1/*	$NetBSD: rf_states.c,v 1.53 2021/07/23 02:35:14 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29#include <sys/cdefs.h>
30__KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.53 2021/07/23 02:35:14 oster Exp $");
31
32#include <sys/errno.h>
33
34#include "rf_archs.h"
35#include "rf_threadstuff.h"
36#include "rf_raid.h"
37#include "rf_dag.h"
38#include "rf_desc.h"
39#include "rf_aselect.h"
40#include "rf_general.h"
41#include "rf_states.h"
42#include "rf_dagutils.h"
43#include "rf_driver.h"
44#include "rf_engine.h"
45#include "rf_map.h"
46#include "rf_etimer.h"
47#include "rf_kintf.h"
48#include "rf_paritymap.h"
49
50#ifndef RF_DEBUG_STATES
51#define RF_DEBUG_STATES 0
52#endif
53
54/* prototypes for some of the available states.
55
56   States must:
57
58     - not block.
59
60     - either schedule rf_ContinueRaidAccess as a callback and return
61       RF_TRUE, or complete all of their work and return RF_FALSE.
62
63     - increment desc->state when they have finished their work.
64*/
65
66#if RF_DEBUG_STATES
67static char *
68StateName(RF_AccessState_t state)
69{
70	switch (state) {
71		case rf_QuiesceState:return "QuiesceState";
72	case rf_MapState:
73		return "MapState";
74	case rf_LockState:
75		return "LockState";
76	case rf_CreateDAGState:
77		return "CreateDAGState";
78	case rf_ExecuteDAGState:
79		return "ExecuteDAGState";
80	case rf_ProcessDAGState:
81		return "ProcessDAGState";
82	case rf_CleanupState:
83		return "CleanupState";
84	case rf_LastState:
85		return "LastState";
86	case rf_IncrAccessesCountState:
87		return "IncrAccessesCountState";
88	case rf_DecrAccessesCountState:
89		return "DecrAccessesCountState";
90	default:
91		return "!!! UnnamedState !!!";
92	}
93}
94#endif
95
96void
97rf_ContinueRaidAccess(void *v)
98{
99	RF_RaidAccessDesc_t *desc = v;
100	int     suspended = RF_FALSE;
101	int     current_state_index = desc->state;
102	RF_AccessState_t current_state = desc->states[current_state_index];
103#if RF_DEBUG_STATES
104	int     unit = desc->raidPtr->raidid;
105#endif
106
107	do {
108
109		current_state_index = desc->state;
110		current_state = desc->states[current_state_index];
111
112		switch (current_state) {
113
114		case rf_QuiesceState:
115			suspended = rf_State_Quiesce(desc);
116			break;
117		case rf_IncrAccessesCountState:
118			suspended = rf_State_IncrAccessCount(desc);
119			break;
120		case rf_MapState:
121			suspended = rf_State_Map(desc);
122			break;
123		case rf_LockState:
124			suspended = rf_State_Lock(desc);
125			break;
126		case rf_CreateDAGState:
127			suspended = rf_State_CreateDAG(desc);
128			break;
129		case rf_ExecuteDAGState:
130			suspended = rf_State_ExecuteDAG(desc);
131			break;
132		case rf_ProcessDAGState:
133			suspended = rf_State_ProcessDAG(desc);
134			break;
135		case rf_CleanupState:
136			suspended = rf_State_Cleanup(desc);
137			break;
138		case rf_DecrAccessesCountState:
139			suspended = rf_State_DecrAccessCount(desc);
140			break;
141		case rf_LastState:
142			suspended = rf_State_LastState(desc);
143			break;
144		}
145
146		/* after this point, we cannot dereference desc since
147		 * desc may have been freed. desc is only freed in
148		 * LastState, so if we renter this function or loop
149		 * back up, desc should be valid. */
150
151#if RF_DEBUG_STATES
152		if (rf_printStatesDebug) {
153			printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
154			       unit, StateName(current_state),
155			       current_state_index, (long) desc,
156			       suspended ? "callback scheduled" : "looping");
157		}
158#endif
159	} while (!suspended && current_state != rf_LastState);
160
161	return;
162}
163
164
165void
166rf_ContinueDagAccess(RF_DagList_t *dagList)
167{
168#if RF_ACC_TRACE > 0
169	RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
170	RF_Etimer_t timer;
171#endif
172	RF_RaidAccessDesc_t *desc;
173	RF_DagHeader_t *dag_h;
174	int     i;
175
176	desc = dagList->desc;
177
178#if RF_ACC_TRACE > 0
179	timer = tracerec->timer;
180	RF_ETIMER_STOP(timer);
181	RF_ETIMER_EVAL(timer);
182	tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
183	RF_ETIMER_START(tracerec->timer);
184#endif
185
186	/* skip to dag which just finished */
187	dag_h = dagList->dags;
188	for (i = 0; i < dagList->numDagsDone; i++) {
189		dag_h = dag_h->next;
190	}
191
192	/* check to see if retry is required */
193	if (dag_h->status == rf_rollBackward) {
194		/* when a dag fails, mark desc status as bad and allow
195		 * all other dags in the desc to execute to
196		 * completion.  then, free all dags and start over */
197		desc->status = 1;	/* bad status */
198#if 0
199		printf("raid%d: DAG failure: %c addr 0x%lx "
200		       "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
201		       desc->raidPtr->raidid, desc->type,
202		       (long) desc->raidAddress,
203		       (long) desc->raidAddress, (int) desc->numBlocks,
204		       (int) desc->numBlocks,
205		       (unsigned long) (desc->bufPtr), desc->state);
206#endif
207	}
208	dagList->numDagsDone++;
209	rf_ContinueRaidAccess(desc);
210}
211
212int
213rf_State_LastState(RF_RaidAccessDesc_t *desc)
214{
215	void    (*callbackFunc) (void *) = desc->callbackFunc;
216	void * callbackArg = desc->callbackArg;
217
218	/*
219	 * The parity_map hook has to go here, because the iodone
220	 * callback goes straight into the kintf layer.
221	 */
222	if (desc->raidPtr->parity_map != NULL &&
223	    desc->type == RF_IO_TYPE_WRITE)
224		rf_paritymap_end(desc->raidPtr->parity_map,
225		    desc->raidAddress, desc->numBlocks);
226
227	/* printf("Calling raiddone on 0x%x\n",desc->bp); */
228	raiddone(desc->raidPtr, desc->bp); /* access came through ioctl */
229
230	if (callbackFunc)
231		callbackFunc(callbackArg);
232	rf_FreeRaidAccDesc(desc);
233
234	return RF_FALSE;
235}
236
237int
238rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
239{
240	RF_Raid_t *raidPtr;
241
242	raidPtr = desc->raidPtr;
243	/* Bummer. We have to do this to be 100% safe w.r.t. the increment
244	 * below */
245	rf_lock_mutex2(raidPtr->access_suspend_mutex);
246	raidPtr->accs_in_flight++;	/* used to detect quiescence */
247	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
248
249	desc->state++;
250	return RF_FALSE;
251}
252
253int
254rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
255{
256	RF_Raid_t *raidPtr;
257
258	raidPtr = desc->raidPtr;
259
260	rf_lock_mutex2(raidPtr->access_suspend_mutex);
261	raidPtr->accs_in_flight--;
262	if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
263		rf_SignalQuiescenceLock(raidPtr);
264	}
265	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
266
267	desc->state++;
268	return RF_FALSE;
269}
270
271int
272rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
273{
274#if RF_ACC_TRACE > 0
275	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
276	RF_Etimer_t timer;
277#endif
278	RF_CallbackFuncDesc_t *cb;
279	RF_Raid_t *raidPtr;
280	int     suspended = RF_FALSE;
281	int need_cb, used_cb;
282
283	raidPtr = desc->raidPtr;
284
285#if RF_ACC_TRACE > 0
286	RF_ETIMER_START(timer);
287	RF_ETIMER_START(desc->timer);
288#endif
289
290	need_cb = 0;
291	used_cb = 0;
292	cb = NULL;
293
294	rf_lock_mutex2(raidPtr->access_suspend_mutex);
295	/* Do an initial check to see if we might need a callback structure */
296	if (raidPtr->accesses_suspended) {
297		need_cb = 1;
298	}
299	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
300
301	if (need_cb) {
302		/* create a callback if we might need it...
303		   and we likely do. */
304		cb = rf_AllocCallbackFuncDesc(raidPtr);
305	}
306
307	rf_lock_mutex2(raidPtr->access_suspend_mutex);
308	if (raidPtr->accesses_suspended) {
309		cb->callbackFunc = rf_ContinueRaidAccess;
310		cb->callbackArg = desc;
311		cb->next = raidPtr->quiesce_wait_list;
312		raidPtr->quiesce_wait_list = cb;
313		suspended = RF_TRUE;
314		used_cb = 1;
315	}
316	rf_unlock_mutex2(raidPtr->access_suspend_mutex);
317
318	if ((need_cb == 1) && (used_cb == 0)) {
319		rf_FreeCallbackFuncDesc(raidPtr, cb);
320	}
321
322#if RF_ACC_TRACE > 0
323	RF_ETIMER_STOP(timer);
324	RF_ETIMER_EVAL(timer);
325	tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
326#endif
327
328#if RF_DEBUG_QUIESCE
329	if (suspended && rf_quiesceDebug)
330		printf("Stalling access due to quiescence lock\n");
331#endif
332	desc->state++;
333	return suspended;
334}
335
336int
337rf_State_Map(RF_RaidAccessDesc_t *desc)
338{
339	RF_Raid_t *raidPtr = desc->raidPtr;
340#if RF_ACC_TRACE > 0
341	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
342	RF_Etimer_t timer;
343
344	RF_ETIMER_START(timer);
345#endif
346
347	if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
348		    desc->bufPtr, RF_DONT_REMAP)))
349		RF_PANIC();
350
351#if RF_ACC_TRACE > 0
352	RF_ETIMER_STOP(timer);
353	RF_ETIMER_EVAL(timer);
354	tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
355#endif
356
357	desc->state++;
358	return RF_FALSE;
359}
360
361int
362rf_State_Lock(RF_RaidAccessDesc_t *desc)
363{
364#if RF_ACC_TRACE > 0
365	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
366	RF_Etimer_t timer;
367#endif
368	RF_Raid_t *raidPtr = desc->raidPtr;
369	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
370	RF_AccessStripeMap_t *asm_p;
371	RF_StripeNum_t lastStripeID = -1;
372	int     suspended = RF_FALSE;
373
374#if RF_ACC_TRACE > 0
375	RF_ETIMER_START(timer);
376#endif
377
378	/* acquire each lock that we don't already hold */
379	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
380		RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
381		if (!rf_suppressLocksAndLargeWrites &&
382		    asm_p->parityInfo &&
383		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
384		    !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
385			asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
386				/* locks must be acquired hierarchically */
387			RF_ASSERT(asm_p->stripeID > lastStripeID);
388			lastStripeID = asm_p->stripeID;
389
390			RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
391					      rf_ContinueRaidAccess, desc, asm_p,
392					      raidPtr->Layout.dataSectorsPerStripe);
393			if (rf_AcquireStripeLock(raidPtr, raidPtr->lockTable, asm_p->stripeID,
394						 &asm_p->lockReqDesc)) {
395				suspended = RF_TRUE;
396				break;
397			}
398		}
399		if (desc->type == RF_IO_TYPE_WRITE &&
400		    raidPtr->status == rf_rs_reconstructing) {
401			if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
402				int     val;
403
404				asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
405				val = rf_ForceOrBlockRecon(raidPtr, asm_p,
406							   rf_ContinueRaidAccess, desc);
407				if (val == 0) {
408					asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
409				} else {
410					suspended = RF_TRUE;
411					break;
412				}
413			} else {
414#if RF_DEBUG_PSS > 0
415				if (rf_pssDebug) {
416					printf("raid%d: skipping force/block because already done, psid %ld\n",
417					       desc->raidPtr->raidid,
418					       (long) asm_p->stripeID);
419				}
420#endif
421			}
422		} else {
423#if RF_DEBUG_PSS > 0
424			if (rf_pssDebug) {
425				printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
426				       desc->raidPtr->raidid,
427				       (long) asm_p->stripeID);
428			}
429#endif
430		}
431	}
432#if RF_ACC_TRACE > 0
433	RF_ETIMER_STOP(timer);
434	RF_ETIMER_EVAL(timer);
435	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
436#endif
437	if (suspended)
438		return (RF_TRUE);
439
440	desc->state++;
441	return (RF_FALSE);
442}
443/*
444 * the following three states create, execute, and post-process dags
445 * the error recovery unit is a single dag.
446 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
447 * in some tricky cases, multiple dags per stripe are created
448 *   - dags within a parity stripe are executed sequentially (arbitrary order)
449 *   - dags for distinct parity stripes are executed concurrently
450 *
451 * repeat until all dags complete successfully -or- dag selection fails
452 *
453 * while !done
454 *   create dag(s) (SelectAlgorithm)
455 *   if dag
456 *     execute dag (DispatchDAG)
457 *     if dag successful
458 *       done (SUCCESS)
459 *     else
460 *       !done (RETRY - start over with new dags)
461 *   else
462 *     done (FAIL)
463 */
464int
465rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
466{
467#if RF_ACC_TRACE > 0
468	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
469	RF_Etimer_t timer;
470#endif
471	RF_DagHeader_t *dag_h;
472	RF_DagList_t *dagList;
473	struct buf *bp;
474	int     i, selectStatus;
475
476	/* generate a dag for the access, and fire it off.  When the dag
477	 * completes, we'll get re-invoked in the next state. */
478#if RF_ACC_TRACE > 0
479	RF_ETIMER_START(timer);
480#endif
481	/* SelectAlgorithm returns one or more dags */
482	selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
483#if RF_DEBUG_VALIDATE_DAG
484	if (rf_printDAGsDebug) {
485		dagList = desc->dagList;
486		for (i = 0; i < desc->numStripes; i++) {
487			rf_PrintDAGList(dagList->dags);
488			dagList = dagList->next;
489		}
490	}
491#endif /* RF_DEBUG_VALIDATE_DAG */
492#if RF_ACC_TRACE > 0
493	RF_ETIMER_STOP(timer);
494	RF_ETIMER_EVAL(timer);
495	/* update time to create all dags */
496	tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
497#endif
498
499	desc->status = 0;	/* good status */
500
501	if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
502		/* failed to create a dag */
503		/* this happens when there are too many faults or incomplete
504		 * dag libraries */
505		if (selectStatus) {
506			printf("raid%d: failed to create a dag. "
507			       "Too many component failures.\n",
508			       desc->raidPtr->raidid);
509		} else {
510			printf("raid%d: IO failed after %d retries.\n",
511			       desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
512		}
513
514		desc->status = 1; /* bad status */
515		/* skip straight to rf_State_Cleanup() */
516		desc->state = rf_CleanupState;
517		bp = (struct buf *)desc->bp;
518		bp->b_error = EIO;
519		bp->b_resid = bp->b_bcount;
520	} else {
521		/* bind dags to desc */
522		dagList = desc->dagList;
523		for (i = 0; i < desc->numStripes; i++) {
524			dag_h = dagList->dags;
525			while (dag_h) {
526				dag_h->bp = (struct buf *) desc->bp;
527#if RF_ACC_TRACE > 0
528				dag_h->tracerec = tracerec;
529#endif
530				dag_h = dag_h->next;
531			}
532			dagList = dagList->next;
533		}
534		desc->flags |= RF_DAG_DISPATCH_RETURNED;
535		desc->state++;	/* next state should be rf_State_ExecuteDAG */
536	}
537	return RF_FALSE;
538}
539
540
541
542/* the access has an list of dagLists, one dagList per parity stripe.
543 * fire the first dag in each parity stripe (dagList).
544 * dags within a stripe (dagList) must be executed sequentially
545 *  - this preserves atomic parity update
546 * dags for independents parity groups (stripes) are fired concurrently */
547
548int
549rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
550{
551	int     i;
552	RF_DagHeader_t *dag_h;
553	RF_DagList_t *dagList;
554
555	/* next state is always rf_State_ProcessDAG important to do
556	 * this before firing the first dag (it may finish before we
557	 * leave this routine) */
558	desc->state++;
559
560	/* sweep dag array, a stripe at a time, firing the first dag
561	 * in each stripe */
562	dagList = desc->dagList;
563	for (i = 0; i < desc->numStripes; i++) {
564		RF_ASSERT(dagList->numDags > 0);
565		RF_ASSERT(dagList->numDagsDone == 0);
566		RF_ASSERT(dagList->numDagsFired == 0);
567#if RF_ACC_TRACE > 0
568		RF_ETIMER_START(dagList->tracerec.timer);
569#endif
570		/* fire first dag in this stripe */
571		dag_h = dagList->dags;
572		RF_ASSERT(dag_h);
573		dagList->numDagsFired++;
574		rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
575		dagList = dagList->next;
576	}
577
578	/* the DAG will always call the callback, even if there was no
579	 * blocking, so we are always suspended in this state */
580	return RF_TRUE;
581}
582
583
584
585/* rf_State_ProcessDAG is entered when a dag completes.
586 * first, check to all dags in the access have completed
587 * if not, fire as many dags as possible */
588
589int
590rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
591{
592	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
593	RF_Raid_t *raidPtr = desc->raidPtr;
594	RF_DagHeader_t *dag_h;
595	int     i, j, done = RF_TRUE;
596	RF_DagList_t *dagList, *temp;
597
598	/* check to see if this is the last dag */
599	dagList = desc->dagList;
600	for (i = 0; i < desc->numStripes; i++) {
601		if (dagList->numDags != dagList->numDagsDone)
602			done = RF_FALSE;
603		dagList = dagList->next;
604	}
605
606	if (done) {
607		if (desc->status) {
608			/* a dag failed, retry */
609			/* free all dags */
610			dagList = desc->dagList;
611			for (i = 0; i < desc->numStripes; i++) {
612				rf_FreeDAG(dagList->dags);
613				temp = dagList;
614				dagList = dagList->next;
615				rf_FreeDAGList(raidPtr, temp);
616			}
617			desc->dagList = NULL;
618
619			rf_MarkFailuresInASMList(raidPtr, asmh);
620
621			/* note the retry so that we'll bail in
622			   rf_State_CreateDAG() once we've retired
623			   the IO RF_RETRY_THRESHOLD times */
624
625			desc->numRetries++;
626
627			/* back up to rf_State_CreateDAG */
628			desc->state = desc->state - 2;
629			return RF_FALSE;
630		} else {
631			/* move on to rf_State_Cleanup */
632			desc->state++;
633		}
634		return RF_FALSE;
635	} else {
636		/* more dags to execute */
637		/* see if any are ready to be fired.  if so, fire them */
638		/* don't fire the initial dag in a list, it's fired in
639		 * rf_State_ExecuteDAG */
640		dagList = desc->dagList;
641		for (i = 0; i < desc->numStripes; i++) {
642			if ((dagList->numDagsDone < dagList->numDags)
643			    && (dagList->numDagsDone == dagList->numDagsFired)
644			    && (dagList->numDagsFired > 0)) {
645#if RF_ACC_TRACE > 0
646				RF_ETIMER_START(dagList->tracerec.timer);
647#endif
648				/* fire next dag in this stripe */
649				/* first, skip to next dag awaiting execution */
650				dag_h = dagList->dags;
651				for (j = 0; j < dagList->numDagsDone; j++)
652					dag_h = dag_h->next;
653				dagList->numDagsFired++;
654				rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
655				    dagList);
656			}
657			dagList = dagList->next;
658		}
659		return RF_TRUE;
660	}
661}
662/* only make it this far if all dags complete successfully */
663int
664rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
665{
666#if RF_ACC_TRACE > 0
667	RF_AccTraceEntry_t *tracerec = &desc->tracerec;
668	RF_Etimer_t timer;
669#endif
670	RF_AccessStripeMapHeader_t *asmh = desc->asmap;
671	RF_Raid_t *raidPtr = desc->raidPtr;
672	RF_AccessStripeMap_t *asm_p;
673	RF_DagList_t *dagList;
674	int i;
675
676	desc->state++;
677
678#if RF_ACC_TRACE > 0
679	timer = tracerec->timer;
680	RF_ETIMER_STOP(timer);
681	RF_ETIMER_EVAL(timer);
682	tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
683
684	/* the RAID I/O is complete.  Clean up. */
685	tracerec->specific.user.dag_retry_us = 0;
686
687	RF_ETIMER_START(timer);
688#endif
689	/* free all dags */
690	dagList = desc->dagList;
691	for (i = 0; i < desc->numStripes; i++) {
692		rf_FreeDAG(dagList->dags);
693		dagList = dagList->next;
694	}
695#if RF_ACC_TRACE > 0
696	RF_ETIMER_STOP(timer);
697	RF_ETIMER_EVAL(timer);
698	tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
699
700	RF_ETIMER_START(timer);
701#endif
702	for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
703		if (!rf_suppressLocksAndLargeWrites &&
704		    asm_p->parityInfo &&
705		    !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
706			RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
707			rf_ReleaseStripeLock(raidPtr,
708					     raidPtr->lockTable,
709					     asm_p->stripeID,
710					     &asm_p->lockReqDesc);
711		}
712		if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
713			rf_UnblockRecon(raidPtr, asm_p);
714		}
715	}
716#if RF_ACC_TRACE > 0
717	RF_ETIMER_STOP(timer);
718	RF_ETIMER_EVAL(timer);
719	tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
720
721	RF_ETIMER_START(timer);
722#endif
723	rf_FreeAccessStripeMap(raidPtr, asmh);
724#if RF_ACC_TRACE > 0
725	RF_ETIMER_STOP(timer);
726	RF_ETIMER_EVAL(timer);
727	tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
728
729	RF_ETIMER_STOP(desc->timer);
730	RF_ETIMER_EVAL(desc->timer);
731
732	timer = desc->tracerec.tot_timer;
733	RF_ETIMER_STOP(timer);
734	RF_ETIMER_EVAL(timer);
735	desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
736
737	rf_LogTraceRec(raidPtr, tracerec);
738#endif
739	desc->flags |= RF_DAG_ACCESS_COMPLETE;
740
741	return RF_FALSE;
742}
743