ses.c revision 1.9
1/*	$NetBSD: ses.c,v 1.9 2001/04/25 17:53:41 bouyer Exp $ */
2/*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author:	mjacob@nas.nasa.gov
26 */
27
28
29#include "opt_scsi.h"
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/file.h>
36#include <sys/stat.h>
37#include <sys/ioctl.h>
38#include <sys/scsiio.h>
39#include <sys/buf.h>
40#include <sys/uio.h>
41#include <sys/malloc.h>
42#include <sys/errno.h>
43#include <sys/device.h>
44#include <sys/disklabel.h>
45#include <sys/disk.h>
46#include <sys/proc.h>
47#include <sys/conf.h>
48#include <sys/vnode.h>
49#include <machine/stdarg.h>
50
51#include <dev/scsipi/scsipi_all.h>
52#include <dev/scsipi/scsi_all.h>
53#include <dev/scsipi/scsipi_disk.h>
54#include <dev/scsipi/scsi_disk.h>
55#include <dev/scsipi/scsiconf.h>
56#include <dev/scsipi/ses.h>
57
58/*
59 * Platform Independent Driver Internal Definitions for SES devices.
60 */
61typedef enum {
62	SES_NONE,
63	SES_SES_SCSI2,
64	SES_SES,
65	SES_SES_PASSTHROUGH,
66	SES_SEN,
67	SES_SAFT
68} enctyp;
69
70struct ses_softc;
71typedef struct ses_softc ses_softc_t;
72typedef struct {
73	int (*softc_init) 	__P((ses_softc_t *, int));
74	int (*init_enc)		__P((ses_softc_t *));
75	int (*get_encstat)	__P((ses_softc_t *, int));
76	int (*set_encstat)	__P((ses_softc_t *, ses_encstat, int));
77	int (*get_objstat)	__P((ses_softc_t *, ses_objstat *, int));
78	int (*set_objstat)	__P((ses_softc_t *, ses_objstat *, int));
79} encvec;
80
81#define	ENCI_SVALID	0x80
82
83typedef struct {
84	uint32_t
85		enctype	: 8,		/* enclosure type */
86		subenclosure : 8,	/* subenclosure id */
87		svalid	: 1,		/* enclosure information valid */
88		priv	: 15;		/* private data, per object */
89	uint8_t	encstat[4];	/* state && stats */
90} encobj;
91
92#define	SEN_ID		"UNISYS           SUN_SEN"
93#define	SEN_ID_LEN	24
94
95static enctyp ses_type __P((struct scsipi_inquiry_data *));
96
97
98/* Forward reference to Enclosure Functions */
99static int ses_softc_init __P((ses_softc_t *, int));
100static int ses_init_enc __P((ses_softc_t *));
101static int ses_get_encstat __P((ses_softc_t *, int));
102static int ses_set_encstat __P((ses_softc_t *, uint8_t, int));
103static int ses_get_objstat __P((ses_softc_t *, ses_objstat *, int));
104static int ses_set_objstat __P((ses_softc_t *, ses_objstat *, int));
105
106static int safte_softc_init __P((ses_softc_t *, int));
107static int safte_init_enc __P((ses_softc_t *));
108static int safte_get_encstat __P((ses_softc_t *, int));
109static int safte_set_encstat __P((ses_softc_t *, uint8_t, int));
110static int safte_get_objstat __P((ses_softc_t *, ses_objstat *, int));
111static int safte_set_objstat __P((ses_softc_t *, ses_objstat *, int));
112
113/*
114 * Platform implementation defines/functions for SES internal kernel stuff
115 */
116
117#define	STRNCMP			strncmp
118#define	PRINTF			printf
119#define	SES_LOG			ses_log
120#if	defined(DEBUG) || defined(SCSIDEBUG)
121#define	SES_VLOG		ses_log
122#else
123#define	SES_VLOG		if (0) ses_log
124#endif
125#define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
126#define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
127#define	MEMZERO			bzero
128#define	MEMCPY(dest, src, amt)	bcopy(src, dest, amt)
129#define	RECEIVE_DIAGNOSTIC	0x1c
130#define	SEND_DIAGNOSTIC		0x1d
131#define	WRITE_BUFFER		0x3b
132#define	READ_BUFFER		0x3c
133
134int sesopen __P((dev_t, int, int, struct proc *));
135int sesclose __P((dev_t, int, int, struct proc *));
136int sesioctl __P((dev_t, u_long, caddr_t, int, struct proc *));
137
138static int ses_runcmd	__P((struct ses_softc *, char *, int, char *, int *));
139static void ses_log	__P((struct ses_softc *, const char *, ...))
140     __attribute__((__format__(__printf__, 2, 3)));
141
142/*
143 * General NetBSD kernel stuff.
144 */
145
146struct ses_softc {
147	struct device	sc_device;
148	struct scsipi_periph *sc_periph;
149	enctyp		ses_type;	/* type of enclosure */
150	encvec		ses_vec;	/* vector to handlers */
151	void *		ses_private;	/* per-type private data */
152	encobj *	ses_objmap;	/* objects */
153	u_int32_t	ses_nobjects;	/* number of objects */
154	ses_encstat	ses_encstat;	/* overall status */
155	u_int8_t	ses_flags;
156};
157#define	SES_FLAG_INVALID	0x01
158#define	SES_FLAG_OPEN		0x02
159#define	SES_FLAG_INITIALIZED	0x04
160
161#define SESUNIT(x)       (minor((x)))
162
163static int ses_match __P((struct device *, struct cfdata *, void *));
164static void ses_attach __P((struct device *, struct device *, void *));
165static enctyp ses_device_type __P((struct scsipibus_attach_args *));
166
167struct cfattach ses_ca = {
168	sizeof (struct ses_softc), ses_match, ses_attach
169};
170extern struct cfdriver ses_cd;
171
172const struct scsipi_periphsw ses_switch = {
173	NULL,
174	NULL,
175	NULL,
176	NULL
177};
178
179
180int
181ses_match(parent, match, aux)
182	struct device *parent;
183	struct cfdata *match;
184	void *aux;
185{
186	struct scsipibus_attach_args *sa = aux;
187
188	switch (ses_device_type(sa)) {
189	case SES_SES:
190	case SES_SES_SCSI2:
191	case SES_SEN:
192	case SES_SAFT:
193	case SES_SES_PASSTHROUGH:
194		/*
195		 * For these devices, it's a perfect match.
196		 */
197		return (24);
198	default:
199		return (0);
200	}
201}
202
203
204/*
205 * Complete the attachment.
206 *
207 * We have to repeat the rerun of INQUIRY data as above because
208 * it's not until the return from the match routine that we have
209 * the softc available to set stuff in.
210 */
211void
212ses_attach(parent, self, aux)
213	struct device *parent;
214	struct device *self;
215	void *aux;
216{
217	char *tname;
218	struct ses_softc *softc = (void *)self;
219	struct scsipibus_attach_args *sa = aux;
220	struct scsipi_periph *periph = sa->sa_periph;
221
222	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223	softc->sc_periph = periph;
224	periph->periph_dev = &softc->sc_device;
225	periph->periph_switch = &ses_switch;
226	periph->periph_openings = 1;
227
228	softc->ses_type = ses_device_type(sa);
229	switch (softc->ses_type) {
230	case SES_SES:
231	case SES_SES_SCSI2:
232        case SES_SES_PASSTHROUGH:
233		softc->ses_vec.softc_init = ses_softc_init;
234		softc->ses_vec.init_enc = ses_init_enc;
235		softc->ses_vec.get_encstat = ses_get_encstat;
236		softc->ses_vec.set_encstat = ses_set_encstat;
237		softc->ses_vec.get_objstat = ses_get_objstat;
238		softc->ses_vec.set_objstat = ses_set_objstat;
239		break;
240        case SES_SAFT:
241		softc->ses_vec.softc_init = safte_softc_init;
242		softc->ses_vec.init_enc = safte_init_enc;
243		softc->ses_vec.get_encstat = safte_get_encstat;
244		softc->ses_vec.set_encstat = safte_set_encstat;
245		softc->ses_vec.get_objstat = safte_get_objstat;
246		softc->ses_vec.set_objstat = safte_set_objstat;
247		break;
248        case SES_SEN:
249		break;
250	case SES_NONE:
251	default:
252		break;
253	}
254
255	switch (softc->ses_type) {
256	default:
257	case SES_NONE:
258		tname = "No SES device";
259		break;
260	case SES_SES_SCSI2:
261		tname = "SCSI-2 SES Device";
262		break;
263	case SES_SES:
264		tname = "SCSI-3 SES Device";
265		break;
266        case SES_SES_PASSTHROUGH:
267		tname = "SES Passthrough Device";
268		break;
269        case SES_SEN:
270		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271		break;
272        case SES_SAFT:
273		tname = "SAF-TE Compliant Device";
274		break;
275	}
276	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277}
278
279
280static enctyp
281ses_device_type(sa)
282	struct scsipibus_attach_args *sa;
283{
284	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
285
286	if (inqp == NULL)
287		return (SES_NONE);
288
289	return (ses_type(inqp));
290}
291
292int
293sesopen(dev, flags, fmt, p)
294	dev_t dev;
295	int flags;
296	int fmt;
297	struct proc *p;
298{
299	struct ses_softc *softc;
300	int error, unit;
301
302	unit = SESUNIT(dev);
303	if (unit >= ses_cd.cd_ndevs)
304		return (ENXIO);
305	softc = ses_cd.cd_devs[unit];
306	if (softc == NULL)
307		return (ENXIO);
308
309	if (softc->ses_flags & SES_FLAG_INVALID) {
310		error = ENXIO;
311		goto out;
312	}
313	if (softc->ses_flags & SES_FLAG_OPEN) {
314		error = EBUSY;
315		goto out;
316	}
317	if (softc->ses_vec.softc_init == NULL) {
318		error = ENXIO;
319		goto out;
320	}
321	error = scsipi_adapter_addref(
322	    softc->sc_periph->periph_channel->chan_adapter);
323	if (error != 0)
324                goto out;
325
326
327	softc->ses_flags |= SES_FLAG_OPEN;
328	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
329		error = (*softc->ses_vec.softc_init)(softc, 1);
330		if (error)
331			softc->ses_flags &= ~SES_FLAG_OPEN;
332		else
333			softc->ses_flags |= SES_FLAG_INITIALIZED;
334	}
335
336out:
337	return (error);
338}
339
340int
341sesclose(dev, flags, fmt, p)
342	dev_t dev;
343	int flags;
344	int fmt;
345	struct proc *p;
346{
347	struct ses_softc *softc;
348	int unit;
349
350	unit = SESUNIT(dev);
351	if (unit >= ses_cd.cd_ndevs)
352		return (ENXIO);
353	softc = ses_cd.cd_devs[unit];
354	if (softc == NULL)
355		return (ENXIO);
356
357	scsipi_wait_drain(softc->sc_periph);
358	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
359	softc->ses_flags &= ~SES_FLAG_OPEN;
360	return (0);
361}
362
363int
364sesioctl(dev, cmd, arg_addr, flag, p)
365	dev_t dev;
366	u_long cmd;
367	caddr_t arg_addr;
368	int flag;
369	struct proc *p;
370{
371	ses_encstat tmp;
372	ses_objstat objs;
373	ses_object obj, *uobj;
374	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
375	void *addr;
376	int error, i;
377
378
379	if (arg_addr)
380		addr = *((caddr_t *) arg_addr);
381	else
382		addr = NULL;
383
384	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
385
386	/*
387	 * Now check to see whether we're initialized or not.
388	 */
389	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
390		return (ENODEV);
391	}
392
393	error = 0;
394
395	/*
396	 * If this command can change the device's state,
397	 * we must have the device open for writing.
398	 */
399	switch (cmd) {
400	case SESIOC_GETNOBJ:
401	case SESIOC_GETOBJMAP:
402	case SESIOC_GETENCSTAT:
403	case SESIOC_GETOBJSTAT:
404		break;
405	default:
406		if ((flag & FWRITE) == 0) {
407			return (EBADF);
408		}
409	}
410
411	switch (cmd) {
412	case SESIOC_GETNOBJ:
413		error = copyout(&ssc->ses_nobjects, addr,
414		    sizeof (ssc->ses_nobjects));
415		break;
416
417	case SESIOC_GETOBJMAP:
418		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
419			obj.obj_id = i;
420			obj.subencid = ssc->ses_objmap[i].subenclosure;
421			obj.object_type = ssc->ses_objmap[i].enctype;
422			error = copyout(&obj, uobj, sizeof (ses_object));
423			if (error) {
424				break;
425			}
426		}
427		break;
428
429	case SESIOC_GETENCSTAT:
430		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
431		if (error)
432			break;
433		tmp = ssc->ses_encstat & ~ENCI_SVALID;
434		error = copyout(&tmp, addr, sizeof (ses_encstat));
435		ssc->ses_encstat = tmp;
436		break;
437
438	case SESIOC_SETENCSTAT:
439		error = copyin(addr, &tmp, sizeof (ses_encstat));
440		if (error)
441			break;
442		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
443		break;
444
445	case SESIOC_GETOBJSTAT:
446		error = copyin(addr, &objs, sizeof (ses_objstat));
447		if (error)
448			break;
449		if (objs.obj_id >= ssc->ses_nobjects) {
450			error = EINVAL;
451			break;
452		}
453		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
454		if (error)
455			break;
456		error = copyout(&objs, addr, sizeof (ses_objstat));
457		/*
458		 * Always (for now) invalidate entry.
459		 */
460		ssc->ses_objmap[objs.obj_id].svalid = 0;
461		break;
462
463	case SESIOC_SETOBJSTAT:
464		error = copyin(addr, &objs, sizeof (ses_objstat));
465		if (error)
466			break;
467
468		if (objs.obj_id >= ssc->ses_nobjects) {
469			error = EINVAL;
470			break;
471		}
472		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
473
474		/*
475		 * Always (for now) invalidate entry.
476		 */
477		ssc->ses_objmap[objs.obj_id].svalid = 0;
478		break;
479
480	case SESIOC_INIT:
481
482		error = (*ssc->ses_vec.init_enc)(ssc);
483		break;
484
485	default:
486		error = scsipi_do_ioctl(ssc->sc_periph,
487			    dev, cmd, addr, flag, p);
488		break;
489	}
490	return (error);
491}
492
493static int
494ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
495{
496	struct scsipi_generic sgen;
497	int dl, flg, error;
498
499	if (dptr) {
500		if ((dl = *dlenp) < 0) {
501			dl = -dl;
502			flg = XS_CTL_DATA_OUT;
503		} else {
504			flg = XS_CTL_DATA_IN;
505		}
506	} else {
507		dl = 0;
508		flg = 0;
509	}
510
511	if (cdbl > sizeof (struct scsipi_generic)) {
512		cdbl = sizeof (struct scsipi_generic);
513	}
514	bcopy(cdb, &sgen, cdbl);
515#ifndef	SCSIDEBUG
516	flg |= XS_CTL_SILENT;
517#endif
518	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
519	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
520
521	if (error == 0 && dptr)
522		*dlenp = 0;
523
524	return (error);
525}
526
527#ifdef	__STDC__
528static void
529ses_log(struct ses_softc *ssc, const char *fmt, ...)
530{
531	va_list ap;
532
533	printf("%s: ", ssc->sc_device.dv_xname);
534	va_start(ap, fmt);
535	vprintf(fmt, ap);
536	va_end(ap);
537}
538#else
539static void
540ses_log(ssc, fmt, va_alist)
541	struct ses_softc *ssc;
542	char *fmt;
543	va_dcl
544{
545	va_list ap;
546
547	printf("%s: ", ssc->sc_device.dv_xname);
548	va_start(ap, fmt);
549	vprintf(fmt, ap);
550	va_end(ap);
551}
552#endif
553
554/*
555 * The code after this point runs on many platforms,
556 * so forgive the slightly awkward and nonconforming
557 * appearance.
558 */
559
560/*
561 * Is this a device that supports enclosure services?
562 *
563 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
564 * an SES device. If it happens to be an old UNISYS SEN device, we can
565 * handle that too.
566 */
567
568#define	SAFTE_START	44
569#define	SAFTE_END	50
570#define	SAFTE_LEN	SAFTE_END-SAFTE_START
571
572static enctyp
573ses_type(inqp)
574	struct scsipi_inquiry_data *inqp;
575{
576	size_t	given_len = inqp->additional_length + 4;
577
578	if (given_len < 8+SEN_ID_LEN)
579		return (SES_NONE);
580
581	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
582		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
583			return (SES_SEN);
584		} else if ((inqp->version & SID_ANSII) > 2) {
585			return (SES_SES);
586		} else {
587			return (SES_SES_SCSI2);
588		}
589		return (SES_NONE);
590	}
591
592#ifdef	SES_ENABLE_PASSTHROUGH
593	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
594		/*
595		 * PassThrough Device.
596		 */
597		return (SES_SES_PASSTHROUGH);
598	}
599#endif
600
601	/*
602	 * The comparison is short for a reason-
603	 * some vendors were chopping it short.
604	 */
605
606	if (given_len < SAFTE_END - 2) {
607		return (SES_NONE);
608	}
609
610	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
611			SAFTE_LEN - 2) == 0) {
612		return (SES_SAFT);
613	}
614
615	return (SES_NONE);
616}
617
618/*
619 * SES Native Type Device Support
620 */
621
622/*
623 * SES Diagnostic Page Codes
624 */
625
626typedef enum {
627	SesConfigPage = 0x1,
628	SesControlPage,
629#define	SesStatusPage SesControlPage
630	SesHelpTxt,
631	SesStringOut,
632#define	SesStringIn	SesStringOut
633	SesThresholdOut,
634#define	SesThresholdIn SesThresholdOut
635	SesArrayControl,
636#define	SesArrayStatus	SesArrayControl
637	SesElementDescriptor,
638	SesShortStatus
639} SesDiagPageCodes;
640
641/*
642 * minimal amounts
643 */
644
645/*
646 * Minimum amount of data, starting from byte 0, to have
647 * the config header.
648 */
649#define	SES_CFGHDR_MINLEN	12
650
651/*
652 * Minimum amount of data, starting from byte 0, to have
653 * the config header and one enclosure header.
654 */
655#define	SES_ENCHDR_MINLEN	48
656
657/*
658 * Take this value, subtract it from VEnclen and you know
659 * the length of the vendor unique bytes.
660 */
661#define	SES_ENCHDR_VMIN		36
662
663/*
664 * SES Data Structures
665 */
666
667typedef struct {
668	uint32_t GenCode;	/* Generation Code */
669	uint8_t	Nsubenc;	/* Number of Subenclosures */
670} SesCfgHdr;
671
672typedef struct {
673	uint8_t	Subencid;	/* SubEnclosure Identifier */
674	uint8_t	Ntypes;		/* # of supported types */
675	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
676} SesEncHdr;
677
678typedef struct {
679	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
680	uint8_t	encVid[8];
681	uint8_t	encPid[16];
682	uint8_t	encRev[4];
683	uint8_t	encVen[1];
684} SesEncDesc;
685
686typedef struct {
687	uint8_t	enc_type;		/* type of element */
688	uint8_t	enc_maxelt;		/* maximum supported */
689	uint8_t	enc_subenc;		/* in SubEnc # N */
690	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
691} SesThdr;
692
693typedef struct {
694	uint8_t	comstatus;
695	uint8_t	comstat[3];
696} SesComStat;
697
698struct typidx {
699	int ses_tidx;
700	int ses_oidx;
701};
702
703struct sscfg {
704	uint8_t ses_ntypes;	/* total number of types supported */
705
706	/*
707	 * We need to keep a type index as well as an
708	 * object index for each object in an enclosure.
709	 */
710	struct typidx *ses_typidx;
711
712	/*
713	 * We also need to keep track of the number of elements
714	 * per type of element. This is needed later so that we
715	 * can find precisely in the returned status data the
716	 * status for the Nth element of the Kth type.
717	 */
718	uint8_t *	ses_eltmap;
719};
720
721
722/*
723 * (de)canonicalization defines
724 */
725#define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
726#define	sbit(x, bit)		(((uint32_t)(x)) << bit)
727#define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
728
729#define	sset16(outp, idx, sval)	\
730	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
731	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
732
733
734#define	sset24(outp, idx, sval)	\
735	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
736	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
737	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
738
739
740#define	sset32(outp, idx, sval)	\
741	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
742	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
743	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
744	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
745
746#define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
747#define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
748#define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
749#define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
750
751#define	sget16(inp, idx, lval)	\
752	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
753		(((uint8_t *)(inp))[idx+1]), idx += 2
754
755#define	gget16(inp, idx, lval)	\
756	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
757		(((uint8_t *)(inp))[idx+1])
758
759#define	sget24(inp, idx, lval)	\
760	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
761		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
762			(((uint8_t *)(inp))[idx+2]), idx += 3
763
764#define	gget24(inp, idx, lval)	\
765	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
766		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
767			(((uint8_t *)(inp))[idx+2])
768
769#define	sget32(inp, idx, lval)	\
770	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
771		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
772		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
773			(((uint8_t *)(inp))[idx+3]), idx += 4
774
775#define	gget32(inp, idx, lval)	\
776	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
777		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
778		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
779			(((uint8_t *)(inp))[idx+3])
780
781#define	SCSZ	0x2000
782#define	CFLEN	(256 + SES_ENCHDR_MINLEN)
783
784/*
785 * Routines specific && private to SES only
786 */
787
788static int ses_getconfig(ses_softc_t *);
789static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
790static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
791static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
792static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
793static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
794static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
795static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
796
797static int
798ses_softc_init(ses_softc_t *ssc, int doinit)
799{
800	if (doinit == 0) {
801		struct sscfg *cc;
802		if (ssc->ses_nobjects) {
803			SES_FREE(ssc->ses_objmap,
804			    ssc->ses_nobjects * sizeof (encobj));
805			ssc->ses_objmap = NULL;
806		}
807		if ((cc = ssc->ses_private) != NULL) {
808			if (cc->ses_eltmap && cc->ses_ntypes) {
809				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
810				cc->ses_eltmap = NULL;
811				cc->ses_ntypes = 0;
812			}
813			if (cc->ses_typidx && ssc->ses_nobjects) {
814				SES_FREE(cc->ses_typidx,
815				    ssc->ses_nobjects * sizeof (struct typidx));
816				cc->ses_typidx = NULL;
817			}
818			SES_FREE(cc, sizeof (struct sscfg));
819			ssc->ses_private = NULL;
820		}
821		ssc->ses_nobjects = 0;
822		return (0);
823	}
824	if (ssc->ses_private == NULL) {
825		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
826	}
827	if (ssc->ses_private == NULL) {
828		return (ENOMEM);
829	}
830	ssc->ses_nobjects = 0;
831	ssc->ses_encstat = 0;
832	return (ses_getconfig(ssc));
833}
834
835static int
836ses_init_enc(ses_softc_t *ssc)
837{
838	return (0);
839}
840
841static int
842ses_get_encstat(ses_softc_t *ssc, int slpflag)
843{
844	SesComStat ComStat;
845	int status;
846
847	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
848		return (status);
849	}
850	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
851	return (0);
852}
853
854static int
855ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
856{
857	SesComStat ComStat;
858	int status;
859
860	ComStat.comstatus = encstat & 0xf;
861	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
862		return (status);
863	}
864	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
865	return (0);
866}
867
868static int
869ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
870{
871	int i = (int)obp->obj_id;
872
873	if (ssc->ses_objmap[i].svalid == 0) {
874		SesComStat ComStat;
875		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
876		if (err)
877			return (err);
878		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
879		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
880		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
881		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
882		ssc->ses_objmap[i].svalid = 1;
883	}
884	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
885	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
886	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
887	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
888	return (0);
889}
890
891static int
892ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
893{
894	SesComStat ComStat;
895	int err;
896	/*
897	 * If this is clear, we don't do diddly.
898	 */
899	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
900		return (0);
901	}
902	ComStat.comstatus = obp->cstat[0];
903	ComStat.comstat[0] = obp->cstat[1];
904	ComStat.comstat[1] = obp->cstat[2];
905	ComStat.comstat[2] = obp->cstat[3];
906	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
907	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
908	return (err);
909}
910
911static int
912ses_getconfig(ses_softc_t *ssc)
913{
914	struct sscfg *cc;
915	SesCfgHdr cf;
916	SesEncHdr hd;
917	SesEncDesc *cdp;
918	SesThdr thdr;
919	int err, amt, i, nobj, ntype, maxima;
920	char storage[CFLEN], *sdata;
921	static char cdb[6] = {
922	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
923	};
924
925	cc = ssc->ses_private;
926	if (cc == NULL) {
927		return (ENXIO);
928	}
929
930	sdata = SES_MALLOC(SCSZ);
931	if (sdata == NULL)
932		return (ENOMEM);
933
934	amt = SCSZ;
935	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
936	if (err) {
937		SES_FREE(sdata, SCSZ);
938		return (err);
939	}
940	amt = SCSZ - amt;
941
942	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
943		SES_LOG(ssc, "Unable to parse SES Config Header\n");
944		SES_FREE(sdata, SCSZ);
945		return (EIO);
946	}
947	if (amt < SES_ENCHDR_MINLEN) {
948		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
949		SES_FREE(sdata, SCSZ);
950		return (EIO);
951	}
952
953	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
954
955	/*
956	 * Now waltz through all the subenclosures toting up the
957	 * number of types available in each. For this, we only
958	 * really need the enclosure header. However, we get the
959	 * enclosure descriptor for debug purposes, as well
960	 * as self-consistency checking purposes.
961	 */
962
963	maxima = cf.Nsubenc + 1;
964	cdp = (SesEncDesc *) storage;
965	for (ntype = i = 0; i < maxima; i++) {
966		MEMZERO((caddr_t)cdp, sizeof (*cdp));
967		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
968			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
969			SES_FREE(sdata, SCSZ);
970			return (EIO);
971		}
972		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
973		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
974
975		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
976			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
977			SES_FREE(sdata, SCSZ);
978			return (EIO);
979		}
980		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
981		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
982		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
983		    cdp->encWWN[6], cdp->encWWN[7]);
984		ntype += hd.Ntypes;
985	}
986
987	/*
988	 * Now waltz through all the types that are available, getting
989	 * the type header so we can start adding up the number of
990	 * objects available.
991	 */
992	for (nobj = i = 0; i < ntype; i++) {
993		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
994			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
995			SES_FREE(sdata, SCSZ);
996			return (EIO);
997		}
998		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
999		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1000		    thdr.enc_subenc, thdr.enc_tlen);
1001		nobj += thdr.enc_maxelt;
1002	}
1003
1004
1005	/*
1006	 * Now allocate the object array and type map.
1007	 */
1008
1009	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1010	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1011	cc->ses_eltmap = SES_MALLOC(ntype);
1012
1013	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1014	    cc->ses_eltmap == NULL) {
1015		if (ssc->ses_objmap) {
1016			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1017			ssc->ses_objmap = NULL;
1018		}
1019		if (cc->ses_typidx) {
1020			SES_FREE(cc->ses_typidx,
1021			    (nobj * sizeof (struct typidx)));
1022			cc->ses_typidx = NULL;
1023		}
1024		if (cc->ses_eltmap) {
1025			SES_FREE(cc->ses_eltmap, ntype);
1026			cc->ses_eltmap = NULL;
1027		}
1028		SES_FREE(sdata, SCSZ);
1029		return (ENOMEM);
1030	}
1031	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1032	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1033	MEMZERO(cc->ses_eltmap, ntype);
1034	cc->ses_ntypes = (uint8_t) ntype;
1035	ssc->ses_nobjects = nobj;
1036
1037	/*
1038	 * Now waltz through the # of types again to fill in the types
1039	 * (and subenclosure ids) of the allocated objects.
1040	 */
1041	nobj = 0;
1042	for (i = 0; i < ntype; i++) {
1043		int j;
1044		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1045			continue;
1046		}
1047		cc->ses_eltmap[i] = thdr.enc_maxelt;
1048		for (j = 0; j < thdr.enc_maxelt; j++) {
1049			cc->ses_typidx[nobj].ses_tidx = i;
1050			cc->ses_typidx[nobj].ses_oidx = j;
1051			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1052			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1053		}
1054	}
1055	SES_FREE(sdata, SCSZ);
1056	return (0);
1057}
1058
1059static int
1060ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1061{
1062	struct sscfg *cc;
1063	int err, amt, bufsiz, tidx, oidx;
1064	char cdb[6], *sdata;
1065
1066	cc = ssc->ses_private;
1067	if (cc == NULL) {
1068		return (ENXIO);
1069	}
1070
1071	/*
1072	 * If we're just getting overall enclosure status,
1073	 * we only need 2 bytes of data storage.
1074	 *
1075	 * If we're getting anything else, we know how much
1076	 * storage we need by noting that starting at offset
1077	 * 8 in returned data, all object status bytes are 4
1078	 * bytes long, and are stored in chunks of types(M)
1079	 * and nth+1 instances of type M.
1080	 */
1081	if (objid == -1) {
1082		bufsiz = 2;
1083	} else {
1084		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1085	}
1086	sdata = SES_MALLOC(bufsiz);
1087	if (sdata == NULL)
1088		return (ENOMEM);
1089
1090	cdb[0] = RECEIVE_DIAGNOSTIC;
1091	cdb[1] = 1;
1092	cdb[2] = SesStatusPage;
1093	cdb[3] = bufsiz >> 8;
1094	cdb[4] = bufsiz & 0xff;
1095	cdb[5] = 0;
1096	amt = bufsiz;
1097	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1098	if (err) {
1099		SES_FREE(sdata, bufsiz);
1100		return (err);
1101	}
1102	amt = bufsiz - amt;
1103
1104	if (objid == -1) {
1105		tidx = -1;
1106		oidx = -1;
1107	} else {
1108		tidx = cc->ses_typidx[objid].ses_tidx;
1109		oidx = cc->ses_typidx[objid].ses_oidx;
1110	}
1111	if (in) {
1112		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1113			err = ENODEV;
1114		}
1115	} else {
1116		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1117			err = ENODEV;
1118		} else {
1119			cdb[0] = SEND_DIAGNOSTIC;
1120			cdb[1] = 0x10;
1121			cdb[2] = 0;
1122			cdb[3] = bufsiz >> 8;
1123			cdb[4] = bufsiz & 0xff;
1124			cdb[5] = 0;
1125			amt = -bufsiz;
1126			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1127		}
1128	}
1129	SES_FREE(sdata, bufsiz);
1130	return (0);
1131}
1132
1133
1134/*
1135 * Routines to parse returned SES data structures.
1136 * Architecture and compiler independent.
1137 */
1138
1139static int
1140ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1141{
1142	if (buflen < SES_CFGHDR_MINLEN) {
1143		return (-1);
1144	}
1145	gget8(buffer, 1, cfp->Nsubenc);
1146	gget32(buffer, 4, cfp->GenCode);
1147	return (0);
1148}
1149
1150static int
1151ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1152{
1153	int s, off = 8;
1154	for (s = 0; s < SubEncId; s++) {
1155		if (off + 3 > amt)
1156			return (-1);
1157		off += buffer[off+3] + 4;
1158	}
1159	if (off + 3 > amt) {
1160		return (-1);
1161	}
1162	gget8(buffer, off+1, chp->Subencid);
1163	gget8(buffer, off+2, chp->Ntypes);
1164	gget8(buffer, off+3, chp->VEnclen);
1165	return (0);
1166}
1167
1168static int
1169ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1170{
1171	int s, e, enclen, off = 8;
1172	for (s = 0; s < SubEncId; s++) {
1173		if (off + 3 > amt)
1174			return (-1);
1175		off += buffer[off+3] + 4;
1176	}
1177	if (off + 3 > amt) {
1178		return (-1);
1179	}
1180	gget8(buffer, off+3, enclen);
1181	off += 4;
1182	if (off  >= amt)
1183		return (-1);
1184
1185	e = off + enclen;
1186	if (e > amt) {
1187		e = amt;
1188	}
1189	MEMCPY(cdp, &buffer[off], e - off);
1190	return (0);
1191}
1192
1193static int
1194ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1195{
1196	int s, off = 8;
1197
1198	if (amt < SES_CFGHDR_MINLEN) {
1199		return (-1);
1200	}
1201	for (s = 0; s < buffer[1]; s++) {
1202		if (off + 3 > amt)
1203			return (-1);
1204		off += buffer[off+3] + 4;
1205	}
1206	if (off + 3 > amt) {
1207		return (-1);
1208	}
1209	off += buffer[off+3] + 4 + (nth * 4);
1210	if (amt < (off + 4))
1211		return (-1);
1212
1213	gget8(buffer, off++, thp->enc_type);
1214	gget8(buffer, off++, thp->enc_maxelt);
1215	gget8(buffer, off++, thp->enc_subenc);
1216	gget8(buffer, off, thp->enc_tlen);
1217	return (0);
1218}
1219
1220/*
1221 * This function needs a little explanation.
1222 *
1223 * The arguments are:
1224 *
1225 *
1226 *	char *b, int amt
1227 *
1228 *		These describes the raw input SES status data and length.
1229 *
1230 *	uint8_t *ep
1231 *
1232 *		This is a map of the number of types for each element type
1233 *		in the enclosure.
1234 *
1235 *	int elt
1236 *
1237 *		This is the element type being sought. If elt is -1,
1238 *		then overall enclosure status is being sought.
1239 *
1240 *	int elm
1241 *
1242 *		This is the ordinal Mth element of type elt being sought.
1243 *
1244 *	SesComStat *sp
1245 *
1246 *		This is the output area to store the status for
1247 *		the Mth element of type Elt.
1248 */
1249
1250static int
1251ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1252{
1253	int idx, i;
1254
1255	/*
1256	 * If it's overall enclosure status being sought, get that.
1257	 * We need at least 2 bytes of status data to get that.
1258	 */
1259	if (elt == -1) {
1260		if (amt < 2)
1261			return (-1);
1262		gget8(b, 1, sp->comstatus);
1263		sp->comstat[0] = 0;
1264		sp->comstat[1] = 0;
1265		sp->comstat[2] = 0;
1266		return (0);
1267	}
1268
1269	/*
1270	 * Check to make sure that the Mth element is legal for type Elt.
1271	 */
1272
1273	if (elm >= ep[elt])
1274		return (-1);
1275
1276	/*
1277	 * Starting at offset 8, start skipping over the storage
1278	 * for the element types we're not interested in.
1279	 */
1280	for (idx = 8, i = 0; i < elt; i++) {
1281		idx += ((ep[i] + 1) * 4);
1282	}
1283
1284	/*
1285	 * Skip over Overall status for this element type.
1286	 */
1287	idx += 4;
1288
1289	/*
1290	 * And skip to the index for the Mth element that we're going for.
1291	 */
1292	idx += (4 * elm);
1293
1294	/*
1295	 * Make sure we haven't overflowed the buffer.
1296	 */
1297	if (idx+4 > amt)
1298		return (-1);
1299
1300	/*
1301	 * Retrieve the status.
1302	 */
1303	gget8(b, idx++, sp->comstatus);
1304	gget8(b, idx++, sp->comstat[0]);
1305	gget8(b, idx++, sp->comstat[1]);
1306	gget8(b, idx++, sp->comstat[2]);
1307#if	0
1308	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1309#endif
1310	return (0);
1311}
1312
1313/*
1314 * This is the mirror function to ses_decode, but we set the 'select'
1315 * bit for the object which we're interested in. All other objects,
1316 * after a status fetch, should have that bit off. Hmm. It'd be easy
1317 * enough to ensure this, so we will.
1318 */
1319
1320static int
1321ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1322{
1323	int idx, i;
1324
1325	/*
1326	 * If it's overall enclosure status being sought, get that.
1327	 * We need at least 2 bytes of status data to get that.
1328	 */
1329	if (elt == -1) {
1330		if (amt < 2)
1331			return (-1);
1332		i = 0;
1333		sset8(b, i, 0);
1334		sset8(b, i, sp->comstatus & 0xf);
1335#if	0
1336		PRINTF("set EncStat %x\n", sp->comstatus);
1337#endif
1338		return (0);
1339	}
1340
1341	/*
1342	 * Check to make sure that the Mth element is legal for type Elt.
1343	 */
1344
1345	if (elm >= ep[elt])
1346		return (-1);
1347
1348	/*
1349	 * Starting at offset 8, start skipping over the storage
1350	 * for the element types we're not interested in.
1351	 */
1352	for (idx = 8, i = 0; i < elt; i++) {
1353		idx += ((ep[i] + 1) * 4);
1354	}
1355
1356	/*
1357	 * Skip over Overall status for this element type.
1358	 */
1359	idx += 4;
1360
1361	/*
1362	 * And skip to the index for the Mth element that we're going for.
1363	 */
1364	idx += (4 * elm);
1365
1366	/*
1367	 * Make sure we haven't overflowed the buffer.
1368	 */
1369	if (idx+4 > amt)
1370		return (-1);
1371
1372	/*
1373	 * Set the status.
1374	 */
1375	sset8(b, idx, sp->comstatus);
1376	sset8(b, idx, sp->comstat[0]);
1377	sset8(b, idx, sp->comstat[1]);
1378	sset8(b, idx, sp->comstat[2]);
1379	idx -= 4;
1380
1381#if	0
1382	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1383	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1384	    sp->comstat[1], sp->comstat[2]);
1385#endif
1386
1387	/*
1388	 * Now make sure all other 'Select' bits are off.
1389	 */
1390	for (i = 8; i < amt; i += 4) {
1391		if (i != idx)
1392			b[i] &= ~0x80;
1393	}
1394	/*
1395	 * And make sure the INVOP bit is clear.
1396	 */
1397	b[2] &= ~0x10;
1398
1399	return (0);
1400}
1401
1402/*
1403 * SAF-TE Type Device Emulation
1404 */
1405
1406static int safte_getconfig(ses_softc_t *);
1407static int safte_rdstat(ses_softc_t *, int);;
1408static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1409static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1410static void wrslot_stat(ses_softc_t *, int);
1411static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1412
1413#define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1414	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1415/*
1416 * SAF-TE specific defines- Mandatory ones only...
1417 */
1418
1419/*
1420 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1421 */
1422#define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1423#define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1424#define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1425
1426/*
1427 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1428 */
1429#define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1430#define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1431#define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1432#define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1433#define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1434
1435
1436#define	SAFT_SCRATCH	64
1437#define	NPSEUDO_THERM	16
1438#define	NPSEUDO_ALARM	1
1439struct scfg {
1440	/*
1441	 * Cached Configuration
1442	 */
1443	uint8_t	Nfans;		/* Number of Fans */
1444	uint8_t	Npwr;		/* Number of Power Supplies */
1445	uint8_t	Nslots;		/* Number of Device Slots */
1446	uint8_t	DoorLock;	/* Door Lock Installed */
1447	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1448	uint8_t	Nspkrs;		/* Number of Speakers */
1449	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1450	/*
1451	 * Cached Flag Bytes for Global Status
1452	 */
1453	uint8_t	flag1;
1454	uint8_t	flag2;
1455	/*
1456	 * What object index ID is where various slots start.
1457	 */
1458	uint8_t	pwroff;
1459	uint8_t	slotoff;
1460#define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1461};
1462
1463#define	SAFT_FLG1_ALARM		0x1
1464#define	SAFT_FLG1_GLOBFAIL	0x2
1465#define	SAFT_FLG1_GLOBWARN	0x4
1466#define	SAFT_FLG1_ENCPWROFF	0x8
1467#define	SAFT_FLG1_ENCFANFAIL	0x10
1468#define	SAFT_FLG1_ENCPWRFAIL	0x20
1469#define	SAFT_FLG1_ENCDRVFAIL	0x40
1470#define	SAFT_FLG1_ENCDRVWARN	0x80
1471
1472#define	SAFT_FLG2_LOCKDOOR	0x4
1473#define	SAFT_PRIVATE		sizeof (struct scfg)
1474
1475static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1476#define	SAFT_BAIL(r, x, k, l)	\
1477	if (r >= x) { \
1478		SES_LOG(ssc, safte_2little, x, __LINE__);\
1479		SES_FREE(k, l); \
1480		return (EIO); \
1481	}
1482
1483
1484int
1485safte_softc_init(ses_softc_t *ssc, int doinit)
1486{
1487	int err, i, r;
1488	struct scfg *cc;
1489
1490	if (doinit == 0) {
1491		if (ssc->ses_nobjects) {
1492			if (ssc->ses_objmap) {
1493				SES_FREE(ssc->ses_objmap,
1494				    ssc->ses_nobjects * sizeof (encobj));
1495				ssc->ses_objmap = NULL;
1496			}
1497			ssc->ses_nobjects = 0;
1498		}
1499		if (ssc->ses_private) {
1500			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1501			ssc->ses_private = NULL;
1502		}
1503		return (0);
1504	}
1505
1506	if (ssc->ses_private == NULL) {
1507		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1508		if (ssc->ses_private == NULL) {
1509			return (ENOMEM);
1510		}
1511		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1512	}
1513
1514	ssc->ses_nobjects = 0;
1515	ssc->ses_encstat = 0;
1516
1517	if ((err = safte_getconfig(ssc)) != 0) {
1518		return (err);
1519	}
1520
1521	/*
1522	 * The number of objects here, as well as that reported by the
1523	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1524	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1525	 */
1526	cc = ssc->ses_private;
1527	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1528	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1529	ssc->ses_objmap = (encobj *)
1530	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1531	if (ssc->ses_objmap == NULL) {
1532		return (ENOMEM);
1533	}
1534	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1535
1536	r = 0;
1537	/*
1538	 * Note that this is all arranged for the convenience
1539	 * in later fetches of status.
1540	 */
1541	for (i = 0; i < cc->Nfans; i++)
1542		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1543	cc->pwroff = (uint8_t) r;
1544	for (i = 0; i < cc->Npwr; i++)
1545		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1546	for (i = 0; i < cc->DoorLock; i++)
1547		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1548	for (i = 0; i < cc->Nspkrs; i++)
1549		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1550	for (i = 0; i < cc->Ntherm; i++)
1551		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1552	for (i = 0; i < NPSEUDO_THERM; i++)
1553		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1554	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1555	cc->slotoff = (uint8_t) r;
1556	for (i = 0; i < cc->Nslots; i++)
1557		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1558	return (0);
1559}
1560
1561int
1562safte_init_enc(ses_softc_t *ssc)
1563{
1564	int err, amt;
1565	char *sdata;
1566	static char cdb0[6] = { SEND_DIAGNOSTIC };
1567	static char cdb[10] =
1568	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1569
1570	sdata = SES_MALLOC(SAFT_SCRATCH);
1571	if (sdata == NULL)
1572		return (ENOMEM);
1573
1574	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1575	if (err) {
1576		SES_FREE(sdata, SAFT_SCRATCH);
1577		return (err);
1578	}
1579	sdata[0] = SAFTE_WT_GLOBAL;
1580	MEMZERO(&sdata[1], 15);
1581	amt = -SAFT_SCRATCH;
1582	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1583	SES_FREE(sdata, SAFT_SCRATCH);
1584	return (err);
1585}
1586
1587int
1588safte_get_encstat(ses_softc_t *ssc, int slpflg)
1589{
1590	return (safte_rdstat(ssc, slpflg));
1591}
1592
1593int
1594safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1595{
1596	struct scfg *cc = ssc->ses_private;
1597	if (cc == NULL)
1598		return (0);
1599	/*
1600	 * Since SAF-TE devices aren't necessarily sticky in terms
1601	 * of state, make our soft copy of enclosure status 'sticky'-
1602	 * that is, things set in enclosure status stay set (as implied
1603	 * by conditions set in reading object status) until cleared.
1604	 */
1605	ssc->ses_encstat &= ~ALL_ENC_STAT;
1606	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1607	ssc->ses_encstat |= ENCI_SVALID;
1608	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1609	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1610		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1611	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1612		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1613	}
1614	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1615}
1616
1617int
1618safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1619{
1620	int i = (int)obp->obj_id;
1621
1622	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1623	    (ssc->ses_objmap[i].svalid) == 0) {
1624		int err = safte_rdstat(ssc, slpflg);
1625		if (err)
1626			return (err);
1627	}
1628	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1629	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1630	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1631	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1632	return (0);
1633}
1634
1635
1636int
1637safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1638{
1639	int idx, err;
1640	encobj *ep;
1641	struct scfg *cc;
1642
1643
1644	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1645	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1646	    obp->cstat[3]);
1647
1648	/*
1649	 * If this is clear, we don't do diddly.
1650	 */
1651	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1652		return (0);
1653	}
1654
1655	err = 0;
1656	/*
1657	 * Check to see if the common bits are set and do them first.
1658	 */
1659	if (obp->cstat[0] & ~SESCTL_CSEL) {
1660		err = set_objstat_sel(ssc, obp, slp);
1661		if (err)
1662			return (err);
1663	}
1664
1665	cc = ssc->ses_private;
1666	if (cc == NULL)
1667		return (0);
1668
1669	idx = (int)obp->obj_id;
1670	ep = &ssc->ses_objmap[idx];
1671
1672	switch (ep->enctype) {
1673	case SESTYP_DEVICE:
1674	{
1675		uint8_t slotop = 0;
1676		/*
1677		 * XXX: I should probably cache the previous state
1678		 * XXX: of SESCTL_DEVOFF so that when it goes from
1679		 * XXX: true to false I can then set PREPARE FOR OPERATION
1680		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1681		 */
1682		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1683			slotop |= 0x2;
1684		}
1685		if (obp->cstat[2] & SESCTL_RQSID) {
1686			slotop |= 0x4;
1687		}
1688		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1689		    slotop, slp);
1690		if (err)
1691			return (err);
1692		if (obp->cstat[3] & SESCTL_RQSFLT) {
1693			ep->priv |= 0x2;
1694		} else {
1695			ep->priv &= ~0x2;
1696		}
1697		if (ep->priv & 0xc6) {
1698			ep->priv &= ~0x1;
1699		} else {
1700			ep->priv |= 0x1;	/* no errors */
1701		}
1702		wrslot_stat(ssc, slp);
1703		break;
1704	}
1705	case SESTYP_POWER:
1706		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1707			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1708		} else {
1709			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1710		}
1711		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1712		    cc->flag2, 0, slp);
1713		if (err)
1714			return (err);
1715		if (obp->cstat[3] & SESCTL_RQSTON) {
1716			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1717				idx - cc->pwroff, 0, 0, slp);
1718		} else {
1719			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1720				idx - cc->pwroff, 0, 1, slp);
1721		}
1722		break;
1723	case SESTYP_FAN:
1724		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1725			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1726		} else {
1727			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1728		}
1729		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1730		    cc->flag2, 0, slp);
1731		if (err)
1732			return (err);
1733		if (obp->cstat[3] & SESCTL_RQSTON) {
1734			uint8_t fsp;
1735			if ((obp->cstat[3] & 0x7) == 7) {
1736				fsp = 4;
1737			} else if ((obp->cstat[3] & 0x7) == 6) {
1738				fsp = 3;
1739			} else if ((obp->cstat[3] & 0x7) == 4) {
1740				fsp = 2;
1741			} else {
1742				fsp = 1;
1743			}
1744			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1745		} else {
1746			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1747		}
1748		break;
1749	case SESTYP_DOORLOCK:
1750		if (obp->cstat[3] & 0x1) {
1751			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1752		} else {
1753			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1754		}
1755		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1756		    cc->flag2, 0, slp);
1757		break;
1758	case SESTYP_ALARM:
1759		/*
1760		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1761		 */
1762		obp->cstat[3] &= ~0xa;
1763		if (obp->cstat[3] & 0x40) {
1764			cc->flag2 &= ~SAFT_FLG1_ALARM;
1765		} else if (obp->cstat[3] != 0) {
1766			cc->flag2 |= SAFT_FLG1_ALARM;
1767		} else {
1768			cc->flag2 &= ~SAFT_FLG1_ALARM;
1769		}
1770		ep->priv = obp->cstat[3];
1771		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1772			cc->flag2, 0, slp);
1773		break;
1774	default:
1775		break;
1776	}
1777	ep->svalid = 0;
1778	return (0);
1779}
1780
1781static int
1782safte_getconfig(ses_softc_t *ssc)
1783{
1784	struct scfg *cfg;
1785	int err, amt;
1786	char *sdata;
1787	static char cdb[10] =
1788	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1789
1790	cfg = ssc->ses_private;
1791	if (cfg == NULL)
1792		return (ENXIO);
1793
1794	sdata = SES_MALLOC(SAFT_SCRATCH);
1795	if (sdata == NULL)
1796		return (ENOMEM);
1797
1798	amt = SAFT_SCRATCH;
1799	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1800	if (err) {
1801		SES_FREE(sdata, SAFT_SCRATCH);
1802		return (err);
1803	}
1804	amt = SAFT_SCRATCH - amt;
1805	if (amt < 6) {
1806		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1807		SES_FREE(sdata, SAFT_SCRATCH);
1808		return (EIO);
1809	}
1810	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1811	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1812	cfg->Nfans = sdata[0];
1813	cfg->Npwr = sdata[1];
1814	cfg->Nslots = sdata[2];
1815	cfg->DoorLock = sdata[3];
1816	cfg->Ntherm = sdata[4];
1817	cfg->Nspkrs = sdata[5];
1818	cfg->Nalarm = NPSEUDO_ALARM;
1819	SES_FREE(sdata, SAFT_SCRATCH);
1820	return (0);
1821}
1822
1823static int
1824safte_rdstat(ses_softc_t *ssc, int slpflg)
1825{
1826	int err, oid, r, i, hiwater, nitems, amt;
1827	uint16_t tempflags;
1828	size_t buflen;
1829	uint8_t status, oencstat;
1830	char *sdata, cdb[10];
1831	struct scfg *cc = ssc->ses_private;
1832
1833
1834	/*
1835	 * The number of objects overstates things a bit,
1836	 * both for the bogus 'thermometer' entries and
1837	 * the drive status (which isn't read at the same
1838	 * time as the enclosure status), but that's okay.
1839	 */
1840	buflen = 4 * cc->Nslots;
1841	if (ssc->ses_nobjects > buflen)
1842		buflen = ssc->ses_nobjects;
1843	sdata = SES_MALLOC(buflen);
1844	if (sdata == NULL)
1845		return (ENOMEM);
1846
1847	cdb[0] = READ_BUFFER;
1848	cdb[1] = 1;
1849	cdb[2] = SAFTE_RD_RDESTS;
1850	cdb[3] = 0;
1851	cdb[4] = 0;
1852	cdb[5] = 0;
1853	cdb[6] = 0;
1854	cdb[7] = (buflen >> 8) & 0xff;
1855	cdb[8] = buflen & 0xff;
1856	cdb[9] = 0;
1857	amt = buflen;
1858	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1859	if (err) {
1860		SES_FREE(sdata, buflen);
1861		return (err);
1862	}
1863	hiwater = buflen - amt;
1864
1865
1866	/*
1867	 * invalidate all status bits.
1868	 */
1869	for (i = 0; i < ssc->ses_nobjects; i++)
1870		ssc->ses_objmap[i].svalid = 0;
1871	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1872	ssc->ses_encstat = 0;
1873
1874
1875	/*
1876	 * Now parse returned buffer.
1877	 * If we didn't get enough data back,
1878	 * that's considered a fatal error.
1879	 */
1880	oid = r = 0;
1881
1882	for (nitems = i = 0; i < cc->Nfans; i++) {
1883		SAFT_BAIL(r, hiwater, sdata, buflen);
1884		/*
1885		 * 0 = Fan Operational
1886		 * 1 = Fan is malfunctioning
1887		 * 2 = Fan is not present
1888		 * 0x80 = Unknown or Not Reportable Status
1889		 */
1890		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1891		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1892		switch ((int)(uint8_t)sdata[r]) {
1893		case 0:
1894			nitems++;
1895			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1896			/*
1897			 * We could get fancier and cache
1898			 * fan speeds that we have set, but
1899			 * that isn't done now.
1900			 */
1901			ssc->ses_objmap[oid].encstat[3] = 7;
1902			break;
1903
1904		case 1:
1905			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1906			/*
1907			 * FAIL and FAN STOPPED synthesized
1908			 */
1909			ssc->ses_objmap[oid].encstat[3] = 0x40;
1910			/*
1911			 * Enclosure marked with CRITICAL error
1912			 * if only one fan or no thermometers,
1913			 * else the NONCRITICAL error is set.
1914			 */
1915			if (cc->Nfans == 1 || cc->Ntherm == 0)
1916				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1917			else
1918				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1919			break;
1920		case 2:
1921			ssc->ses_objmap[oid].encstat[0] =
1922			    SES_OBJSTAT_NOTINSTALLED;
1923			ssc->ses_objmap[oid].encstat[3] = 0;
1924			/*
1925			 * Enclosure marked with CRITICAL error
1926			 * if only one fan or no thermometers,
1927			 * else the NONCRITICAL error is set.
1928			 */
1929			if (cc->Nfans == 1)
1930				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1931			else
1932				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1933			break;
1934		case 0x80:
1935			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1936			ssc->ses_objmap[oid].encstat[3] = 0;
1937			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1938			break;
1939		default:
1940			ssc->ses_objmap[oid].encstat[0] =
1941			    SES_OBJSTAT_UNSUPPORTED;
1942			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1943			    sdata[r] & 0xff);
1944			break;
1945		}
1946		ssc->ses_objmap[oid++].svalid = 1;
1947		r++;
1948	}
1949
1950	/*
1951	 * No matter how you cut it, no cooling elements when there
1952	 * should be some there is critical.
1953	 */
1954	if (cc->Nfans && nitems == 0) {
1955		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1956	}
1957
1958
1959	for (i = 0; i < cc->Npwr; i++) {
1960		SAFT_BAIL(r, hiwater, sdata, buflen);
1961		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1962		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1963		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1964		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1965		switch ((uint8_t)sdata[r]) {
1966		case 0x00:	/* pws operational and on */
1967			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1968			break;
1969		case 0x01:	/* pws operational and off */
1970			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1971			ssc->ses_objmap[oid].encstat[3] = 0x10;
1972			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1973			break;
1974		case 0x10:	/* pws is malfunctioning and commanded on */
1975			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1976			ssc->ses_objmap[oid].encstat[3] = 0x61;
1977			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1978			break;
1979
1980		case 0x11:	/* pws is malfunctioning and commanded off */
1981			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1982			ssc->ses_objmap[oid].encstat[3] = 0x51;
1983			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1984			break;
1985		case 0x20:	/* pws is not present */
1986			ssc->ses_objmap[oid].encstat[0] =
1987			    SES_OBJSTAT_NOTINSTALLED;
1988			ssc->ses_objmap[oid].encstat[3] = 0;
1989			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1990			break;
1991		case 0x21:	/* pws is present */
1992			/*
1993			 * This is for enclosures that cannot tell whether the
1994			 * device is on or malfunctioning, but know that it is
1995			 * present. Just fall through.
1996			 */
1997			/* FALLTHROUGH */
1998		case 0x80:	/* Unknown or Not Reportable Status */
1999			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2000			ssc->ses_objmap[oid].encstat[3] = 0;
2001			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2002			break;
2003		default:
2004			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2005			    i, sdata[r] & 0xff);
2006			break;
2007		}
2008		ssc->ses_objmap[oid++].svalid = 1;
2009		r++;
2010	}
2011
2012	/*
2013	 * Skip over Slot SCSI IDs
2014	 */
2015	r += cc->Nslots;
2016
2017	/*
2018	 * We always have doorlock status, no matter what,
2019	 * but we only save the status if we have one.
2020	 */
2021	SAFT_BAIL(r, hiwater, sdata, buflen);
2022	if (cc->DoorLock) {
2023		/*
2024		 * 0 = Door Locked
2025		 * 1 = Door Unlocked, or no Lock Installed
2026		 * 0x80 = Unknown or Not Reportable Status
2027		 */
2028		ssc->ses_objmap[oid].encstat[1] = 0;
2029		ssc->ses_objmap[oid].encstat[2] = 0;
2030		switch ((uint8_t)sdata[r]) {
2031		case 0:
2032			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2033			ssc->ses_objmap[oid].encstat[3] = 0;
2034			break;
2035		case 1:
2036			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2037			ssc->ses_objmap[oid].encstat[3] = 1;
2038			break;
2039		case 0x80:
2040			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2041			ssc->ses_objmap[oid].encstat[3] = 0;
2042			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2043			break;
2044		default:
2045			ssc->ses_objmap[oid].encstat[0] =
2046			    SES_OBJSTAT_UNSUPPORTED;
2047			SES_LOG(ssc, "unknown lock status 0x%x\n",
2048			    sdata[r] & 0xff);
2049			break;
2050		}
2051		ssc->ses_objmap[oid++].svalid = 1;
2052	}
2053	r++;
2054
2055	/*
2056	 * We always have speaker status, no matter what,
2057	 * but we only save the status if we have one.
2058	 */
2059	SAFT_BAIL(r, hiwater, sdata, buflen);
2060	if (cc->Nspkrs) {
2061		ssc->ses_objmap[oid].encstat[1] = 0;
2062		ssc->ses_objmap[oid].encstat[2] = 0;
2063		if (sdata[r] == 1) {
2064			/*
2065			 * We need to cache tone urgency indicators.
2066			 * Someday.
2067			 */
2068			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2069			ssc->ses_objmap[oid].encstat[3] = 0x8;
2070			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2071		} else if (sdata[r] == 0) {
2072			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2073			ssc->ses_objmap[oid].encstat[3] = 0;
2074		} else {
2075			ssc->ses_objmap[oid].encstat[0] =
2076			    SES_OBJSTAT_UNSUPPORTED;
2077			ssc->ses_objmap[oid].encstat[3] = 0;
2078			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2079			    sdata[r] & 0xff);
2080		}
2081		ssc->ses_objmap[oid++].svalid = 1;
2082	}
2083	r++;
2084
2085	for (i = 0; i < cc->Ntherm; i++) {
2086		SAFT_BAIL(r, hiwater, sdata, buflen);
2087		/*
2088		 * Status is a range from -10 to 245 deg Celsius,
2089		 * which we need to normalize to -20 to -245 according
2090		 * to the latest SCSI spec, which makes little
2091		 * sense since this would overflow an 8bit value.
2092		 * Well, still, the base normalization is -20,
2093		 * not -10, so we have to adjust.
2094		 *
2095		 * So what's over and under temperature?
2096		 * Hmm- we'll state that 'normal' operating
2097		 * is 10 to 40 deg Celsius.
2098		 */
2099
2100		/*
2101		 * Actually.... All of the units that people out in the world
2102		 * seem to have do not come even close to setting a value that
2103		 * complies with this spec.
2104		 *
2105		 * The closest explanation I could find was in an
2106		 * LSI-Logic manual, which seemed to indicate that
2107		 * this value would be set by whatever the I2C code
2108		 * would interpolate from the output of an LM75
2109		 * temperature sensor.
2110		 *
2111		 * This means that it is impossible to use the actual
2112		 * numeric value to predict anything. But we don't want
2113		 * to lose the value. So, we'll propagate the *uncorrected*
2114		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2115		 * temperature flags for warnings.
2116		 */
2117		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2118		ssc->ses_objmap[oid].encstat[1] = 0;
2119		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2120		ssc->ses_objmap[oid].encstat[3] = 0;;
2121		ssc->ses_objmap[oid++].svalid = 1;
2122		r++;
2123	}
2124
2125	/*
2126	 * Now, for "pseudo" thermometers, we have two bytes
2127	 * of information in enclosure status- 16 bits. Actually,
2128	 * the MSB is a single TEMP ALERT flag indicating whether
2129	 * any other bits are set, but, thanks to fuzzy thinking,
2130	 * in the SAF-TE spec, this can also be set even if no
2131	 * other bits are set, thus making this really another
2132	 * binary temperature sensor.
2133	 */
2134
2135	SAFT_BAIL(r, hiwater, sdata, buflen);
2136	tempflags = sdata[r++];
2137	SAFT_BAIL(r, hiwater, sdata, buflen);
2138	tempflags |= (tempflags << 8) | sdata[r++];
2139
2140	for (i = 0; i < NPSEUDO_THERM; i++) {
2141		ssc->ses_objmap[oid].encstat[1] = 0;
2142		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2143			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2144			ssc->ses_objmap[4].encstat[2] = 0xff;
2145			/*
2146			 * Set 'over temperature' failure.
2147			 */
2148			ssc->ses_objmap[oid].encstat[3] = 8;
2149			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2150		} else {
2151			/*
2152			 * We used to say 'not available' and synthesize a
2153			 * nominal 30 deg (C)- that was wrong. Actually,
2154			 * Just say 'OK', and use the reserved value of
2155			 * zero.
2156			 */
2157			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2158			ssc->ses_objmap[oid].encstat[2] = 0;
2159			ssc->ses_objmap[oid].encstat[3] = 0;
2160		}
2161		ssc->ses_objmap[oid++].svalid = 1;
2162	}
2163
2164	/*
2165	 * Get alarm status.
2166	 */
2167	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2168	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2169	ssc->ses_objmap[oid++].svalid = 1;
2170
2171	/*
2172	 * Now get drive slot status
2173	 */
2174	cdb[2] = SAFTE_RD_RDDSTS;
2175	amt = buflen;
2176	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2177	if (err) {
2178		SES_FREE(sdata, buflen);
2179		return (err);
2180	}
2181	hiwater = buflen - amt;
2182	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2183		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2184		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2185		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2186		ssc->ses_objmap[oid].encstat[2] = 0;
2187		ssc->ses_objmap[oid].encstat[3] = 0;
2188		status = sdata[r+3];
2189		if ((status & 0x1) == 0) {	/* no device */
2190			ssc->ses_objmap[oid].encstat[0] =
2191			    SES_OBJSTAT_NOTINSTALLED;
2192		} else {
2193			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2194		}
2195		if (status & 0x2) {
2196			ssc->ses_objmap[oid].encstat[2] = 0x8;
2197		}
2198		if ((status & 0x4) == 0) {
2199			ssc->ses_objmap[oid].encstat[3] = 0x10;
2200		}
2201		ssc->ses_objmap[oid++].svalid = 1;
2202	}
2203	/* see comment below about sticky enclosure status */
2204	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2205	SES_FREE(sdata, buflen);
2206	return (0);
2207}
2208
2209static int
2210set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2211{
2212	int idx;
2213	encobj *ep;
2214	struct scfg *cc = ssc->ses_private;
2215
2216	if (cc == NULL)
2217		return (0);
2218
2219	idx = (int)obp->obj_id;
2220	ep = &ssc->ses_objmap[idx];
2221
2222	switch (ep->enctype) {
2223	case SESTYP_DEVICE:
2224		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2225			ep->priv |= 0x40;
2226		}
2227		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2228		if (obp->cstat[0] & SESCTL_DISABLE) {
2229			ep->priv |= 0x80;
2230			/*
2231			 * Hmm. Try to set the 'No Drive' flag.
2232			 * Maybe that will count as a 'disable'.
2233			 */
2234		}
2235		if (ep->priv & 0xc6) {
2236			ep->priv &= ~0x1;
2237		} else {
2238			ep->priv |= 0x1;	/* no errors */
2239		}
2240		wrslot_stat(ssc, slp);
2241		break;
2242	case SESTYP_POWER:
2243		/*
2244		 * Okay- the only one that makes sense here is to
2245		 * do the 'disable' for a power supply.
2246		 */
2247		if (obp->cstat[0] & SESCTL_DISABLE) {
2248			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2249				idx - cc->pwroff, 0, 0, slp);
2250		}
2251		break;
2252	case SESTYP_FAN:
2253		/*
2254		 * Okay- the only one that makes sense here is to
2255		 * set fan speed to zero on disable.
2256		 */
2257		if (obp->cstat[0] & SESCTL_DISABLE) {
2258			/* remember- fans are the first items, so idx works */
2259			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2260		}
2261		break;
2262	case SESTYP_DOORLOCK:
2263		/*
2264		 * Well, we can 'disable' the lock.
2265		 */
2266		if (obp->cstat[0] & SESCTL_DISABLE) {
2267			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2268			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2269				cc->flag2, 0, slp);
2270		}
2271		break;
2272	case SESTYP_ALARM:
2273		/*
2274		 * Well, we can 'disable' the alarm.
2275		 */
2276		if (obp->cstat[0] & SESCTL_DISABLE) {
2277			cc->flag2 &= ~SAFT_FLG1_ALARM;
2278			ep->priv |= 0x40;	/* Muted */
2279			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2280				cc->flag2, 0, slp);
2281		}
2282		break;
2283	default:
2284		break;
2285	}
2286	ep->svalid = 0;
2287	return (0);
2288}
2289
2290/*
2291 * This function handles all of the 16 byte WRITE BUFFER commands.
2292 */
2293static int
2294wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2295    uint8_t b3, int slp)
2296{
2297	int err, amt;
2298	char *sdata;
2299	struct scfg *cc = ssc->ses_private;
2300	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2301
2302	if (cc == NULL)
2303		return (0);
2304
2305	sdata = SES_MALLOC(16);
2306	if (sdata == NULL)
2307		return (ENOMEM);
2308
2309	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2310
2311	sdata[0] = op;
2312	sdata[1] = b1;
2313	sdata[2] = b2;
2314	sdata[3] = b3;
2315	MEMZERO(&sdata[4], 12);
2316	amt = -16;
2317	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2318	SES_FREE(sdata, 16);
2319	return (err);
2320}
2321
2322/*
2323 * This function updates the status byte for the device slot described.
2324 *
2325 * Since this is an optional SAF-TE command, there's no point in
2326 * returning an error.
2327 */
2328static void
2329wrslot_stat(ses_softc_t *ssc, int slp)
2330{
2331	int i, amt;
2332	encobj *ep;
2333	char cdb[10], *sdata;
2334	struct scfg *cc = ssc->ses_private;
2335
2336	if (cc == NULL)
2337		return;
2338
2339	SES_VLOG(ssc, "saf_wrslot\n");
2340	cdb[0] = WRITE_BUFFER;
2341	cdb[1] = 1;
2342	cdb[2] = 0;
2343	cdb[3] = 0;
2344	cdb[4] = 0;
2345	cdb[5] = 0;
2346	cdb[6] = 0;
2347	cdb[7] = 0;
2348	cdb[8] = cc->Nslots * 3 + 1;
2349	cdb[9] = 0;
2350
2351	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2352	if (sdata == NULL)
2353		return;
2354	MEMZERO(sdata, cc->Nslots * 3 + 1);
2355
2356	sdata[0] = SAFTE_WT_DSTAT;
2357	for (i = 0; i < cc->Nslots; i++) {
2358		ep = &ssc->ses_objmap[cc->slotoff + i];
2359		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2360		sdata[1 + (3 * i)] = ep->priv & 0xff;
2361	}
2362	amt = -(cc->Nslots * 3 + 1);
2363	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2364	SES_FREE(sdata, cc->Nslots * 3 + 1);
2365}
2366
2367/*
2368 * This function issues the "PERFORM SLOT OPERATION" command.
2369 */
2370static int
2371perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2372{
2373	int err, amt;
2374	char *sdata;
2375	struct scfg *cc = ssc->ses_private;
2376	static char cdb[10] =
2377	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2378
2379	if (cc == NULL)
2380		return (0);
2381
2382	sdata = SES_MALLOC(SAFT_SCRATCH);
2383	if (sdata == NULL)
2384		return (ENOMEM);
2385	MEMZERO(sdata, SAFT_SCRATCH);
2386
2387	sdata[0] = SAFTE_WT_SLTOP;
2388	sdata[1] = slot;
2389	sdata[2] = opflag;
2390	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2391	amt = -SAFT_SCRATCH;
2392	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2393	SES_FREE(sdata, SAFT_SCRATCH);
2394	return (err);
2395}
2396