ses.c revision 1.26
1/*	$NetBSD: ses.c,v 1.26 2004/09/18 00:21:03 mycroft Exp $ */
2/*
3 * Copyright (C) 2000 National Aeronautics & Space Administration
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. The name of the author may not be used to endorse or promote products
12 *    derived from this software without specific prior written permission
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 *
25 * Author:	mjacob@nas.nasa.gov
26 */
27
28#include <sys/cdefs.h>
29__KERNEL_RCSID(0, "$NetBSD: ses.c,v 1.26 2004/09/18 00:21:03 mycroft Exp $");
30
31#include "opt_scsi.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/kernel.h>
36#include <sys/file.h>
37#include <sys/stat.h>
38#include <sys/ioctl.h>
39#include <sys/scsiio.h>
40#include <sys/buf.h>
41#include <sys/uio.h>
42#include <sys/malloc.h>
43#include <sys/errno.h>
44#include <sys/device.h>
45#include <sys/disklabel.h>
46#include <sys/disk.h>
47#include <sys/proc.h>
48#include <sys/conf.h>
49#include <sys/vnode.h>
50#include <machine/stdarg.h>
51
52#include <dev/scsipi/scsipi_all.h>
53#include <dev/scsipi/scsipi_disk.h>
54#include <dev/scsipi/scsi_all.h>
55#include <dev/scsipi/scsi_disk.h>
56#include <dev/scsipi/scsipiconf.h>
57#include <dev/scsipi/scsipi_base.h>
58#include <dev/scsipi/ses.h>
59
60/*
61 * Platform Independent Driver Internal Definitions for SES devices.
62 */
63typedef enum {
64	SES_NONE,
65	SES_SES_SCSI2,
66	SES_SES,
67	SES_SES_PASSTHROUGH,
68	SES_SEN,
69	SES_SAFT
70} enctyp;
71
72struct ses_softc;
73typedef struct ses_softc ses_softc_t;
74typedef struct {
75	int (*softc_init)(ses_softc_t *, int);
76	int (*init_enc)(ses_softc_t *);
77	int (*get_encstat)(ses_softc_t *, int);
78	int (*set_encstat)(ses_softc_t *, ses_encstat, int);
79	int (*get_objstat)(ses_softc_t *, ses_objstat *, int);
80	int (*set_objstat)(ses_softc_t *, ses_objstat *, int);
81} encvec;
82
83#define	ENCI_SVALID	0x80
84
85typedef struct {
86	uint32_t
87		enctype	: 8,		/* enclosure type */
88		subenclosure : 8,	/* subenclosure id */
89		svalid	: 1,		/* enclosure information valid */
90		priv	: 15;		/* private data, per object */
91	uint8_t	encstat[4];	/* state && stats */
92} encobj;
93
94#define	SEN_ID		"UNISYS           SUN_SEN"
95#define	SEN_ID_LEN	24
96
97static enctyp ses_type(struct scsipi_inquiry_data *);
98
99
100/* Forward reference to Enclosure Functions */
101static int ses_softc_init(ses_softc_t *, int);
102static int ses_init_enc(ses_softc_t *);
103static int ses_get_encstat(ses_softc_t *, int);
104static int ses_set_encstat(ses_softc_t *, uint8_t, int);
105static int ses_get_objstat(ses_softc_t *, ses_objstat *, int);
106static int ses_set_objstat(ses_softc_t *, ses_objstat *, int);
107
108static int safte_softc_init(ses_softc_t *, int);
109static int safte_init_enc(ses_softc_t *);
110static int safte_get_encstat(ses_softc_t *, int);
111static int safte_set_encstat(ses_softc_t *, uint8_t, int);
112static int safte_get_objstat(ses_softc_t *, ses_objstat *, int);
113static int safte_set_objstat(ses_softc_t *, ses_objstat *, int);
114
115/*
116 * Platform implementation defines/functions for SES internal kernel stuff
117 */
118
119#define	STRNCMP			strncmp
120#define	PRINTF			printf
121#define	SES_LOG			ses_log
122#if	defined(DEBUG) || defined(SCSIDEBUG)
123#define	SES_VLOG		ses_log
124#else
125#define	SES_VLOG		if (0) ses_log
126#endif
127#define	SES_MALLOC(amt)		malloc(amt, M_DEVBUF, M_NOWAIT)
128#define	SES_FREE(ptr, amt)	free(ptr, M_DEVBUF)
129#define	MEMZERO(dest, amt)	memset(dest, 0, amt)
130#define	MEMCPY(dest, src, amt)	memcpy(dest, src, amt)
131#define	RECEIVE_DIAGNOSTIC	0x1c
132#define	SEND_DIAGNOSTIC		0x1d
133#define	WRITE_BUFFER		0x3b
134#define	READ_BUFFER		0x3c
135
136static dev_type_open(sesopen);
137static dev_type_close(sesclose);
138static dev_type_ioctl(sesioctl);
139
140const struct cdevsw ses_cdevsw = {
141	sesopen, sesclose, noread, nowrite, sesioctl,
142	nostop, notty, nopoll, nommap, nokqfilter,
143};
144
145static int ses_runcmd(struct ses_softc *, char *, int, char *, int *);
146static void ses_log(struct ses_softc *, const char *, ...)
147     __attribute__((__format__(__printf__, 2, 3)));
148
149/*
150 * General NetBSD kernel stuff.
151 */
152
153struct ses_softc {
154	struct device	sc_device;
155	struct scsipi_periph *sc_periph;
156	enctyp		ses_type;	/* type of enclosure */
157	encvec		ses_vec;	/* vector to handlers */
158	void *		ses_private;	/* per-type private data */
159	encobj *	ses_objmap;	/* objects */
160	u_int32_t	ses_nobjects;	/* number of objects */
161	ses_encstat	ses_encstat;	/* overall status */
162	u_int8_t	ses_flags;
163};
164#define	SES_FLAG_INVALID	0x01
165#define	SES_FLAG_OPEN		0x02
166#define	SES_FLAG_INITIALIZED	0x04
167
168#define SESUNIT(x)       (minor((x)))
169
170static int ses_match(struct device *, struct cfdata *, void *);
171static void ses_attach(struct device *, struct device *, void *);
172static enctyp ses_device_type(struct scsipibus_attach_args *);
173
174CFATTACH_DECL(ses, sizeof (struct ses_softc),
175    ses_match, ses_attach, NULL, NULL);
176
177extern struct cfdriver ses_cd;
178
179static const struct scsipi_periphsw ses_switch = {
180	NULL,
181	NULL,
182	NULL,
183	NULL
184};
185
186static int
187ses_match(struct device *parent, struct cfdata *match, void *aux)
188{
189	struct scsipibus_attach_args *sa = aux;
190
191	switch (ses_device_type(sa)) {
192	case SES_SES:
193	case SES_SES_SCSI2:
194	case SES_SEN:
195	case SES_SAFT:
196	case SES_SES_PASSTHROUGH:
197		/*
198		 * For these devices, it's a perfect match.
199		 */
200		return (24);
201	default:
202		return (0);
203	}
204}
205
206
207/*
208 * Complete the attachment.
209 *
210 * We have to repeat the rerun of INQUIRY data as above because
211 * it's not until the return from the match routine that we have
212 * the softc available to set stuff in.
213 */
214static void
215ses_attach(struct device *parent, struct device *self, void *aux)
216{
217	char *tname;
218	struct ses_softc *softc = (void *)self;
219	struct scsipibus_attach_args *sa = aux;
220	struct scsipi_periph *periph = sa->sa_periph;
221
222	SC_DEBUG(periph, SCSIPI_DB2, ("ssattach: "));
223	softc->sc_periph = periph;
224	periph->periph_dev = &softc->sc_device;
225	periph->periph_switch = &ses_switch;
226	periph->periph_openings = 1;
227
228	softc->ses_type = ses_device_type(sa);
229	switch (softc->ses_type) {
230	case SES_SES:
231	case SES_SES_SCSI2:
232        case SES_SES_PASSTHROUGH:
233		softc->ses_vec.softc_init = ses_softc_init;
234		softc->ses_vec.init_enc = ses_init_enc;
235		softc->ses_vec.get_encstat = ses_get_encstat;
236		softc->ses_vec.set_encstat = ses_set_encstat;
237		softc->ses_vec.get_objstat = ses_get_objstat;
238		softc->ses_vec.set_objstat = ses_set_objstat;
239		break;
240        case SES_SAFT:
241		softc->ses_vec.softc_init = safte_softc_init;
242		softc->ses_vec.init_enc = safte_init_enc;
243		softc->ses_vec.get_encstat = safte_get_encstat;
244		softc->ses_vec.set_encstat = safte_set_encstat;
245		softc->ses_vec.get_objstat = safte_get_objstat;
246		softc->ses_vec.set_objstat = safte_set_objstat;
247		break;
248        case SES_SEN:
249		break;
250	case SES_NONE:
251	default:
252		break;
253	}
254
255	switch (softc->ses_type) {
256	default:
257	case SES_NONE:
258		tname = "No SES device";
259		break;
260	case SES_SES_SCSI2:
261		tname = "SCSI-2 SES Device";
262		break;
263	case SES_SES:
264		tname = "SCSI-3 SES Device";
265		break;
266        case SES_SES_PASSTHROUGH:
267		tname = "SES Passthrough Device";
268		break;
269        case SES_SEN:
270		tname = "UNISYS SEN Device (NOT HANDLED YET)";
271		break;
272        case SES_SAFT:
273		tname = "SAF-TE Compliant Device";
274		break;
275	}
276	printf("\n%s: %s\n", softc->sc_device.dv_xname, tname);
277}
278
279
280static enctyp
281ses_device_type(struct scsipibus_attach_args *sa)
282{
283	struct scsipi_inquiry_data *inqp = sa->sa_inqptr;
284
285	if (inqp == NULL)
286		return (SES_NONE);
287
288	return (ses_type(inqp));
289}
290
291static int
292sesopen(dev_t dev, int flags, int fmt, struct proc *p)
293{
294	struct ses_softc *softc;
295	int error, unit;
296
297	unit = SESUNIT(dev);
298	if (unit >= ses_cd.cd_ndevs)
299		return (ENXIO);
300	softc = ses_cd.cd_devs[unit];
301	if (softc == NULL)
302		return (ENXIO);
303
304	if (softc->ses_flags & SES_FLAG_INVALID) {
305		error = ENXIO;
306		goto out;
307	}
308	if (softc->ses_flags & SES_FLAG_OPEN) {
309		error = EBUSY;
310		goto out;
311	}
312	if (softc->ses_vec.softc_init == NULL) {
313		error = ENXIO;
314		goto out;
315	}
316	error = scsipi_adapter_addref(
317	    softc->sc_periph->periph_channel->chan_adapter);
318	if (error != 0)
319                goto out;
320
321
322	softc->ses_flags |= SES_FLAG_OPEN;
323	if ((softc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
324		error = (*softc->ses_vec.softc_init)(softc, 1);
325		if (error)
326			softc->ses_flags &= ~SES_FLAG_OPEN;
327		else
328			softc->ses_flags |= SES_FLAG_INITIALIZED;
329	}
330
331out:
332	return (error);
333}
334
335static int
336sesclose(dev_t dev, int flags, int fmt, struct proc *p)
337{
338	struct ses_softc *softc;
339	int unit;
340
341	unit = SESUNIT(dev);
342	if (unit >= ses_cd.cd_ndevs)
343		return (ENXIO);
344	softc = ses_cd.cd_devs[unit];
345	if (softc == NULL)
346		return (ENXIO);
347
348	scsipi_wait_drain(softc->sc_periph);
349	scsipi_adapter_delref(softc->sc_periph->periph_channel->chan_adapter);
350	softc->ses_flags &= ~SES_FLAG_OPEN;
351	return (0);
352}
353
354static int
355sesioctl(dev_t dev, u_long cmd, caddr_t arg_addr, int flag, struct proc *p)
356{
357	ses_encstat tmp;
358	ses_objstat objs;
359	ses_object obj, *uobj;
360	struct ses_softc *ssc = ses_cd.cd_devs[SESUNIT(dev)];
361	void *addr;
362	int error, i;
363
364
365	if (arg_addr)
366		addr = *((caddr_t *) arg_addr);
367	else
368		addr = NULL;
369
370	SC_DEBUG(ssc->sc_periph, SCSIPI_DB2, ("sesioctl 0x%lx ", cmd));
371
372	/*
373	 * Now check to see whether we're initialized or not.
374	 */
375	if ((ssc->ses_flags & SES_FLAG_INITIALIZED) == 0) {
376		return (ENODEV);
377	}
378
379	error = 0;
380
381	/*
382	 * If this command can change the device's state,
383	 * we must have the device open for writing.
384	 */
385	switch (cmd) {
386	case SESIOC_GETNOBJ:
387	case SESIOC_GETOBJMAP:
388	case SESIOC_GETENCSTAT:
389	case SESIOC_GETOBJSTAT:
390		break;
391	default:
392		if ((flag & FWRITE) == 0) {
393			return (EBADF);
394		}
395	}
396
397	switch (cmd) {
398	case SESIOC_GETNOBJ:
399		error = copyout(&ssc->ses_nobjects, addr,
400		    sizeof (ssc->ses_nobjects));
401		break;
402
403	case SESIOC_GETOBJMAP:
404		for (uobj = addr, i = 0; i != ssc->ses_nobjects; i++, uobj++) {
405			obj.obj_id = i;
406			obj.subencid = ssc->ses_objmap[i].subenclosure;
407			obj.object_type = ssc->ses_objmap[i].enctype;
408			error = copyout(&obj, uobj, sizeof (ses_object));
409			if (error) {
410				break;
411			}
412		}
413		break;
414
415	case SESIOC_GETENCSTAT:
416		error = (*ssc->ses_vec.get_encstat)(ssc, 1);
417		if (error)
418			break;
419		tmp = ssc->ses_encstat & ~ENCI_SVALID;
420		error = copyout(&tmp, addr, sizeof (ses_encstat));
421		ssc->ses_encstat = tmp;
422		break;
423
424	case SESIOC_SETENCSTAT:
425		error = copyin(addr, &tmp, sizeof (ses_encstat));
426		if (error)
427			break;
428		error = (*ssc->ses_vec.set_encstat)(ssc, tmp, 1);
429		break;
430
431	case SESIOC_GETOBJSTAT:
432		error = copyin(addr, &objs, sizeof (ses_objstat));
433		if (error)
434			break;
435		if (objs.obj_id >= ssc->ses_nobjects) {
436			error = EINVAL;
437			break;
438		}
439		error = (*ssc->ses_vec.get_objstat)(ssc, &objs, 1);
440		if (error)
441			break;
442		error = copyout(&objs, addr, sizeof (ses_objstat));
443		/*
444		 * Always (for now) invalidate entry.
445		 */
446		ssc->ses_objmap[objs.obj_id].svalid = 0;
447		break;
448
449	case SESIOC_SETOBJSTAT:
450		error = copyin(addr, &objs, sizeof (ses_objstat));
451		if (error)
452			break;
453
454		if (objs.obj_id >= ssc->ses_nobjects) {
455			error = EINVAL;
456			break;
457		}
458		error = (*ssc->ses_vec.set_objstat)(ssc, &objs, 1);
459
460		/*
461		 * Always (for now) invalidate entry.
462		 */
463		ssc->ses_objmap[objs.obj_id].svalid = 0;
464		break;
465
466	case SESIOC_INIT:
467
468		error = (*ssc->ses_vec.init_enc)(ssc);
469		break;
470
471	default:
472		error = scsipi_do_ioctl(ssc->sc_periph,
473			    dev, cmd, arg_addr, flag, p);
474		break;
475	}
476	return (error);
477}
478
479static int
480ses_runcmd(struct ses_softc *ssc, char *cdb, int cdbl, char *dptr, int *dlenp)
481{
482	struct scsipi_generic sgen;
483	int dl, flg, error;
484
485	if (dptr) {
486		if ((dl = *dlenp) < 0) {
487			dl = -dl;
488			flg = XS_CTL_DATA_OUT;
489		} else {
490			flg = XS_CTL_DATA_IN;
491		}
492	} else {
493		dl = 0;
494		flg = 0;
495	}
496
497	if (cdbl > sizeof (struct scsipi_generic)) {
498		cdbl = sizeof (struct scsipi_generic);
499	}
500	memcpy(&sgen, cdb, cdbl);
501#ifndef	SCSIDEBUG
502	flg |= XS_CTL_SILENT;
503#endif
504	error = scsipi_command(ssc->sc_periph, &sgen, cdbl,
505	    (u_char *) dptr, dl, SCSIPIRETRIES, 30000, NULL, flg);
506
507	if (error == 0 && dptr)
508		*dlenp = 0;
509
510	return (error);
511}
512
513static void
514ses_log(struct ses_softc *ssc, const char *fmt, ...)
515{
516	va_list ap;
517
518	printf("%s: ", ssc->sc_device.dv_xname);
519	va_start(ap, fmt);
520	vprintf(fmt, ap);
521	va_end(ap);
522}
523
524/*
525 * The code after this point runs on many platforms,
526 * so forgive the slightly awkward and nonconforming
527 * appearance.
528 */
529
530/*
531 * Is this a device that supports enclosure services?
532 *
533 * It's a a pretty simple ruleset- if it is device type 0x0D (13), it's
534 * an SES device. If it happens to be an old UNISYS SEN device, we can
535 * handle that too.
536 */
537
538#define	SAFTE_START	44
539#define	SAFTE_END	50
540#define	SAFTE_LEN	SAFTE_END-SAFTE_START
541
542static enctyp
543ses_type(struct scsipi_inquiry_data *inqp)
544{
545	size_t	given_len = inqp->additional_length + 4;
546
547	if (given_len < 8+SEN_ID_LEN)
548		return (SES_NONE);
549
550	if ((inqp->device & SID_TYPE) == T_ENCLOSURE) {
551		if (STRNCMP(inqp->vendor, SEN_ID, SEN_ID_LEN) == 0) {
552			return (SES_SEN);
553		} else if ((inqp->version & SID_ANSII) > 2) {
554			return (SES_SES);
555		} else {
556			return (SES_SES_SCSI2);
557		}
558		return (SES_NONE);
559	}
560
561#ifdef	SES_ENABLE_PASSTHROUGH
562	if ((inqp->flags2 & SID_EncServ) && (inqp->version & SID_ANSII) >= 2) {
563		/*
564		 * PassThrough Device.
565		 */
566		return (SES_SES_PASSTHROUGH);
567	}
568#endif
569
570	/*
571	 * The comparison is short for a reason-
572	 * some vendors were chopping it short.
573	 */
574
575	if (given_len < SAFTE_END - 2) {
576		return (SES_NONE);
577	}
578
579	if (STRNCMP((char *)&inqp->vendor_specific[8], "SAF-TE",
580			SAFTE_LEN - 2) == 0) {
581		return (SES_SAFT);
582	}
583
584	return (SES_NONE);
585}
586
587/*
588 * SES Native Type Device Support
589 */
590
591/*
592 * SES Diagnostic Page Codes
593 */
594
595typedef enum {
596	SesConfigPage = 0x1,
597	SesControlPage,
598#define	SesStatusPage SesControlPage
599	SesHelpTxt,
600	SesStringOut,
601#define	SesStringIn	SesStringOut
602	SesThresholdOut,
603#define	SesThresholdIn SesThresholdOut
604	SesArrayControl,
605#define	SesArrayStatus	SesArrayControl
606	SesElementDescriptor,
607	SesShortStatus
608} SesDiagPageCodes;
609
610/*
611 * minimal amounts
612 */
613
614/*
615 * Minimum amount of data, starting from byte 0, to have
616 * the config header.
617 */
618#define	SES_CFGHDR_MINLEN	12
619
620/*
621 * Minimum amount of data, starting from byte 0, to have
622 * the config header and one enclosure header.
623 */
624#define	SES_ENCHDR_MINLEN	48
625
626/*
627 * Take this value, subtract it from VEnclen and you know
628 * the length of the vendor unique bytes.
629 */
630#define	SES_ENCHDR_VMIN		36
631
632/*
633 * SES Data Structures
634 */
635
636typedef struct {
637	uint32_t GenCode;	/* Generation Code */
638	uint8_t	Nsubenc;	/* Number of Subenclosures */
639} SesCfgHdr;
640
641typedef struct {
642	uint8_t	Subencid;	/* SubEnclosure Identifier */
643	uint8_t	Ntypes;		/* # of supported types */
644	uint8_t	VEnclen;	/* Enclosure Descriptor Length */
645} SesEncHdr;
646
647typedef struct {
648	uint8_t	encWWN[8];	/* XXX- Not Right Yet */
649	uint8_t	encVid[8];
650	uint8_t	encPid[16];
651	uint8_t	encRev[4];
652	uint8_t	encVen[1];
653} SesEncDesc;
654
655typedef struct {
656	uint8_t	enc_type;		/* type of element */
657	uint8_t	enc_maxelt;		/* maximum supported */
658	uint8_t	enc_subenc;		/* in SubEnc # N */
659	uint8_t	enc_tlen;		/* Type Descriptor Text Length */
660} SesThdr;
661
662typedef struct {
663	uint8_t	comstatus;
664	uint8_t	comstat[3];
665} SesComStat;
666
667struct typidx {
668	int ses_tidx;
669	int ses_oidx;
670};
671
672struct sscfg {
673	uint8_t ses_ntypes;	/* total number of types supported */
674
675	/*
676	 * We need to keep a type index as well as an
677	 * object index for each object in an enclosure.
678	 */
679	struct typidx *ses_typidx;
680
681	/*
682	 * We also need to keep track of the number of elements
683	 * per type of element. This is needed later so that we
684	 * can find precisely in the returned status data the
685	 * status for the Nth element of the Kth type.
686	 */
687	uint8_t *	ses_eltmap;
688};
689
690
691/*
692 * (de)canonicalization defines
693 */
694#define	sbyte(x, byte)		((((uint32_t)(x)) >> (byte * 8)) & 0xff)
695#define	sbit(x, bit)		(((uint32_t)(x)) << bit)
696#define	sset8(outp, idx, sval)	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
697
698#define	sset16(outp, idx, sval)	\
699	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
700	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
701
702
703#define	sset24(outp, idx, sval)	\
704	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
705	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
706	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
707
708
709#define	sset32(outp, idx, sval)	\
710	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 3), \
711	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 2), \
712	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 1), \
713	(((uint8_t *)(outp))[idx++]) = sbyte(sval, 0)
714
715#define	gbyte(x, byte)	((((uint32_t)(x)) & 0xff) << (byte * 8))
716#define	gbit(lv, in, idx, shft, mask)	lv = ((in[idx] >> shft) & mask)
717#define	sget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx++])
718#define	gget8(inp, idx, lval)	lval = (((uint8_t *)(inp))[idx])
719
720#define	sget16(inp, idx, lval)	\
721	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
722		(((uint8_t *)(inp))[idx+1]), idx += 2
723
724#define	gget16(inp, idx, lval)	\
725	lval = gbyte((((uint8_t *)(inp))[idx]), 1) | \
726		(((uint8_t *)(inp))[idx+1])
727
728#define	sget24(inp, idx, lval)	\
729	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
730		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
731			(((uint8_t *)(inp))[idx+2]), idx += 3
732
733#define	gget24(inp, idx, lval)	\
734	lval = gbyte((((uint8_t *)(inp))[idx]), 2) | \
735		gbyte((((uint8_t *)(inp))[idx+1]), 1) | \
736			(((uint8_t *)(inp))[idx+2])
737
738#define	sget32(inp, idx, lval)	\
739	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
740		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
741		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
742			(((uint8_t *)(inp))[idx+3]), idx += 4
743
744#define	gget32(inp, idx, lval)	\
745	lval = gbyte((((uint8_t *)(inp))[idx]), 3) | \
746		gbyte((((uint8_t *)(inp))[idx+1]), 2) | \
747		gbyte((((uint8_t *)(inp))[idx+2]), 1) | \
748			(((uint8_t *)(inp))[idx+3])
749
750#define	SCSZ	0x2000
751#define	CFLEN	(256 + SES_ENCHDR_MINLEN)
752
753/*
754 * Routines specific && private to SES only
755 */
756
757static int ses_getconfig(ses_softc_t *);
758static int ses_getputstat(ses_softc_t *, int, SesComStat *, int, int);
759static int ses_cfghdr(uint8_t *, int, SesCfgHdr *);
760static int ses_enchdr(uint8_t *, int, uint8_t, SesEncHdr *);
761static int ses_encdesc(uint8_t *, int, uint8_t, SesEncDesc *);
762static int ses_getthdr(uint8_t *, int,  int, SesThdr *);
763static int ses_decode(char *, int, uint8_t *, int, int, SesComStat *);
764static int ses_encode(char *, int, uint8_t *, int, int, SesComStat *);
765
766static int
767ses_softc_init(ses_softc_t *ssc, int doinit)
768{
769	if (doinit == 0) {
770		struct sscfg *cc;
771		if (ssc->ses_nobjects) {
772			SES_FREE(ssc->ses_objmap,
773			    ssc->ses_nobjects * sizeof (encobj));
774			ssc->ses_objmap = NULL;
775		}
776		if ((cc = ssc->ses_private) != NULL) {
777			if (cc->ses_eltmap && cc->ses_ntypes) {
778				SES_FREE(cc->ses_eltmap, cc->ses_ntypes);
779				cc->ses_eltmap = NULL;
780				cc->ses_ntypes = 0;
781			}
782			if (cc->ses_typidx && ssc->ses_nobjects) {
783				SES_FREE(cc->ses_typidx,
784				    ssc->ses_nobjects * sizeof (struct typidx));
785				cc->ses_typidx = NULL;
786			}
787			SES_FREE(cc, sizeof (struct sscfg));
788			ssc->ses_private = NULL;
789		}
790		ssc->ses_nobjects = 0;
791		return (0);
792	}
793	if (ssc->ses_private == NULL) {
794		ssc->ses_private = SES_MALLOC(sizeof (struct sscfg));
795	}
796	if (ssc->ses_private == NULL) {
797		return (ENOMEM);
798	}
799	ssc->ses_nobjects = 0;
800	ssc->ses_encstat = 0;
801	return (ses_getconfig(ssc));
802}
803
804static int
805ses_init_enc(ses_softc_t *ssc)
806{
807	return (0);
808}
809
810static int
811ses_get_encstat(ses_softc_t *ssc, int slpflag)
812{
813	SesComStat ComStat;
814	int status;
815
816	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 1)) != 0) {
817		return (status);
818	}
819	ssc->ses_encstat = ComStat.comstatus | ENCI_SVALID;
820	return (0);
821}
822
823static int
824ses_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflag)
825{
826	SesComStat ComStat;
827	int status;
828
829	ComStat.comstatus = encstat & 0xf;
830	if ((status = ses_getputstat(ssc, -1, &ComStat, slpflag, 0)) != 0) {
831		return (status);
832	}
833	ssc->ses_encstat = encstat & 0xf;	/* note no SVALID set */
834	return (0);
835}
836
837static int
838ses_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
839{
840	int i = (int)obp->obj_id;
841
842	if (ssc->ses_objmap[i].svalid == 0) {
843		SesComStat ComStat;
844		int err = ses_getputstat(ssc, i, &ComStat, slpflag, 1);
845		if (err)
846			return (err);
847		ssc->ses_objmap[i].encstat[0] = ComStat.comstatus;
848		ssc->ses_objmap[i].encstat[1] = ComStat.comstat[0];
849		ssc->ses_objmap[i].encstat[2] = ComStat.comstat[1];
850		ssc->ses_objmap[i].encstat[3] = ComStat.comstat[2];
851		ssc->ses_objmap[i].svalid = 1;
852	}
853	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
854	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
855	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
856	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
857	return (0);
858}
859
860static int
861ses_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflag)
862{
863	SesComStat ComStat;
864	int err;
865	/*
866	 * If this is clear, we don't do diddly.
867	 */
868	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
869		return (0);
870	}
871	ComStat.comstatus = obp->cstat[0];
872	ComStat.comstat[0] = obp->cstat[1];
873	ComStat.comstat[1] = obp->cstat[2];
874	ComStat.comstat[2] = obp->cstat[3];
875	err = ses_getputstat(ssc, (int)obp->obj_id, &ComStat, slpflag, 0);
876	ssc->ses_objmap[(int)obp->obj_id].svalid = 0;
877	return (err);
878}
879
880static int
881ses_getconfig(ses_softc_t *ssc)
882{
883	struct sscfg *cc;
884	SesCfgHdr cf;
885	SesEncHdr hd;
886	SesEncDesc *cdp;
887	SesThdr thdr;
888	int err, amt, i, nobj, ntype, maxima;
889	char storage[CFLEN], *sdata;
890	static char cdb[6] = {
891	    RECEIVE_DIAGNOSTIC, 0x1, SesConfigPage, SCSZ >> 8, SCSZ & 0xff, 0
892	};
893
894	cc = ssc->ses_private;
895	if (cc == NULL) {
896		return (ENXIO);
897	}
898
899	sdata = SES_MALLOC(SCSZ);
900	if (sdata == NULL)
901		return (ENOMEM);
902
903	amt = SCSZ;
904	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
905	if (err) {
906		SES_FREE(sdata, SCSZ);
907		return (err);
908	}
909	amt = SCSZ - amt;
910
911	if (ses_cfghdr((uint8_t *) sdata, amt, &cf)) {
912		SES_LOG(ssc, "Unable to parse SES Config Header\n");
913		SES_FREE(sdata, SCSZ);
914		return (EIO);
915	}
916	if (amt < SES_ENCHDR_MINLEN) {
917		SES_LOG(ssc, "runt enclosure length (%d)\n", amt);
918		SES_FREE(sdata, SCSZ);
919		return (EIO);
920	}
921
922	SES_VLOG(ssc, "GenCode %x %d Subenclosures\n", cf.GenCode, cf.Nsubenc);
923
924	/*
925	 * Now waltz through all the subenclosures toting up the
926	 * number of types available in each. For this, we only
927	 * really need the enclosure header. However, we get the
928	 * enclosure descriptor for debug purposes, as well
929	 * as self-consistency checking purposes.
930	 */
931
932	maxima = cf.Nsubenc + 1;
933	cdp = (SesEncDesc *) storage;
934	for (ntype = i = 0; i < maxima; i++) {
935		MEMZERO((caddr_t)cdp, sizeof (*cdp));
936		if (ses_enchdr((uint8_t *) sdata, amt, i, &hd)) {
937			SES_LOG(ssc, "Cannot Extract Enclosure Header %d\n", i);
938			SES_FREE(sdata, SCSZ);
939			return (EIO);
940		}
941		SES_VLOG(ssc, " SubEnclosure ID %d, %d Types With this ID, En"
942		    "closure Length %d\n", hd.Subencid, hd.Ntypes, hd.VEnclen);
943
944		if (ses_encdesc((uint8_t *)sdata, amt, i, cdp)) {
945			SES_LOG(ssc, "Can't get Enclosure Descriptor %d\n", i);
946			SES_FREE(sdata, SCSZ);
947			return (EIO);
948		}
949		SES_VLOG(ssc, " WWN: %02x%02x%02x%02x%02x%02x%02x%02x\n",
950		    cdp->encWWN[0], cdp->encWWN[1], cdp->encWWN[2],
951		    cdp->encWWN[3], cdp->encWWN[4], cdp->encWWN[5],
952		    cdp->encWWN[6], cdp->encWWN[7]);
953		ntype += hd.Ntypes;
954	}
955
956	/*
957	 * Now waltz through all the types that are available, getting
958	 * the type header so we can start adding up the number of
959	 * objects available.
960	 */
961	for (nobj = i = 0; i < ntype; i++) {
962		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
963			SES_LOG(ssc, "Can't get Enclosure Type Header %d\n", i);
964			SES_FREE(sdata, SCSZ);
965			return (EIO);
966		}
967		SES_LOG(ssc, " Type Desc[%d]: Type 0x%x, MaxElt %d, In Subenc "
968		    "%d, Text Length %d\n", i, thdr.enc_type, thdr.enc_maxelt,
969		    thdr.enc_subenc, thdr.enc_tlen);
970		nobj += thdr.enc_maxelt;
971	}
972
973
974	/*
975	 * Now allocate the object array and type map.
976	 */
977
978	ssc->ses_objmap = SES_MALLOC(nobj * sizeof (encobj));
979	cc->ses_typidx = SES_MALLOC(nobj * sizeof (struct typidx));
980	cc->ses_eltmap = SES_MALLOC(ntype);
981
982	if (ssc->ses_objmap == NULL || cc->ses_typidx == NULL ||
983	    cc->ses_eltmap == NULL) {
984		if (ssc->ses_objmap) {
985			SES_FREE(ssc->ses_objmap, (nobj * sizeof (encobj)));
986			ssc->ses_objmap = NULL;
987		}
988		if (cc->ses_typidx) {
989			SES_FREE(cc->ses_typidx,
990			    (nobj * sizeof (struct typidx)));
991			cc->ses_typidx = NULL;
992		}
993		if (cc->ses_eltmap) {
994			SES_FREE(cc->ses_eltmap, ntype);
995			cc->ses_eltmap = NULL;
996		}
997		SES_FREE(sdata, SCSZ);
998		return (ENOMEM);
999	}
1000	MEMZERO(ssc->ses_objmap, nobj * sizeof (encobj));
1001	MEMZERO(cc->ses_typidx, nobj * sizeof (struct typidx));
1002	MEMZERO(cc->ses_eltmap, ntype);
1003	cc->ses_ntypes = (uint8_t) ntype;
1004	ssc->ses_nobjects = nobj;
1005
1006	/*
1007	 * Now waltz through the # of types again to fill in the types
1008	 * (and subenclosure ids) of the allocated objects.
1009	 */
1010	nobj = 0;
1011	for (i = 0; i < ntype; i++) {
1012		int j;
1013		if (ses_getthdr((uint8_t *)sdata, amt, i, &thdr)) {
1014			continue;
1015		}
1016		cc->ses_eltmap[i] = thdr.enc_maxelt;
1017		for (j = 0; j < thdr.enc_maxelt; j++) {
1018			cc->ses_typidx[nobj].ses_tidx = i;
1019			cc->ses_typidx[nobj].ses_oidx = j;
1020			ssc->ses_objmap[nobj].subenclosure = thdr.enc_subenc;
1021			ssc->ses_objmap[nobj++].enctype = thdr.enc_type;
1022		}
1023	}
1024	SES_FREE(sdata, SCSZ);
1025	return (0);
1026}
1027
1028static int
1029ses_getputstat(ses_softc_t *ssc, int objid, SesComStat *sp, int slp, int in)
1030{
1031	struct sscfg *cc;
1032	int err, amt, bufsiz, tidx, oidx;
1033	char cdb[6], *sdata;
1034
1035	cc = ssc->ses_private;
1036	if (cc == NULL) {
1037		return (ENXIO);
1038	}
1039
1040	/*
1041	 * If we're just getting overall enclosure status,
1042	 * we only need 2 bytes of data storage.
1043	 *
1044	 * If we're getting anything else, we know how much
1045	 * storage we need by noting that starting at offset
1046	 * 8 in returned data, all object status bytes are 4
1047	 * bytes long, and are stored in chunks of types(M)
1048	 * and nth+1 instances of type M.
1049	 */
1050	if (objid == -1) {
1051		bufsiz = 2;
1052	} else {
1053		bufsiz = (ssc->ses_nobjects * 4) + (cc->ses_ntypes * 4) + 8;
1054	}
1055	sdata = SES_MALLOC(bufsiz);
1056	if (sdata == NULL)
1057		return (ENOMEM);
1058
1059	cdb[0] = RECEIVE_DIAGNOSTIC;
1060	cdb[1] = 1;
1061	cdb[2] = SesStatusPage;
1062	cdb[3] = bufsiz >> 8;
1063	cdb[4] = bufsiz & 0xff;
1064	cdb[5] = 0;
1065	amt = bufsiz;
1066	err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1067	if (err) {
1068		SES_FREE(sdata, bufsiz);
1069		return (err);
1070	}
1071	amt = bufsiz - amt;
1072
1073	if (objid == -1) {
1074		tidx = -1;
1075		oidx = -1;
1076	} else {
1077		tidx = cc->ses_typidx[objid].ses_tidx;
1078		oidx = cc->ses_typidx[objid].ses_oidx;
1079	}
1080	if (in) {
1081		if (ses_decode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1082			err = ENODEV;
1083		}
1084	} else {
1085		if (ses_encode(sdata, amt, cc->ses_eltmap, tidx, oidx, sp)) {
1086			err = ENODEV;
1087		} else {
1088			cdb[0] = SEND_DIAGNOSTIC;
1089			cdb[1] = 0x10;
1090			cdb[2] = 0;
1091			cdb[3] = bufsiz >> 8;
1092			cdb[4] = bufsiz & 0xff;
1093			cdb[5] = 0;
1094			amt = -bufsiz;
1095			err = ses_runcmd(ssc, cdb, 6, sdata, &amt);
1096		}
1097	}
1098	SES_FREE(sdata, bufsiz);
1099	return (0);
1100}
1101
1102
1103/*
1104 * Routines to parse returned SES data structures.
1105 * Architecture and compiler independent.
1106 */
1107
1108static int
1109ses_cfghdr(uint8_t *buffer, int buflen, SesCfgHdr *cfp)
1110{
1111	if (buflen < SES_CFGHDR_MINLEN) {
1112		return (-1);
1113	}
1114	gget8(buffer, 1, cfp->Nsubenc);
1115	gget32(buffer, 4, cfp->GenCode);
1116	return (0);
1117}
1118
1119static int
1120ses_enchdr(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncHdr *chp)
1121{
1122	int s, off = 8;
1123	for (s = 0; s < SubEncId; s++) {
1124		if (off + 3 > amt)
1125			return (-1);
1126		off += buffer[off+3] + 4;
1127	}
1128	if (off + 3 > amt) {
1129		return (-1);
1130	}
1131	gget8(buffer, off+1, chp->Subencid);
1132	gget8(buffer, off+2, chp->Ntypes);
1133	gget8(buffer, off+3, chp->VEnclen);
1134	return (0);
1135}
1136
1137static int
1138ses_encdesc(uint8_t *buffer, int amt, uint8_t SubEncId, SesEncDesc *cdp)
1139{
1140	int s, e, enclen, off = 8;
1141	for (s = 0; s < SubEncId; s++) {
1142		if (off + 3 > amt)
1143			return (-1);
1144		off += buffer[off+3] + 4;
1145	}
1146	if (off + 3 > amt) {
1147		return (-1);
1148	}
1149	gget8(buffer, off+3, enclen);
1150	off += 4;
1151	if (off  >= amt)
1152		return (-1);
1153
1154	e = off + enclen;
1155	if (e > amt) {
1156		e = amt;
1157	}
1158	MEMCPY(cdp, &buffer[off], e - off);
1159	return (0);
1160}
1161
1162static int
1163ses_getthdr(uint8_t *buffer, int amt, int nth, SesThdr *thp)
1164{
1165	int s, off = 8;
1166
1167	if (amt < SES_CFGHDR_MINLEN) {
1168		return (-1);
1169	}
1170	for (s = 0; s < buffer[1]; s++) {
1171		if (off + 3 > amt)
1172			return (-1);
1173		off += buffer[off+3] + 4;
1174	}
1175	if (off + 3 > amt) {
1176		return (-1);
1177	}
1178	off += buffer[off+3] + 4 + (nth * 4);
1179	if (amt < (off + 4))
1180		return (-1);
1181
1182	gget8(buffer, off++, thp->enc_type);
1183	gget8(buffer, off++, thp->enc_maxelt);
1184	gget8(buffer, off++, thp->enc_subenc);
1185	gget8(buffer, off, thp->enc_tlen);
1186	return (0);
1187}
1188
1189/*
1190 * This function needs a little explanation.
1191 *
1192 * The arguments are:
1193 *
1194 *
1195 *	char *b, int amt
1196 *
1197 *		These describes the raw input SES status data and length.
1198 *
1199 *	uint8_t *ep
1200 *
1201 *		This is a map of the number of types for each element type
1202 *		in the enclosure.
1203 *
1204 *	int elt
1205 *
1206 *		This is the element type being sought. If elt is -1,
1207 *		then overall enclosure status is being sought.
1208 *
1209 *	int elm
1210 *
1211 *		This is the ordinal Mth element of type elt being sought.
1212 *
1213 *	SesComStat *sp
1214 *
1215 *		This is the output area to store the status for
1216 *		the Mth element of type Elt.
1217 */
1218
1219static int
1220ses_decode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1221{
1222	int idx, i;
1223
1224	/*
1225	 * If it's overall enclosure status being sought, get that.
1226	 * We need at least 2 bytes of status data to get that.
1227	 */
1228	if (elt == -1) {
1229		if (amt < 2)
1230			return (-1);
1231		gget8(b, 1, sp->comstatus);
1232		sp->comstat[0] = 0;
1233		sp->comstat[1] = 0;
1234		sp->comstat[2] = 0;
1235		return (0);
1236	}
1237
1238	/*
1239	 * Check to make sure that the Mth element is legal for type Elt.
1240	 */
1241
1242	if (elm >= ep[elt])
1243		return (-1);
1244
1245	/*
1246	 * Starting at offset 8, start skipping over the storage
1247	 * for the element types we're not interested in.
1248	 */
1249	for (idx = 8, i = 0; i < elt; i++) {
1250		idx += ((ep[i] + 1) * 4);
1251	}
1252
1253	/*
1254	 * Skip over Overall status for this element type.
1255	 */
1256	idx += 4;
1257
1258	/*
1259	 * And skip to the index for the Mth element that we're going for.
1260	 */
1261	idx += (4 * elm);
1262
1263	/*
1264	 * Make sure we haven't overflowed the buffer.
1265	 */
1266	if (idx+4 > amt)
1267		return (-1);
1268
1269	/*
1270	 * Retrieve the status.
1271	 */
1272	gget8(b, idx++, sp->comstatus);
1273	gget8(b, idx++, sp->comstat[0]);
1274	gget8(b, idx++, sp->comstat[1]);
1275	gget8(b, idx++, sp->comstat[2]);
1276#if	0
1277	PRINTF("Get Elt 0x%x Elm 0x%x (idx %d)\n", elt, elm, idx-4);
1278#endif
1279	return (0);
1280}
1281
1282/*
1283 * This is the mirror function to ses_decode, but we set the 'select'
1284 * bit for the object which we're interested in. All other objects,
1285 * after a status fetch, should have that bit off. Hmm. It'd be easy
1286 * enough to ensure this, so we will.
1287 */
1288
1289static int
1290ses_encode(char *b, int amt, uint8_t *ep, int elt, int elm, SesComStat *sp)
1291{
1292	int idx, i;
1293
1294	/*
1295	 * If it's overall enclosure status being sought, get that.
1296	 * We need at least 2 bytes of status data to get that.
1297	 */
1298	if (elt == -1) {
1299		if (amt < 2)
1300			return (-1);
1301		i = 0;
1302		sset8(b, i, 0);
1303		sset8(b, i, sp->comstatus & 0xf);
1304#if	0
1305		PRINTF("set EncStat %x\n", sp->comstatus);
1306#endif
1307		return (0);
1308	}
1309
1310	/*
1311	 * Check to make sure that the Mth element is legal for type Elt.
1312	 */
1313
1314	if (elm >= ep[elt])
1315		return (-1);
1316
1317	/*
1318	 * Starting at offset 8, start skipping over the storage
1319	 * for the element types we're not interested in.
1320	 */
1321	for (idx = 8, i = 0; i < elt; i++) {
1322		idx += ((ep[i] + 1) * 4);
1323	}
1324
1325	/*
1326	 * Skip over Overall status for this element type.
1327	 */
1328	idx += 4;
1329
1330	/*
1331	 * And skip to the index for the Mth element that we're going for.
1332	 */
1333	idx += (4 * elm);
1334
1335	/*
1336	 * Make sure we haven't overflowed the buffer.
1337	 */
1338	if (idx+4 > amt)
1339		return (-1);
1340
1341	/*
1342	 * Set the status.
1343	 */
1344	sset8(b, idx, sp->comstatus);
1345	sset8(b, idx, sp->comstat[0]);
1346	sset8(b, idx, sp->comstat[1]);
1347	sset8(b, idx, sp->comstat[2]);
1348	idx -= 4;
1349
1350#if	0
1351	PRINTF("Set Elt 0x%x Elm 0x%x (idx %d) with %x %x %x %x\n",
1352	    elt, elm, idx, sp->comstatus, sp->comstat[0],
1353	    sp->comstat[1], sp->comstat[2]);
1354#endif
1355
1356	/*
1357	 * Now make sure all other 'Select' bits are off.
1358	 */
1359	for (i = 8; i < amt; i += 4) {
1360		if (i != idx)
1361			b[i] &= ~0x80;
1362	}
1363	/*
1364	 * And make sure the INVOP bit is clear.
1365	 */
1366	b[2] &= ~0x10;
1367
1368	return (0);
1369}
1370
1371/*
1372 * SAF-TE Type Device Emulation
1373 */
1374
1375static int safte_getconfig(ses_softc_t *);
1376static int safte_rdstat(ses_softc_t *, int);
1377static int set_objstat_sel(ses_softc_t *, ses_objstat *, int);
1378static int wrbuf16(ses_softc_t *, uint8_t, uint8_t, uint8_t, uint8_t, int);
1379static void wrslot_stat(ses_softc_t *, int);
1380static int perf_slotop(ses_softc_t *, uint8_t, uint8_t, int);
1381
1382#define	ALL_ENC_STAT (SES_ENCSTAT_CRITICAL | SES_ENCSTAT_UNRECOV | \
1383	SES_ENCSTAT_NONCRITICAL | SES_ENCSTAT_INFO)
1384/*
1385 * SAF-TE specific defines- Mandatory ones only...
1386 */
1387
1388/*
1389 * READ BUFFER ('get' commands) IDs- placed in offset 2 of cdb
1390 */
1391#define	SAFTE_RD_RDCFG	0x00	/* read enclosure configuration */
1392#define	SAFTE_RD_RDESTS	0x01	/* read enclosure status */
1393#define	SAFTE_RD_RDDSTS	0x04	/* read drive slot status */
1394
1395/*
1396 * WRITE BUFFER ('set' commands) IDs- placed in offset 0 of databuf
1397 */
1398#define	SAFTE_WT_DSTAT	0x10	/* write device slot status */
1399#define	SAFTE_WT_SLTOP	0x12	/* perform slot operation */
1400#define	SAFTE_WT_FANSPD	0x13	/* set fan speed */
1401#define	SAFTE_WT_ACTPWS	0x14	/* turn on/off power supply */
1402#define	SAFTE_WT_GLOBAL	0x15	/* send global command */
1403
1404
1405#define	SAFT_SCRATCH	64
1406#define	NPSEUDO_THERM	16
1407#define	NPSEUDO_ALARM	1
1408struct scfg {
1409	/*
1410	 * Cached Configuration
1411	 */
1412	uint8_t	Nfans;		/* Number of Fans */
1413	uint8_t	Npwr;		/* Number of Power Supplies */
1414	uint8_t	Nslots;		/* Number of Device Slots */
1415	uint8_t	DoorLock;	/* Door Lock Installed */
1416	uint8_t	Ntherm;		/* Number of Temperature Sensors */
1417	uint8_t	Nspkrs;		/* Number of Speakers */
1418	uint8_t Nalarm;		/* Number of Alarms (at least one) */
1419	/*
1420	 * Cached Flag Bytes for Global Status
1421	 */
1422	uint8_t	flag1;
1423	uint8_t	flag2;
1424	/*
1425	 * What object index ID is where various slots start.
1426	 */
1427	uint8_t	pwroff;
1428	uint8_t	slotoff;
1429#define	SAFT_ALARM_OFFSET(cc)	(cc)->slotoff - 1
1430};
1431
1432#define	SAFT_FLG1_ALARM		0x1
1433#define	SAFT_FLG1_GLOBFAIL	0x2
1434#define	SAFT_FLG1_GLOBWARN	0x4
1435#define	SAFT_FLG1_ENCPWROFF	0x8
1436#define	SAFT_FLG1_ENCFANFAIL	0x10
1437#define	SAFT_FLG1_ENCPWRFAIL	0x20
1438#define	SAFT_FLG1_ENCDRVFAIL	0x40
1439#define	SAFT_FLG1_ENCDRVWARN	0x80
1440
1441#define	SAFT_FLG2_LOCKDOOR	0x4
1442#define	SAFT_PRIVATE		sizeof (struct scfg)
1443
1444static const char safte_2little[] = "Too Little Data Returned (%d) at line %d\n";
1445#define	SAFT_BAIL(r, x, k, l)	\
1446	if (r >= x) { \
1447		SES_LOG(ssc, safte_2little, x, __LINE__);\
1448		SES_FREE(k, l); \
1449		return (EIO); \
1450	}
1451
1452
1453static int
1454safte_softc_init(ses_softc_t *ssc, int doinit)
1455{
1456	int err, i, r;
1457	struct scfg *cc;
1458
1459	if (doinit == 0) {
1460		if (ssc->ses_nobjects) {
1461			if (ssc->ses_objmap) {
1462				SES_FREE(ssc->ses_objmap,
1463				    ssc->ses_nobjects * sizeof (encobj));
1464				ssc->ses_objmap = NULL;
1465			}
1466			ssc->ses_nobjects = 0;
1467		}
1468		if (ssc->ses_private) {
1469			SES_FREE(ssc->ses_private, SAFT_PRIVATE);
1470			ssc->ses_private = NULL;
1471		}
1472		return (0);
1473	}
1474
1475	if (ssc->ses_private == NULL) {
1476		ssc->ses_private = SES_MALLOC(SAFT_PRIVATE);
1477		if (ssc->ses_private == NULL) {
1478			return (ENOMEM);
1479		}
1480		MEMZERO(ssc->ses_private, SAFT_PRIVATE);
1481	}
1482
1483	ssc->ses_nobjects = 0;
1484	ssc->ses_encstat = 0;
1485
1486	if ((err = safte_getconfig(ssc)) != 0) {
1487		return (err);
1488	}
1489
1490	/*
1491	 * The number of objects here, as well as that reported by the
1492	 * READ_BUFFER/GET_CONFIG call, are the over-temperature flags (15)
1493	 * that get reported during READ_BUFFER/READ_ENC_STATUS.
1494	 */
1495	cc = ssc->ses_private;
1496	ssc->ses_nobjects = cc->Nfans + cc->Npwr + cc->Nslots + cc->DoorLock +
1497	    cc->Ntherm + cc->Nspkrs + NPSEUDO_THERM + NPSEUDO_ALARM;
1498	ssc->ses_objmap = (encobj *)
1499	    SES_MALLOC(ssc->ses_nobjects * sizeof (encobj));
1500	if (ssc->ses_objmap == NULL) {
1501		return (ENOMEM);
1502	}
1503	MEMZERO(ssc->ses_objmap, ssc->ses_nobjects * sizeof (encobj));
1504
1505	r = 0;
1506	/*
1507	 * Note that this is all arranged for the convenience
1508	 * in later fetches of status.
1509	 */
1510	for (i = 0; i < cc->Nfans; i++)
1511		ssc->ses_objmap[r++].enctype = SESTYP_FAN;
1512	cc->pwroff = (uint8_t) r;
1513	for (i = 0; i < cc->Npwr; i++)
1514		ssc->ses_objmap[r++].enctype = SESTYP_POWER;
1515	for (i = 0; i < cc->DoorLock; i++)
1516		ssc->ses_objmap[r++].enctype = SESTYP_DOORLOCK;
1517	for (i = 0; i < cc->Nspkrs; i++)
1518		ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1519	for (i = 0; i < cc->Ntherm; i++)
1520		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1521	for (i = 0; i < NPSEUDO_THERM; i++)
1522		ssc->ses_objmap[r++].enctype = SESTYP_THERM;
1523	ssc->ses_objmap[r++].enctype = SESTYP_ALARM;
1524	cc->slotoff = (uint8_t) r;
1525	for (i = 0; i < cc->Nslots; i++)
1526		ssc->ses_objmap[r++].enctype = SESTYP_DEVICE;
1527	return (0);
1528}
1529
1530static int
1531safte_init_enc(ses_softc_t *ssc)
1532{
1533	int err, amt;
1534	char *sdata;
1535	static char cdb0[6] = { SEND_DIAGNOSTIC };
1536	static char cdb[10] =
1537	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
1538
1539	sdata = SES_MALLOC(SAFT_SCRATCH);
1540	if (sdata == NULL)
1541		return (ENOMEM);
1542
1543	err = ses_runcmd(ssc, cdb0, 6, NULL, 0);
1544	if (err) {
1545		SES_FREE(sdata, SAFT_SCRATCH);
1546		return (err);
1547	}
1548	sdata[0] = SAFTE_WT_GLOBAL;
1549	MEMZERO(&sdata[1], 15);
1550	amt = -SAFT_SCRATCH;
1551	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1552	SES_FREE(sdata, SAFT_SCRATCH);
1553	return (err);
1554}
1555
1556static int
1557safte_get_encstat(ses_softc_t *ssc, int slpflg)
1558{
1559	return (safte_rdstat(ssc, slpflg));
1560}
1561
1562static int
1563safte_set_encstat(ses_softc_t *ssc, uint8_t encstat, int slpflg)
1564{
1565	struct scfg *cc = ssc->ses_private;
1566	if (cc == NULL)
1567		return (0);
1568	/*
1569	 * Since SAF-TE devices aren't necessarily sticky in terms
1570	 * of state, make our soft copy of enclosure status 'sticky'-
1571	 * that is, things set in enclosure status stay set (as implied
1572	 * by conditions set in reading object status) until cleared.
1573	 */
1574	ssc->ses_encstat &= ~ALL_ENC_STAT;
1575	ssc->ses_encstat |= (encstat & ALL_ENC_STAT);
1576	ssc->ses_encstat |= ENCI_SVALID;
1577	cc->flag1 &= ~(SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL|SAFT_FLG1_GLOBWARN);
1578	if ((encstat & (SES_ENCSTAT_CRITICAL|SES_ENCSTAT_UNRECOV)) != 0) {
1579		cc->flag1 |= SAFT_FLG1_ALARM|SAFT_FLG1_GLOBFAIL;
1580	} else if ((encstat & SES_ENCSTAT_NONCRITICAL) != 0) {
1581		cc->flag1 |= SAFT_FLG1_GLOBWARN;
1582	}
1583	return (wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1, cc->flag2, 0, slpflg));
1584}
1585
1586static int
1587safte_get_objstat(ses_softc_t *ssc, ses_objstat *obp, int slpflg)
1588{
1589	int i = (int)obp->obj_id;
1590
1591	if ((ssc->ses_encstat & ENCI_SVALID) == 0 ||
1592	    (ssc->ses_objmap[i].svalid) == 0) {
1593		int err = safte_rdstat(ssc, slpflg);
1594		if (err)
1595			return (err);
1596	}
1597	obp->cstat[0] = ssc->ses_objmap[i].encstat[0];
1598	obp->cstat[1] = ssc->ses_objmap[i].encstat[1];
1599	obp->cstat[2] = ssc->ses_objmap[i].encstat[2];
1600	obp->cstat[3] = ssc->ses_objmap[i].encstat[3];
1601	return (0);
1602}
1603
1604
1605static int
1606safte_set_objstat(ses_softc_t *ssc, ses_objstat *obp, int slp)
1607{
1608	int idx, err;
1609	encobj *ep;
1610	struct scfg *cc;
1611
1612
1613	SES_VLOG(ssc, "safte_set_objstat(%d): %x %x %x %x\n",
1614	    (int)obp->obj_id, obp->cstat[0], obp->cstat[1], obp->cstat[2],
1615	    obp->cstat[3]);
1616
1617	/*
1618	 * If this is clear, we don't do diddly.
1619	 */
1620	if ((obp->cstat[0] & SESCTL_CSEL) == 0) {
1621		return (0);
1622	}
1623
1624	err = 0;
1625	/*
1626	 * Check to see if the common bits are set and do them first.
1627	 */
1628	if (obp->cstat[0] & ~SESCTL_CSEL) {
1629		err = set_objstat_sel(ssc, obp, slp);
1630		if (err)
1631			return (err);
1632	}
1633
1634	cc = ssc->ses_private;
1635	if (cc == NULL)
1636		return (0);
1637
1638	idx = (int)obp->obj_id;
1639	ep = &ssc->ses_objmap[idx];
1640
1641	switch (ep->enctype) {
1642	case SESTYP_DEVICE:
1643	{
1644		uint8_t slotop = 0;
1645		/*
1646		 * XXX: I should probably cache the previous state
1647		 * XXX: of SESCTL_DEVOFF so that when it goes from
1648		 * XXX: true to false I can then set PREPARE FOR OPERATION
1649		 * XXX: flag in PERFORM SLOT OPERATION write buffer command.
1650		 */
1651		if (obp->cstat[2] & (SESCTL_RQSINS|SESCTL_RQSRMV)) {
1652			slotop |= 0x2;
1653		}
1654		if (obp->cstat[2] & SESCTL_RQSID) {
1655			slotop |= 0x4;
1656		}
1657		err = perf_slotop(ssc, (uint8_t) idx - (uint8_t) cc->slotoff,
1658		    slotop, slp);
1659		if (err)
1660			return (err);
1661		if (obp->cstat[3] & SESCTL_RQSFLT) {
1662			ep->priv |= 0x2;
1663		} else {
1664			ep->priv &= ~0x2;
1665		}
1666		if (ep->priv & 0xc6) {
1667			ep->priv &= ~0x1;
1668		} else {
1669			ep->priv |= 0x1;	/* no errors */
1670		}
1671		wrslot_stat(ssc, slp);
1672		break;
1673	}
1674	case SESTYP_POWER:
1675		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1676			cc->flag1 |= SAFT_FLG1_ENCPWRFAIL;
1677		} else {
1678			cc->flag1 &= ~SAFT_FLG1_ENCPWRFAIL;
1679		}
1680		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1681		    cc->flag2, 0, slp);
1682		if (err)
1683			return (err);
1684		if (obp->cstat[3] & SESCTL_RQSTON) {
1685			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1686				idx - cc->pwroff, 0, 0, slp);
1687		} else {
1688			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
1689				idx - cc->pwroff, 0, 1, slp);
1690		}
1691		break;
1692	case SESTYP_FAN:
1693		if (obp->cstat[3] & SESCTL_RQSTFAIL) {
1694			cc->flag1 |= SAFT_FLG1_ENCFANFAIL;
1695		} else {
1696			cc->flag1 &= ~SAFT_FLG1_ENCFANFAIL;
1697		}
1698		err = wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1699		    cc->flag2, 0, slp);
1700		if (err)
1701			return (err);
1702		if (obp->cstat[3] & SESCTL_RQSTON) {
1703			uint8_t fsp;
1704			if ((obp->cstat[3] & 0x7) == 7) {
1705				fsp = 4;
1706			} else if ((obp->cstat[3] & 0x7) == 6) {
1707				fsp = 3;
1708			} else if ((obp->cstat[3] & 0x7) == 4) {
1709				fsp = 2;
1710			} else {
1711				fsp = 1;
1712			}
1713			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, fsp, 0, slp);
1714		} else {
1715			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
1716		}
1717		break;
1718	case SESTYP_DOORLOCK:
1719		if (obp->cstat[3] & 0x1) {
1720			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
1721		} else {
1722			cc->flag2 |= SAFT_FLG2_LOCKDOOR;
1723		}
1724		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1725		    cc->flag2, 0, slp);
1726		break;
1727	case SESTYP_ALARM:
1728		/*
1729		 * On all nonzero but the 'muted' bit, we turn on the alarm,
1730		 */
1731		obp->cstat[3] &= ~0xa;
1732		if (obp->cstat[3] & 0x40) {
1733			cc->flag2 &= ~SAFT_FLG1_ALARM;
1734		} else if (obp->cstat[3] != 0) {
1735			cc->flag2 |= SAFT_FLG1_ALARM;
1736		} else {
1737			cc->flag2 &= ~SAFT_FLG1_ALARM;
1738		}
1739		ep->priv = obp->cstat[3];
1740		(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
1741			cc->flag2, 0, slp);
1742		break;
1743	default:
1744		break;
1745	}
1746	ep->svalid = 0;
1747	return (0);
1748}
1749
1750static int
1751safte_getconfig(ses_softc_t *ssc)
1752{
1753	struct scfg *cfg;
1754	int err, amt;
1755	char *sdata;
1756	static char cdb[10] =
1757	    { READ_BUFFER, 1, SAFTE_RD_RDCFG, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
1758
1759	cfg = ssc->ses_private;
1760	if (cfg == NULL)
1761		return (ENXIO);
1762
1763	sdata = SES_MALLOC(SAFT_SCRATCH);
1764	if (sdata == NULL)
1765		return (ENOMEM);
1766
1767	amt = SAFT_SCRATCH;
1768	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1769	if (err) {
1770		SES_FREE(sdata, SAFT_SCRATCH);
1771		return (err);
1772	}
1773	amt = SAFT_SCRATCH - amt;
1774	if (amt < 6) {
1775		SES_LOG(ssc, "too little data (%d) for configuration\n", amt);
1776		SES_FREE(sdata, SAFT_SCRATCH);
1777		return (EIO);
1778	}
1779	SES_VLOG(ssc, "Nfans %d Npwr %d Nslots %d Lck %d Ntherm %d Nspkrs %d\n",
1780	    sdata[0], sdata[1], sdata[2], sdata[3], sdata[4], sdata[5]);
1781	cfg->Nfans = sdata[0];
1782	cfg->Npwr = sdata[1];
1783	cfg->Nslots = sdata[2];
1784	cfg->DoorLock = sdata[3];
1785	cfg->Ntherm = sdata[4];
1786	cfg->Nspkrs = sdata[5];
1787	cfg->Nalarm = NPSEUDO_ALARM;
1788	SES_FREE(sdata, SAFT_SCRATCH);
1789	return (0);
1790}
1791
1792static int
1793safte_rdstat(ses_softc_t *ssc, int slpflg)
1794{
1795	int err, oid, r, i, hiwater, nitems, amt;
1796	uint16_t tempflags;
1797	size_t buflen;
1798	uint8_t status, oencstat;
1799	char *sdata, cdb[10];
1800	struct scfg *cc = ssc->ses_private;
1801
1802
1803	/*
1804	 * The number of objects overstates things a bit,
1805	 * both for the bogus 'thermometer' entries and
1806	 * the drive status (which isn't read at the same
1807	 * time as the enclosure status), but that's okay.
1808	 */
1809	buflen = 4 * cc->Nslots;
1810	if (ssc->ses_nobjects > buflen)
1811		buflen = ssc->ses_nobjects;
1812	sdata = SES_MALLOC(buflen);
1813	if (sdata == NULL)
1814		return (ENOMEM);
1815
1816	cdb[0] = READ_BUFFER;
1817	cdb[1] = 1;
1818	cdb[2] = SAFTE_RD_RDESTS;
1819	cdb[3] = 0;
1820	cdb[4] = 0;
1821	cdb[5] = 0;
1822	cdb[6] = 0;
1823	cdb[7] = (buflen >> 8) & 0xff;
1824	cdb[8] = buflen & 0xff;
1825	cdb[9] = 0;
1826	amt = buflen;
1827	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
1828	if (err) {
1829		SES_FREE(sdata, buflen);
1830		return (err);
1831	}
1832	hiwater = buflen - amt;
1833
1834
1835	/*
1836	 * invalidate all status bits.
1837	 */
1838	for (i = 0; i < ssc->ses_nobjects; i++)
1839		ssc->ses_objmap[i].svalid = 0;
1840	oencstat = ssc->ses_encstat & ALL_ENC_STAT;
1841	ssc->ses_encstat = 0;
1842
1843
1844	/*
1845	 * Now parse returned buffer.
1846	 * If we didn't get enough data back,
1847	 * that's considered a fatal error.
1848	 */
1849	oid = r = 0;
1850
1851	for (nitems = i = 0; i < cc->Nfans; i++) {
1852		SAFT_BAIL(r, hiwater, sdata, buflen);
1853		/*
1854		 * 0 = Fan Operational
1855		 * 1 = Fan is malfunctioning
1856		 * 2 = Fan is not present
1857		 * 0x80 = Unknown or Not Reportable Status
1858		 */
1859		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1860		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1861		switch ((int)(uint8_t)sdata[r]) {
1862		case 0:
1863			nitems++;
1864			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1865			/*
1866			 * We could get fancier and cache
1867			 * fan speeds that we have set, but
1868			 * that isn't done now.
1869			 */
1870			ssc->ses_objmap[oid].encstat[3] = 7;
1871			break;
1872
1873		case 1:
1874			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1875			/*
1876			 * FAIL and FAN STOPPED synthesized
1877			 */
1878			ssc->ses_objmap[oid].encstat[3] = 0x40;
1879			/*
1880			 * Enclosure marked with CRITICAL error
1881			 * if only one fan or no thermometers,
1882			 * else the NONCRITICAL error is set.
1883			 */
1884			if (cc->Nfans == 1 || cc->Ntherm == 0)
1885				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1886			else
1887				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1888			break;
1889		case 2:
1890			ssc->ses_objmap[oid].encstat[0] =
1891			    SES_OBJSTAT_NOTINSTALLED;
1892			ssc->ses_objmap[oid].encstat[3] = 0;
1893			/*
1894			 * Enclosure marked with CRITICAL error
1895			 * if only one fan or no thermometers,
1896			 * else the NONCRITICAL error is set.
1897			 */
1898			if (cc->Nfans == 1)
1899				ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1900			else
1901				ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1902			break;
1903		case 0x80:
1904			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1905			ssc->ses_objmap[oid].encstat[3] = 0;
1906			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1907			break;
1908		default:
1909			ssc->ses_objmap[oid].encstat[0] =
1910			    SES_OBJSTAT_UNSUPPORTED;
1911			SES_LOG(ssc, "Unknown fan%d status 0x%x\n", i,
1912			    sdata[r] & 0xff);
1913			break;
1914		}
1915		ssc->ses_objmap[oid++].svalid = 1;
1916		r++;
1917	}
1918
1919	/*
1920	 * No matter how you cut it, no cooling elements when there
1921	 * should be some there is critical.
1922	 */
1923	if (cc->Nfans && nitems == 0) {
1924		ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
1925	}
1926
1927
1928	for (i = 0; i < cc->Npwr; i++) {
1929		SAFT_BAIL(r, hiwater, sdata, buflen);
1930		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1931		ssc->ses_objmap[oid].encstat[1] = 0;	/* resvd */
1932		ssc->ses_objmap[oid].encstat[2] = 0;	/* resvd */
1933		ssc->ses_objmap[oid].encstat[3] = 0x20;	/* requested on */
1934		switch ((uint8_t)sdata[r]) {
1935		case 0x00:	/* pws operational and on */
1936			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1937			break;
1938		case 0x01:	/* pws operational and off */
1939			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
1940			ssc->ses_objmap[oid].encstat[3] = 0x10;
1941			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1942			break;
1943		case 0x10:	/* pws is malfunctioning and commanded on */
1944			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
1945			ssc->ses_objmap[oid].encstat[3] = 0x61;
1946			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1947			break;
1948
1949		case 0x11:	/* pws is malfunctioning and commanded off */
1950			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
1951			ssc->ses_objmap[oid].encstat[3] = 0x51;
1952			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
1953			break;
1954		case 0x20:	/* pws is not present */
1955			ssc->ses_objmap[oid].encstat[0] =
1956			    SES_OBJSTAT_NOTINSTALLED;
1957			ssc->ses_objmap[oid].encstat[3] = 0;
1958			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1959			break;
1960		case 0x21:	/* pws is present */
1961			/*
1962			 * This is for enclosures that cannot tell whether the
1963			 * device is on or malfunctioning, but know that it is
1964			 * present. Just fall through.
1965			 */
1966			/* FALLTHROUGH */
1967		case 0x80:	/* Unknown or Not Reportable Status */
1968			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
1969			ssc->ses_objmap[oid].encstat[3] = 0;
1970			ssc->ses_encstat |= SES_ENCSTAT_INFO;
1971			break;
1972		default:
1973			SES_LOG(ssc, "unknown power supply %d status (0x%x)\n",
1974			    i, sdata[r] & 0xff);
1975			break;
1976		}
1977		ssc->ses_objmap[oid++].svalid = 1;
1978		r++;
1979	}
1980
1981	/*
1982	 * Skip over Slot SCSI IDs
1983	 */
1984	r += cc->Nslots;
1985
1986	/*
1987	 * We always have doorlock status, no matter what,
1988	 * but we only save the status if we have one.
1989	 */
1990	SAFT_BAIL(r, hiwater, sdata, buflen);
1991	if (cc->DoorLock) {
1992		/*
1993		 * 0 = Door Locked
1994		 * 1 = Door Unlocked, or no Lock Installed
1995		 * 0x80 = Unknown or Not Reportable Status
1996		 */
1997		ssc->ses_objmap[oid].encstat[1] = 0;
1998		ssc->ses_objmap[oid].encstat[2] = 0;
1999		switch ((uint8_t)sdata[r]) {
2000		case 0:
2001			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2002			ssc->ses_objmap[oid].encstat[3] = 0;
2003			break;
2004		case 1:
2005			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2006			ssc->ses_objmap[oid].encstat[3] = 1;
2007			break;
2008		case 0x80:
2009			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNKNOWN;
2010			ssc->ses_objmap[oid].encstat[3] = 0;
2011			ssc->ses_encstat |= SES_ENCSTAT_INFO;
2012			break;
2013		default:
2014			ssc->ses_objmap[oid].encstat[0] =
2015			    SES_OBJSTAT_UNSUPPORTED;
2016			SES_LOG(ssc, "unknown lock status 0x%x\n",
2017			    sdata[r] & 0xff);
2018			break;
2019		}
2020		ssc->ses_objmap[oid++].svalid = 1;
2021	}
2022	r++;
2023
2024	/*
2025	 * We always have speaker status, no matter what,
2026	 * but we only save the status if we have one.
2027	 */
2028	SAFT_BAIL(r, hiwater, sdata, buflen);
2029	if (cc->Nspkrs) {
2030		ssc->ses_objmap[oid].encstat[1] = 0;
2031		ssc->ses_objmap[oid].encstat[2] = 0;
2032		if (sdata[r] == 1) {
2033			/*
2034			 * We need to cache tone urgency indicators.
2035			 * Someday.
2036			 */
2037			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NONCRIT;
2038			ssc->ses_objmap[oid].encstat[3] = 0x8;
2039			ssc->ses_encstat |= SES_ENCSTAT_NONCRITICAL;
2040		} else if (sdata[r] == 0) {
2041			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2042			ssc->ses_objmap[oid].encstat[3] = 0;
2043		} else {
2044			ssc->ses_objmap[oid].encstat[0] =
2045			    SES_OBJSTAT_UNSUPPORTED;
2046			ssc->ses_objmap[oid].encstat[3] = 0;
2047			SES_LOG(ssc, "unknown spkr status 0x%x\n",
2048			    sdata[r] & 0xff);
2049		}
2050		ssc->ses_objmap[oid++].svalid = 1;
2051	}
2052	r++;
2053
2054	for (i = 0; i < cc->Ntherm; i++) {
2055		SAFT_BAIL(r, hiwater, sdata, buflen);
2056		/*
2057		 * Status is a range from -10 to 245 deg Celsius,
2058		 * which we need to normalize to -20 to -245 according
2059		 * to the latest SCSI spec, which makes little
2060		 * sense since this would overflow an 8bit value.
2061		 * Well, still, the base normalization is -20,
2062		 * not -10, so we have to adjust.
2063		 *
2064		 * So what's over and under temperature?
2065		 * Hmm- we'll state that 'normal' operating
2066		 * is 10 to 40 deg Celsius.
2067		 */
2068
2069		/*
2070		 * Actually.... All of the units that people out in the world
2071		 * seem to have do not come even close to setting a value that
2072		 * complies with this spec.
2073		 *
2074		 * The closest explanation I could find was in an
2075		 * LSI-Logic manual, which seemed to indicate that
2076		 * this value would be set by whatever the I2C code
2077		 * would interpolate from the output of an LM75
2078		 * temperature sensor.
2079		 *
2080		 * This means that it is impossible to use the actual
2081		 * numeric value to predict anything. But we don't want
2082		 * to lose the value. So, we'll propagate the *uncorrected*
2083		 * value and set SES_OBJSTAT_NOTAVAIL. We'll depend on the
2084		 * temperature flags for warnings.
2085		 */
2086		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_NOTAVAIL;
2087		ssc->ses_objmap[oid].encstat[1] = 0;
2088		ssc->ses_objmap[oid].encstat[2] = sdata[r];
2089		ssc->ses_objmap[oid].encstat[3] = 0;
2090		ssc->ses_objmap[oid++].svalid = 1;
2091		r++;
2092	}
2093
2094	/*
2095	 * Now, for "pseudo" thermometers, we have two bytes
2096	 * of information in enclosure status- 16 bits. Actually,
2097	 * the MSB is a single TEMP ALERT flag indicating whether
2098	 * any other bits are set, but, thanks to fuzzy thinking,
2099	 * in the SAF-TE spec, this can also be set even if no
2100	 * other bits are set, thus making this really another
2101	 * binary temperature sensor.
2102	 */
2103
2104	SAFT_BAIL(r, hiwater, sdata, buflen);
2105	tempflags = sdata[r++];
2106	SAFT_BAIL(r, hiwater, sdata, buflen);
2107	tempflags |= (tempflags << 8) | sdata[r++];
2108
2109	for (i = 0; i < NPSEUDO_THERM; i++) {
2110		ssc->ses_objmap[oid].encstat[1] = 0;
2111		if (tempflags & (1 << (NPSEUDO_THERM - i - 1))) {
2112			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_CRIT;
2113			ssc->ses_objmap[4].encstat[2] = 0xff;
2114			/*
2115			 * Set 'over temperature' failure.
2116			 */
2117			ssc->ses_objmap[oid].encstat[3] = 8;
2118			ssc->ses_encstat |= SES_ENCSTAT_CRITICAL;
2119		} else {
2120			/*
2121			 * We used to say 'not available' and synthesize a
2122			 * nominal 30 deg (C)- that was wrong. Actually,
2123			 * Just say 'OK', and use the reserved value of
2124			 * zero.
2125			 */
2126			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2127			ssc->ses_objmap[oid].encstat[2] = 0;
2128			ssc->ses_objmap[oid].encstat[3] = 0;
2129		}
2130		ssc->ses_objmap[oid++].svalid = 1;
2131	}
2132
2133	/*
2134	 * Get alarm status.
2135	 */
2136	ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2137	ssc->ses_objmap[oid].encstat[3] = ssc->ses_objmap[oid].priv;
2138	ssc->ses_objmap[oid++].svalid = 1;
2139
2140	/*
2141	 * Now get drive slot status
2142	 */
2143	cdb[2] = SAFTE_RD_RDDSTS;
2144	amt = buflen;
2145	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2146	if (err) {
2147		SES_FREE(sdata, buflen);
2148		return (err);
2149	}
2150	hiwater = buflen - amt;
2151	for (r = i = 0; i < cc->Nslots; i++, r += 4) {
2152		SAFT_BAIL(r+3, hiwater, sdata, buflen);
2153		ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_UNSUPPORTED;
2154		ssc->ses_objmap[oid].encstat[1] = (uint8_t) i;
2155		ssc->ses_objmap[oid].encstat[2] = 0;
2156		ssc->ses_objmap[oid].encstat[3] = 0;
2157		status = sdata[r+3];
2158		if ((status & 0x1) == 0) {	/* no device */
2159			ssc->ses_objmap[oid].encstat[0] =
2160			    SES_OBJSTAT_NOTINSTALLED;
2161		} else {
2162			ssc->ses_objmap[oid].encstat[0] = SES_OBJSTAT_OK;
2163		}
2164		if (status & 0x2) {
2165			ssc->ses_objmap[oid].encstat[2] = 0x8;
2166		}
2167		if ((status & 0x4) == 0) {
2168			ssc->ses_objmap[oid].encstat[3] = 0x10;
2169		}
2170		ssc->ses_objmap[oid++].svalid = 1;
2171	}
2172	/* see comment below about sticky enclosure status */
2173	ssc->ses_encstat |= ENCI_SVALID | oencstat;
2174	SES_FREE(sdata, buflen);
2175	return (0);
2176}
2177
2178static int
2179set_objstat_sel(ses_softc_t *ssc, ses_objstat *obp, int slp)
2180{
2181	int idx;
2182	encobj *ep;
2183	struct scfg *cc = ssc->ses_private;
2184
2185	if (cc == NULL)
2186		return (0);
2187
2188	idx = (int)obp->obj_id;
2189	ep = &ssc->ses_objmap[idx];
2190
2191	switch (ep->enctype) {
2192	case SESTYP_DEVICE:
2193		if (obp->cstat[0] & SESCTL_PRDFAIL) {
2194			ep->priv |= 0x40;
2195		}
2196		/* SESCTL_RSTSWAP has no correspondence in SAF-TE */
2197		if (obp->cstat[0] & SESCTL_DISABLE) {
2198			ep->priv |= 0x80;
2199			/*
2200			 * Hmm. Try to set the 'No Drive' flag.
2201			 * Maybe that will count as a 'disable'.
2202			 */
2203		}
2204		if (ep->priv & 0xc6) {
2205			ep->priv &= ~0x1;
2206		} else {
2207			ep->priv |= 0x1;	/* no errors */
2208		}
2209		wrslot_stat(ssc, slp);
2210		break;
2211	case SESTYP_POWER:
2212		/*
2213		 * Okay- the only one that makes sense here is to
2214		 * do the 'disable' for a power supply.
2215		 */
2216		if (obp->cstat[0] & SESCTL_DISABLE) {
2217			(void) wrbuf16(ssc, SAFTE_WT_ACTPWS,
2218				idx - cc->pwroff, 0, 0, slp);
2219		}
2220		break;
2221	case SESTYP_FAN:
2222		/*
2223		 * Okay- the only one that makes sense here is to
2224		 * set fan speed to zero on disable.
2225		 */
2226		if (obp->cstat[0] & SESCTL_DISABLE) {
2227			/* remember- fans are the first items, so idx works */
2228			(void) wrbuf16(ssc, SAFTE_WT_FANSPD, idx, 0, 0, slp);
2229		}
2230		break;
2231	case SESTYP_DOORLOCK:
2232		/*
2233		 * Well, we can 'disable' the lock.
2234		 */
2235		if (obp->cstat[0] & SESCTL_DISABLE) {
2236			cc->flag2 &= ~SAFT_FLG2_LOCKDOOR;
2237			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2238				cc->flag2, 0, slp);
2239		}
2240		break;
2241	case SESTYP_ALARM:
2242		/*
2243		 * Well, we can 'disable' the alarm.
2244		 */
2245		if (obp->cstat[0] & SESCTL_DISABLE) {
2246			cc->flag2 &= ~SAFT_FLG1_ALARM;
2247			ep->priv |= 0x40;	/* Muted */
2248			(void) wrbuf16(ssc, SAFTE_WT_GLOBAL, cc->flag1,
2249				cc->flag2, 0, slp);
2250		}
2251		break;
2252	default:
2253		break;
2254	}
2255	ep->svalid = 0;
2256	return (0);
2257}
2258
2259/*
2260 * This function handles all of the 16 byte WRITE BUFFER commands.
2261 */
2262static int
2263wrbuf16(ses_softc_t *ssc, uint8_t op, uint8_t b1, uint8_t b2,
2264    uint8_t b3, int slp)
2265{
2266	int err, amt;
2267	char *sdata;
2268	struct scfg *cc = ssc->ses_private;
2269	static char cdb[10] = { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, 16, 0 };
2270
2271	if (cc == NULL)
2272		return (0);
2273
2274	sdata = SES_MALLOC(16);
2275	if (sdata == NULL)
2276		return (ENOMEM);
2277
2278	SES_VLOG(ssc, "saf_wrbuf16 %x %x %x %x\n", op, b1, b2, b3);
2279
2280	sdata[0] = op;
2281	sdata[1] = b1;
2282	sdata[2] = b2;
2283	sdata[3] = b3;
2284	MEMZERO(&sdata[4], 12);
2285	amt = -16;
2286	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2287	SES_FREE(sdata, 16);
2288	return (err);
2289}
2290
2291/*
2292 * This function updates the status byte for the device slot described.
2293 *
2294 * Since this is an optional SAF-TE command, there's no point in
2295 * returning an error.
2296 */
2297static void
2298wrslot_stat(ses_softc_t *ssc, int slp)
2299{
2300	int i, amt;
2301	encobj *ep;
2302	char cdb[10], *sdata;
2303	struct scfg *cc = ssc->ses_private;
2304
2305	if (cc == NULL)
2306		return;
2307
2308	SES_VLOG(ssc, "saf_wrslot\n");
2309	cdb[0] = WRITE_BUFFER;
2310	cdb[1] = 1;
2311	cdb[2] = 0;
2312	cdb[3] = 0;
2313	cdb[4] = 0;
2314	cdb[5] = 0;
2315	cdb[6] = 0;
2316	cdb[7] = 0;
2317	cdb[8] = cc->Nslots * 3 + 1;
2318	cdb[9] = 0;
2319
2320	sdata = SES_MALLOC(cc->Nslots * 3 + 1);
2321	if (sdata == NULL)
2322		return;
2323	MEMZERO(sdata, cc->Nslots * 3 + 1);
2324
2325	sdata[0] = SAFTE_WT_DSTAT;
2326	for (i = 0; i < cc->Nslots; i++) {
2327		ep = &ssc->ses_objmap[cc->slotoff + i];
2328		SES_VLOG(ssc, "saf_wrslot %d <- %x\n", i, ep->priv & 0xff);
2329		sdata[1 + (3 * i)] = ep->priv & 0xff;
2330	}
2331	amt = -(cc->Nslots * 3 + 1);
2332	(void) ses_runcmd(ssc, cdb, 10, sdata, &amt);
2333	SES_FREE(sdata, cc->Nslots * 3 + 1);
2334}
2335
2336/*
2337 * This function issues the "PERFORM SLOT OPERATION" command.
2338 */
2339static int
2340perf_slotop(ses_softc_t *ssc, uint8_t slot, uint8_t opflag, int slp)
2341{
2342	int err, amt;
2343	char *sdata;
2344	struct scfg *cc = ssc->ses_private;
2345	static char cdb[10] =
2346	    { WRITE_BUFFER, 1, 0, 0, 0, 0, 0, 0, SAFT_SCRATCH, 0 };
2347
2348	if (cc == NULL)
2349		return (0);
2350
2351	sdata = SES_MALLOC(SAFT_SCRATCH);
2352	if (sdata == NULL)
2353		return (ENOMEM);
2354	MEMZERO(sdata, SAFT_SCRATCH);
2355
2356	sdata[0] = SAFTE_WT_SLTOP;
2357	sdata[1] = slot;
2358	sdata[2] = opflag;
2359	SES_VLOG(ssc, "saf_slotop slot %d op %x\n", slot, opflag);
2360	amt = -SAFT_SCRATCH;
2361	err = ses_runcmd(ssc, cdb, 10, sdata, &amt);
2362	SES_FREE(sdata, SAFT_SCRATCH);
2363	return (err);
2364}
2365