1/*	$NetBSD: rf_paritylogDiskMgr.c,v 1.31 2021/07/23 00:54:45 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28/* Code for flushing and reintegration operations related to parity logging.
29 *
30 */
31
32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: rf_paritylogDiskMgr.c,v 1.31 2021/07/23 00:54:45 oster Exp $");
34
35#include "rf_archs.h"
36
37#if RF_INCLUDE_PARITYLOGGING > 0
38
39#include <dev/raidframe/raidframevar.h>
40
41#include "rf_threadstuff.h"
42#include "rf_mcpair.h"
43#include "rf_raid.h"
44#include "rf_dag.h"
45#include "rf_dagfuncs.h"
46#include "rf_desc.h"
47#include "rf_layout.h"
48#include "rf_diskqueue.h"
49#include "rf_paritylog.h"
50#include "rf_general.h"
51#include "rf_etimer.h"
52#include "rf_paritylogging.h"
53#include "rf_engine.h"
54#include "rf_dagutils.h"
55#include "rf_map.h"
56#include "rf_parityscan.h"
57
58#include "rf_paritylogDiskMgr.h"
59
60static void *AcquireReintBuffer(RF_RegionBufferQueue_t *);
61
62static void *
63AcquireReintBuffer(RF_RegionBufferQueue_t *pool)
64{
65	void *bufPtr = NULL;
66
67	/* Return a region buffer from the free list (pool). If the free list
68	 * is empty, WAIT. BLOCKING */
69
70	rf_lock_mutex2(pool->mutex);
71	if (pool->availableBuffers > 0) {
72		bufPtr = pool->buffers[pool->availBuffersIndex];
73		pool->availableBuffers--;
74		pool->availBuffersIndex++;
75		if (pool->availBuffersIndex == pool->totalBuffers)
76			pool->availBuffersIndex = 0;
77		rf_unlock_mutex2(pool->mutex);
78	} else {
79		RF_PANIC();	/* should never happen in correct config,
80				 * single reint */
81		rf_wait_cond2(pool->cond, pool->mutex);
82	}
83	return (bufPtr);
84}
85
86static void
87ReleaseReintBuffer(
88    RF_RegionBufferQueue_t * pool,
89    void *bufPtr)
90{
91	/* Insert a region buffer (bufPtr) into the free list (pool).
92	 * NON-BLOCKING */
93
94	rf_lock_mutex2(pool->mutex);
95	pool->availableBuffers++;
96	pool->buffers[pool->emptyBuffersIndex] = bufPtr;
97	pool->emptyBuffersIndex++;
98	if (pool->emptyBuffersIndex == pool->totalBuffers)
99		pool->emptyBuffersIndex = 0;
100	RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
101	/*
102	 * XXXmrg this signal goes with the above "shouldn't happen" wait?
103	 */
104	rf_signal_cond2(pool->cond);
105	rf_unlock_mutex2(pool->mutex);
106}
107
108
109
110static void
111ReadRegionLog(
112    RF_RegionId_t regionID,
113    RF_MCPair_t * rrd_mcpair,
114    void *regionBuffer,
115    RF_Raid_t * raidPtr,
116    RF_DagHeader_t ** rrd_dag_h,
117    RF_AllocListElem_t ** rrd_alloclist,
118    RF_PhysDiskAddr_t ** rrd_pda)
119{
120	/* Initiate the read a region log from disk.  Once initiated, return
121	 * to the calling routine.
122	 *
123	 * NON-BLOCKING */
124
125	RF_AccTraceEntry_t *tracerec;
126	RF_DagNode_t *rrd_rdNode;
127
128	/* create DAG to read region log from disk */
129	rf_MakeAllocList(*rrd_alloclist);
130	*rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer,
131				      rf_DiskReadFunc, rf_DiskReadUndoFunc,
132				      "Rrl", *rrd_alloclist,
133				      RF_DAG_FLAGS_NONE,
134				      RF_IO_NORMAL_PRIORITY);
135
136	/* create and initialize PDA for the core log */
137	*rrd_pda = rf_AllocPDAList(raidPtr, 1);
138	rf_MapLogParityLogging(raidPtr, regionID, 0,
139			       &((*rrd_pda)->col), &((*rrd_pda)->startSector));
140	(*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
141
142	if ((*rrd_pda)->next) {
143		(*rrd_pda)->next = NULL;
144		printf("set rrd_pda->next to NULL\n");
145	}
146	/* initialize DAG parameters */
147	tracerec = RF_Malloc(sizeof(*tracerec));
148	(*rrd_dag_h)->tracerec = tracerec;
149	rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
150	rrd_rdNode->params[0].p = *rrd_pda;
151/*  rrd_rdNode->params[1] = regionBuffer; */
152	rrd_rdNode->params[2].v = 0;
153	rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
154
155	/* launch region log read dag */
156	rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
157	    (void *) rrd_mcpair);
158}
159
160
161
162static void
163WriteCoreLog(
164    RF_ParityLog_t * log,
165    RF_MCPair_t * fwr_mcpair,
166    RF_Raid_t * raidPtr,
167    RF_DagHeader_t ** fwr_dag_h,
168    RF_AllocListElem_t ** fwr_alloclist,
169    RF_PhysDiskAddr_t ** fwr_pda)
170{
171	RF_RegionId_t regionID = log->regionID;
172	RF_AccTraceEntry_t *tracerec;
173	RF_SectorNum_t regionOffset;
174	RF_DagNode_t *fwr_wrNode;
175
176	/* Initiate the write of a core log to a region log disk. Once
177	 * initiated, return to the calling routine.
178	 *
179	 * NON-BLOCKING */
180
181	/* create DAG to write a core log to a region log disk */
182	rf_MakeAllocList(*fwr_alloclist);
183	*fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr,
184				      rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
185	    "Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
186
187	*fwr_pda = rf_AllocPDAList(raidPtr, 1);
188	regionOffset = log->diskOffset;
189	rf_MapLogParityLogging(raidPtr, regionID, regionOffset,
190			       &((*fwr_pda)->col),
191			       &((*fwr_pda)->startSector));
192	(*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
193
194	/* initialize DAG parameters */
195	tracerec = RF_Malloc(sizeof(*tracerec));
196	(*fwr_dag_h)->tracerec = tracerec;
197	fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
198	fwr_wrNode->params[0].p = *fwr_pda;
199/*  fwr_wrNode->params[1] = log->bufPtr; */
200	fwr_wrNode->params[2].v = 0;
201	fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
202
203	/* launch the dag to write the core log to disk */
204	rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
205	    (void *) fwr_mcpair);
206}
207
208
209static void
210ReadRegionParity(
211    RF_RegionId_t regionID,
212    RF_MCPair_t * prd_mcpair,
213    void *parityBuffer,
214    RF_Raid_t * raidPtr,
215    RF_DagHeader_t ** prd_dag_h,
216    RF_AllocListElem_t ** prd_alloclist,
217    RF_PhysDiskAddr_t ** prd_pda)
218{
219	/* Initiate the read region parity from disk. Once initiated, return
220	 * to the calling routine.
221	 *
222	 * NON-BLOCKING */
223
224	RF_AccTraceEntry_t *tracerec;
225	RF_DagNode_t *prd_rdNode;
226
227	/* create DAG to read region parity from disk */
228	rf_MakeAllocList(*prd_alloclist);
229	*prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc,
230				      rf_DiskReadUndoFunc, "Rrp",
231				      *prd_alloclist, RF_DAG_FLAGS_NONE,
232				      RF_IO_NORMAL_PRIORITY);
233
234	/* create and initialize PDA for region parity */
235	*prd_pda = rf_AllocPDAList(raidPtr, 1);
236	rf_MapRegionParity(raidPtr, regionID,
237			   &((*prd_pda)->col), &((*prd_pda)->startSector),
238			   &((*prd_pda)->numSector));
239	if (rf_parityLogDebug)
240		printf("[reading %d sectors of parity from region %d]\n",
241		    (int) (*prd_pda)->numSector, regionID);
242	if ((*prd_pda)->next) {
243		(*prd_pda)->next = NULL;
244		printf("set prd_pda->next to NULL\n");
245	}
246	/* initialize DAG parameters */
247	tracerec = RF_Malloc(sizeof(*tracerec));
248	(*prd_dag_h)->tracerec = tracerec;
249	prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
250	prd_rdNode->params[0].p = *prd_pda;
251	prd_rdNode->params[1].p = parityBuffer;
252	prd_rdNode->params[2].v = 0;
253	prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
254#if RF_DEBUG_VALIDATE_DAG
255	if (rf_validateDAGDebug)
256		rf_ValidateDAG(*prd_dag_h);
257#endif
258	/* launch region parity read dag */
259	rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
260	    (void *) prd_mcpair);
261}
262
263static void
264WriteRegionParity(
265    RF_RegionId_t regionID,
266    RF_MCPair_t * pwr_mcpair,
267    void *parityBuffer,
268    RF_Raid_t * raidPtr,
269    RF_DagHeader_t ** pwr_dag_h,
270    RF_AllocListElem_t ** pwr_alloclist,
271    RF_PhysDiskAddr_t ** pwr_pda)
272{
273	/* Initiate the write of region parity to disk. Once initiated, return
274	 * to the calling routine.
275	 *
276	 * NON-BLOCKING */
277
278	RF_AccTraceEntry_t *tracerec;
279	RF_DagNode_t *pwr_wrNode;
280
281	/* create DAG to write region log from disk */
282	rf_MakeAllocList(*pwr_alloclist);
283	*pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer,
284				      rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
285				      "Wrp", *pwr_alloclist,
286				      RF_DAG_FLAGS_NONE,
287				      RF_IO_NORMAL_PRIORITY);
288
289	/* create and initialize PDA for region parity */
290	*pwr_pda = rf_AllocPDAList(raidPtr, 1);
291	rf_MapRegionParity(raidPtr, regionID,
292			   &((*pwr_pda)->col), &((*pwr_pda)->startSector),
293			   &((*pwr_pda)->numSector));
294
295	/* initialize DAG parameters */
296	tracerec = RF_Malloc(sizeof(*tracerec));
297	(*pwr_dag_h)->tracerec = tracerec;
298	pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
299	pwr_wrNode->params[0].p = *pwr_pda;
300/*  pwr_wrNode->params[1] = parityBuffer; */
301	pwr_wrNode->params[2].v = 0;
302	pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
303
304	/* launch the dag to write region parity to disk */
305	rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
306	    (void *) pwr_mcpair);
307}
308
309static void
310FlushLogsToDisk(
311    RF_Raid_t * raidPtr,
312    RF_ParityLog_t * logList)
313{
314	/* Flush a linked list of core logs to the log disk. Logs contain the
315	 * disk location where they should be written.  Logs were written in
316	 * FIFO order and that order must be preserved.
317	 *
318	 * Recommended optimizations: 1) allow multiple flushes to occur
319	 * simultaneously 2) coalesce contiguous flush operations
320	 *
321	 * BLOCKING */
322
323	RF_ParityLog_t *log;
324	RF_RegionId_t regionID;
325	RF_MCPair_t *fwr_mcpair;
326	RF_DagHeader_t *fwr_dag_h;
327	RF_AllocListElem_t *fwr_alloclist;
328	RF_PhysDiskAddr_t *fwr_pda;
329
330	fwr_mcpair = rf_AllocMCPair(raidPtr);
331	RF_LOCK_MCPAIR(fwr_mcpair);
332
333	RF_ASSERT(logList);
334	log = logList;
335	while (log) {
336		regionID = log->regionID;
337
338		/* create and launch a DAG to write the core log */
339		if (rf_parityLogDebug)
340			printf("[initiating write of core log for region %d]\n", regionID);
341		fwr_mcpair->flag = RF_FALSE;
342		WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h,
343			     &fwr_alloclist, &fwr_pda);
344
345		/* wait for the DAG to complete */
346		while (!fwr_mcpair->flag)
347			RF_WAIT_MCPAIR(fwr_mcpair);
348		if (fwr_dag_h->status != rf_enable) {
349			RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
350			RF_ASSERT(0);
351		}
352		/* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
353		rf_FreePhysDiskAddr(raidPtr, fwr_pda);
354		rf_FreeDAG(fwr_dag_h);
355		rf_FreeAllocList(fwr_alloclist);
356
357		log = log->next;
358	}
359	RF_UNLOCK_MCPAIR(fwr_mcpair);
360	rf_FreeMCPair(raidPtr, fwr_mcpair);
361	rf_ReleaseParityLogs(raidPtr, logList);
362}
363
364static void
365ReintegrateRegion(
366    RF_Raid_t * raidPtr,
367    RF_RegionId_t regionID,
368    RF_ParityLog_t * coreLog)
369{
370	RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
371	RF_DagHeader_t *rrd_dag_h = NULL, *prd_dag_h, *pwr_dag_h;
372	RF_AllocListElem_t *rrd_alloclist = NULL, *prd_alloclist, *pwr_alloclist;
373	RF_PhysDiskAddr_t *rrd_pda = NULL, *prd_pda, *pwr_pda;
374	void *parityBuffer, *regionBuffer = NULL;
375
376	/* Reintegrate a region (regionID).
377	 *
378	 * 1. acquire region and parity buffers
379	 * 2. read log from disk
380	 * 3. read parity from disk
381	 * 4. apply log to parity
382	 * 5. apply core log to parity
383	 * 6. write new parity to disk
384	 *
385	 * BLOCKING */
386
387	if (rf_parityLogDebug)
388		printf("[reintegrating region %d]\n", regionID);
389
390	/* initiate read of region parity */
391	if (rf_parityLogDebug)
392		printf("[initiating read of parity for region %d]\n",regionID);
393	parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
394	prd_mcpair = rf_AllocMCPair(raidPtr);
395	RF_LOCK_MCPAIR(prd_mcpair);
396	prd_mcpair->flag = RF_FALSE;
397	ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr,
398			 &prd_dag_h, &prd_alloclist, &prd_pda);
399
400	/* if region log nonempty, initiate read */
401	if (raidPtr->regionInfo[regionID].diskCount > 0) {
402		if (rf_parityLogDebug)
403			printf("[initiating read of disk log for region %d]\n",
404			       regionID);
405		regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
406		rrd_mcpair = rf_AllocMCPair(raidPtr);
407		RF_LOCK_MCPAIR(rrd_mcpair);
408		rrd_mcpair->flag = RF_FALSE;
409		ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr,
410			      &rrd_dag_h, &rrd_alloclist, &rrd_pda);
411	}
412	/* wait on read of region parity to complete */
413	while (!prd_mcpair->flag) {
414		RF_WAIT_MCPAIR(prd_mcpair);
415	}
416	RF_UNLOCK_MCPAIR(prd_mcpair);
417	if (prd_dag_h->status != rf_enable) {
418		RF_ERRORMSG("Unable to read parity from disk\n");
419		/* add code to fail the parity disk */
420		RF_ASSERT(0);
421	}
422	/* apply core log to parity */
423	/* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
424
425	if (raidPtr->regionInfo[regionID].diskCount > 0) {
426		/* wait on read of region log to complete */
427		while (!rrd_mcpair->flag)
428			RF_WAIT_MCPAIR(rrd_mcpair);
429		RF_UNLOCK_MCPAIR(rrd_mcpair);
430		if (rrd_dag_h->status != rf_enable) {
431			RF_ERRORMSG("Unable to read region log from disk\n");
432			/* add code to fail the log disk */
433			RF_ASSERT(0);
434		}
435		/* apply region log to parity */
436		/* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
437		/* release resources associated with region log */
438		/* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
439		rf_FreePhysDiskAddr(raidPtr, rrd_pda);
440		rf_FreeDAG(rrd_dag_h);
441		rf_FreeAllocList(rrd_alloclist);
442		rf_FreeMCPair(raidPtr, rrd_mcpair);
443		ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
444	}
445	/* write reintegrated parity to disk */
446	if (rf_parityLogDebug)
447		printf("[initiating write of parity for region %d]\n",
448		       regionID);
449	pwr_mcpair = rf_AllocMCPair(raidPtr);
450	RF_LOCK_MCPAIR(pwr_mcpair);
451	pwr_mcpair->flag = RF_FALSE;
452	WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr,
453			  &pwr_dag_h, &pwr_alloclist, &pwr_pda);
454	while (!pwr_mcpair->flag)
455		RF_WAIT_MCPAIR(pwr_mcpair);
456	RF_UNLOCK_MCPAIR(pwr_mcpair);
457	if (pwr_dag_h->status != rf_enable) {
458		RF_ERRORMSG("Unable to write parity to disk\n");
459		/* add code to fail the parity disk */
460		RF_ASSERT(0);
461	}
462	/* release resources associated with read of old parity */
463	/* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
464	rf_FreePhysDiskAddr(raidPtr, prd_pda);
465	rf_FreeDAG(prd_dag_h);
466	rf_FreeAllocList(prd_alloclist);
467	rf_FreeMCPair(raidPtr, prd_mcpair);
468
469	/* release resources associated with write of new parity */
470	ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
471	/* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
472	rf_FreePhysDiskAddr(raidPtr, pwr_pda);
473	rf_FreeDAG(pwr_dag_h);
474	rf_FreeAllocList(pwr_alloclist);
475	rf_FreeMCPair(raidPtr, pwr_mcpair);
476
477	if (rf_parityLogDebug)
478		printf("[finished reintegrating region %d]\n", regionID);
479}
480
481
482
483static void
484ReintegrateLogs(
485    RF_Raid_t * raidPtr,
486    RF_ParityLog_t * logList)
487{
488	RF_ParityLog_t *log, *freeLogList = NULL;
489	RF_ParityLogData_t *logData, *logDataList;
490	RF_RegionId_t regionID;
491
492	RF_ASSERT(logList);
493	while (logList) {
494		log = logList;
495		logList = logList->next;
496		log->next = NULL;
497		regionID = log->regionID;
498		ReintegrateRegion(raidPtr, regionID, log);
499		log->numRecords = 0;
500
501		/* remove all items which are blocked on reintegration of this
502		 * region */
503		rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
504		logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID,
505			   &raidPtr->parityLogDiskQueue.reintBlockHead,
506			   &raidPtr->parityLogDiskQueue.reintBlockTail,
507							   RF_TRUE);
508		logDataList = logData;
509		while (logData) {
510			logData->next = rf_SearchAndDequeueParityLogData(
511					 raidPtr, regionID,
512					 &raidPtr->parityLogDiskQueue.reintBlockHead,
513					 &raidPtr->parityLogDiskQueue.reintBlockTail,
514					 RF_TRUE);
515			logData = logData->next;
516		}
517		rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
518
519		/* process blocked log data and clear reintInProgress flag for
520		 * this region */
521		if (logDataList)
522			rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
523		else {
524			/* Enable flushing for this region.  Holding both
525			 * locks provides a synchronization barrier with
526			 * DumpParityLogToDisk */
527			rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex);
528			rf_lock_mutex2(raidPtr->regionInfo[regionID].reintMutex);
529			/* XXXmrg: don't need this? */
530			rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
531			raidPtr->regionInfo[regionID].diskCount = 0;
532			raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
533			rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex);
534			rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex);	/* flushing is now
535											 * enabled */
536			/* XXXmrg: don't need this? */
537			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
538		}
539		/* if log wasn't used, attach it to the list of logs to be
540		 * returned */
541		if (log) {
542			log->next = freeLogList;
543			freeLogList = log;
544		}
545	}
546	if (freeLogList)
547		rf_ReleaseParityLogs(raidPtr, freeLogList);
548}
549
550int
551rf_ShutdownLogging(RF_Raid_t * raidPtr)
552{
553	/* shutdown parity logging 1) disable parity logging in all regions 2)
554	 * reintegrate all regions */
555
556	RF_SectorCount_t diskCount;
557	RF_RegionId_t regionID;
558	RF_ParityLog_t *log;
559
560	if (rf_parityLogDebug)
561		printf("[shutting down parity logging]\n");
562	/* Since parity log maps are volatile, we must reintegrate all
563	 * regions. */
564	if (rf_forceParityLogReint) {
565		for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
566			rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex);
567			raidPtr->regionInfo[regionID].loggingEnabled =
568				RF_FALSE;
569			log = raidPtr->regionInfo[regionID].coreLog;
570			raidPtr->regionInfo[regionID].coreLog = NULL;
571			diskCount = raidPtr->regionInfo[regionID].diskCount;
572			rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex);
573			if (diskCount > 0 || log != NULL)
574				ReintegrateRegion(raidPtr, regionID, log);
575			if (log != NULL)
576				rf_ReleaseParityLogs(raidPtr, log);
577		}
578	}
579	if (rf_parityLogDebug) {
580		printf("[parity logging disabled]\n");
581		printf("[should be done!]\n");
582	}
583	return (0);
584}
585
586void
587rf_ParityLoggingDiskManager(void *v)
588{
589	RF_Raid_t *raidPtr = v;
590	RF_ParityLog_t *reintQueue, *flushQueue;
591	int     workNeeded, done = RF_FALSE;
592	int s;
593
594	/* Main program for parity logging disk thread.  This routine waits
595	 * for work to appear in either the flush or reintegration queues and
596	 * is responsible for flushing core logs to the log disk as well as
597	 * reintegrating parity regions.
598	 *
599	 * BLOCKING */
600
601	s = splbio();
602
603	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
604
605	/*
606         * Inform our creator that we're running. Don't bother doing the
607         * mutex lock/unlock dance- we locked above, and we'll unlock
608         * below with nothing to do, yet.
609         */
610	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
611	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
612
613	/* empty the work queues */
614	flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
615	raidPtr->parityLogDiskQueue.flushQueue = NULL;
616	reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
617	raidPtr->parityLogDiskQueue.reintQueue = NULL;
618	workNeeded = (flushQueue || reintQueue);
619
620	while (!done) {
621		while (workNeeded) {
622			/* First, flush all logs in the flush queue, freeing
623			 * buffers Second, reintegrate all regions which are
624			 * reported as full. Third, append queued log data
625			 * until blocked.
626			 *
627			 * Note: Incoming appends (ParityLogAppend) can block on
628			 * either 1. empty buffer pool 2. region under
629			 * reintegration To preserve a global FIFO ordering of
630			 * appends, buffers are not released to the world
631			 * until those appends blocked on buffers are removed
632			 * from the append queue.  Similarly, regions which
633			 * are reintegrated are not opened for general use
634			 * until the append queue has been emptied. */
635
636			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
637
638			/* empty flushQueue, using free'd log buffers to
639			 * process bufTail */
640			if (flushQueue)
641			       FlushLogsToDisk(raidPtr, flushQueue);
642
643			/* empty reintQueue, flushing from reintTail as we go */
644			if (reintQueue)
645				ReintegrateLogs(raidPtr, reintQueue);
646
647			rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
648			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
649			raidPtr->parityLogDiskQueue.flushQueue = NULL;
650			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
651			raidPtr->parityLogDiskQueue.reintQueue = NULL;
652			workNeeded = (flushQueue || reintQueue);
653		}
654		/* no work is needed at this point */
655		if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
656			/* shutdown parity logging 1. disable parity logging
657			 * in all regions 2. reintegrate all regions */
658			done = RF_TRUE;	/* thread disabled, no work needed */
659			rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
660			rf_ShutdownLogging(raidPtr);
661		}
662		if (!done) {
663			/* thread enabled, no work needed, so sleep */
664			if (rf_parityLogDebug)
665				printf("[parity logging disk manager sleeping]\n");
666			rf_wait_cond2(raidPtr->parityLogDiskQueue.cond,
667				      raidPtr->parityLogDiskQueue.mutex);
668			if (rf_parityLogDebug)
669				printf("[parity logging disk manager just woke up]\n");
670			flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
671			raidPtr->parityLogDiskQueue.flushQueue = NULL;
672			reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
673			raidPtr->parityLogDiskQueue.reintQueue = NULL;
674			workNeeded = (flushQueue || reintQueue);
675		}
676	}
677	/*
678         * Announce that we're done.
679         */
680	rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex);
681	raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
682	rf_signal_cond2(raidPtr->parityLogDiskQueue.cond);
683	rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex);
684
685	splx(s);
686
687	/*
688         * In the NetBSD kernel, the thread must exit; returning would
689         * cause the proc trampoline to attempt to return to userspace.
690         */
691	kthread_exit(0);	/* does not return */
692}
693#endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
694