1/*	$NetBSD: if_ste.c,v 1.66 2024/06/29 12:11:12 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 * Device driver for the Sundance Tech. ST-201 10/100
34 * Ethernet controller.
35 */
36
37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: if_ste.c,v 1.66 2024/06/29 12:11:12 riastradh Exp $");
39
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/mbuf.h>
45#include <sys/kernel.h>
46#include <sys/socket.h>
47#include <sys/ioctl.h>
48#include <sys/errno.h>
49#include <sys/device.h>
50#include <sys/queue.h>
51
52#include <net/if.h>
53#include <net/if_dl.h>
54#include <net/if_media.h>
55#include <net/if_ether.h>
56
57#include <net/bpf.h>
58
59#include <sys/bus.h>
60#include <sys/intr.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64#include <dev/mii/mii_bitbang.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68#include <dev/pci/pcidevs.h>
69
70#include <dev/pci/if_stereg.h>
71
72/*
73 * Transmit descriptor list size.
74 */
75#define	STE_NTXDESC		256
76#define	STE_NTXDESC_MASK	(STE_NTXDESC - 1)
77#define	STE_NEXTTX(x)		(((x) + 1) & STE_NTXDESC_MASK)
78
79/*
80 * Receive descriptor list size.
81 */
82#define	STE_NRXDESC		128
83#define	STE_NRXDESC_MASK	(STE_NRXDESC - 1)
84#define	STE_NEXTRX(x)		(((x) + 1) & STE_NRXDESC_MASK)
85
86/*
87 * Control structures are DMA'd to the ST-201 chip.  We allocate them in
88 * a single clump that maps to a single DMA segment to make several things
89 * easier.
90 */
91struct ste_control_data {
92	/*
93	 * The transmit descriptors.
94	 */
95	struct ste_tfd scd_txdescs[STE_NTXDESC];
96
97	/*
98	 * The receive descriptors.
99	 */
100	struct ste_rfd scd_rxdescs[STE_NRXDESC];
101};
102
103#define	STE_CDOFF(x)	offsetof(struct ste_control_data, x)
104#define	STE_CDTXOFF(x)	STE_CDOFF(scd_txdescs[(x)])
105#define	STE_CDRXOFF(x)	STE_CDOFF(scd_rxdescs[(x)])
106
107/*
108 * Software state for transmit and receive jobs.
109 */
110struct ste_descsoft {
111	struct mbuf *ds_mbuf;		/* head of our mbuf chain */
112	bus_dmamap_t ds_dmamap;		/* our DMA map */
113};
114
115/*
116 * Software state per device.
117 */
118struct ste_softc {
119	device_t sc_dev;		/* generic device information */
120	bus_space_tag_t sc_st;		/* bus space tag */
121	bus_space_handle_t sc_sh;	/* bus space handle */
122	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
123	struct ethercom sc_ethercom;	/* ethernet common data */
124
125	void *sc_ih;			/* interrupt cookie */
126
127	struct mii_data sc_mii;		/* MII/media information */
128
129	callout_t sc_tick_ch;		/* tick callout */
130
131	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
132#define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
133
134	/*
135	 * Software state for transmit and receive descriptors.
136	 */
137	struct ste_descsoft sc_txsoft[STE_NTXDESC];
138	struct ste_descsoft sc_rxsoft[STE_NRXDESC];
139
140	/*
141	 * Control data structures.
142	 */
143	struct ste_control_data *sc_control_data;
144#define	sc_txdescs	sc_control_data->scd_txdescs
145#define	sc_rxdescs	sc_control_data->scd_rxdescs
146
147	int	sc_txpending;		/* number of Tx requests pending */
148	int	sc_txdirty;		/* first dirty Tx descriptor */
149	int	sc_txlast;		/* last used Tx descriptor */
150
151	int	sc_rxptr;		/* next ready Rx descriptor/descsoft */
152
153	int	sc_txthresh;		/* Tx threshold */
154	uint32_t sc_DMACtrl;		/* prototype DMACtrl register */
155	uint16_t sc_IntEnable;		/* prototype IntEnable register */
156	uint16_t sc_MacCtrl0;		/* prototype MacCtrl0 register */
157	uint8_t	sc_ReceiveMode;		/* prototype ReceiveMode register */
158
159	bool	sc_enable_phy0;		/* access to phy #0 allowed */
160};
161
162#define	STE_CDTXADDR(sc, x)	((sc)->sc_cddma + STE_CDTXOFF((x)))
163#define	STE_CDRXADDR(sc, x)	((sc)->sc_cddma + STE_CDRXOFF((x)))
164
165#define	STE_CDTXSYNC(sc, x, ops)					\
166	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
167	    STE_CDTXOFF((x)), sizeof(struct ste_tfd), (ops))
168
169#define	STE_CDRXSYNC(sc, x, ops)					\
170	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
171	    STE_CDRXOFF((x)), sizeof(struct ste_rfd), (ops))
172
173#define	STE_INIT_RXDESC(sc, x)						\
174do {									\
175	struct ste_descsoft *__ds = &(sc)->sc_rxsoft[(x)];		\
176	struct ste_rfd *__rfd = &(sc)->sc_rxdescs[(x)];			\
177	struct mbuf *__m = __ds->ds_mbuf;				\
178									\
179	/*								\
180	 * Note: We scoot the packet forward 2 bytes in the buffer	\
181	 * so that the payload after the Ethernet header is aligned	\
182	 * to a 4-byte boundary.					\
183	 */								\
184	__m->m_data = __m->m_ext.ext_buf + 2;				\
185	__rfd->rfd_frag.frag_addr =					\
186	    htole32(__ds->ds_dmamap->dm_segs[0].ds_addr + 2);		\
187	__rfd->rfd_frag.frag_len = htole32((MCLBYTES - 2) | FRAG_LAST);	\
188	__rfd->rfd_next = htole32(STE_CDRXADDR((sc), STE_NEXTRX((x))));	\
189	__rfd->rfd_status = 0;						\
190	STE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
191} while (/*CONSTCOND*/0)
192
193#define STE_TIMEOUT 1000
194
195static void	ste_start(struct ifnet *);
196static void	ste_watchdog(struct ifnet *);
197static int	ste_ioctl(struct ifnet *, u_long, void *);
198static int	ste_init(struct ifnet *);
199static void	ste_stop(struct ifnet *, int);
200
201static bool	ste_shutdown(device_t, int);
202
203static void	ste_reset(struct ste_softc *, uint32_t);
204static void	ste_setthresh(struct ste_softc *);
205static void	ste_txrestart(struct ste_softc *, uint8_t);
206static void	ste_rxdrain(struct ste_softc *);
207static int	ste_add_rxbuf(struct ste_softc *, int);
208static void	ste_read_eeprom(struct ste_softc *, int, uint16_t *);
209static void	ste_tick(void *);
210
211static void	ste_stats_update(struct ste_softc *);
212
213static void	ste_set_filter(struct ste_softc *);
214
215static int	ste_intr(void *);
216static void	ste_txintr(struct ste_softc *);
217static void	ste_rxintr(struct ste_softc *);
218
219static int	ste_mii_readreg(device_t, int, int, uint16_t *);
220static int	ste_mii_writereg(device_t, int, int, uint16_t);
221static void	ste_mii_statchg(struct ifnet *);
222
223static int	ste_match(device_t, cfdata_t, void *);
224static void	ste_attach(device_t, device_t, void *);
225
226int	ste_copy_small = 0;
227
228CFATTACH_DECL_NEW(ste, sizeof(struct ste_softc),
229    ste_match, ste_attach, NULL, NULL);
230
231static uint32_t ste_mii_bitbang_read(device_t);
232static void	ste_mii_bitbang_write(device_t, uint32_t);
233
234static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
235	ste_mii_bitbang_read,
236	ste_mii_bitbang_write,
237	{
238		PC_MgmtData,		/* MII_BIT_MDO */
239		PC_MgmtData,		/* MII_BIT_MDI */
240		PC_MgmtClk,		/* MII_BIT_MDC */
241		PC_MgmtDir,		/* MII_BIT_DIR_HOST_PHY */
242		0,			/* MII_BIT_DIR_PHY_HOST */
243	}
244};
245
246/*
247 * Devices supported by this driver.
248 */
249struct ste_product {
250	pci_vendor_id_t		ste_vendor;
251	pci_product_id_t	ste_product;
252	const char		*ste_name;
253	const struct ste_product *ste_subs;
254};
255
256static const struct ste_product ste_dlink_products[] = {
257	{ PCI_VENDOR_DLINK,		0x1002,
258	  "D-Link DFE-550TX 10/100 Ethernet",
259	  NULL },
260
261	{ PCI_VENDOR_DLINK,		0x1003,
262	  "D-Link DFE-550FX Ethernet",
263	  NULL },
264
265	{ PCI_VENDOR_DLINK,		0x1012,
266	  "D-Link DFE-580TX 4-port 10/100 Ethernet",
267	  NULL },
268
269	{ PCI_VENDOR_DLINK,		0x1040,
270	  "D-Link DFE-530TXS 10/100 Ethernet",
271	  NULL },
272
273	{ 0,				0,
274	  NULL,
275	  NULL },
276};
277
278static const struct ste_product ste_products[] = {
279	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_IP100A,
280	  "IC Plus Corp. IP00A 10/100 Fast Ethernet Adapter",
281	  NULL },
282
283	{ PCI_VENDOR_SUNDANCETI,	PCI_PRODUCT_SUNDANCETI_ST201,
284	  "Sundance ST-201 10/100 Ethernet",
285	  NULL },
286
287	{ PCI_VENDOR_DLINK,		PCI_PRODUCT_DLINK_DL1002,
288	  "D-Link DL-1002 10/100 Ethernet",
289	  ste_dlink_products },
290
291	{ 0,				0,
292	  NULL,
293	  NULL },
294};
295
296static const struct ste_product *
297ste_lookup_table(pcireg_t pci_id, const struct ste_product * const products)
298{
299	const struct ste_product *sp;
300
301	for (sp = products; sp->ste_name != NULL; sp++) {
302		if (PCI_VENDOR(pci_id) == sp->ste_vendor &&
303		    PCI_PRODUCT(pci_id) == sp->ste_product)
304			return (sp);
305	}
306	return (NULL);
307}
308
309static const struct ste_product *
310ste_lookup(const struct pci_attach_args *pa)
311{
312	const struct ste_product *sp;
313
314	sp = ste_lookup_table(pa->pa_id, ste_products);
315	if (sp && sp->ste_subs) {
316		const pcireg_t subsys =
317		    pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
318		const struct ste_product *ssp =
319		    ste_lookup_table(subsys, sp->ste_subs);
320		if (ssp)
321			sp = ssp;
322	}
323	return (sp);
324}
325
326static int
327ste_match(device_t parent, cfdata_t cf, void *aux)
328{
329	struct pci_attach_args *pa = aux;
330
331	if (ste_lookup(pa) != NULL)
332		return (1);
333
334	return (0);
335}
336
337static void
338ste_attach(device_t parent, device_t self, void *aux)
339{
340	struct ste_softc *sc = device_private(self);
341	struct pci_attach_args *pa = aux;
342	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
343	struct mii_data * const mii = &sc->sc_mii;
344	pci_chipset_tag_t pc = pa->pa_pc;
345	pci_intr_handle_t ih;
346	const char *intrstr = NULL;
347	bus_space_tag_t iot, memt;
348	bus_space_handle_t ioh, memh;
349	bus_dma_segment_t seg;
350	int ioh_valid, memh_valid;
351	int i, rseg, error;
352	const struct ste_product *sp;
353	uint8_t enaddr[ETHER_ADDR_LEN];
354	uint16_t myea[ETHER_ADDR_LEN / 2];
355	char intrbuf[PCI_INTRSTR_LEN];
356
357	sc->sc_dev = self;
358
359	callout_init(&sc->sc_tick_ch, 0);
360	callout_setfunc(&sc->sc_tick_ch, ste_tick, sc);
361
362	sp = ste_lookup(pa);
363	if (sp == NULL) {
364		printf("\n");
365		panic("ste_attach: impossible");
366	}
367
368	printf(": %s\n", sp->ste_name);
369
370	/*
371	 * Map the device.
372	 */
373	ioh_valid = (pci_mapreg_map(pa, STE_PCI_IOBA,
374	    PCI_MAPREG_TYPE_IO, 0,
375	    &iot, &ioh, NULL, NULL) == 0);
376	memh_valid = (pci_mapreg_map(pa, STE_PCI_MMBA,
377	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
378	    &memt, &memh, NULL, NULL) == 0);
379
380	if (memh_valid) {
381		sc->sc_st = memt;
382		sc->sc_sh = memh;
383	} else if (ioh_valid) {
384		sc->sc_st = iot;
385		sc->sc_sh = ioh;
386	} else {
387		aprint_error_dev(self, "unable to map device registers\n");
388		return;
389	}
390
391	sc->sc_dmat = pa->pa_dmat;
392
393	/* Enable bus mastering. */
394	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
395	    pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
396	    PCI_COMMAND_MASTER_ENABLE);
397
398	/* power up chip */
399	if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
400	    NULL)) && error != EOPNOTSUPP) {
401		aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
402		return;
403	}
404
405	/*
406	 * Map and establish our interrupt.
407	 */
408	if (pci_intr_map(pa, &ih)) {
409		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
410		return;
411	}
412	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
413	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ste_intr, sc,
414	    device_xname(self));
415	if (sc->sc_ih == NULL) {
416		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
417		if (intrstr != NULL)
418			aprint_error(" at %s", intrstr);
419		aprint_error("\n");
420		return;
421	}
422	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
423
424	/*
425	 * Allocate the control data structures, and create and load the
426	 * DMA map for it.
427	 */
428	if ((error = bus_dmamem_alloc(sc->sc_dmat,
429	    sizeof(struct ste_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
430	    0)) != 0) {
431		aprint_error_dev(sc->sc_dev,
432		    "unable to allocate control data, error = %d\n", error);
433		goto fail_0;
434	}
435
436	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
437	    sizeof(struct ste_control_data), (void **)&sc->sc_control_data,
438	    BUS_DMA_COHERENT)) != 0) {
439		aprint_error_dev(sc->sc_dev,
440		    "unable to map control data, error = %d\n", error);
441		goto fail_1;
442	}
443
444	if ((error = bus_dmamap_create(sc->sc_dmat,
445	    sizeof(struct ste_control_data), 1,
446	    sizeof(struct ste_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
447		aprint_error_dev(sc->sc_dev,
448		    "unable to create control data DMA map, error = %d\n",
449		    error);
450		goto fail_2;
451	}
452
453	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
454	    sc->sc_control_data, sizeof(struct ste_control_data), NULL,
455	    0)) != 0) {
456		aprint_error_dev(sc->sc_dev,
457		    "unable to load control data DMA map, error = %d\n",
458		    error);
459		goto fail_3;
460	}
461
462	/*
463	 * Create the transmit buffer DMA maps.
464	 */
465	for (i = 0; i < STE_NTXDESC; i++) {
466		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
467		    STE_NTXFRAGS, MCLBYTES, 0, 0,
468		    &sc->sc_txsoft[i].ds_dmamap)) != 0) {
469			aprint_error_dev(sc->sc_dev,
470			    "unable to create tx DMA map %d, error = %d\n", i,
471			    error);
472			goto fail_4;
473		}
474	}
475
476	/*
477	 * Create the receive buffer DMA maps.
478	 */
479	for (i = 0; i < STE_NRXDESC; i++) {
480		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
481		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
482			aprint_error_dev(sc->sc_dev,
483			    "unable to create rx DMA map %d, error = %d\n", i,
484			    error);
485			goto fail_5;
486		}
487		sc->sc_rxsoft[i].ds_mbuf = NULL;
488	}
489
490	/*
491	 * Reset the chip to a known state.
492	 */
493	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
494	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
495
496	/*
497	 * Read the Ethernet address from the EEPROM.
498	 */
499	for (i = 0; i < 3; i++) {
500		ste_read_eeprom(sc, STE_EEPROM_StationAddress0 + i, &myea[i]);
501		myea[i] = le16toh(myea[i]);
502	}
503	memcpy(enaddr, myea, sizeof(enaddr));
504
505	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
506	    ether_sprintf(enaddr));
507
508	/*
509	 * Initialize our media structures and probe the MII.
510	 */
511	mii->mii_ifp = ifp;
512	mii->mii_readreg = ste_mii_readreg;
513	mii->mii_writereg = ste_mii_writereg;
514	mii->mii_statchg = ste_mii_statchg;
515	sc->sc_ethercom.ec_mii = mii;
516	ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
517	    ether_mediastatus);
518	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
519	    MII_OFFSET_ANY, 0);
520	if (LIST_FIRST(&mii->mii_phys) == NULL) {
521		/*
522		 * It seems that some variants of this chip "ghost" the
523		 * single PHY at #0 and #1.  We will try probing the MII
524		 * first while ignoring #0 access.  If we find the PHY,
525		 * great!  If not, un-ignore #0 and try probing *just*
526		 * #0 to see if we can find it.
527		 */
528		sc->sc_enable_phy0 = true;
529		mii_attach(sc->sc_dev, mii, 0xffffffff, 0,
530		    MII_OFFSET_ANY, 0);
531	}
532	if (LIST_FIRST(&mii->mii_phys) == NULL) {
533		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
534		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
535	} else
536		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
537
538	ifp = &sc->sc_ethercom.ec_if;
539	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
540	ifp->if_softc = sc;
541	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
542	ifp->if_ioctl = ste_ioctl;
543	ifp->if_start = ste_start;
544	ifp->if_watchdog = ste_watchdog;
545	ifp->if_init = ste_init;
546	ifp->if_stop = ste_stop;
547	IFQ_SET_READY(&ifp->if_snd);
548
549	/*
550	 * Default the transmit threshold to 128 bytes.
551	 */
552	sc->sc_txthresh = 128;
553
554	/*
555	 * Disable MWI if the PCI layer tells us to.
556	 */
557	sc->sc_DMACtrl = 0;
558	if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0)
559		sc->sc_DMACtrl |= DC_MWIDisable;
560
561	/*
562	 * We can support 802.1Q VLAN-sized frames.
563	 */
564	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
565
566	/*
567	 * Attach the interface.
568	 */
569	if_attach(ifp);
570	if_deferred_start_init(ifp, NULL);
571	ether_ifattach(ifp, enaddr);
572
573	/*
574	 * Make sure the interface is shutdown during reboot.
575	 */
576	if (pmf_device_register1(self, NULL, NULL, ste_shutdown))
577		pmf_class_network_register(self, ifp);
578	else
579		aprint_error_dev(self, "couldn't establish power handler\n");
580
581	return;
582
583	/*
584	 * Free any resources we've allocated during the failed attach
585	 * attempt.  Do this in reverse order and fall through.
586	 */
587 fail_5:
588	for (i = 0; i < STE_NRXDESC; i++) {
589		if (sc->sc_rxsoft[i].ds_dmamap != NULL)
590			bus_dmamap_destroy(sc->sc_dmat,
591			    sc->sc_rxsoft[i].ds_dmamap);
592	}
593 fail_4:
594	for (i = 0; i < STE_NTXDESC; i++) {
595		if (sc->sc_txsoft[i].ds_dmamap != NULL)
596			bus_dmamap_destroy(sc->sc_dmat,
597			    sc->sc_txsoft[i].ds_dmamap);
598	}
599	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
600 fail_3:
601	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
602 fail_2:
603	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
604	    sizeof(struct ste_control_data));
605 fail_1:
606	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
607 fail_0:
608	return;
609}
610
611/*
612 * ste_shutdown:
613 *
614 *	Make sure the interface is stopped at reboot time.
615 */
616static bool
617ste_shutdown(device_t self, int howto)
618{
619	struct ste_softc *sc;
620
621	sc = device_private(self);
622	ste_stop(&sc->sc_ethercom.ec_if, 1);
623
624	return true;
625}
626
627static void
628ste_dmahalt_wait(struct ste_softc *sc)
629{
630	int i;
631
632	for (i = 0; i < STE_TIMEOUT; i++) {
633		delay(2);
634		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_DMACtrl) &
635		     DC_DMAHaltBusy) == 0)
636			break;
637	}
638
639	if (i == STE_TIMEOUT)
640		printf("%s: DMA halt timed out\n", device_xname(sc->sc_dev));
641}
642
643/*
644 * ste_start:		[ifnet interface function]
645 *
646 *	Start packet transmission on the interface.
647 */
648static void
649ste_start(struct ifnet *ifp)
650{
651	struct ste_softc *sc = ifp->if_softc;
652	struct mbuf *m0, *m;
653	struct ste_descsoft *ds;
654	struct ste_tfd *tfd;
655	bus_dmamap_t dmamap;
656	int error, olasttx, nexttx, opending, seg, totlen;
657
658	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
659		return;
660
661	/*
662	 * Remember the previous number of pending transmissions
663	 * and the current last descriptor in the list.
664	 */
665	opending = sc->sc_txpending;
666	olasttx = sc->sc_txlast;
667
668	/*
669	 * Loop through the send queue, setting up transmit descriptors
670	 * until we drain the queue, or use up all available transmit
671	 * descriptors.
672	 */
673	while (sc->sc_txpending < STE_NTXDESC) {
674		/*
675		 * Grab a packet off the queue.
676		 */
677		IFQ_POLL(&ifp->if_snd, m0);
678		if (m0 == NULL)
679			break;
680		m = NULL;
681
682		/*
683		 * Get the last and next available transmit descriptor.
684		 */
685		nexttx = STE_NEXTTX(sc->sc_txlast);
686		tfd = &sc->sc_txdescs[nexttx];
687		ds = &sc->sc_txsoft[nexttx];
688
689		dmamap = ds->ds_dmamap;
690
691		/*
692		 * Load the DMA map.  If this fails, the packet either
693		 * didn't fit in the allotted number of segments, or we
694		 * were short on resources.  In this case, we'll copy
695		 * and try again.
696		 */
697		if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
698		    BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
699			MGETHDR(m, M_DONTWAIT, MT_DATA);
700			if (m == NULL) {
701				printf("%s: unable to allocate Tx mbuf\n",
702				    device_xname(sc->sc_dev));
703				break;
704			}
705			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
706			if (m0->m_pkthdr.len > MHLEN) {
707				MCLGET(m, M_DONTWAIT);
708				if ((m->m_flags & M_EXT) == 0) {
709					printf("%s: unable to allocate Tx "
710					    "cluster\n",
711					    device_xname(sc->sc_dev));
712					m_freem(m);
713					break;
714				}
715			}
716			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
717			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
718			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
719			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
720			if (error) {
721				printf("%s: unable to load Tx buffer, "
722				    "error = %d\n", device_xname(sc->sc_dev),
723				    error);
724				m_freem(m);
725				break;
726			}
727		}
728
729		IFQ_DEQUEUE(&ifp->if_snd, m0);
730		if (m != NULL) {
731			m_freem(m0);
732			m0 = m;
733		}
734
735		/*
736		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
737		 */
738
739		/* Sync the DMA map. */
740		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
741		    BUS_DMASYNC_PREWRITE);
742
743		/* Initialize the fragment list. */
744		for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) {
745			tfd->tfd_frags[seg].frag_addr =
746			    htole32(dmamap->dm_segs[seg].ds_addr);
747			tfd->tfd_frags[seg].frag_len =
748			    htole32(dmamap->dm_segs[seg].ds_len);
749			totlen += dmamap->dm_segs[seg].ds_len;
750		}
751		tfd->tfd_frags[seg - 1].frag_len |= htole32(FRAG_LAST);
752
753		/* Initialize the descriptor. */
754		tfd->tfd_next = htole32(STE_CDTXADDR(sc, nexttx));
755		tfd->tfd_control = htole32(TFD_FrameId(nexttx) | (totlen & 3));
756
757		/* Sync the descriptor. */
758		STE_CDTXSYNC(sc, nexttx,
759		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
760
761		/*
762		 * Store a pointer to the packet so we can free it later,
763		 * and remember what txdirty will be once the packet is
764		 * done.
765		 */
766		ds->ds_mbuf = m0;
767
768		/* Advance the tx pointer. */
769		sc->sc_txpending++;
770		sc->sc_txlast = nexttx;
771
772		/*
773		 * Pass the packet to any BPF listeners.
774		 */
775		bpf_mtap(ifp, m0, BPF_D_OUT);
776	}
777
778	if (sc->sc_txpending != opending) {
779		/*
780		 * We enqueued packets.  If the transmitter was idle,
781		 * reset the txdirty pointer.
782		 */
783		if (opending == 0)
784			sc->sc_txdirty = STE_NEXTTX(olasttx);
785
786		/*
787		 * Cause a descriptor interrupt to happen on the
788		 * last packet we enqueued, and also cause the
789		 * DMA engine to wait after is has finished processing
790		 * it.
791		 */
792		sc->sc_txdescs[sc->sc_txlast].tfd_next = 0;
793		sc->sc_txdescs[sc->sc_txlast].tfd_control |=
794		    htole32(TFD_TxDMAIndicate);
795		STE_CDTXSYNC(sc, sc->sc_txlast,
796		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
797
798		/*
799		 * Link up the new chain of descriptors to the
800		 * last.
801		 */
802		sc->sc_txdescs[olasttx].tfd_next =
803		    htole32(STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
804		STE_CDTXSYNC(sc, olasttx,
805		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
806
807		/*
808		 * Kick the transmit DMA logic.  Note that since we're
809		 * using auto-polling, reading the Tx desc pointer will
810		 * give it the nudge it needs to get going.
811		 */
812		if (bus_space_read_4(sc->sc_st, sc->sc_sh,
813		    STE_TxDMAListPtr) == 0) {
814			bus_space_write_4(sc->sc_st, sc->sc_sh,
815			    STE_DMACtrl, DC_TxDMAHalt);
816			ste_dmahalt_wait(sc);
817			bus_space_write_4(sc->sc_st, sc->sc_sh,
818			    STE_TxDMAListPtr,
819			    STE_CDTXADDR(sc, STE_NEXTTX(olasttx)));
820			bus_space_write_4(sc->sc_st, sc->sc_sh,
821			    STE_DMACtrl, DC_TxDMAResume);
822		}
823
824		/* Set a watchdog timer in case the chip flakes out. */
825		ifp->if_timer = 5;
826	}
827}
828
829/*
830 * ste_watchdog:	[ifnet interface function]
831 *
832 *	Watchdog timer handler.
833 */
834static void
835ste_watchdog(struct ifnet *ifp)
836{
837	struct ste_softc *sc = ifp->if_softc;
838
839	printf("%s: device timeout\n", device_xname(sc->sc_dev));
840	if_statinc(ifp, if_oerrors);
841
842	ste_txintr(sc);
843	ste_rxintr(sc);
844	(void) ste_init(ifp);
845
846	/* Try to get more packets going. */
847	ste_start(ifp);
848}
849
850/*
851 * ste_ioctl:		[ifnet interface function]
852 *
853 *	Handle control requests from the operator.
854 */
855static int
856ste_ioctl(struct ifnet *ifp, u_long cmd, void *data)
857{
858	struct ste_softc *sc = ifp->if_softc;
859	int s, error;
860
861	s = splnet();
862
863	error = ether_ioctl(ifp, cmd, data);
864	if (error == ENETRESET) {
865		/*
866		 * Multicast list has changed; set the hardware filter
867		 * accordingly.
868		 */
869		if (ifp->if_flags & IFF_RUNNING)
870			ste_set_filter(sc);
871		error = 0;
872	}
873
874	/* Try to get more packets going. */
875	ste_start(ifp);
876
877	splx(s);
878	return (error);
879}
880
881/*
882 * ste_intr:
883 *
884 *	Interrupt service routine.
885 */
886static int
887ste_intr(void *arg)
888{
889	struct ste_softc *sc = arg;
890	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
891	uint16_t isr;
892	uint8_t txstat;
893	int wantinit;
894
895	if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatus) &
896	     IS_InterruptStatus) == 0)
897		return (0);
898
899	for (wantinit = 0; wantinit == 0;) {
900		isr = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_IntStatusAck);
901		if ((isr & sc->sc_IntEnable) == 0)
902			break;
903
904		/* Receive interrupts. */
905		if (isr & IE_RxDMAComplete)
906			ste_rxintr(sc);
907
908		/* Transmit interrupts. */
909		if (isr & (IE_TxDMAComplete | IE_TxComplete))
910			ste_txintr(sc);
911
912		/* Statistics overflow. */
913		if (isr & IE_UpdateStats)
914			ste_stats_update(sc);
915
916		/* Transmission errors. */
917		if (isr & IE_TxComplete) {
918			for (;;) {
919				txstat = bus_space_read_1(sc->sc_st, sc->sc_sh,
920				    STE_TxStatus);
921				if ((txstat & TS_TxComplete) == 0)
922					break;
923				if (txstat & TS_TxUnderrun) {
924					sc->sc_txthresh += 32;
925					if (sc->sc_txthresh > 0x1ffc)
926						sc->sc_txthresh = 0x1ffc;
927					printf("%s: transmit underrun, new "
928					    "threshold: %d bytes\n",
929					    device_xname(sc->sc_dev),
930					    sc->sc_txthresh);
931					ste_reset(sc, AC_TxReset | AC_DMA |
932					    AC_FIFO | AC_Network);
933					ste_setthresh(sc);
934					bus_space_write_1(sc->sc_st, sc->sc_sh,
935					    STE_TxDMAPollPeriod, 127);
936					ste_txrestart(sc,
937					    bus_space_read_1(sc->sc_st,
938						sc->sc_sh, STE_TxFrameId));
939				}
940				if (txstat & TS_TxReleaseError) {
941					printf("%s: Tx FIFO release error\n",
942					    device_xname(sc->sc_dev));
943					wantinit = 1;
944				}
945				if (txstat & TS_MaxCollisions) {
946					printf("%s: excessive collisions\n",
947					    device_xname(sc->sc_dev));
948					wantinit = 1;
949				}
950				if (txstat & TS_TxStatusOverflow) {
951					printf("%s: status overflow\n",
952					    device_xname(sc->sc_dev));
953					wantinit = 1;
954				}
955				bus_space_write_2(sc->sc_st, sc->sc_sh,
956				    STE_TxStatus, 0);
957			}
958		}
959
960		/* Host interface errors. */
961		if (isr & IE_HostError) {
962			printf("%s: Host interface error\n",
963			    device_xname(sc->sc_dev));
964			wantinit = 1;
965		}
966	}
967
968	if (wantinit)
969		ste_init(ifp);
970
971	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable,
972	    sc->sc_IntEnable);
973
974	/* Try to get more packets going. */
975	if_schedule_deferred_start(ifp);
976
977	return (1);
978}
979
980/*
981 * ste_txintr:
982 *
983 *	Helper; handle transmit interrupts.
984 */
985static void
986ste_txintr(struct ste_softc *sc)
987{
988	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
989	struct ste_descsoft *ds;
990	uint32_t control;
991	int i;
992
993	/*
994	 * Go through our Tx list and free mbufs for those
995	 * frames which have been transmitted.
996	 */
997	for (i = sc->sc_txdirty; sc->sc_txpending != 0;
998	     i = STE_NEXTTX(i), sc->sc_txpending--) {
999		ds = &sc->sc_txsoft[i];
1000
1001		STE_CDTXSYNC(sc, i,
1002		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1003
1004		control = le32toh(sc->sc_txdescs[i].tfd_control);
1005		if ((control & TFD_TxDMAComplete) == 0)
1006			break;
1007
1008		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap,
1009		    0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1010		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1011		m_freem(ds->ds_mbuf);
1012		ds->ds_mbuf = NULL;
1013	}
1014
1015	/* Update the dirty transmit buffer pointer. */
1016	sc->sc_txdirty = i;
1017
1018	/*
1019	 * If there are no more pending transmissions, cancel the watchdog
1020	 * timer.
1021	 */
1022	if (sc->sc_txpending == 0)
1023		ifp->if_timer = 0;
1024}
1025
1026/*
1027 * ste_rxintr:
1028 *
1029 *	Helper; handle receive interrupts.
1030 */
1031static void
1032ste_rxintr(struct ste_softc *sc)
1033{
1034	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1035	struct ste_descsoft *ds;
1036	struct mbuf *m;
1037	uint32_t status;
1038	int i, len;
1039
1040	for (i = sc->sc_rxptr;; i = STE_NEXTRX(i)) {
1041		ds = &sc->sc_rxsoft[i];
1042
1043		STE_CDRXSYNC(sc, i,
1044		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1045
1046		status = le32toh(sc->sc_rxdescs[i].rfd_status);
1047
1048		if ((status & RFD_RxDMAComplete) == 0)
1049			break;
1050
1051		/*
1052		 * If the packet had an error, simply recycle the
1053		 * buffer.  Note, we count the error later in the
1054		 * periodic stats update.
1055		 */
1056		if (status & RFD_RxFrameError) {
1057			STE_INIT_RXDESC(sc, i);
1058			continue;
1059		}
1060
1061		bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1062		    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1063
1064		/*
1065		 * No errors; receive the packet.  Note, we have
1066		 * configured the chip to not include the CRC at
1067		 * the end of the packet.
1068		 */
1069		len = RFD_RxDMAFrameLen(status);
1070
1071		/*
1072		 * If the packet is small enough to fit in a
1073		 * single header mbuf, allocate one and copy
1074		 * the data into it.  This greatly reduces
1075		 * memory consumption when we receive lots
1076		 * of small packets.
1077		 *
1078		 * Otherwise, we add a new buffer to the receive
1079		 * chain.  If this fails, we drop the packet and
1080		 * recycle the old buffer.
1081		 */
1082		if (ste_copy_small != 0 && len <= (MHLEN - 2)) {
1083			MGETHDR(m, M_DONTWAIT, MT_DATA);
1084			if (m == NULL)
1085				goto dropit;
1086			MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1087			m->m_data += 2;
1088			memcpy(mtod(m, void *),
1089			    mtod(ds->ds_mbuf, void *), len);
1090			STE_INIT_RXDESC(sc, i);
1091			bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1092			    ds->ds_dmamap->dm_mapsize,
1093			    BUS_DMASYNC_PREREAD);
1094		} else {
1095			m = ds->ds_mbuf;
1096			if (ste_add_rxbuf(sc, i) != 0) {
1097 dropit:
1098				if_statinc(ifp, if_ierrors);
1099				STE_INIT_RXDESC(sc, i);
1100				bus_dmamap_sync(sc->sc_dmat,
1101				    ds->ds_dmamap, 0,
1102				    ds->ds_dmamap->dm_mapsize,
1103				    BUS_DMASYNC_PREREAD);
1104				continue;
1105			}
1106		}
1107
1108		m_set_rcvif(m, ifp);
1109		m->m_pkthdr.len = m->m_len = len;
1110
1111		/* Pass it on. */
1112		if_percpuq_enqueue(ifp->if_percpuq, m);
1113	}
1114
1115	/* Update the receive pointer. */
1116	sc->sc_rxptr = i;
1117}
1118
1119/*
1120 * ste_tick:
1121 *
1122 *	One second timer, used to tick the MII.
1123 */
1124static void
1125ste_tick(void *arg)
1126{
1127	struct ste_softc *sc = arg;
1128	int s;
1129
1130	s = splnet();
1131	mii_tick(&sc->sc_mii);
1132	ste_stats_update(sc);
1133	splx(s);
1134
1135	callout_schedule(&sc->sc_tick_ch, hz);
1136}
1137
1138/*
1139 * ste_stats_update:
1140 *
1141 *	Read the ST-201 statistics counters.
1142 */
1143static void
1144ste_stats_update(struct ste_softc *sc)
1145{
1146	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1147	bus_space_tag_t st = sc->sc_st;
1148	bus_space_handle_t sh = sc->sc_sh;
1149
1150	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk0);
1151	(void) bus_space_read_2(st, sh, STE_OctetsReceivedOk1);
1152
1153	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk0);
1154	(void) bus_space_read_2(st, sh, STE_OctetsTransmittedOk1);
1155
1156	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1157
1158	if_statadd_ref(ifp, nsr, if_opackets,
1159	    (u_int) bus_space_read_2(st, sh, STE_FramesTransmittedOK));
1160
1161	(void) bus_space_read_2(st, sh, STE_FramesReceivedOK);
1162
1163	if_statadd_ref(ifp, nsr, if_collisions,
1164	    (u_int) bus_space_read_1(st, sh, STE_LateCollisions) +
1165	    (u_int) bus_space_read_1(st, sh, STE_MultipleColFrames) +
1166	    (u_int) bus_space_read_1(st, sh, STE_SingleColFrames));
1167
1168	(void) bus_space_read_1(st, sh, STE_FramesWDeferredXmt);
1169
1170	if_statadd_ref(ifp, nsr, if_ierrors,
1171	    (u_int) bus_space_read_1(st, sh, STE_FramesLostRxErrors));
1172
1173	if_statadd_ref(ifp, nsr, if_oerrors,
1174	    (u_int) bus_space_read_1(st, sh, STE_FramesWExDeferral) +
1175	    (u_int) bus_space_read_1(st, sh, STE_FramesXbortXSColls) +
1176	    bus_space_read_1(st, sh, STE_CarrierSenseErrors));
1177
1178	IF_STAT_PUTREF(ifp);
1179
1180	(void) bus_space_read_1(st, sh, STE_BcstFramesXmtdOk);
1181	(void) bus_space_read_1(st, sh, STE_BcstFramesRcvdOk);
1182	(void) bus_space_read_1(st, sh, STE_McstFramesXmtdOk);
1183	(void) bus_space_read_1(st, sh, STE_McstFramesRcvdOk);
1184}
1185
1186/*
1187 * ste_reset:
1188 *
1189 *	Perform a soft reset on the ST-201.
1190 */
1191static void
1192ste_reset(struct ste_softc *sc, uint32_t rstbits)
1193{
1194	uint32_t ac;
1195	int i;
1196
1197	ac = bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl);
1198
1199	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl, ac | rstbits);
1200
1201	delay(50000);
1202
1203	for (i = 0; i < STE_TIMEOUT; i++) {
1204		delay(1000);
1205		if ((bus_space_read_4(sc->sc_st, sc->sc_sh, STE_AsicCtrl) &
1206		     AC_ResetBusy) == 0)
1207			break;
1208	}
1209
1210	if (i == STE_TIMEOUT)
1211		printf("%s: reset failed to complete\n",
1212		    device_xname(sc->sc_dev));
1213
1214	delay(1000);
1215}
1216
1217/*
1218 * ste_setthresh:
1219 *
1220 * 	set the various transmit threshold registers
1221 */
1222static void
1223ste_setthresh(struct ste_softc *sc)
1224{
1225	/* set the TX threhold */
1226	bus_space_write_2(sc->sc_st, sc->sc_sh,
1227	    STE_TxStartThresh, sc->sc_txthresh);
1228	/* Urgent threshold: set to sc_txthresh / 2 */
1229	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAUrgentThresh,
1230	    sc->sc_txthresh >> 6);
1231	/* Burst threshold: use default value (256 bytes) */
1232}
1233
1234/*
1235 * restart TX at the given frame ID in the transmitter ring
1236 */
1237static void
1238ste_txrestart(struct ste_softc *sc, uint8_t id)
1239{
1240	uint32_t control;
1241
1242	STE_CDTXSYNC(sc, id, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1243	control = le32toh(sc->sc_txdescs[id].tfd_control);
1244	control &= ~TFD_TxDMAComplete;
1245	sc->sc_txdescs[id].tfd_control = htole32(control);
1246	STE_CDTXSYNC(sc, id, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1247
1248	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr, 0);
1249	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1, MC1_TxEnable);
1250	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAHalt);
1251	ste_dmahalt_wait(sc);
1252	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_TxDMAListPtr,
1253	    STE_CDTXADDR(sc, id));
1254	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl, DC_TxDMAResume);
1255}
1256
1257/*
1258 * ste_init:		[ ifnet interface function ]
1259 *
1260 *	Initialize the interface.  Must be called at splnet().
1261 */
1262static int
1263ste_init(struct ifnet *ifp)
1264{
1265	struct ste_softc *sc = ifp->if_softc;
1266	bus_space_tag_t st = sc->sc_st;
1267	bus_space_handle_t sh = sc->sc_sh;
1268	struct ste_descsoft *ds;
1269	int i, error = 0;
1270
1271	/*
1272	 * Cancel any pending I/O.
1273	 */
1274	ste_stop(ifp, 0);
1275
1276	/*
1277	 * Reset the chip to a known state.
1278	 */
1279	ste_reset(sc, AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA |
1280	    AC_FIFO | AC_Network | AC_Host | AC_AutoInit | AC_RstOut);
1281
1282	/*
1283	 * Initialize the transmit descriptor ring.
1284	 */
1285	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1286	sc->sc_txpending = 0;
1287	sc->sc_txdirty = 0;
1288	sc->sc_txlast = STE_NTXDESC - 1;
1289
1290	/*
1291	 * Initialize the receive descriptor and receive job
1292	 * descriptor rings.
1293	 */
1294	for (i = 0; i < STE_NRXDESC; i++) {
1295		ds = &sc->sc_rxsoft[i];
1296		if (ds->ds_mbuf == NULL) {
1297			if ((error = ste_add_rxbuf(sc, i)) != 0) {
1298				printf("%s: unable to allocate or map rx "
1299				    "buffer %d, error = %d\n",
1300				    device_xname(sc->sc_dev), i, error);
1301				/*
1302				 * XXX Should attempt to run with fewer receive
1303				 * XXX buffers instead of just failing.
1304				 */
1305				ste_rxdrain(sc);
1306				goto out;
1307			}
1308		} else
1309			STE_INIT_RXDESC(sc, i);
1310	}
1311	sc->sc_rxptr = 0;
1312
1313	/* Set the station address. */
1314	for (i = 0; i < ETHER_ADDR_LEN; i++)
1315		bus_space_write_1(st, sh, STE_StationAddress0 + 1,
1316		    CLLADDR(ifp->if_sadl)[i]);
1317
1318	/* Set up the receive filter. */
1319	ste_set_filter(sc);
1320
1321	/*
1322	 * Give the receive ring to the chip.
1323	 */
1324	bus_space_write_4(st, sh, STE_RxDMAListPtr,
1325	    STE_CDRXADDR(sc, sc->sc_rxptr));
1326
1327	/*
1328	 * We defer giving the transmit ring to the chip until we
1329	 * transmit the first packet.
1330	 */
1331
1332	/*
1333	 * Initialize the Tx auto-poll period.  It's OK to make this number
1334	 * large (127 is the max) -- we explicitly kick the transmit engine
1335	 * when there's actually a packet.  We are using auto-polling only
1336	 * to make the interface to the transmit engine not suck.
1337	 */
1338	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_TxDMAPollPeriod, 127);
1339
1340	/* ..and the Rx auto-poll period. */
1341	bus_space_write_1(st, sh, STE_RxDMAPollPeriod, 64);
1342
1343	/* Initialize the Tx start threshold. */
1344	ste_setthresh(sc);
1345
1346	/* Set the FIFO release threshold to 512 bytes. */
1347	bus_space_write_1(st, sh, STE_TxReleaseThresh, 512 >> 4);
1348
1349	/* Set maximum packet size for VLAN. */
1350	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1351		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN + 4);
1352	else
1353		bus_space_write_2(st, sh, STE_MaxFrameSize, ETHER_MAX_LEN);
1354
1355	/*
1356	 * Initialize the interrupt mask.
1357	 */
1358	sc->sc_IntEnable = IE_HostError | IE_TxComplete | IE_UpdateStats |
1359	    IE_TxDMAComplete | IE_RxDMAComplete;
1360
1361	bus_space_write_2(st, sh, STE_IntStatus, 0xffff);
1362	bus_space_write_2(st, sh, STE_IntEnable, sc->sc_IntEnable);
1363
1364	/*
1365	 * Start the receive DMA engine.
1366	 */
1367	bus_space_write_4(st, sh, STE_DMACtrl, sc->sc_DMACtrl | DC_RxDMAResume);
1368
1369	/*
1370	 * Initialize MacCtrl0 -- do it before setting the media,
1371	 * as setting the media will actually program the register.
1372	 */
1373	sc->sc_MacCtrl0 = MC0_IFSSelect(0);
1374	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1375		sc->sc_MacCtrl0 |= MC0_RcvLargeFrames;
1376
1377	/*
1378	 * Set the current media.
1379	 */
1380	if ((error = ether_mediachange(ifp)) != 0)
1381		goto out;
1382
1383	/*
1384	 * Start the MAC.
1385	 */
1386	bus_space_write_2(st, sh, STE_MacCtrl1,
1387	    MC1_StatisticsEnable | MC1_TxEnable | MC1_RxEnable);
1388
1389	/*
1390	 * Start the one second MII clock.
1391	 */
1392	callout_schedule(&sc->sc_tick_ch, hz);
1393
1394	/*
1395	 * ...all done!
1396	 */
1397	ifp->if_flags |= IFF_RUNNING;
1398
1399 out:
1400	if (error)
1401		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1402	return (error);
1403}
1404
1405/*
1406 * ste_drain:
1407 *
1408 *	Drain the receive queue.
1409 */
1410static void
1411ste_rxdrain(struct ste_softc *sc)
1412{
1413	struct ste_descsoft *ds;
1414	int i;
1415
1416	for (i = 0; i < STE_NRXDESC; i++) {
1417		ds = &sc->sc_rxsoft[i];
1418		if (ds->ds_mbuf != NULL) {
1419			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1420			m_freem(ds->ds_mbuf);
1421			ds->ds_mbuf = NULL;
1422		}
1423	}
1424}
1425
1426/*
1427 * ste_stop:		[ ifnet interface function ]
1428 *
1429 *	Stop transmission on the interface.
1430 */
1431static void
1432ste_stop(struct ifnet *ifp, int disable)
1433{
1434	struct ste_softc *sc = ifp->if_softc;
1435	struct ste_descsoft *ds;
1436	int i;
1437
1438	/*
1439	 * Stop the one second clock.
1440	 */
1441	callout_stop(&sc->sc_tick_ch);
1442
1443	/* Down the MII. */
1444	mii_down(&sc->sc_mii);
1445
1446	/*
1447	 * Disable interrupts.
1448	 */
1449	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_IntEnable, 0);
1450
1451	/*
1452	 * Stop receiver, transmitter, and stats update.
1453	 */
1454	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl1,
1455	    MC1_StatisticsDisable | MC1_TxDisable | MC1_RxDisable);
1456
1457	/*
1458	 * Stop the transmit and receive DMA.
1459	 */
1460	bus_space_write_4(sc->sc_st, sc->sc_sh, STE_DMACtrl,
1461	    DC_RxDMAHalt | DC_TxDMAHalt);
1462	ste_dmahalt_wait(sc);
1463
1464	/*
1465	 * Release any queued transmit buffers.
1466	 */
1467	for (i = 0; i < STE_NTXDESC; i++) {
1468		ds = &sc->sc_txsoft[i];
1469		if (ds->ds_mbuf != NULL) {
1470			bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1471			m_freem(ds->ds_mbuf);
1472			ds->ds_mbuf = NULL;
1473		}
1474	}
1475
1476	/*
1477	 * Mark the interface down and cancel the watchdog timer.
1478	 */
1479	ifp->if_flags &= ~IFF_RUNNING;
1480	ifp->if_timer = 0;
1481
1482	if (disable)
1483		ste_rxdrain(sc);
1484}
1485
1486static int
1487ste_eeprom_wait(struct ste_softc *sc)
1488{
1489	int i;
1490
1491	for (i = 0; i < STE_TIMEOUT; i++) {
1492		delay(1000);
1493		if ((bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl) &
1494		     EC_EepromBusy) == 0)
1495			return (0);
1496	}
1497	return (1);
1498}
1499
1500/*
1501 * ste_read_eeprom:
1502 *
1503 *	Read data from the serial EEPROM.
1504 */
1505static void
1506ste_read_eeprom(struct ste_softc *sc, int offset, uint16_t *data)
1507{
1508
1509	if (ste_eeprom_wait(sc))
1510		printf("%s: EEPROM failed to come ready\n",
1511		    device_xname(sc->sc_dev));
1512
1513	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_EepromCtrl,
1514	    EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_R));
1515	if (ste_eeprom_wait(sc))
1516		printf("%s: EEPROM read timed out\n",
1517		    device_xname(sc->sc_dev));
1518	*data = bus_space_read_2(sc->sc_st, sc->sc_sh, STE_EepromData);
1519}
1520
1521/*
1522 * ste_add_rxbuf:
1523 *
1524 *	Add a receive buffer to the indicated descriptor.
1525 */
1526static int
1527ste_add_rxbuf(struct ste_softc *sc, int idx)
1528{
1529	struct ste_descsoft *ds = &sc->sc_rxsoft[idx];
1530	struct mbuf *m;
1531	int error;
1532
1533	MGETHDR(m, M_DONTWAIT, MT_DATA);
1534	if (m == NULL)
1535		return (ENOBUFS);
1536
1537	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1538	MCLGET(m, M_DONTWAIT);
1539	if ((m->m_flags & M_EXT) == 0) {
1540		m_freem(m);
1541		return (ENOBUFS);
1542	}
1543
1544	if (ds->ds_mbuf != NULL)
1545		bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1546
1547	ds->ds_mbuf = m;
1548
1549	error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1550	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1551	    BUS_DMA_READ | BUS_DMA_NOWAIT);
1552	if (error) {
1553		printf("%s: can't load rx DMA map %d, error = %d\n",
1554		    device_xname(sc->sc_dev), idx, error);
1555		panic("ste_add_rxbuf");		/* XXX */
1556	}
1557
1558	bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1559	    ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1560
1561	STE_INIT_RXDESC(sc, idx);
1562
1563	return (0);
1564}
1565
1566/*
1567 * ste_set_filter:
1568 *
1569 *	Set up the receive filter.
1570 */
1571static void
1572ste_set_filter(struct ste_softc *sc)
1573{
1574	struct ethercom *ec = &sc->sc_ethercom;
1575	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1576	struct ether_multi *enm;
1577	struct ether_multistep step;
1578	uint32_t crc;
1579	uint16_t mchash[4];
1580
1581	sc->sc_ReceiveMode = RM_ReceiveUnicast;
1582	if (ifp->if_flags & IFF_BROADCAST)
1583		sc->sc_ReceiveMode |= RM_ReceiveBroadcast;
1584
1585	if (ifp->if_flags & IFF_PROMISC) {
1586		sc->sc_ReceiveMode |= RM_ReceiveAllFrames;
1587		goto allmulti;
1588	}
1589
1590	/*
1591	 * Set up the multicast address filter by passing all multicast
1592	 * addresses through a CRC generator, and then using the low-order
1593	 * 6 bits as an index into the 64 bit multicast hash table.  The
1594	 * high order bits select the register, while the rest of the bits
1595	 * select the bit within the register.
1596	 */
1597
1598	memset(mchash, 0, sizeof(mchash));
1599
1600	ETHER_LOCK(ec);
1601	ETHER_FIRST_MULTI(step, ec, enm);
1602	if (enm == NULL) {
1603		ETHER_UNLOCK(ec);
1604		goto done;
1605	}
1606
1607	while (enm != NULL) {
1608		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1609			/*
1610			 * We must listen to a range of multicast addresses.
1611			 * For now, just accept all multicasts, rather than
1612			 * trying to set only those filter bits needed to match
1613			 * the range.  (At this time, the only use of address
1614			 * ranges is for IP multicast routing, for which the
1615			 * range is big enough to require all bits set.)
1616			 */
1617			ETHER_UNLOCK(ec);
1618			goto allmulti;
1619		}
1620
1621		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
1622
1623		/* Just want the 6 least significant bits. */
1624		crc &= 0x3f;
1625
1626		/* Set the corresponding bit in the hash table. */
1627		mchash[crc >> 4] |= 1 << (crc & 0xf);
1628
1629		ETHER_NEXT_MULTI(step, enm);
1630	}
1631	ETHER_UNLOCK(ec);
1632
1633	sc->sc_ReceiveMode |= RM_ReceiveMulticastHash;
1634
1635	ifp->if_flags &= ~IFF_ALLMULTI;
1636	goto done;
1637
1638 allmulti:
1639	ifp->if_flags |= IFF_ALLMULTI;
1640	sc->sc_ReceiveMode |= RM_ReceiveMulticast;
1641
1642 done:
1643	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1644		/*
1645		 * Program the multicast hash table.
1646		 */
1647		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable0,
1648		    mchash[0]);
1649		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable1,
1650		    mchash[1]);
1651		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable2,
1652		    mchash[2]);
1653		bus_space_write_2(sc->sc_st, sc->sc_sh, STE_HashTable3,
1654		    mchash[3]);
1655	}
1656
1657	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_ReceiveMode,
1658	    sc->sc_ReceiveMode);
1659}
1660
1661/*
1662 * ste_mii_readreg:	[mii interface function]
1663 *
1664 *	Read a PHY register on the MII of the ST-201.
1665 */
1666static int
1667ste_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1668{
1669	struct ste_softc *sc = device_private(self);
1670
1671	if (phy == 0 && !sc->sc_enable_phy0)
1672		return EIO;
1673
1674	return mii_bitbang_readreg(self, &ste_mii_bitbang_ops, phy, reg, val);
1675}
1676
1677/*
1678 * ste_mii_writereg:	[mii interface function]
1679 *
1680 *	Write a PHY register on the MII of the ST-201.
1681 */
1682static int
1683ste_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1684{
1685	struct ste_softc *sc = device_private(self);
1686
1687	if (phy == 0 && !sc->sc_enable_phy0)
1688		return EIO;
1689
1690	return mii_bitbang_writereg(self, &ste_mii_bitbang_ops, phy, reg, val);
1691}
1692
1693/*
1694 * ste_mii_statchg:	[mii interface function]
1695 *
1696 *	Callback from MII layer when media changes.
1697 */
1698static void
1699ste_mii_statchg(struct ifnet *ifp)
1700{
1701	struct ste_softc *sc = ifp->if_softc;
1702
1703	if (sc->sc_mii.mii_media_active & IFM_FDX)
1704		sc->sc_MacCtrl0 |= MC0_FullDuplexEnable;
1705	else
1706		sc->sc_MacCtrl0 &= ~MC0_FullDuplexEnable;
1707
1708	/* XXX 802.1x flow-control? */
1709
1710	bus_space_write_2(sc->sc_st, sc->sc_sh, STE_MacCtrl0, sc->sc_MacCtrl0);
1711}
1712
1713/*
1714 * ste_mii_bitbang_read: [mii bit-bang interface function]
1715 *
1716 *	Read the MII serial port for the MII bit-bang module.
1717 */
1718static uint32_t
1719ste_mii_bitbang_read(device_t self)
1720{
1721	struct ste_softc *sc = device_private(self);
1722
1723	return (bus_space_read_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl));
1724}
1725
1726/*
1727 * ste_mii_bitbang_write: [mii big-bang interface function]
1728 *
1729 *	Write the MII serial port for the MII bit-bang module.
1730 */
1731static void
1732ste_mii_bitbang_write(device_t self, uint32_t val)
1733{
1734	struct ste_softc *sc = device_private(self);
1735
1736	bus_space_write_1(sc->sc_st, sc->sc_sh, STE_PhyCtrl, val);
1737}
1738