1/*	$NetBSD: rf_layout.h,v 1.18 2018/06/09 21:18:41 oster Exp $	*/
2/*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21 *  School of Computer Science
22 *  Carnegie Mellon University
23 *  Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29/* rf_layout.h -- header file defining layout data structures
30 */
31
32#ifndef _RF__RF_LAYOUT_H_
33#define _RF__RF_LAYOUT_H_
34
35#include <dev/raidframe/raidframevar.h>
36#include "rf_archs.h"
37#include "rf_alloclist.h"
38
39/* enables remapping to spare location under dist sparing */
40#define RF_REMAP       1
41#define RF_DONT_REMAP  0
42
43/*
44 * Flags values for RF_AccessStripeMapFlags_t
45 */
46#define RF_NO_STRIPE_LOCKS   0x0001	/* suppress stripe locks */
47#define RF_DISTRIBUTE_SPARE  0x0002	/* distribute spare space in archs
48					 * that support it */
49#define RF_BD_DECLUSTERED    0x0004	/* declustering uses block designs */
50
51/*************************************************************************
52 *
53 * this structure forms the layout component of the main Raid
54 * structure.  It describes everything needed to define and perform
55 * the mapping of logical RAID addresses <-> physical disk addresses.
56 *
57 *************************************************************************/
58struct RF_RaidLayout_s {
59	/* configuration parameters */
60	RF_SectorCount_t sectorsPerStripeUnit;	/* number of sectors in one
61						 * stripe unit */
62	RF_StripeCount_t SUsPerPU;	/* stripe units per parity unit */
63	RF_StripeCount_t SUsPerRU;	/* stripe units per reconstruction
64					 * unit */
65
66	/* redundant-but-useful info computed from the above, used in all
67	 * layouts */
68	RF_StripeCount_t numStripe;	/* total number of stripes in the
69					 * array */
70	RF_SectorCount_t dataSectorsPerStripe;
71	RF_StripeCount_t dataStripeUnitsPerDisk;
72	RF_StripeCount_t numDataCol;	/* number of SUs of data per stripe
73					 * (name here is a la RAID4) */
74	RF_StripeCount_t numParityCol;	/* number of SUs of parity per stripe.
75					 * Always 1 for now */
76	RF_StripeCount_t numParityLogCol;	/* number of SUs of parity log
77						 * per stripe.  Always 1 for
78						 * now */
79	RF_StripeCount_t stripeUnitsPerDisk;
80
81	const RF_LayoutSW_t *map;	/* ptr to struct holding mapping fns and
82					 * information */
83	void   *layoutSpecificInfo;	/* ptr to a structure holding
84					 * layout-specific params */
85};
86/*****************************************************************************************
87 *
88 * The mapping code returns a pointer to a list of AccessStripeMap structures, which
89 * describes all the mapping information about an access.  The list contains one
90 * AccessStripeMap structure per stripe touched by the access.  Each element in the list
91 * contains a stripe identifier and a pointer to a list of PhysDiskAddr structures.  Each
92 * element in this latter list describes the physical location of a stripe unit accessed
93 * within the corresponding stripe.
94 *
95 ****************************************************************************************/
96
97#define RF_PDA_TYPE_DATA   0
98#define RF_PDA_TYPE_PARITY 1
99#define RF_PDA_TYPE_Q      2
100
101struct RF_PhysDiskAddr_s {
102	RF_RowCol_t col;	/* disk identifier */
103	RF_SectorNum_t startSector;	/* sector offset into the disk */
104	RF_SectorCount_t numSector;	/* number of sectors accessed */
105	int     type;		/* used by higher levels: currently, data,
106				 * parity, or q */
107	void *bufPtr;		/* pointer to buffer supplying/receiving data */
108	RF_RaidAddr_t raidAddress;	/* raid address corresponding to this
109					 * physical disk address */
110	RF_PhysDiskAddr_t *next;
111};
112#define RF_MAX_FAILED_PDA RF_MAXCOL
113
114struct RF_AccessStripeMap_s {
115	RF_StripeNum_t stripeID;/* the stripe index */
116	RF_RaidAddr_t raidAddress;	/* the starting raid address within
117					 * this stripe */
118	RF_RaidAddr_t endRaidAddress;	/* raid address one sector past the
119					 * end of the access */
120	RF_SectorCount_t totalSectorsAccessed;	/* total num sectors
121						 * identified in physInfo list */
122	RF_StripeCount_t numStripeUnitsAccessed;	/* total num elements in
123							 * physInfo list */
124	int     numDataFailed;	/* number of failed data disks accessed */
125	int     numParityFailed;/* number of failed parity disks accessed (0
126				 * or 1) */
127	int     numQFailed;	/* number of failed Q units accessed (0 or 1) */
128	RF_AccessStripeMapFlags_t flags;	/* various flags */
129	int     numFailedPDAs;	/* number of failed phys addrs */
130	RF_PhysDiskAddr_t *failedPDAs[RF_MAX_FAILED_PDA];	/* array of failed phys
131								 * addrs */
132	RF_PhysDiskAddr_t *physInfo;	/* a list of PhysDiskAddr structs */
133	RF_PhysDiskAddr_t *parityInfo;	/* list of physical addrs for the
134					 * parity (P of P + Q ) */
135	RF_PhysDiskAddr_t *qInfo;	/* list of physical addrs for the Q of
136					 * P + Q */
137	RF_LockReqDesc_t lockReqDesc;	/* used for stripe locking */
138	RF_AccessStripeMap_t *next;
139};
140/* flag values */
141#define RF_ASM_REDIR_LARGE_WRITE   0x00000001	/* allows large-write creation
142						 * code to redirect failed
143						 * accs */
144#define RF_ASM_BAILOUT_DAG_USED    0x00000002	/* allows us to detect
145						 * recursive calls to the
146						 * bailout write dag */
147#define RF_ASM_FLAGS_LOCK_TRIED    0x00000004	/* we've acquired the lock on
148						 * the first parity range in
149						 * this parity stripe */
150#define RF_ASM_FLAGS_LOCK_TRIED2   0x00000008	/* we've acquired the lock on
151						 * the 2nd   parity range in
152						 * this parity stripe */
153#define RF_ASM_FLAGS_FORCE_TRIED   0x00000010	/* we've done the force-recon
154						 * call on this parity stripe */
155#define RF_ASM_FLAGS_RECON_BLOCKED 0x00000020	/* we blocked recon => we must
156						 * unblock it later */
157
158struct RF_AccessStripeMapHeader_s {
159	RF_StripeCount_t numStripes;	/* total number of stripes touched by
160					 * this acc */
161	RF_AccessStripeMap_t *stripeMap;	/* pointer to the actual map.
162						 * Also used for making lists */
163	RF_AccessStripeMapHeader_t *next;
164};
165
166/* A structure to be used in a linked list to keep track of function pointers. */
167typedef struct RF_VoidFunctionPointerListElem_s RF_VoidFunctionPointerListElem_t;
168struct RF_VoidFunctionPointerListElem_s {
169	RF_VoidFuncPtr fn;
170	RF_VoidFunctionPointerListElem_t *next;
171};
172
173/* We need something to just be a linked list of anonymous pointers
174   to stuff */
175typedef struct RF_VoidPointerListElem_s RF_VoidPointerListElem_t;
176struct RF_VoidPointerListElem_s {
177	void *p;
178	RF_VoidPointerListElem_t *next;
179};
180
181/* A structure to be used in a linked list to keep track of ASM Headers */
182typedef struct RF_ASMHeaderListElem_s RF_ASMHeaderListElem_t;
183struct RF_ASMHeaderListElem_s {
184	RF_AccessStripeMapHeader_t *asmh;
185	RF_ASMHeaderListElem_t *next;
186};
187
188/* A structure to keep track of all the data structures associated with
189a failed stripe.  Used for constructing the appropriate DAGs in
190rf_SelectAlgorithm() in rf_aselect.c */
191typedef struct RF_FailedStripe_s RF_FailedStripe_t;
192struct RF_FailedStripe_s {
193	RF_VoidFunctionPointerListElem_t *vfple;   /* linked list of pointers to DAG creation
194						      functions for stripes */
195	RF_VoidFunctionPointerListElem_t *bvfple;  /* linked list of pointers to DAG creation
196						      functions for blocks */
197	RF_ASMHeaderListElem_t *asmh_u;            /* Access Stripe Map Headers for regular
198						      stripes */
199	RF_ASMHeaderListElem_t *asmh_b;            /* Access Stripe Map Headers used for the
200						      block functions */
201	RF_FailedStripe_t *next;
202};
203
204
205
206/*****************************************************************************************
207 *
208 * various routines mapping addresses in the RAID address space.  These work across
209 * all layouts.  DON'T PUT ANY LAYOUT-SPECIFIC CODE HERE.
210 *
211 ****************************************************************************************/
212
213/* return the identifier of the stripe containing the given address */
214#define rf_RaidAddressToStripeID(_layoutPtr_, _addr_) \
215  ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) / (_layoutPtr_)->numDataCol )
216
217/* return the raid address of the start of the indicates stripe ID */
218#define rf_StripeIDToRaidAddress(_layoutPtr_, _sid_) \
219  ( ((_sid_) * (_layoutPtr_)->sectorsPerStripeUnit) * (_layoutPtr_)->numDataCol )
220
221/* return the identifier of the stripe containing the given stripe unit id */
222#define rf_StripeUnitIDToStripeID(_layoutPtr_, _addr_) \
223  ( (_addr_) / (_layoutPtr_)->numDataCol )
224
225/* return the identifier of the stripe unit containing the given address */
226#define rf_RaidAddressToStripeUnitID(_layoutPtr_, _addr_) \
227  ( ((_addr_) / (_layoutPtr_)->sectorsPerStripeUnit) )
228
229/* return the RAID address of next stripe boundary beyond the given address */
230#define rf_RaidAddressOfNextStripeBoundary(_layoutPtr_, _addr_) \
231  ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+1) * (_layoutPtr_)->dataSectorsPerStripe )
232
233/* return the RAID address of the start of the stripe containing the given address */
234#define rf_RaidAddressOfPrevStripeBoundary(_layoutPtr_, _addr_) \
235  ( (((_addr_)/(_layoutPtr_)->dataSectorsPerStripe)+0) * (_layoutPtr_)->dataSectorsPerStripe )
236
237/* return the RAID address of next stripe unit boundary beyond the given address */
238#define rf_RaidAddressOfNextStripeUnitBoundary(_layoutPtr_, _addr_) \
239  ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+1L)*(_layoutPtr_)->sectorsPerStripeUnit )
240
241/* return the RAID address of the start of the stripe unit containing RAID address _addr_ */
242#define rf_RaidAddressOfPrevStripeUnitBoundary(_layoutPtr_, _addr_) \
243  ( (((_addr_)/(_layoutPtr_)->sectorsPerStripeUnit)+0)*(_layoutPtr_)->sectorsPerStripeUnit )
244
245/* returns the offset into the stripe.  used by RaidAddressStripeAligned */
246#define rf_RaidAddressStripeOffset(_layoutPtr_, _addr_) \
247  ( (_addr_) % ((_layoutPtr_)->dataSectorsPerStripe) )
248
249/* returns the offset into the stripe unit.  */
250#define rf_StripeUnitOffset(_layoutPtr_, _addr_) \
251  ( (_addr_) % ((_layoutPtr_)->sectorsPerStripeUnit) )
252
253/* returns nonzero if the given RAID address is stripe-aligned */
254#define rf_RaidAddressStripeAligned( __layoutPtr__, __addr__ ) \
255  ( rf_RaidAddressStripeOffset(__layoutPtr__, __addr__) == 0 )
256
257/* returns nonzero if the given address is stripe-unit aligned */
258#define rf_StripeUnitAligned( __layoutPtr__, __addr__ ) \
259  ( rf_StripeUnitOffset(__layoutPtr__, __addr__) == 0 )
260
261/* convert an address expressed in RAID blocks to/from an addr expressed in bytes */
262#define rf_RaidAddressToByte(_raidPtr_, _addr_) \
263  ( (_addr_) << ( (_raidPtr_)->logBytesPerSector ) )
264
265#define rf_ByteToRaidAddress(_raidPtr_, _addr_) \
266  ( (_addr_) >> ( (_raidPtr_)->logBytesPerSector ) )
267
268/* convert a raid address to/from a parity stripe ID.  Conversion to raid address is easy,
269 * since we're asking for the address of the first sector in the parity stripe.  Conversion to a
270 * parity stripe ID is more complex, since stripes are not contiguously allocated in
271 * parity stripes.
272 */
273#define rf_RaidAddressToParityStripeID(_layoutPtr_, _addr_, _ru_num_) \
274  rf_MapStripeIDToParityStripeID( (_layoutPtr_), rf_RaidAddressToStripeID( (_layoutPtr_), (_addr_) ), (_ru_num_) )
275
276#define rf_ParityStripeIDToRaidAddress(_layoutPtr_, _psid_) \
277  ( (_psid_) * (_layoutPtr_)->SUsPerPU * (_layoutPtr_)->numDataCol * (_layoutPtr_)->sectorsPerStripeUnit )
278
279const RF_LayoutSW_t *rf_GetLayout(RF_ParityConfig_t parityConfig);
280int
281rf_ConfigureLayout(RF_ShutdownList_t ** listp, RF_Raid_t * raidPtr,
282    RF_Config_t * cfgPtr);
283RF_StripeNum_t
284rf_MapStripeIDToParityStripeID(RF_RaidLayout_t * layoutPtr,
285    RF_StripeNum_t stripeID, RF_ReconUnitNum_t * which_ru);
286
287#endif				/* !_RF__RF_LAYOUT_H_ */
288