1/*	$NetBSD: ses.c,v 1.52 2021/09/09 23:26:37 riastradh Exp $ */
2/*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author:	mjacob@nas.nasa.gov
26 */
27
28#include <sys/cdefs.h>
29__KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.52 2021/09/09 23:26:37 riastradh Exp $");
30
31#ifdef _KERNEL_OPT
32#include "opt_scsi.h"
33#endif
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/ioctl.h>
41#include <sys/scsiio.h>
42#include <sys/buf.h>
43#include <sys/uio.h>
44#include <sys/malloc.h>
45#include <sys/errno.h>
46#include <sys/device.h>
47#include <sys/disklabel.h>
48#include <sys/disk.h>
49#include <sys/proc.h>
50#include <sys/conf.h>
51#include <sys/vnode.h>
52
53#include <dev/scsipi/scsipi_all.h>
54#include <dev/scsipi/scsipi_disk.h>
55#include <dev/scsipi/scsi_all.h>
56#include <dev/scsipi/scsi_disk.h>
57#include <dev/scsipi/scsipiconf.h>
58#include <dev/scsipi/scsipi_base.h>
59#include <dev/scsipi/ses.h>
60
61/*
62 * Platform Independent Driver Internal Definitions for SES devices.
63 */
64typedef enum {
65	SES_NONE,
66	SES_SES_SCSI2,
67	SES_SES,
68	SES_SES_PASSTHROUGH,
69	SES_SEN,
70	SES_SAFT
71} enctyp;
72
73struct ses_softc;
74typedef struct ses_softc ses_softc_t;
75typedef struct {
76	int (*softc_init)(ses_softc_t *, int);
77	int (*init_enc)(ses_softc_t *);
78	int (*get_encstat)(ses_softc_t *, int);
79	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
80	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
81	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
82} encvec;
83
84#define	ENCI_SVALID	0x80
85
86typedef struct {
87	uint32_t
88		enctype	: 8,		/* enclosure type */
89		subenclosure : 8,	/* subenclosure id */
90		svalid	: 1,		/* enclosure information valid */
91		priv	: 15;		/* private data, per object */
92	uint8_t	encstat[4];	/* state && stats */
93} encobj;
94
95#define	SEN_ID		"UNISYS           SUN_SEN"
96#define	SEN_ID_LEN	24
97
98static enctyp ses_type(struct scsipi_inquiry_data *);
99
100
101/* Forward reference to Enclosure Functions */
102static int ses_softc_init(ses_softc_t *, int);
103static int ses_init_enc(ses_softc_t *);
104static int ses_get_encstat(ses_softc_t *, int);
105static int ses_set_encstat(ses_softc_t *, uint8_t, int);
106static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
107static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
108
109static int safte_softc_init(ses_softc_t *, int);
110static int safte_init_enc(ses_softc_t *);
111static int safte_get_encstat(ses_softc_t *, int);
112static int safte_set_encstat(ses_softc_t *, uint8_t, int);
113static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
114static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
115
116/*
117 * Platform implementation defines/functions for SES internal kernel stuff
118 */
119
120#define	STRNCMP			strncmp
121#define	PRINTF			printf
122#define	SES_LOG			ses_log
123#if	defined(DEBUG) || defined(SCSIDEBUG)
124#define	SES_VLOG		ses_log
125#else
126#define	SES_VLOG		if (0) ses_log
127#endif
128#define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
129#define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
130#define	MEMZERO(dest, amt)	memset(dest, 0, amt)
131#define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
132#define	RECEIVE_DIAGNOSTIC	0x1c
133#define	SEND_DIAGNOSTIC		0x1d
134#define	WRITE_BUFFER		0x3b
135#define	READ_BUFFER		0x3c
136
137static dev_type_open(sesopen);
138static dev_type_close(sesclose);
139static dev_type_ioctl(sesioctl);
140
141const struct cdevsw ses_cdevsw = {
142	.d_open = sesopen,
143	.d_close = sesclose,
144	.d_read = noread,
145	.d_write = nowrite,
146	.d_ioctl = sesioctl,
147	.d_stop = nostop,
148	.d_tty = notty,
149	.d_poll = nopoll,
150	.d_mmap = nommap,
151	.d_kqfilter = nokqfilter,
152	.d_discard = nodiscard,
153	.d_flag = D_OTHER | D_MPSAFE
154};
155
156static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
157static void ses_log(struct ses_softc *, const char *, ...)
158     __attribute__((__format__(__printf__, 2, 3)));
159
160/*
161 * General NetBSD kernel stuff.
162 */
163
164struct ses_softc {
165	device_t	sc_dev;
166	struct scsipi_periph *sc_periph;
167	enctyp		ses_type;	/* type of enclosure */
168	encvec		ses_vec;	/* vector to handlers */
169	void *		ses_private;	/* per-type private data */
170	encobj *	ses_objmap;	/* objects */
171	u_int32_t	ses_nobjects;	/* number of objects */
172	ses_encstat	ses_encstat;	/* overall status */
173	u_int8_t	ses_flags;
174};
175#define	SES_FLAG_INVALID	0x01
176#define	SES_FLAG_OPEN		0x02
177#define	SES_FLAG_INITIALIZED	0x04
178
179#define SESUNIT(x)       (minor((x)))
180
181static int ses_match(device_t, cfdata_t, void *);
182static void ses_attach(device_t, device_t, void *);
183static int ses_detach(device_t, int);
184static enctyp ses_device_type(struct scsipibus_attach_args *);
185
186CFATTACH_DECL_NEW(ses, sizeof (struct ses_softc),
187    ses_match, ses_attach, ses_detach, NULL);
188
189extern struct cfdriver ses_cd;
190
191static const struct scsipi_periphsw ses_switch = {
192	NULL,
193	NULL,
194	NULL,
195	NULL
196};
197
198static int
199ses_match(device_t parent, cfdata_t match, void *aux)
200{
201	struct scsipibus_attach_args *sa = aux;
202
203	switch (ses_device_type(sa)) {
204	case SES_SES:
205	case SES_SES_SCSI2:
206	case SES_SEN:
207	case SES_SAFT:
208	case SES_SES_PASSTHROUGH:
209		/*
210		 * For these devices, it's a perfect match.
211		 */
212		return (24);
213	default:
214		return (0);
215	}
216}
217
218
219/*
220 * Complete the attachment.
221 *
222 * We have to repeat the rerun of INQUIRY data as above because
223 * it's not until the return from the match routine that we have
224 * the softc available to set stuff in.
225 */
226static void
227ses_attach(device_t parent, device_t self, void *aux)
228{
229	const char *tname;
230	struct ses_softc *softc = device_private(self);
231	struct scsipibus_attach_args *sa = aux;
232	struct scsipi_periph *periph = sa->sa_periph;
233
234	softc->sc_dev = self;
235	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
236	softc->sc_periph = periph;
237	periph->periph_dev = self;
238	periph->periph_switch = &ses_switch;
239	periph->periph_openings = 1;
240
241	softc->ses_type = ses_device_type(sa);
242	switch (softc->ses_type) {
243	case SES_SES:
244	case SES_SES_SCSI2:
245        case SES_SES_PASSTHROUGH:
246		softc->ses_vec.softc_init = ses_softc_init;
247		softc->ses_vec.init_enc = ses_init_enc;
248		softc->ses_vec.get_encstat = ses_get_encstat;
249		softc->ses_vec.set_encstat = ses_set_encstat;
250		softc->ses_vec.get_objstat = ses_get_objstat;
251		softc->ses_vec.set_objstat = ses_set_objstat;
252		break;
253        case SES_SAFT:
254		softc->ses_vec.softc_init = safte_softc_init;
255		softc->ses_vec.init_enc = safte_init_enc;
256		softc->ses_vec.get_encstat = safte_get_encstat;
257		softc->ses_vec.set_encstat = safte_set_encstat;
258		softc->ses_vec.get_objstat = safte_get_objstat;
259		softc->ses_vec.set_objstat = safte_set_objstat;
260		break;
261        case SES_SEN:
262		break;
263	case SES_NONE:
264	default:
265		break;
266	}
267
268	switch (softc->ses_type) {
269	default:
270	case SES_NONE:
271		tname = "No SES device";
272		break;
273	case SES_SES_SCSI2:
274		tname = "SCSI-2 SES Device";
275		break;
276	case SES_SES:
277		tname = "SCSI-3 SES Device";
278		break;
279        case SES_SES_PASSTHROUGH:
280		tname = "SES Passthrough Device";
281		break;
282        case SES_SEN:
283		tname = "UNISYS SEN Device (NOT HANDLED YET)";
284		break;
285        case SES_SAFT:
286		tname = "SAF-TE Compliant Device";
287		break;
288	}
289	aprint_naive("\n");
290	aprint_normal("\n%s: %s\n", device_xname(softc->sc_dev), tname);
291}
292
293static enctyp
294ses_device_type(struct scsipibus_attach_args *sa)
295{
296	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
297
298	if (inqp == NULL)
299		return (SES_NONE);
300
301	return (ses_type(inqp));
302}
303
304static int
305sesopen(dev_t dev, int flags, int fmt, struct lwp *l)
306{
307	struct ses_softc *softc;
308	int error, unit;
309
310	unit = SESUNIT(dev);
311	softc = device_lookup_private(&ses_cd, unit);
312	if (softc == NULL)
313		return (ENXIO);
314
315	if (softc->ses_flags & SES_FLAG_INVALID) {
316		error = ENXIO;
317		goto out;
318	}
319	if (softc->ses_flags & SES_FLAG_OPEN) {
320		error = EBUSY;
321		goto out;
322	}
323	if (softc->ses_vec.softc_init == NULL) {
324		error = ENXIO;
325		goto out;
326	}
327	error = scsipi_adapter_addref(
328	    softc->sc_periph->periph_channel->chan_adapter);
329	if (error != 0)
330                goto out;
331
332
333	softc->ses_flags |= SES_FLAG_OPEN;
334	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
335		error = (*softc->ses_vec.softc_init)(softc, 1);
336		if (error)
337			softc->ses_flags &= ~SES_FLAG_OPEN;
338		else
339			softc->ses_flags |= SES_FLAG_INITIALIZED;
340	}
341
342out:
343	return (error);
344}
345
346static int
347sesclose(dev_t dev, int flags, int fmt,
348    struct lwp *l)
349{
350	struct ses_softc *softc;
351	int unit;
352
353	unit = SESUNIT(dev);
354	softc = device_lookup_private(&ses_cd, unit);
355	if (softc == NULL)
356		return (ENXIO);
357
358	scsipi_wait_drain(softc->sc_periph);
359	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
360	softc->ses_flags &= ~SES_FLAG_OPEN;
361	return (0);
362}
363
364static int
365sesioctl(dev_t dev, u_long cmd, void *arg_addr, int flag, struct lwp *l)
366{
367	ses_encstat tmp;
368	ses_objstat objs;
369	ses_object obj, *uobj;
370	struct ses_softc *ssc = device_lookup_private(&ses_cd, SESUNIT(dev));
371	void *addr;
372	int error, i;
373
374
375	if (arg_addr)
376		addr = *((void **) arg_addr);
377	else
378		addr = NULL;
379
380	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
381
382	/*
383	 * Now check to see whether we're initialized or not.
384	 */
385	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
386		return (ENODEV);
387	}
388
389	error = 0;
390
391	/*
392	 * If this command can change the device's state,
393	 * we must have the device open for writing.
394	 */
395	switch (cmd) {
396	case SESIOC_GETNOBJ:
397	case SESIOC_GETOBJMAP:
398	case SESIOC_GETENCSTAT:
399	case SESIOC_GETOBJSTAT:
400		break;
401	default:
402		if ((flag & FWRITE) == 0) {
403			return (EBADF);
404		}
405	}
406
407	switch (cmd) {
408	case SESIOC_GETNOBJ:
409		if (addr == NULL)
410			return EINVAL;
411		error = copyout(&ssc->ses_nobjects, addr,
412		    sizeof (ssc->ses_nobjects));
413		break;
414
415	case SESIOC_GETOBJMAP:
416		if (addr == NULL)
417			return EINVAL;
418		memset(&obj, 0, sizeof(obj));
419		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
420			obj.obj_id = i;
421			obj.subencid = ssc->ses_objmap[i].subenclosure;
422			obj.object_type = ssc->ses_objmap[i].enctype;
423			error = copyout(&obj, uobj, sizeof (ses_object));
424			if (error) {
425				break;
426			}
427		}
428		break;
429
430	case SESIOC_GETENCSTAT:
431		if (addr == NULL)
432			return EINVAL;
433		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
434		if (error)
435			break;
436		tmp = ssc->ses_encstat & ~ENCI_SVALID;
437		error = copyout(&tmp, addr, sizeof (ses_encstat));
438		ssc->ses_encstat = tmp;
439		break;
440
441	case SESIOC_SETENCSTAT:
442		if (addr == NULL)
443			return EINVAL;
444		error = copyin(addr, &tmp, sizeof (ses_encstat));
445		if (error)
446			break;
447		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
448		break;
449
450	case SESIOC_GETOBJSTAT:
451		if (addr == NULL)
452			return EINVAL;
453		error = copyin(addr, &objs, sizeof (ses_objstat));
454		if (error)
455			break;
456		if (objs.obj_id >= ssc->ses_nobjects) {
457			error = EINVAL;
458			break;
459		}
460		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
461		if (error)
462			break;
463		error = copyout(&objs, addr, sizeof (ses_objstat));
464		/*
465		 * Always (for now) invalidate entry.
466		 */
467		ssc->ses_objmap[objs.obj_id].svalid = 0;
468		break;
469
470	case SESIOC_SETOBJSTAT:
471		if (addr == NULL)
472			return EINVAL;
473		error = copyin(addr, &objs, sizeof (ses_objstat));
474		if (error)
475			break;
476
477		if (objs.obj_id >= ssc->ses_nobjects) {
478			error = EINVAL;
479			break;
480		}
481		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
482
483		/*
484		 * Always (for now) invalidate entry.
485		 */
486		ssc->ses_objmap[objs.obj_id].svalid = 0;
487		break;
488
489	case SESIOC_INIT:
490
491		error = (*ssc->ses_vec.init_enc)(ssc);
492		break;
493
494	default:
495		error = scsipi_do_ioctl(ssc->sc_periph,
496			    dev, cmd, arg_addr, flag, l);
497		break;
498	}
499	return (error);
500}
501
502static int
503ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
504{
505	struct scsipi_generic sgen;
506	int dl, flg, error;
507
508	if (dptr) {
509		if ((dl = *dlenp) < 0) {
510			dl = -dl;
511			flg = XS_CTL_DATA_OUT;
512		} else {
513			flg = XS_CTL_DATA_IN;
514		}
515	} else {
516		dl = 0;
517		flg = 0;
518	}
519
520	if (cdbl > sizeof (struct scsipi_generic)) {
521		cdbl = sizeof (struct scsipi_generic);
522	}
523	memcpy(&sgen, cdb, cdbl);
524#ifndef	SCSIDEBUG
525	flg |= XS_CTL_SILENT;
526#endif
527	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
528	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
529
530	if (error == 0 && dptr)
531		*dlenp = 0;
532
533	return (error);
534}
535
536static void
537ses_log(struct ses_softc *ssc, const char *fmt, ...)
538{
539	va_list ap;
540
541	printf("%s: ", device_xname(ssc->sc_dev));
542	va_start(ap, fmt);
543	vprintf(fmt, ap);
544	va_end(ap);
545}
546
547/*
548 * The code after this point runs on many platforms,
549 * so forgive the slightly awkward and nonconforming
550 * appearance.
551 */
552
553/*
554 * Is this a device that supports enclosure services?
555 *
556 * It's a pretty simple ruleset- if it is device type 0x0D (13), it's
557 * an SES device. If it happens to be an old UNISYS SEN device, we can
558 * handle that too.
559 */
560
561#define	SAFTE_START	44
562#define	SAFTE_END	50
563#define	SAFTE_LEN	SAFTE_END-SAFTE_START
564
565static enctyp
566ses_type(struct scsipi_inquiry_data *inqp)
567{
568	size_t	given_len = inqp->additional_length + 4;
569
570	if (given_len < 8+SEN_ID_LEN)
571		return (SES_NONE);
572
573	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
574		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
575			return (SES_SEN);
576		} else if ((inqp->version & SID_ANSII) > 2) {
577			return (SES_SES);
578		} else {
579			return (SES_SES_SCSI2);
580		}
581		return (SES_NONE);
582	}
583
584#ifdef	SES_ENABLE_PASSTHROUGH
585	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
586		/*
587		 * PassThrough Device.
588		 */
589		return (SES_SES_PASSTHROUGH);
590	}
591#endif
592
593	/*
594	 * The comparison is short for a reason-
595	 * some vendors were chopping it short.
596	 */
597
598	if (given_len < SAFTE_END - 2) {
599		return (SES_NONE);
600	}
601
602	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
603			SAFTE_LEN - 2) == 0) {
604		return (SES_SAFT);
605	}
606
607	return (SES_NONE);
608}
609
610/*
611 * SES Native Type Device Support
612 */
613
614/*
615 * SES Diagnostic Page Codes
616 */
617
618typedef enum {
619	SesConfigPage = 0x1,
620	SesControlPage,
621#define	SesStatusPage SesControlPage
622	SesHelpTxt,
623	SesStringOut,
624#define	SesStringIn	SesStringOut
625	SesThresholdOut,
626#define	SesThresholdIn SesThresholdOut
627	SesArrayControl,
628#define	SesArrayStatus	SesArrayControl
629	SesElementDescriptor,
630	SesShortStatus
631} SesDiagPageCodes;
632
633/*
634 * minimal amounts
635 */
636
637/*
638 * Minimum amount of data, starting from byte 0, to have
639 * the config header.
640 */
641#define	SES_CFGHDR_MINLEN	12
642
643/*
644 * Minimum amount of data, starting from byte 0, to have
645 * the config header and one enclosure header.
646 */
647#define	SES_ENCHDR_MINLEN	48
648
649/*
650 * Take this value, subtract it from VEnclen and you know
651 * the length of the vendor unique bytes.
652 */
653#define	SES_ENCHDR_VMIN		36
654
655/*
656 * SES Data Structures
657 */
658
659typedef struct {
660	uint32_t GenCode;	/* Generation Code */
661	uint8_t	Nsubenc;	/* Number of Subenclosures */
662} SesCfgHdr;
663
664typedef struct {
665	uint8_t	Subencid;	/* SubEnclosure Identifier */
666	uint8_t	Ntypes;		/* # of supported types */
667	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
668} SesEncHdr;
669
670typedef struct {
671	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
672	uint8_t	encVid[8];
673	uint8_t	encPid[16];
674	uint8_t	encRev[4];
675	uint8_t	encVen[1];
676} SesEncDesc;
677
678typedef struct {
679	uint8_t	enc_type;		/* type of element */
680	uint8_t	enc_maxelt;		/* maximum supported */
681	uint8_t	enc_subenc;		/* in SubEnc # N */
682	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
683} SesThdr;
684
685typedef struct {
686	uint8_t	comstatus;
687	uint8_t	comstat[3];
688} SesComStat;
689
690struct typidx {
691	int ses_tidx;
692	int ses_oidx;
693};
694
695struct sscfg {
696	uint8_t ses_ntypes;	/* total number of types supported */
697
698	/*
699	 * We need to keep a type index as well as an
700	 * object index for each object in an enclosure.
701	 */
702	struct typidx *ses_typidx;
703
704	/*
705	 * We also need to keep track of the number of elements
706	 * per type of element. This is needed later so that we
707	 * can find precisely in the returned status data the
708	 * status for the Nth element of the Kth type.
709	 */
710	uint8_t *	ses_eltmap;
711};
712
713
714/*
715 * (de)canonicalization defines
716 */
717#define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
718#define	sbit(x, bit)		(((uint32_t)(x)) << bit)
719#define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
720
721#define	sset16(outp, idx, sval)	\
722	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
723	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
724
725
726#define	sset24(outp, idx, sval)	\
727	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
728	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
729	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
730
731
732#define	sset32(outp, idx, sval)	\
733	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
734	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
735	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
736	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
737
738#define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
739#define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
740#define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
741#define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
742
743#define	sget16(inp, idx, lval)	\
744	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
745		(((uint8_t *)(inp))[idx+1]), idx += 2
746
747#define	gget16(inp, idx, lval)	\
748	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
749		(((uint8_t *)(inp))[idx+1])
750
751#define	sget24(inp, idx, lval)	\
752	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
753		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
754			(((uint8_t *)(inp))[idx+2]), idx += 3
755
756#define	gget24(inp, idx, lval)	\
757	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
758		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
759			(((uint8_t *)(inp))[idx+2])
760
761#define	sget32(inp, idx, lval)	\
762	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
763		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
764		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
765			(((uint8_t *)(inp))[idx+3]), idx += 4
766
767#define	gget32(inp, idx, lval)	\
768	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
769		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
770		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
771			(((uint8_t *)(inp))[idx+3])
772
773#define	SCSZ	0x2000
774#define	CFLEN	(256 + SES_ENCHDR_MINLEN)
775
776/*
777 * Routines specific && private to SES only
778 */
779
780static int ses_getconfig(ses_softc_t *);
781static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
782static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
783static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
784static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
785static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
786static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
787static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
788
789static int
790ses_softc_init(ses_softc_t *ssc, int doinit)
791{
792	if (doinit == 0) {
793		struct sscfg *cc;
794		if (ssc->ses_nobjects) {
795			SES_FREE(ssc->ses_objmap,
796			    ssc->ses_nobjects * sizeof (encobj));
797			ssc->ses_objmap = NULL;
798		}
799		if ((cc = ssc->ses_private) != NULL) {
800			if (cc->ses_eltmap && cc->ses_ntypes) {
801				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
802				cc->ses_eltmap = NULL;
803				cc->ses_ntypes = 0;
804			}
805			if (cc->ses_typidx && ssc->ses_nobjects) {
806				SES_FREE(cc->ses_typidx,
807				    ssc->ses_nobjects * sizeof (struct typidx));
808				cc->ses_typidx = NULL;
809			}
810			SES_FREE(cc, sizeof (struct sscfg));
811			ssc->ses_private = NULL;
812		}
813		ssc->ses_nobjects = 0;
814		return (0);
815	}
816	if (ssc->ses_private == NULL) {
817		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
818	}
819	if (ssc->ses_private == NULL) {
820		return (ENOMEM);
821	}
822	ssc->ses_nobjects = 0;
823	ssc->ses_encstat = 0;
824	return (ses_getconfig(ssc));
825}
826
827static int
828ses_detach(device_t self, int flags)
829{
830	struct ses_softc *ssc = device_private(self);
831	struct sscfg *cc = ssc->ses_private;
832
833	if (ssc->ses_objmap) {
834		SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
835	}
836	if (cc != NULL) {
837		if (cc->ses_typidx) {
838			SES_FREE(cc->ses_typidx,
839			    (nobj * sizeof (struct typidx)));
840		}
841		if (cc->ses_eltmap) {
842			SES_FREE(cc->ses_eltmap, ntype);
843		}
844		SES_FREE(cc, sizeof (struct sscfg));
845	}
846
847	return 0;
848}
849
850static int
851ses_init_enc(ses_softc_t *ssc)
852{
853	return (0);
854}
855
856static int
857ses_get_encstat(ses_softc_t *ssc, int slpflag)
858{
859	SesComStat ComStat;
860	int status;
861
862	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
863		return (status);
864	}
865	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
866	return (0);
867}
868
869static int
870ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
871{
872	SesComStat ComStat;
873	int status;
874
875	ComStat.comstatus = encstat & 0xf;
876	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
877		return (status);
878	}
879	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
880	return (0);
881}
882
883static int
884ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
885{
886	int i = (int)obp->obj_id;
887
888	if (ssc->ses_objmap[i].svalid == 0) {
889		SesComStat ComStat;
890		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
891		if (err)
892			return (err);
893		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
894		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
895		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
896		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
897		ssc->ses_objmap[i].svalid = 1;
898	}
899	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
900	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
901	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
902	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
903	return (0);
904}
905
906static int
907ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
908{
909	SesComStat ComStat;
910	int err;
911	/*
912	 * If this is clear, we don't do diddly.
913	 */
914	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
915		return (0);
916	}
917	ComStat.comstatus = obp->cstat[0];
918	ComStat.comstat[0] = obp->cstat[1];
919	ComStat.comstat[1] = obp->cstat[2];
920	ComStat.comstat[2] = obp->cstat[3];
921	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
922	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
923	return (err);
924}
925
926static int
927ses_getconfig(ses_softc_t *ssc)
928{
929	struct sscfg *cc;
930	SesCfgHdr cf;
931	SesEncHdr hd;
932	SesEncDesc *cdp;
933	SesThdr thdr;
934	int err, amt, i, nobj, ntype, maxima;
935	char storage[CFLEN], *sdata;
936	static char cdb[6] = {
937	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
938	};
939
940	cc = ssc->ses_private;
941	if (cc == NULL) {
942		return (ENXIO);
943	}
944
945	sdata = SES_MALLOC(SCSZ);
946	if (sdata == NULL)
947		return (ENOMEM);
948
949	amt = SCSZ;
950	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
951	if (err) {
952		SES_FREE(sdata, SCSZ);
953		return (err);
954	}
955	amt = SCSZ - amt;
956
957	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
958		SES_LOG(ssc, "Unable to parse SES Config Header\n");
959		SES_FREE(sdata, SCSZ);
960		return (EIO);
961	}
962	if (amt < SES_ENCHDR_MINLEN) {
963		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
964		SES_FREE(sdata, SCSZ);
965		return (EIO);
966	}
967
968	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
969
970	/*
971	 * Now waltz through all the subenclosures toting up the
972	 * number of types available in each. For this, we only
973	 * really need the enclosure header. However, we get the
974	 * enclosure descriptor for debug purposes, as well
975	 * as self-consistency checking purposes.
976	 */
977
978	maxima = cf.Nsubenc + 1;
979	cdp = (SesEncDesc *) storage;
980	for (ntype = i = 0; i < maxima; i++) {
981		MEMZERO((void *)cdp, sizeof (*cdp));
982		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
983			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
984			SES_FREE(sdata, SCSZ);
985			return (EIO);
986		}
987		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
988		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
989
990		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
991			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
992			SES_FREE(sdata, SCSZ);
993			return (EIO);
994		}
995		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
996		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
997		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
998		    cdp->encWWN[6], cdp->encWWN[7]);
999		ntype += hd.Ntypes;
1000	}
1001
1002	/*
1003	 * Now waltz through all the types that are available, getting
1004	 * the type header so we can start adding up the number of
1005	 * objects available.
1006	 */
1007	for (nobj = i = 0; i < ntype; i++) {
1008		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1009			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
1010			SES_FREE(sdata, SCSZ);
1011			return (EIO);
1012		}
1013		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
1014		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
1015		    thdr.enc_subenc, thdr.enc_tlen);
1016		nobj += thdr.enc_maxelt;
1017	}
1018
1019
1020	/*
1021	 * Now allocate the object array and type map.
1022	 */
1023
1024	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
1025	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
1026	cc->ses_eltmap = SES_MALLOC(ntype);
1027
1028	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
1029	    cc->ses_eltmap == NULL) {
1030		if (ssc->ses_objmap) {
1031			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
1032			ssc->ses_objmap = NULL;
1033		}
1034		if (cc->ses_typidx) {
1035			SES_FREE(cc->ses_typidx,
1036			    (nobj * sizeof (struct typidx)));
1037			cc->ses_typidx = NULL;
1038		}
1039		if (cc->ses_eltmap) {
1040			SES_FREE(cc->ses_eltmap, ntype);
1041			cc->ses_eltmap = NULL;
1042		}
1043		SES_FREE(sdata, SCSZ);
1044		return (ENOMEM);
1045	}
1046	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1047	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1048	MEMZERO(cc->ses_eltmap, ntype);
1049	cc->ses_ntypes = (uint8_t) ntype;
1050	ssc->ses_nobjects = nobj;
1051
1052	/*
1053	 * Now waltz through the # of types again to fill in the types
1054	 * (and subenclosure ids) of the allocated objects.
1055	 */
1056	nobj = 0;
1057	for (i = 0; i < ntype; i++) {
1058		int j;
1059		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1060			continue;
1061		}
1062		cc->ses_eltmap[i] = thdr.enc_maxelt;
1063		for (j = 0; j < thdr.enc_maxelt; j++) {
1064			cc->ses_typidx[nobj].ses_tidx = i;
1065			cc->ses_typidx[nobj].ses_oidx = j;
1066			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1067			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1068		}
1069	}
1070	SES_FREE(sdata, SCSZ);
1071	return (0);
1072}
1073
1074static int
1075ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp,
1076    int in)
1077{
1078	struct sscfg *cc;
1079	int err, amt, bufsiz, tidx, oidx;
1080	char cdb[6], *sdata;
1081
1082	cc = ssc->ses_private;
1083	if (cc == NULL) {
1084		return (ENXIO);
1085	}
1086
1087	/*
1088	 * If we're just getting overall enclosure status,
1089	 * we only need 2 bytes of data storage.
1090	 *
1091	 * If we're getting anything else, we know how much
1092	 * storage we need by noting that starting at offset
1093	 * 8 in returned data, all object status bytes are 4
1094	 * bytes long, and are stored in chunks of types(M)
1095	 * and nth+1 instances of type M.
1096	 */
1097	if (objid == -1) {
1098		bufsiz = 2;
1099	} else {
1100		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1101	}
1102	sdata = SES_MALLOC(bufsiz);
1103	if (sdata == NULL)
1104		return (ENOMEM);
1105
1106	cdb[0] = RECEIVE_DIAGNOSTIC;
1107	cdb[1] = 1;
1108	cdb[2] = SesStatusPage;
1109	cdb[3] = bufsiz >> 8;
1110	cdb[4] = bufsiz & 0xff;
1111	cdb[5] = 0;
1112	amt = bufsiz;
1113	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1114	if (err) {
1115		SES_FREE(sdata, bufsiz);
1116		return (err);
1117	}
1118	amt = bufsiz - amt;
1119
1120	if (objid == -1) {
1121		tidx = -1;
1122		oidx = -1;
1123	} else {
1124		tidx = cc->ses_typidx[objid].ses_tidx;
1125		oidx = cc->ses_typidx[objid].ses_oidx;
1126	}
1127	if (in) {
1128		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1129			err = ENODEV;
1130		}
1131	} else {
1132		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1133			err = ENODEV;
1134		} else {
1135			cdb[0] = SEND_DIAGNOSTIC;
1136			cdb[1] = 0x10;
1137			cdb[2] = 0;
1138			cdb[3] = bufsiz >> 8;
1139			cdb[4] = bufsiz & 0xff;
1140			cdb[5] = 0;
1141			amt = -bufsiz;
1142			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1143		}
1144	}
1145	SES_FREE(sdata, bufsiz);
1146	return (0);
1147}
1148
1149
1150/*
1151 * Routines to parse returned SES data structures.
1152 * Architecture and compiler independent.
1153 */
1154
1155static int
1156ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1157{
1158	if (buflen < SES_CFGHDR_MINLEN) {
1159		return (-1);
1160	}
1161	gget8(buffer, 1, cfp->Nsubenc);
1162	gget32(buffer, 4, cfp->GenCode);
1163	return (0);
1164}
1165
1166static int
1167ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1168{
1169	int s, off = 8;
1170	for (s = 0; s < SubEncId; s++) {
1171		if (off + 3 > amt)
1172			return (-1);
1173		off += buffer[off+3] + 4;
1174	}
1175	if (off + 3 > amt) {
1176		return (-1);
1177	}
1178	gget8(buffer, off+1, chp->Subencid);
1179	gget8(buffer, off+2, chp->Ntypes);
1180	gget8(buffer, off+3, chp->VEnclen);
1181	return (0);
1182}
1183
1184static int
1185ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1186{
1187	int s, e, enclen, off = 8;
1188	for (s = 0; s < SubEncId; s++) {
1189		if (off + 3 > amt)
1190			return (-1);
1191		off += buffer[off+3] + 4;
1192	}
1193	if (off + 3 > amt) {
1194		return (-1);
1195	}
1196	gget8(buffer, off+3, enclen);
1197	off += 4;
1198	if (off  >= amt)
1199		return (-1);
1200
1201	e = off + enclen;
1202	if (e > amt) {
1203		e = amt;
1204	}
1205	MEMCPY(cdp, &buffer[off], e - off);
1206	return (0);
1207}
1208
1209static int
1210ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1211{
1212	int s, off = 8;
1213
1214	if (amt < SES_CFGHDR_MINLEN) {
1215		return (-1);
1216	}
1217	for (s = 0; s < buffer[1]; s++) {
1218		if (off + 3 > amt)
1219			return (-1);
1220		off += buffer[off+3] + 4;
1221	}
1222	if (off + 3 > amt) {
1223		return (-1);
1224	}
1225	off += buffer[off+3] + 4 + (nth * 4);
1226	if (amt < (off + 4))
1227		return (-1);
1228
1229	gget8(buffer, off++, thp->enc_type);
1230	gget8(buffer, off++, thp->enc_maxelt);
1231	gget8(buffer, off++, thp->enc_subenc);
1232	gget8(buffer, off, thp->enc_tlen);
1233	return (0);
1234}
1235
1236/*
1237 * This function needs a little explanation.
1238 *
1239 * The arguments are:
1240 *
1241 *
1242 *	char *b, int amt
1243 *
1244 *		These describes the raw input SES status data and length.
1245 *
1246 *	uint8_t *ep
1247 *
1248 *		This is a map of the number of types for each element type
1249 *		in the enclosure.
1250 *
1251 *	int elt
1252 *
1253 *		This is the element type being sought. If elt is -1,
1254 *		then overall enclosure status is being sought.
1255 *
1256 *	int elm
1257 *
1258 *		This is the ordinal Mth element of type elt being sought.
1259 *
1260 *	SesComStat *sp
1261 *
1262 *		This is the output area to store the status for
1263 *		the Mth element of type Elt.
1264 */
1265
1266static int
1267ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1268{
1269	int idx, i;
1270
1271	/*
1272	 * If it's overall enclosure status being sought, get that.
1273	 * We need at least 2 bytes of status data to get that.
1274	 */
1275	if (elt == -1) {
1276		if (amt < 2)
1277			return (-1);
1278		gget8(b, 1, sp->comstatus);
1279		sp->comstat[0] = 0;
1280		sp->comstat[1] = 0;
1281		sp->comstat[2] = 0;
1282		return (0);
1283	}
1284
1285	/*
1286	 * Check to make sure that the Mth element is legal for type Elt.
1287	 */
1288
1289	if (elm >= ep[elt])
1290		return (-1);
1291
1292	/*
1293	 * Starting at offset 8, start skipping over the storage
1294	 * for the element types we're not interested in.
1295	 */
1296	for (idx = 8, i = 0; i < elt; i++) {
1297		idx += ((ep[i] + 1) * 4);
1298	}
1299
1300	/*
1301	 * Skip over Overall status for this element type.
1302	 */
1303	idx += 4;
1304
1305	/*
1306	 * And skip to the index for the Mth element that we're going for.
1307	 */
1308	idx += (4 * elm);
1309
1310	/*
1311	 * Make sure we haven't overflowed the buffer.
1312	 */
1313	if (idx+4 > amt)
1314		return (-1);
1315
1316	/*
1317	 * Retrieve the status.
1318	 */
1319	gget8(b, idx++, sp->comstatus);
1320	gget8(b, idx++, sp->comstat[0]);
1321	gget8(b, idx++, sp->comstat[1]);
1322	gget8(b, idx++, sp->comstat[2]);
1323#if	0
1324	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1325#endif
1326	return (0);
1327}
1328
1329/*
1330 * This is the mirror function to ses_decode, but we set the 'select'
1331 * bit for the object which we're interested in. All other objects,
1332 * after a status fetch, should have that bit off. Hmm. It'd be easy
1333 * enough to ensure this, so we will.
1334 */
1335
1336static int
1337ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1338{
1339	int idx, i;
1340
1341	/*
1342	 * If it's overall enclosure status being sought, get that.
1343	 * We need at least 2 bytes of status data to get that.
1344	 */
1345	if (elt == -1) {
1346		if (amt < 2)
1347			return (-1);
1348		i = 0;
1349		sset8(b, i, 0);
1350		sset8(b, i, sp->comstatus & 0xf);
1351#if	0
1352		PRINTF("set EncStat %x\n", sp->comstatus);
1353#endif
1354		return (0);
1355	}
1356
1357	/*
1358	 * Check to make sure that the Mth element is legal for type Elt.
1359	 */
1360
1361	if (elm >= ep[elt])
1362		return (-1);
1363
1364	/*
1365	 * Starting at offset 8, start skipping over the storage
1366	 * for the element types we're not interested in.
1367	 */
1368	for (idx = 8, i = 0; i < elt; i++) {
1369		idx += ((ep[i] + 1) * 4);
1370	}
1371
1372	/*
1373	 * Skip over Overall status for this element type.
1374	 */
1375	idx += 4;
1376
1377	/*
1378	 * And skip to the index for the Mth element that we're going for.
1379	 */
1380	idx += (4 * elm);
1381
1382	/*
1383	 * Make sure we haven't overflowed the buffer.
1384	 */
1385	if (idx+4 > amt)
1386		return (-1);
1387
1388	/*
1389	 * Set the status.
1390	 */
1391	sset8(b, idx, sp->comstatus);
1392	sset8(b, idx, sp->comstat[0]);
1393	sset8(b, idx, sp->comstat[1]);
1394	sset8(b, idx, sp->comstat[2]);
1395	idx -= 4;
1396
1397#if	0
1398	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1399	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1400	    sp->comstat[1], sp->comstat[2]);
1401#endif
1402
1403	/*
1404	 * Now make sure all other 'Select' bits are off.
1405	 */
1406	for (i = 8; i < amt; i += 4) {
1407		if (i != idx)
1408			b[i] &= ~0x80;
1409	}
1410	/*
1411	 * And make sure the INVOP bit is clear.
1412	 */
1413	b[2] &= ~0x10;
1414
1415	return (0);
1416}
1417
1418/*
1419 * SAF-TE Type Device Emulation
1420 */
1421
1422static int safte_getconfig(ses_softc_t *);
1423static int safte_rdstat(ses_softc_t *, int);
1424static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1425static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1426static void wrslot_stat(ses_softc_t *, int);
1427static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1428
1429#define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1430	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1431/*
1432 * SAF-TE specific defines- Mandatory ones only...
1433 */
1434
1435/*
1436 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1437 */
1438#define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1439#define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1440#define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1441
1442/*
1443 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1444 */
1445#define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1446#define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1447#define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1448#define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1449#define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1450
1451
1452#define	SAFT_SCRATCH	64
1453#define	NPSEUDO_THERM	16
1454#define	NPSEUDO_ALARM	1
1455struct scfg {
1456	/*
1457	 * Cached Configuration
1458	 */
1459	uint8_t	Nfans;		/* Number of Fans */
1460	uint8_t	Npwr;		/* Number of Power Supplies */
1461	uint8_t	Nslots;		/* Number of Device Slots */
1462	uint8_t	DoorLock;	/* Door Lock Installed */
1463	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1464	uint8_t	Nspkrs;		/* Number of Speakers */
1465	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1466	/*
1467	 * Cached Flag Bytes for Global Status
1468	 */
1469	uint8_t	flag1;
1470	uint8_t	flag2;
1471	/*
1472	 * What object index ID is where various slots start.
1473	 */
1474	uint8_t	pwroff;
1475	uint8_t	slotoff;
1476#define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1477};
1478
1479#define	SAFT_FLG1_ALARM		0x1
1480#define	SAFT_FLG1_GLOBFAIL	0x2
1481#define	SAFT_FLG1_GLOBWARN	0x4
1482#define	SAFT_FLG1_ENCPWROFF	0x8
1483#define	SAFT_FLG1_ENCFANFAIL	0x10
1484#define	SAFT_FLG1_ENCPWRFAIL	0x20
1485#define	SAFT_FLG1_ENCDRVFAIL	0x40
1486#define	SAFT_FLG1_ENCDRVWARN	0x80
1487
1488#define	SAFT_FLG2_LOCKDOOR	0x4
1489#define	SAFT_PRIVATE		sizeof (struct scfg)
1490
1491static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1492#define	SAFT_BAIL(r, x, k, l)	\
1493	if (r >= x) { \
1494		SES_LOG(ssc, safte_2little, x, __LINE__);\
1495		SES_FREE(k, l); \
1496		return (EIO); \
1497	}
1498
1499
1500static int
1501safte_softc_init(ses_softc_t *ssc, int doinit)
1502{
1503	int err, i, r;
1504	struct scfg *cc;
1505
1506	if (doinit == 0) {
1507		if (ssc->ses_nobjects) {
1508			if (ssc->ses_objmap) {
1509				SES_FREE(ssc->ses_objmap,
1510				    ssc->ses_nobjects * sizeof (encobj));
1511				ssc->ses_objmap = NULL;
1512			}
1513			ssc->ses_nobjects = 0;
1514		}
1515		if (ssc->ses_private) {
1516			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1517			ssc->ses_private = NULL;
1518		}
1519		return (0);
1520	}
1521
1522	if (ssc->ses_private == NULL) {
1523		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1524		if (ssc->ses_private == NULL) {
1525			return (ENOMEM);
1526		}
1527		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1528	}
1529
1530	ssc->ses_nobjects = 0;
1531	ssc->ses_encstat = 0;
1532
1533	if ((err = safte_getconfig(ssc)) != 0) {
1534		return (err);
1535	}
1536
1537	/*
1538	 * The number of objects here, as well as that reported by the
1539	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1540	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1541	 */
1542	cc = ssc->ses_private;
1543	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1544	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1545	ssc->ses_objmap = (encobj *)
1546	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1547	if (ssc->ses_objmap == NULL) {
1548		return (ENOMEM);
1549	}
1550	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1551
1552	r = 0;
1553	/*
1554	 * Note that this is all arranged for the convenience
1555	 * in later fetches of status.
1556	 */
1557	for (i = 0; i < cc->Nfans; i++)
1558		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1559	cc->pwroff = (uint8_t) r;
1560	for (i = 0; i < cc->Npwr; i++)
1561		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1562	for (i = 0; i < cc->DoorLock; i++)
1563		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1564	for (i = 0; i < cc->Nspkrs; i++)
1565		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1566	for (i = 0; i < cc->Ntherm; i++)
1567		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1568	for (i = 0; i < NPSEUDO_THERM; i++)
1569		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1570	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1571	cc->slotoff = (uint8_t) r;
1572	for (i = 0; i < cc->Nslots; i++)
1573		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1574	return (0);
1575}
1576
1577static int
1578safte_init_enc(ses_softc_t *ssc)
1579{
1580	int err, amt;
1581	char *sdata;
1582	static char cdb0[6] = { SEND_DIAGNOSTIC };
1583	static char cdb[10] =
1584	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1585
1586	sdata = SES_MALLOC(SAFT_SCRATCH);
1587	if (sdata == NULL)
1588		return (ENOMEM);
1589
1590	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1591	if (err) {
1592		SES_FREE(sdata, SAFT_SCRATCH);
1593		return (err);
1594	}
1595	sdata[0] = SAFTE_WT_GLOBAL;
1596	MEMZERO(&sdata[1], 15);
1597	amt = -SAFT_SCRATCH;
1598	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1599	SES_FREE(sdata, SAFT_SCRATCH);
1600	return (err);
1601}
1602
1603static int
1604safte_get_encstat(ses_softc_t *ssc, int slpflg)
1605{
1606	return (safte_rdstat(ssc, slpflg));
1607}
1608
1609static int
1610safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1611{
1612	struct scfg *cc = ssc->ses_private;
1613	if (cc == NULL)
1614		return (0);
1615	/*
1616	 * Since SAF-TE devices aren't necessarily sticky in terms
1617	 * of state, make our soft copy of enclosure status 'sticky'-
1618	 * that is, things set in enclosure status stay set (as implied
1619	 * by conditions set in reading object status) until cleared.
1620	 */
1621	ssc->ses_encstat &= ~ALL_ENC_STAT;
1622	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1623	ssc->ses_encstat |= ENCI_SVALID;
1624	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1625	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1626		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1627	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1628		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1629	}
1630	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1631}
1632
1633static int
1634safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1635{
1636	int i = (int)obp->obj_id;
1637
1638	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1639	    (ssc->ses_objmap[i].svalid) == 0) {
1640		int err = safte_rdstat(ssc, slpflg);
1641		if (err)
1642			return (err);
1643	}
1644	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1645	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1646	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1647	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1648	return (0);
1649}
1650
1651
1652static int
1653safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1654{
1655	int idx, err;
1656	encobj *ep;
1657	struct scfg *cc;
1658
1659
1660	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1661	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1662	    obp->cstat[3]);
1663
1664	/*
1665	 * If this is clear, we don't do diddly.
1666	 */
1667	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1668		return (0);
1669	}
1670
1671	err = 0;
1672	/*
1673	 * Check to see if the common bits are set and do them first.
1674	 */
1675	if (obp->cstat[0] & ~SESCTL_CSEL) {
1676		err = set_objstat_sel(ssc, obp, slp);
1677		if (err)
1678			return (err);
1679	}
1680
1681	cc = ssc->ses_private;
1682	if (cc == NULL)
1683		return (0);
1684
1685	idx = (int)obp->obj_id;
1686	ep = &ssc->ses_objmap[idx];
1687
1688	switch (ep->enctype) {
1689	case SESTYP_DEVICE:
1690	{
1691		uint8_t slotop = 0;
1692		/*
1693		 * XXX: I should probably cache the previous state
1694		 * XXX: of SESCTL_DEVOFF so that when it goes from
1695		 * XXX: true to false I can then set PREPARE FOR OPERATION
1696		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1697		 */
1698		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1699			slotop |= 0x2;
1700		}
1701		if (obp->cstat[2] & SESCTL_RQSID) {
1702			slotop |= 0x4;
1703		}
1704		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1705		    slotop, slp);
1706		if (err)
1707			return (err);
1708		if (obp->cstat[3] & SESCTL_RQSFLT) {
1709			ep->priv |= 0x2;
1710		} else {
1711			ep->priv &= ~0x2;
1712		}
1713		if (ep->priv & 0xc6) {
1714			ep->priv &= ~0x1;
1715		} else {
1716			ep->priv |= 0x1;	/* no errors */
1717		}
1718		wrslot_stat(ssc, slp);
1719		break;
1720	}
1721	case SESTYP_POWER:
1722		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1723			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1724		} else {
1725			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1726		}
1727		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1728		    cc->flag2, 0, slp);
1729		if (err)
1730			return (err);
1731		if (obp->cstat[3] & SESCTL_RQSTON) {
1732			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1733				idx - cc->pwroff, 0, 0, slp);
1734		} else {
1735			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1736				idx - cc->pwroff, 0, 1, slp);
1737		}
1738		break;
1739	case SESTYP_FAN:
1740		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1741			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1742		} else {
1743			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1744		}
1745		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1746		    cc->flag2, 0, slp);
1747		if (err)
1748			return (err);
1749		if (obp->cstat[3] & SESCTL_RQSTON) {
1750			uint8_t fsp;
1751			if ((obp->cstat[3] & 0x7) == 7) {
1752				fsp = 4;
1753			} else if ((obp->cstat[3] & 0x7) == 6) {
1754				fsp = 3;
1755			} else if ((obp->cstat[3] & 0x7) == 4) {
1756				fsp = 2;
1757			} else {
1758				fsp = 1;
1759			}
1760			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1761		} else {
1762			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1763		}
1764		break;
1765	case SESTYP_DOORLOCK:
1766		if (obp->cstat[3] & 0x1) {
1767			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1768		} else {
1769			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1770		}
1771		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1772		    cc->flag2, 0, slp);
1773		break;
1774	case SESTYP_ALARM:
1775		/*
1776		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1777		 */
1778		obp->cstat[3] &= ~0xa;
1779		if (obp->cstat[3] & 0x40) {
1780			cc->flag2 &= ~SAFT_FLG1_ALARM;
1781		} else if (obp->cstat[3] != 0) {
1782			cc->flag2 |= SAFT_FLG1_ALARM;
1783		} else {
1784			cc->flag2 &= ~SAFT_FLG1_ALARM;
1785		}
1786		ep->priv = obp->cstat[3];
1787		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1788			cc->flag2, 0, slp);
1789		break;
1790	default:
1791		break;
1792	}
1793	ep->svalid = 0;
1794	return (0);
1795}
1796
1797static int
1798safte_getconfig(ses_softc_t *ssc)
1799{
1800	struct scfg *cfg;
1801	int err, amt;
1802	char *sdata;
1803	static char cdb[10] =
1804	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1805
1806	cfg = ssc->ses_private;
1807	if (cfg == NULL)
1808		return (ENXIO);
1809
1810	sdata = SES_MALLOC(SAFT_SCRATCH);
1811	if (sdata == NULL)
1812		return (ENOMEM);
1813
1814	amt = SAFT_SCRATCH;
1815	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1816	if (err) {
1817		SES_FREE(sdata, SAFT_SCRATCH);
1818		return (err);
1819	}
1820	amt = SAFT_SCRATCH - amt;
1821	if (amt < 6) {
1822		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1823		SES_FREE(sdata, SAFT_SCRATCH);
1824		return (EIO);
1825	}
1826	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1827	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1828	cfg->Nfans = sdata[0];
1829	cfg->Npwr = sdata[1];
1830	cfg->Nslots = sdata[2];
1831	cfg->DoorLock = sdata[3];
1832	cfg->Ntherm = sdata[4];
1833	cfg->Nspkrs = sdata[5];
1834	cfg->Nalarm = NPSEUDO_ALARM;
1835	SES_FREE(sdata, SAFT_SCRATCH);
1836	return (0);
1837}
1838
1839static int
1840safte_rdstat(ses_softc_t *ssc, int slpflg)
1841{
1842	int err, oid, r, i, hiwater, nitems, amt;
1843	uint16_t tempflags;
1844	size_t buflen;
1845	uint8_t status, oencstat;
1846	char *sdata, cdb[10];
1847	struct scfg *cc = ssc->ses_private;
1848
1849
1850	/*
1851	 * The number of objects overstates things a bit,
1852	 * both for the bogus 'thermometer' entries and
1853	 * the drive status (which isn't read at the same
1854	 * time as the enclosure status), but that's okay.
1855	 */
1856	buflen = 4 * cc->Nslots;
1857	if (ssc->ses_nobjects > buflen)
1858		buflen = ssc->ses_nobjects;
1859	sdata = SES_MALLOC(buflen);
1860	if (sdata == NULL)
1861		return (ENOMEM);
1862
1863	cdb[0] = READ_BUFFER;
1864	cdb[1] = 1;
1865	cdb[2] = SAFTE_RD_RDESTS;
1866	cdb[3] = 0;
1867	cdb[4] = 0;
1868	cdb[5] = 0;
1869	cdb[6] = 0;
1870	cdb[7] = (buflen >> 8) & 0xff;
1871	cdb[8] = buflen & 0xff;
1872	cdb[9] = 0;
1873	amt = buflen;
1874	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1875	if (err) {
1876		SES_FREE(sdata, buflen);
1877		return (err);
1878	}
1879	hiwater = buflen - amt;
1880
1881
1882	/*
1883	 * invalidate all status bits.
1884	 */
1885	for (i = 0; i < ssc->ses_nobjects; i++)
1886		ssc->ses_objmap[i].svalid = 0;
1887	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1888	ssc->ses_encstat = 0;
1889
1890
1891	/*
1892	 * Now parse returned buffer.
1893	 * If we didn't get enough data back,
1894	 * that's considered a fatal error.
1895	 */
1896	oid = r = 0;
1897
1898	for (nitems = i = 0; i < cc->Nfans; i++) {
1899		SAFT_BAIL(r, hiwater, sdata, buflen);
1900		/*
1901		 * 0 = Fan Operational
1902		 * 1 = Fan is malfunctioning
1903		 * 2 = Fan is not present
1904		 * 0x80 = Unknown or Not Reportable Status
1905		 */
1906		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1907		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1908		switch ((int)(uint8_t)sdata[r]) {
1909		case 0:
1910			nitems++;
1911			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1912			/*
1913			 * We could get fancier and cache
1914			 * fan speeds that we have set, but
1915			 * that isn't done now.
1916			 */
1917			ssc->ses_objmap[oid].encstat[3] = 7;
1918			break;
1919
1920		case 1:
1921			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1922			/*
1923			 * FAIL and FAN STOPPED synthesized
1924			 */
1925			ssc->ses_objmap[oid].encstat[3] = 0x40;
1926			/*
1927			 * Enclosure marked with CRITICAL error
1928			 * if only one fan or no thermometers,
1929			 * else the NONCRITICAL error is set.
1930			 */
1931			if (cc->Nfans == 1 || cc->Ntherm == 0)
1932				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1933			else
1934				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1935			break;
1936		case 2:
1937			ssc->ses_objmap[oid].encstat[0] =
1938			    SES_OBJSTAT_NOTINSTALLED;
1939			ssc->ses_objmap[oid].encstat[3] = 0;
1940			/*
1941			 * Enclosure marked with CRITICAL error
1942			 * if only one fan or no thermometers,
1943			 * else the NONCRITICAL error is set.
1944			 */
1945			if (cc->Nfans == 1)
1946				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1947			else
1948				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1949			break;
1950		case 0x80:
1951			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1952			ssc->ses_objmap[oid].encstat[3] = 0;
1953			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1954			break;
1955		default:
1956			ssc->ses_objmap[oid].encstat[0] =
1957			    SES_OBJSTAT_UNSUPPORTED;
1958			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1959			    sdata[r] & 0xff);
1960			break;
1961		}
1962		ssc->ses_objmap[oid++].svalid = 1;
1963		r++;
1964	}
1965
1966	/*
1967	 * No matter how you cut it, no cooling elements when there
1968	 * should be some there is critical.
1969	 */
1970	if (cc->Nfans && nitems == 0) {
1971		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1972	}
1973
1974
1975	for (i = 0; i < cc->Npwr; i++) {
1976		SAFT_BAIL(r, hiwater, sdata, buflen);
1977		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1978		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1979		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1980		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1981		switch ((uint8_t)sdata[r]) {
1982		case 0x00:	/* pws operational and on */
1983			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1984			break;
1985		case 0x01:	/* pws operational and off */
1986			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1987			ssc->ses_objmap[oid].encstat[3] = 0x10;
1988			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1989			break;
1990		case 0x10:	/* pws is malfunctioning and commanded on */
1991			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1992			ssc->ses_objmap[oid].encstat[3] = 0x61;
1993			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1994			break;
1995
1996		case 0x11:	/* pws is malfunctioning and commanded off */
1997			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1998			ssc->ses_objmap[oid].encstat[3] = 0x51;
1999			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2000			break;
2001		case 0x20:	/* pws is not present */
2002			ssc->ses_objmap[oid].encstat[0] =
2003			    SES_OBJSTAT_NOTINSTALLED;
2004			ssc->ses_objmap[oid].encstat[3] = 0;
2005			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2006			break;
2007		case 0x21:	/* pws is present */
2008			/*
2009			 * This is for enclosures that cannot tell whether the
2010			 * device is on or malfunctioning, but know that it is
2011			 * present. Just fall through.
2012			 */
2013			/* FALLTHROUGH */
2014		case 0x80:	/* Unknown or Not Reportable Status */
2015			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2016			ssc->ses_objmap[oid].encstat[3] = 0;
2017			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2018			break;
2019		default:
2020			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
2021			    i, sdata[r] & 0xff);
2022			break;
2023		}
2024		ssc->ses_objmap[oid++].svalid = 1;
2025		r++;
2026	}
2027
2028	/*
2029	 * Skip over Slot SCSI IDs
2030	 */
2031	r += cc->Nslots;
2032
2033	/*
2034	 * We always have doorlock status, no matter what,
2035	 * but we only save the status if we have one.
2036	 */
2037	SAFT_BAIL(r, hiwater, sdata, buflen);
2038	if (cc->DoorLock) {
2039		/*
2040		 * 0 = Door Locked
2041		 * 1 = Door Unlocked, or no Lock Installed
2042		 * 0x80 = Unknown or Not Reportable Status
2043		 */
2044		ssc->ses_objmap[oid].encstat[1] = 0;
2045		ssc->ses_objmap[oid].encstat[2] = 0;
2046		switch ((uint8_t)sdata[r]) {
2047		case 0:
2048			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2049			ssc->ses_objmap[oid].encstat[3] = 0;
2050			break;
2051		case 1:
2052			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2053			ssc->ses_objmap[oid].encstat[3] = 1;
2054			break;
2055		case 0x80:
2056			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2057			ssc->ses_objmap[oid].encstat[3] = 0;
2058			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2059			break;
2060		default:
2061			ssc->ses_objmap[oid].encstat[0] =
2062			    SES_OBJSTAT_UNSUPPORTED;
2063			SES_LOG(ssc, "unknown lock status 0x%x\n",
2064			    sdata[r] & 0xff);
2065			break;
2066		}
2067		ssc->ses_objmap[oid++].svalid = 1;
2068	}
2069	r++;
2070
2071	/*
2072	 * We always have speaker status, no matter what,
2073	 * but we only save the status if we have one.
2074	 */
2075	SAFT_BAIL(r, hiwater, sdata, buflen);
2076	if (cc->Nspkrs) {
2077		ssc->ses_objmap[oid].encstat[1] = 0;
2078		ssc->ses_objmap[oid].encstat[2] = 0;
2079		if (sdata[r] == 1) {
2080			/*
2081			 * We need to cache tone urgency indicators.
2082			 * Someday.
2083			 */
2084			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2085			ssc->ses_objmap[oid].encstat[3] = 0x8;
2086			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2087		} else if (sdata[r] == 0) {
2088			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2089			ssc->ses_objmap[oid].encstat[3] = 0;
2090		} else {
2091			ssc->ses_objmap[oid].encstat[0] =
2092			    SES_OBJSTAT_UNSUPPORTED;
2093			ssc->ses_objmap[oid].encstat[3] = 0;
2094			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2095			    sdata[r] & 0xff);
2096		}
2097		ssc->ses_objmap[oid++].svalid = 1;
2098	}
2099	r++;
2100
2101	for (i = 0; i < cc->Ntherm; i++) {
2102		SAFT_BAIL(r, hiwater, sdata, buflen);
2103		/*
2104		 * Status is a range from -10 to 245 deg Celsius,
2105		 * which we need to normalize to -20 to -245 according
2106		 * to the latest SCSI spec, which makes little
2107		 * sense since this would overflow an 8bit value.
2108		 * Well, still, the base normalization is -20,
2109		 * not -10, so we have to adjust.
2110		 *
2111		 * So what's over and under temperature?
2112		 * Hmm- we'll state that 'normal' operating
2113		 * is 10 to 40 deg Celsius.
2114		 */
2115
2116		/*
2117		 * Actually.... All of the units that people out in the world
2118		 * seem to have do not come even close to setting a value that
2119		 * complies with this spec.
2120		 *
2121		 * The closest explanation I could find was in an
2122		 * LSI-Logic manual, which seemed to indicate that
2123		 * this value would be set by whatever the I2C code
2124		 * would interpolate from the output of an LM75
2125		 * temperature sensor.
2126		 *
2127		 * This means that it is impossible to use the actual
2128		 * numeric value to predict anything. But we don't want
2129		 * to lose the value. So, we'll propagate the *uncorrected*
2130		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2131		 * temperature flags for warnings.
2132		 */
2133		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2134		ssc->ses_objmap[oid].encstat[1] = 0;
2135		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2136		ssc->ses_objmap[oid].encstat[3] = 0;
2137		ssc->ses_objmap[oid++].svalid = 1;
2138		r++;
2139	}
2140
2141	/*
2142	 * Now, for "pseudo" thermometers, we have two bytes
2143	 * of information in enclosure status- 16 bits. Actually,
2144	 * the MSB is a single TEMP ALERT flag indicating whether
2145	 * any other bits are set, but, thanks to fuzzy thinking,
2146	 * in the SAF-TE spec, this can also be set even if no
2147	 * other bits are set, thus making this really another
2148	 * binary temperature sensor.
2149	 */
2150
2151	SAFT_BAIL(r, hiwater, sdata, buflen);
2152	tempflags = sdata[r++];
2153	SAFT_BAIL(r, hiwater, sdata, buflen);
2154	tempflags |= (tempflags << 8) | sdata[r++];
2155
2156	for (i = 0; i < NPSEUDO_THERM; i++) {
2157		ssc->ses_objmap[oid].encstat[1] = 0;
2158		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2159			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2160			ssc->ses_objmap[4].encstat[2] = 0xff;
2161			/*
2162			 * Set 'over temperature' failure.
2163			 */
2164			ssc->ses_objmap[oid].encstat[3] = 8;
2165			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2166		} else {
2167			/*
2168			 * We used to say 'not available' and synthesize a
2169			 * nominal 30 deg (C)- that was wrong. Actually,
2170			 * Just say 'OK', and use the reserved value of
2171			 * zero.
2172			 */
2173			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2174			ssc->ses_objmap[oid].encstat[2] = 0;
2175			ssc->ses_objmap[oid].encstat[3] = 0;
2176		}
2177		ssc->ses_objmap[oid++].svalid = 1;
2178	}
2179
2180	/*
2181	 * Get alarm status.
2182	 */
2183	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2184	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2185	ssc->ses_objmap[oid++].svalid = 1;
2186
2187	/*
2188	 * Now get drive slot status
2189	 */
2190	cdb[2] = SAFTE_RD_RDDSTS;
2191	amt = buflen;
2192	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2193	if (err) {
2194		SES_FREE(sdata, buflen);
2195		return (err);
2196	}
2197	hiwater = buflen - amt;
2198	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2199		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2200		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2201		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2202		ssc->ses_objmap[oid].encstat[2] = 0;
2203		ssc->ses_objmap[oid].encstat[3] = 0;
2204		status = sdata[r+3];
2205		if ((status & 0x1) == 0) {	/* no device */
2206			ssc->ses_objmap[oid].encstat[0] =
2207			    SES_OBJSTAT_NOTINSTALLED;
2208		} else {
2209			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2210		}
2211		if (status & 0x2) {
2212			ssc->ses_objmap[oid].encstat[2] = 0x8;
2213		}
2214		if ((status & 0x4) == 0) {
2215			ssc->ses_objmap[oid].encstat[3] = 0x10;
2216		}
2217		ssc->ses_objmap[oid++].svalid = 1;
2218	}
2219	/* see comment below about sticky enclosure status */
2220	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2221	SES_FREE(sdata, buflen);
2222	return (0);
2223}
2224
2225static int
2226set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2227{
2228	int idx;
2229	encobj *ep;
2230	struct scfg *cc = ssc->ses_private;
2231
2232	if (cc == NULL)
2233		return (0);
2234
2235	idx = (int)obp->obj_id;
2236	ep = &ssc->ses_objmap[idx];
2237
2238	switch (ep->enctype) {
2239	case SESTYP_DEVICE:
2240		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2241			ep->priv |= 0x40;
2242		}
2243		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2244		if (obp->cstat[0] & SESCTL_DISABLE) {
2245			ep->priv |= 0x80;
2246			/*
2247			 * Hmm. Try to set the 'No Drive' flag.
2248			 * Maybe that will count as a 'disable'.
2249			 */
2250		}
2251		if (ep->priv & 0xc6) {
2252			ep->priv &= ~0x1;
2253		} else {
2254			ep->priv |= 0x1;	/* no errors */
2255		}
2256		wrslot_stat(ssc, slp);
2257		break;
2258	case SESTYP_POWER:
2259		/*
2260		 * Okay- the only one that makes sense here is to
2261		 * do the 'disable' for a power supply.
2262		 */
2263		if (obp->cstat[0] & SESCTL_DISABLE) {
2264			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2265				idx - cc->pwroff, 0, 0, slp);
2266		}
2267		break;
2268	case SESTYP_FAN:
2269		/*
2270		 * Okay- the only one that makes sense here is to
2271		 * set fan speed to zero on disable.
2272		 */
2273		if (obp->cstat[0] & SESCTL_DISABLE) {
2274			/* remember- fans are the first items, so idx works */
2275			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2276		}
2277		break;
2278	case SESTYP_DOORLOCK:
2279		/*
2280		 * Well, we can 'disable' the lock.
2281		 */
2282		if (obp->cstat[0] & SESCTL_DISABLE) {
2283			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2284			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2285				cc->flag2, 0, slp);
2286		}
2287		break;
2288	case SESTYP_ALARM:
2289		/*
2290		 * Well, we can 'disable' the alarm.
2291		 */
2292		if (obp->cstat[0] & SESCTL_DISABLE) {
2293			cc->flag2 &= ~SAFT_FLG1_ALARM;
2294			ep->priv |= 0x40;	/* Muted */
2295			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2296				cc->flag2, 0, slp);
2297		}
2298		break;
2299	default:
2300		break;
2301	}
2302	ep->svalid = 0;
2303	return (0);
2304}
2305
2306/*
2307 * This function handles all of the 16 byte WRITE BUFFER commands.
2308 */
2309static int
2310wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2311    uint8_t b3, int slp)
2312{
2313	int err, amt;
2314	char *sdata;
2315	struct scfg *cc = ssc->ses_private;
2316	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2317
2318	if (cc == NULL)
2319		return (0);
2320
2321	sdata = SES_MALLOC(16);
2322	if (sdata == NULL)
2323		return (ENOMEM);
2324
2325	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2326
2327	sdata[0] = op;
2328	sdata[1] = b1;
2329	sdata[2] = b2;
2330	sdata[3] = b3;
2331	MEMZERO(&sdata[4], 12);
2332	amt = -16;
2333	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2334	SES_FREE(sdata, 16);
2335	return (err);
2336}
2337
2338/*
2339 * This function updates the status byte for the device slot described.
2340 *
2341 * Since this is an optional SAF-TE command, there's no point in
2342 * returning an error.
2343 */
2344static void
2345wrslot_stat(ses_softc_t *ssc, int slp)
2346{
2347	int i, amt;
2348	encobj *ep;
2349	char cdb[10], *sdata;
2350	struct scfg *cc = ssc->ses_private;
2351
2352	if (cc == NULL)
2353		return;
2354
2355	SES_VLOG(ssc, "saf_wrslot\n");
2356	cdb[0] = WRITE_BUFFER;
2357	cdb[1] = 1;
2358	cdb[2] = 0;
2359	cdb[3] = 0;
2360	cdb[4] = 0;
2361	cdb[5] = 0;
2362	cdb[6] = 0;
2363	cdb[7] = 0;
2364	cdb[8] = cc->Nslots * 3 + 1;
2365	cdb[9] = 0;
2366
2367	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2368	if (sdata == NULL)
2369		return;
2370	MEMZERO(sdata, cc->Nslots * 3 + 1);
2371
2372	sdata[0] = SAFTE_WT_DSTAT;
2373	for (i = 0; i < cc->Nslots; i++) {
2374		ep = &ssc->ses_objmap[cc->slotoff + i];
2375		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2376		sdata[1 + (3 * i)] = ep->priv & 0xff;
2377	}
2378	amt = -(cc->Nslots * 3 + 1);
2379	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2380	SES_FREE(sdata, cc->Nslots * 3 + 1);
2381}
2382
2383/*
2384 * This function issues the "PERFORM SLOT OPERATION" command.
2385 */
2386static int
2387perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2388{
2389	int err, amt;
2390	char *sdata;
2391	struct scfg *cc = ssc->ses_private;
2392	static char cdb[10] =
2393	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2394
2395	if (cc == NULL)
2396		return (0);
2397
2398	sdata = SES_MALLOC(SAFT_SCRATCH);
2399	if (sdata == NULL)
2400		return (ENOMEM);
2401	MEMZERO(sdata, SAFT_SCRATCH);
2402
2403	sdata[0] = SAFTE_WT_SLTOP;
2404	sdata[1] = slot;
2405	sdata[2] = opflag;
2406	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2407	amt = -SAFT_SCRATCH;
2408	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2409	SES_FREE(sdata, SAFT_SCRATCH);
2410	return (err);
2411}
2412