ENDPT_RX] == 0) {
918			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
919		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
920		    un->un_ed[USBNET_ENDPT_TX] == 0) {
921			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
922		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
923			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
924		}
925	}
926
927	/* Set these up now for axe_cmd().  */
928	usbnet_attach(un);
929
930	/* We need the PHYID for init dance in some cases */
931	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
932		aprint_error_dev(self, "failed to read phyaddrs\n");
933		return;
934	}
935
936	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
937	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
938	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
939	if (un->un_phyno == -1)
940		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
941	if (un->un_phyno == -1) {
942		DPRINTF(" no valid PHY address found, assuming PHY address 0",
943		    0, 0, 0, 0);
944		un->un_phyno = 0;
945	}
946
947	/* Initialize controller and get station address. */
948
949	axe_ax_init(un);
950
951	/*
952	 * Fetch IPG values.
953	 */
954	if (un->un_flags & (AX772A | AX772B)) {
955		/* Set IPG values. */
956		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
957		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
958		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
959	} else {
960		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
961			aprint_error_dev(self, "failed to read ipg\n");
962			return;
963		}
964	}
965
966	if (!AXE_IS_172(un))
967		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
968	if (un->un_flags & AX772B) {
969		struct ifnet *ifp = usbnet_ifp(un);
970
971		ifp->if_capabilities =
972		    IFCAP_CSUM_IPv4_Rx |
973		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
974		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
975		/*
976		 * Checksum offloading of AX88772B also works with VLAN
977		 * tagged frames but there is no way to take advantage
978		 * of the feature because vlan(4) assumes
979		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
980		 * support checksum offloading with VLAN. VLAN hardware
981		 * tagging support of AX88772B is very limited so it's
982		 * not possible to announce IFCAP_VLAN_HWTAGGING.
983		 */
984	}
985	if (un->un_flags & (AX772A | AX772B | AX178))
986		unm.un_mii_flags = MIIF_DOPAUSE;
987
988	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
989	    0, &unm);
990}
991
992static void
993axe_uno_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
994{
995	AXEHIST_FUNC(); AXEHIST_CALLED();
996	struct axe_softc * const sc = usbnet_softc(un);
997	struct ifnet *ifp = usbnet_ifp(un);
998	uint8_t *buf = c->unc_buf;
999
1000	do {
1001		u_int pktlen = 0;
1002		u_int rxlen = 0;
1003		int flags = 0;
1004
1005		if ((un->un_flags & AXSTD_FRAME) != 0) {
1006			struct axe_sframe_hdr hdr;
1007
1008			if (total_len < sizeof(hdr)) {
1009				if_statinc(ifp, if_ierrors);
1010				break;
1011			}
1012
1013			memcpy(&hdr, buf, sizeof(hdr));
1014
1015			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx",
1016			    total_len,
1017			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1018			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1019
1020			total_len -= sizeof(hdr);
1021			buf += sizeof(hdr);
1022
1023			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1024			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1025			    AXE_RH1M_RXLEN_MASK) {
1026				if_statinc(ifp, if_ierrors);
1027				break;
1028			}
1029
1030			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1031			if (total_len < rxlen) {
1032				pktlen = total_len;
1033				total_len = 0;
1034			} else {
1035				pktlen = rxlen;
1036				rxlen = roundup2(rxlen, 2);
1037				total_len -= rxlen;
1038			}
1039
1040		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
1041			struct axe_csum_hdr csum_hdr;
1042
1043			if (total_len <	sizeof(csum_hdr)) {
1044				if_statinc(ifp, if_ierrors);
1045				break;
1046			}
1047
1048			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1049
1050			csum_hdr.len = le16toh(csum_hdr.len);
1051			csum_hdr.ilen = le16toh(csum_hdr.ilen);
1052			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1053
1054			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1055			    " cstatus %#jx", total_len,
1056			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1057
1058			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1059			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1060			    sc->sc_lenmask) {
1061				/* we lost sync */
1062				if_statinc(ifp, if_ierrors);
1063				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1064				    "err",
1065				    AXE_CSUM_RXBYTES(csum_hdr.len),
1066				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
1067				    sc->sc_lenmask, 0);
1068				break;
1069			}
1070			/*
1071			 * Get total transferred frame length including
1072			 * checksum header.  The length should be multiple
1073			 * of 4.
1074			 */
1075			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1076			u_int len = sizeof(csum_hdr) + pktlen;
1077			len = (len + 3) & ~3;
1078			if (total_len < len) {
1079				DPRINTFN(20, "total_len %#jx < len %#jx",
1080				    total_len, len, 0, 0);
1081				/* invalid length */
1082				if_statinc(ifp, if_ierrors);
1083				break;
1084			}
1085			buf += sizeof(csum_hdr);
1086
1087			const uint16_t cstatus = csum_hdr.cstatus;
1088
1089			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1090				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1091					flags |= M_CSUM_TCP_UDP_BAD;
1092				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1093					flags |= M_CSUM_IPv4_BAD;
1094
1095				const uint16_t l4type =
1096				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1097
1098				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1099					flags |= M_CSUM_TCPv4;
1100				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1101					flags |= M_CSUM_UDPv4;
1102			}
1103			if (total_len < len) {
1104				pktlen = total_len;
1105				total_len = 0;
1106			} else {
1107				total_len -= len;
1108				rxlen = len - sizeof(csum_hdr);
1109			}
1110			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1111			    " rxlen %#jx", total_len, len, pktlen, rxlen);
1112		} else { /* AX172 */
1113			pktlen = rxlen = total_len;
1114			total_len = 0;
1115		}
1116
1117		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1118		buf += rxlen;
1119
1120	} while (total_len > 0);
1121
1122	DPRINTFN(10, "start rx", 0, 0, 0, 0);
1123}
1124
1125static unsigned
1126axe_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1127{
1128	AXEHIST_FUNC(); AXEHIST_CALLED();
1129	struct axe_sframe_hdr hdr, tlr;
1130	size_t hdr_len = 0, tlr_len = 0;
1131	int length, boundary;
1132
1133	if (!AXE_IS_172(un)) {
1134		/*
1135		 * Copy the mbuf data into a contiguous buffer, leaving two
1136		 * bytes at the beginning to hold the frame length.
1137		 */
1138		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1139
1140		hdr.len = htole16(m->m_pkthdr.len);
1141		hdr.ilen = ~hdr.len;
1142		hdr_len = sizeof(hdr);
1143
1144		length = hdr_len + m->m_pkthdr.len;
1145
1146		if ((length % boundary) == 0) {
1147			tlr.len = 0x0000;
1148			tlr.ilen = 0xffff;
1149			tlr_len = sizeof(tlr);
1150		}
1151		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1152			length, m->m_pkthdr.len, sizeof(hdr), 0);
1153	}
1154
1155	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
1156		return 0;
1157	length = hdr_len + m->m_pkthdr.len + tlr_len;
1158
1159	if (hdr_len)
1160		memcpy(c->unc_buf, &hdr, hdr_len);
1161	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
1162	if (tlr_len)
1163		memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
1164
1165	return length;
1166}
1167
1168static void
1169axe_csum_cfg(struct axe_softc *sc)
1170{
1171	struct usbnet * const un = &sc->axe_un;
1172	struct ifnet * const ifp = usbnet_ifp(un);
1173	uint16_t csum1, csum2;
1174
1175	if ((un->un_flags & AX772B) != 0) {
1176		csum1 = 0;
1177		csum2 = 0;
1178		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1179			csum1 |= AXE_TXCSUM_IP;
1180		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1181			csum1 |= AXE_TXCSUM_TCP;
1182		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1183			csum1 |= AXE_TXCSUM_UDP;
1184		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1185			csum1 |= AXE_TXCSUM_TCPV6;
1186		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1187			csum1 |= AXE_TXCSUM_UDPV6;
1188		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1189		csum1 = 0;
1190		csum2 = 0;
1191
1192		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1193			csum1 |= AXE_RXCSUM_IP;
1194		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1195			csum1 |= AXE_RXCSUM_TCP;
1196		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1197			csum1 |= AXE_RXCSUM_UDP;
1198		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1199			csum1 |= AXE_RXCSUM_TCPV6;
1200		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1201			csum1 |= AXE_RXCSUM_UDPV6;
1202		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1203	}
1204}
1205
1206static int
1207axe_uno_init(struct ifnet *ifp)
1208{
1209	AXEHIST_FUNC(); AXEHIST_CALLED();
1210	struct usbnet * const un = ifp->if_softc;
1211	struct axe_softc * const sc = usbnet_softc(un);
1212	int rxmode;
1213
1214	/* Reset the ethernet interface. */
1215	axe_reset(un);
1216
1217#if 0
1218	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1219			      AX_GPIO_GPO2EN, 5, in_pm);
1220#endif
1221	/* Set MAC address and transmitter IPG values. */
1222	if (AXE_IS_172(un)) {
1223		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1224		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1225		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1226		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1227	} else {
1228		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1229		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1230		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1231
1232		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1233		if ((un->un_flags & AX772B) != 0 &&
1234		    (ifp->if_capenable & AX_RXCSUM) != 0) {
1235			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1236			un->un_flags |= AXCSUM_FRAME;
1237		} else {
1238			sc->sc_lenmask = AXE_HDR_LEN_MASK;
1239			un->un_flags |= AXSTD_FRAME;
1240		}
1241	}
1242
1243	/* Configure TX/RX checksum offloading. */
1244	axe_csum_cfg(sc);
1245
1246	if (un->un_flags & AX772B) {
1247		/* AX88772B uses different maximum frame burst configuration. */
1248		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1249		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1250		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1251	}
1252	/* Enable receiver, set RX mode */
1253	rxmode = (AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1254	if (AXE_IS_172(un))
1255		rxmode |= AXE_172_RXCMD_UNICAST;
1256	else {
1257		if (un->un_flags & AX772B) {
1258			/*
1259			 * Select RX header format type 1.  Aligning IP
1260			 * header on 4 byte boundary is not needed when
1261			 * checksum offloading feature is not used
1262			 * because we always copy the received frame in
1263			 * RX handler.  When RX checksum offloading is
1264			 * active, aligning IP header is required to
1265			 * reflect actual frame length including RX
1266			 * header size.
1267			 */
1268			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1269			if (un->un_flags & AXCSUM_FRAME)
1270				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1271		} else {
1272			/*
1273			 * Default Rx buffer size is too small to get
1274			 * maximum performance.
1275			 */
1276#if 0
1277			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1278				/* Largest possible USB buffer size for AX88178 */
1279			}
1280#endif
1281			rxmode |= AXE_178_RXCMD_MFB_16384;
1282		}
1283	}
1284
1285	DPRINTF("rxmode %#jx", rxmode, 0, 0, 0);
1286
1287	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1288
1289	return 0;
1290}
1291
1292static void
1293axe_uno_stop(struct ifnet *ifp, int disable)
1294{
1295	struct usbnet * const un = ifp->if_softc;
1296
1297	axe_reset(un);
1298}
1299
1300#ifdef _MODULE
1301#include "ioconf.c"
1302#endif
1303
1304USBNET_MODULE(axe)
1305