1/*	$NetBSD: if_iwn.c,v 1.100 2024/04/03 01:13:41 gutteridge Exp $	*/
2/*	$OpenBSD: if_iwn.c,v 1.135 2014/09/10 07:22:09 dcoppa Exp $	*/
3
4/*-
5 * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/*
21 * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
22 * adapters.
23 */
24#include <sys/cdefs.h>
25__KERNEL_RCSID(0, "$NetBSD: if_iwn.c,v 1.100 2024/04/03 01:13:41 gutteridge Exp $");
26
27#define IWN_USE_RBUF	/* Use local storage for RX */
28#undef IWN_HWCRYPTO	/* XXX does not even compile yet */
29
30#include <sys/param.h>
31#include <sys/sockio.h>
32#include <sys/proc.h>
33#include <sys/mbuf.h>
34#include <sys/kernel.h>
35#include <sys/socket.h>
36#include <sys/systm.h>
37#include <sys/malloc.h>
38#ifdef notyetMODULE
39#include <sys/module.h>
40#endif
41#include <sys/mutex.h>
42#include <sys/conf.h>
43#include <sys/kauth.h>
44#include <sys/callout.h>
45
46#include <dev/sysmon/sysmonvar.h>
47
48#include <sys/bus.h>
49#include <machine/endian.h>
50#include <sys/intr.h>
51
52#include <dev/pci/pcireg.h>
53#include <dev/pci/pcivar.h>
54#include <dev/pci/pcidevs.h>
55
56#include <net/bpf.h>
57#include <net/if.h>
58#include <net/if_arp.h>
59#include <net/if_dl.h>
60#include <net/if_media.h>
61#include <net/if_types.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/in_var.h>
66#include <net/if_ether.h>
67#include <netinet/ip.h>
68
69#include <net80211/ieee80211_var.h>
70#include <net80211/ieee80211_amrr.h>
71#include <net80211/ieee80211_radiotap.h>
72
73#include <dev/firmload.h>
74
75#include <dev/pci/if_iwnreg.h>
76#include <dev/pci/if_iwnvar.h>
77
78static const struct device_compatible_entry compat_data[] = {
79	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
80		PCI_PRODUCT_INTEL_WIFI_LINK_1030_1), },
81
82	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
83		PCI_PRODUCT_INTEL_WIFI_LINK_1030_2), },
84
85	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
86		PCI_PRODUCT_INTEL_WIFI_LINK_4965_1), },
87
88	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
89		PCI_PRODUCT_INTEL_WIFI_LINK_4965_2), },
90
91	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
92		PCI_PRODUCT_INTEL_WIFI_LINK_4965_3), },
93
94	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
95		PCI_PRODUCT_INTEL_WIFI_LINK_4965_4), },
96
97	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
98		PCI_PRODUCT_INTEL_WIFI_LINK_5100_1), },
99
100	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
101		PCI_PRODUCT_INTEL_WIFI_LINK_5100_2), },
102
103	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
104		PCI_PRODUCT_INTEL_WIFI_LINK_5150_1), },
105
106	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
107		PCI_PRODUCT_INTEL_WIFI_LINK_5150_2), },
108
109	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
110		PCI_PRODUCT_INTEL_WIFI_LINK_5300_1), },
111
112	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
113		PCI_PRODUCT_INTEL_WIFI_LINK_5300_2), },
114
115	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
116		PCI_PRODUCT_INTEL_WIFI_LINK_5350_1), },
117
118	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
119		PCI_PRODUCT_INTEL_WIFI_LINK_5350_2), },
120
121	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
122		PCI_PRODUCT_INTEL_WIFI_LINK_1000_1), },
123
124	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
125		PCI_PRODUCT_INTEL_WIFI_LINK_1000_2), },
126
127	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
128		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_1), },
129
130	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
131		PCI_PRODUCT_INTEL_WIFI_LINK_6000_3X3_2), },
132
133	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
134		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1), },
135
136	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
137		PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2), },
138
139	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
140		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_1), },
141
142	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
143		PCI_PRODUCT_INTEL_WIFI_LINK_6050_2X2_2), },
144
145	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
146		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1), },
147
148	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
149		PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2), },
150
151	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
152		PCI_PRODUCT_INTEL_WIFI_LINK_6230_1), },
153
154	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
155		PCI_PRODUCT_INTEL_WIFI_LINK_6230_2), },
156
157	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
158		PCI_PRODUCT_INTEL_WIFI_LINK_6235), },
159
160	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
161		PCI_PRODUCT_INTEL_WIFI_LINK_6235_2), },
162
163	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
164		PCI_PRODUCT_INTEL_WIFI_LINK_100_1), },
165
166	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
167		PCI_PRODUCT_INTEL_WIFI_LINK_100_2), },
168
169	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
170		PCI_PRODUCT_INTEL_WIFI_LINK_130_1), },
171
172	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
173		PCI_PRODUCT_INTEL_WIFI_LINK_130_2), },
174
175	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
176		PCI_PRODUCT_INTEL_WIFI_LINK_2230_1), },
177
178	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
179		PCI_PRODUCT_INTEL_WIFI_LINK_2230_2), },
180
181	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
182		PCI_PRODUCT_INTEL_WIFI_LINK_2200_1), },
183
184	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
185		PCI_PRODUCT_INTEL_WIFI_LINK_2200_2), },
186
187	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
188		PCI_PRODUCT_INTEL_WIFI_LINK_135_1), },
189
190	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
191		PCI_PRODUCT_INTEL_WIFI_LINK_135_2), },
192
193	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
194		PCI_PRODUCT_INTEL_WIFI_LINK_105_1), },
195
196	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
197		PCI_PRODUCT_INTEL_WIFI_LINK_105_2), },
198
199	PCI_COMPAT_EOL
200};
201
202static int	iwn_match(device_t , struct cfdata *, void *);
203static void	iwn_attach(device_t , device_t , void *);
204static int	iwn4965_attach(struct iwn_softc *, pci_product_id_t);
205static int	iwn5000_attach(struct iwn_softc *, pci_product_id_t);
206static void	iwn_radiotap_attach(struct iwn_softc *);
207static int	iwn_detach(device_t , int);
208#if 0
209static void	iwn_power(int, void *);
210#endif
211static bool	iwn_resume(device_t, const pmf_qual_t *);
212static int	iwn_nic_lock(struct iwn_softc *);
213static int	iwn_eeprom_lock(struct iwn_softc *);
214static int	iwn_init_otprom(struct iwn_softc *);
215static int	iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
216static int	iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
217		    void **, bus_size_t, bus_size_t);
218static void	iwn_dma_contig_free(struct iwn_dma_info *);
219static int	iwn_alloc_sched(struct iwn_softc *);
220static void	iwn_free_sched(struct iwn_softc *);
221static int	iwn_alloc_kw(struct iwn_softc *);
222static void	iwn_free_kw(struct iwn_softc *);
223static int	iwn_alloc_ict(struct iwn_softc *);
224static void	iwn_free_ict(struct iwn_softc *);
225static int	iwn_alloc_fwmem(struct iwn_softc *);
226static void	iwn_free_fwmem(struct iwn_softc *);
227static int	iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
228static void	iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
229static void	iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
230static int	iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
231		    int);
232static void	iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
233static void	iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
234static void	iwn5000_ict_reset(struct iwn_softc *);
235static int	iwn_read_eeprom(struct iwn_softc *);
236static void	iwn4965_read_eeprom(struct iwn_softc *);
237
238#ifdef IWN_DEBUG
239static void	iwn4965_print_power_group(struct iwn_softc *, int);
240#endif
241static void	iwn5000_read_eeprom(struct iwn_softc *);
242static void	iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
243static void	iwn_read_eeprom_enhinfo(struct iwn_softc *);
244static struct	ieee80211_node *iwn_node_alloc(struct ieee80211_node_table *);
245static void	iwn_newassoc(struct ieee80211_node *, int);
246static int	iwn_media_change(struct ifnet *);
247static int	iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
248static void	iwn_iter_func(void *, struct ieee80211_node *);
249static void	iwn_calib_timeout(void *);
250static void	iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
251		    struct iwn_rx_data *);
252static void	iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
253		    struct iwn_rx_data *);
254#ifndef IEEE80211_NO_HT
255static void	iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
256		    struct iwn_rx_data *);
257#endif
258static void	iwn5000_rx_calib_results(struct iwn_softc *,
259		    struct iwn_rx_desc *, struct iwn_rx_data *);
260static void	iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
261		    struct iwn_rx_data *);
262static void	iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
263		    struct iwn_rx_data *);
264static void	iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
265		    struct iwn_rx_data *);
266static void	iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
267		    uint8_t);
268static void	iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
269static void	iwn_notif_intr(struct iwn_softc *);
270static void	iwn_wakeup_intr(struct iwn_softc *);
271static void	iwn_fatal_intr(struct iwn_softc *);
272static int	iwn_intr(void *);
273static void	iwn_softintr(void *);
274static void	iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
275		    uint16_t);
276static void	iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
277		    uint16_t);
278#ifdef notyet
279static void	iwn5000_reset_sched(struct iwn_softc *, int, int);
280#endif
281static int	iwn_tx(struct iwn_softc *, struct mbuf *,
282		    struct ieee80211_node *, int);
283static void	iwn_start(struct ifnet *);
284static void	iwn_watchdog(struct ifnet *);
285static int	iwn_ioctl(struct ifnet *, u_long, void *);
286static int	iwn_cmd(struct iwn_softc *, int, const void *, int, int);
287static int	iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
288		    int);
289static int	iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
290		    int);
291static int	iwn_set_link_quality(struct iwn_softc *,
292		    struct ieee80211_node *);
293static int	iwn_add_broadcast_node(struct iwn_softc *, int);
294static void	iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
295static int	iwn_set_critical_temp(struct iwn_softc *);
296static int	iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
297static void	iwn4965_power_calibration(struct iwn_softc *, int);
298static int	iwn4965_set_txpower(struct iwn_softc *, int);
299static int	iwn5000_set_txpower(struct iwn_softc *, int);
300static int	iwn4965_get_rssi(const struct iwn_rx_stat *);
301static int	iwn5000_get_rssi(const struct iwn_rx_stat *);
302static int	iwn_get_noise(const struct iwn_rx_general_stats *);
303static int	iwn4965_get_temperature(struct iwn_softc *);
304static int	iwn5000_get_temperature(struct iwn_softc *);
305static int	iwn_init_sensitivity(struct iwn_softc *);
306static void	iwn_collect_noise(struct iwn_softc *,
307		    const struct iwn_rx_general_stats *);
308static int	iwn4965_init_gains(struct iwn_softc *);
309static int	iwn5000_init_gains(struct iwn_softc *);
310static int	iwn4965_set_gains(struct iwn_softc *);
311static int	iwn5000_set_gains(struct iwn_softc *);
312static void	iwn_tune_sensitivity(struct iwn_softc *,
313		    const struct iwn_rx_stats *);
314static int	iwn_send_sensitivity(struct iwn_softc *);
315static int	iwn_set_pslevel(struct iwn_softc *, int, int, int);
316static int	iwn5000_runtime_calib(struct iwn_softc *);
317
318static int	iwn_config_bt_coex_bluetooth(struct iwn_softc *);
319static int	iwn_config_bt_coex_prio_table(struct iwn_softc *);
320static int	iwn_config_bt_coex_adv1(struct iwn_softc *);
321static int	iwn_config_bt_coex_adv2(struct iwn_softc *);
322
323static int	iwn_config(struct iwn_softc *);
324static uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t,
325		    uint8_t);
326static uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
327static uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
328static int	iwn_scan(struct iwn_softc *, uint16_t);
329static int	iwn_auth(struct iwn_softc *);
330static int	iwn_run(struct iwn_softc *);
331#ifdef IWN_HWCRYPTO
332static int	iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
333		    struct ieee80211_key *);
334static void	iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
335		    struct ieee80211_key *);
336#endif
337static int	iwn_wme_update(struct ieee80211com *);
338#ifndef IEEE80211_NO_HT
339static int	iwn_ampdu_rx_start(struct ieee80211com *,
340		    struct ieee80211_node *, uint8_t);
341static void	iwn_ampdu_rx_stop(struct ieee80211com *,
342		    struct ieee80211_node *, uint8_t);
343static int	iwn_ampdu_tx_start(struct ieee80211com *,
344		    struct ieee80211_node *, uint8_t);
345static void	iwn_ampdu_tx_stop(struct ieee80211com *,
346		    struct ieee80211_node *, uint8_t);
347static void	iwn4965_ampdu_tx_start(struct iwn_softc *,
348		    struct ieee80211_node *, uint8_t, uint16_t);
349static void	iwn4965_ampdu_tx_stop(struct iwn_softc *,
350		    uint8_t, uint16_t);
351static void	iwn5000_ampdu_tx_start(struct iwn_softc *,
352		    struct ieee80211_node *, uint8_t, uint16_t);
353static void	iwn5000_ampdu_tx_stop(struct iwn_softc *,
354		    uint8_t, uint16_t);
355#endif
356static int	iwn5000_query_calibration(struct iwn_softc *);
357static int	iwn5000_send_calibration(struct iwn_softc *);
358static int	iwn5000_send_wimax_coex(struct iwn_softc *);
359static int	iwn6000_temp_offset_calib(struct iwn_softc *);
360static int	iwn2000_temp_offset_calib(struct iwn_softc *);
361static int	iwn4965_post_alive(struct iwn_softc *);
362static int	iwn5000_post_alive(struct iwn_softc *);
363static int	iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
364		    int);
365static int	iwn4965_load_firmware(struct iwn_softc *);
366static int	iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
367		    const uint8_t *, int);
368static int	iwn5000_load_firmware(struct iwn_softc *);
369static int	iwn_read_firmware_leg(struct iwn_softc *,
370		    struct iwn_fw_info *);
371static int	iwn_read_firmware_tlv(struct iwn_softc *,
372		    struct iwn_fw_info *, uint16_t);
373static int	iwn_read_firmware(struct iwn_softc *);
374static int	iwn_clock_wait(struct iwn_softc *);
375static int	iwn_apm_init(struct iwn_softc *);
376static void	iwn_apm_stop_master(struct iwn_softc *);
377static void	iwn_apm_stop(struct iwn_softc *);
378static int	iwn4965_nic_config(struct iwn_softc *);
379static int	iwn5000_nic_config(struct iwn_softc *);
380static int	iwn_hw_prepare(struct iwn_softc *);
381static int	iwn_hw_init(struct iwn_softc *);
382static void	iwn_hw_stop(struct iwn_softc *);
383static int	iwn_init(struct ifnet *);
384static void	iwn_stop(struct ifnet *, int);
385
386/* XXX MCLGETI alternative */
387static struct	mbuf *MCLGETIalt(struct iwn_softc *, int,
388		    struct ifnet *, u_int);
389#ifdef IWN_USE_RBUF
390static struct	iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *);
391static void	iwn_free_rbuf(struct mbuf *, void *, size_t, void *);
392static int	iwn_alloc_rpool(struct iwn_softc *);
393static void	iwn_free_rpool(struct iwn_softc *);
394#endif
395
396static void	iwn_fix_channel(struct ieee80211com *, struct mbuf *,
397		    struct iwn_rx_stat *);
398
399#ifdef IWN_DEBUG
400#define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
401#define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
402int iwn_debug = 0;
403#else
404#define DPRINTF(x)
405#define DPRINTFN(n, x)
406#endif
407
408CFATTACH_DECL_NEW(iwn, sizeof(struct iwn_softc), iwn_match, iwn_attach,
409	iwn_detach, NULL);
410
411static int
412iwn_match(device_t parent, cfdata_t match __unused, void *aux)
413{
414	struct pci_attach_args *pa = aux;
415
416	return pci_compatible_match(pa, compat_data);
417}
418
419static void
420iwn_attach(device_t parent __unused, device_t self, void *aux)
421{
422	struct iwn_softc *sc = device_private(self);
423	struct ieee80211com *ic = &sc->sc_ic;
424	struct ifnet *ifp = &sc->sc_ec.ec_if;
425	struct pci_attach_args *pa = aux;
426	const char *intrstr;
427	pcireg_t memtype, reg;
428	int i, error;
429	char intrbuf[PCI_INTRSTR_LEN];
430
431	sc->sc_dev = self;
432	sc->sc_pct = pa->pa_pc;
433	sc->sc_pcitag = pa->pa_tag;
434	sc->sc_dmat = pa->pa_dmat;
435	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);
436
437	callout_init(&sc->calib_to, 0);
438	callout_setfunc(&sc->calib_to, iwn_calib_timeout, sc);
439
440	pci_aprint_devinfo(pa, NULL);
441
442	/*
443	 * Get the offset of the PCI Express Capability Structure in PCI
444	 * Configuration Space.
445	 */
446	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
447	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
448	if (error == 0) {
449		aprint_error_dev(self,
450		    "PCIe capability structure not found!\n");
451		return;
452	}
453
454	/* Clear device-specific "PCI retry timeout" register (41h). */
455	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
456	if (reg & 0xff00)
457		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
458
459	/* Enable bus-mastering. */
460	/* XXX verify the bus-mastering is really needed (not in OpenBSD) */
461	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
462	reg |= PCI_COMMAND_MASTER_ENABLE;
463	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
464
465	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
466	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
467	    &sc->sc_sh, NULL, &sc->sc_sz);
468	if (error != 0) {
469		aprint_error_dev(self, "can't map mem space\n");
470		return;
471	}
472
473	sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwn_softintr, sc);
474	if (sc->sc_soft_ih == NULL) {
475		aprint_error_dev(self, "can't establish soft interrupt\n");
476		goto unmap;
477	}
478
479	/* Install interrupt handler. */
480	error = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
481	if (error) {
482		aprint_error_dev(self, "can't allocate interrupt\n");
483		goto failsi;
484	}
485	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
486	if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
487		CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
488	else
489		SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
490	pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
491	intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
492	    sizeof(intrbuf));
493	sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
494	    IPL_NET, iwn_intr, sc, device_xname(self));
495	if (sc->sc_ih == NULL) {
496		aprint_error_dev(self, "can't establish interrupt");
497		if (intrstr != NULL)
498			aprint_error(" at %s", intrstr);
499		aprint_error("\n");
500		goto failia;
501	}
502	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
503
504	/* Read hardware revision and attach. */
505	sc->hw_type =
506	    (IWN_READ(sc, IWN_HW_REV) & IWN_HW_REV_TYPE_MASK)
507	      >> IWN_HW_REV_TYPE_SHIFT;
508	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
509		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
510	else
511		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
512	if (error != 0) {
513		aprint_error_dev(self, "could not attach device\n");
514		goto failih;
515	}
516
517	if ((error = iwn_hw_prepare(sc)) != 0) {
518		aprint_error_dev(self, "hardware not ready\n");
519		goto failih;
520	}
521
522	/* Read MAC address, channels, etc from EEPROM. */
523	if ((error = iwn_read_eeprom(sc)) != 0) {
524		aprint_error_dev(self, "could not read EEPROM\n");
525		goto failih;
526	}
527
528	/* Allocate DMA memory for firmware transfers. */
529	if ((error = iwn_alloc_fwmem(sc)) != 0) {
530		aprint_error_dev(self,
531		    "could not allocate memory for firmware\n");
532		goto failih;
533	}
534
535	/* Allocate "Keep Warm" page. */
536	if ((error = iwn_alloc_kw(sc)) != 0) {
537		aprint_error_dev(self, "could not allocate keep warm page\n");
538		goto fail1;
539	}
540
541	/* Allocate ICT table for 5000 Series. */
542	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
543	    (error = iwn_alloc_ict(sc)) != 0) {
544		aprint_error_dev(self, "could not allocate ICT table\n");
545		goto fail2;
546	}
547
548	/* Allocate TX scheduler "rings". */
549	if ((error = iwn_alloc_sched(sc)) != 0) {
550		aprint_error_dev(self,
551		    "could not allocate TX scheduler rings\n");
552		goto fail3;
553	}
554
555#ifdef IWN_USE_RBUF
556	/* Allocate RX buffers. */
557	if ((error = iwn_alloc_rpool(sc)) != 0) {
558		aprint_error_dev(self, "could not allocate RX buffers\n");
559		goto fail3;
560	}
561#endif
562
563	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
564	for (i = 0; i < sc->ntxqs; i++) {
565		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
566			aprint_error_dev(self,
567			    "could not allocate TX ring %d\n", i);
568			goto fail4;
569		}
570	}
571
572	/* Allocate RX ring. */
573	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
574		aprint_error_dev(self, "could not allocate RX ring\n");
575		goto fail4;
576	}
577
578	/* Clear pending interrupts. */
579	IWN_WRITE(sc, IWN_INT, 0xffffffff);
580
581	/* Count the number of available chains. */
582	sc->ntxchains =
583	    ((sc->txchainmask >> 2) & 1) +
584	    ((sc->txchainmask >> 1) & 1) +
585	    ((sc->txchainmask >> 0) & 1);
586	sc->nrxchains =
587	    ((sc->rxchainmask >> 2) & 1) +
588	    ((sc->rxchainmask >> 1) & 1) +
589	    ((sc->rxchainmask >> 0) & 1);
590	aprint_normal_dev(self, "MIMO %dT%dR, %.4s, address %s\n",
591	    sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
592	    ether_sprintf(ic->ic_myaddr));
593
594	ic->ic_ifp = ifp;
595	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
596	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
597	ic->ic_state = IEEE80211_S_INIT;
598
599	/*
600	 * Set device capabilities.
601	 * XXX OpenBSD has IEEE80211_C_WEP, IEEE80211_C_RSN, and
602	 * IEEE80211_C_PMGT too.
603	 */
604	ic->ic_caps =
605	    IEEE80211_C_IBSS |		/* IBSS mode support */
606	    IEEE80211_C_WPA |		/* 802.11i */
607	    IEEE80211_C_MONITOR |	/* monitor mode supported */
608	    IEEE80211_C_TXPMGT |	/* tx power management */
609	    IEEE80211_C_SHSLOT |	/* short slot time supported */
610	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
611	    IEEE80211_C_WME;		/* 802.11e */
612
613#ifndef IEEE80211_NO_HT
614	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
615		/* Set HT capabilities. */
616		ic->ic_htcaps =
617#if IWN_RBUF_SIZE == 8192
618		    IEEE80211_HTCAP_AMSDU7935 |
619#endif
620		    IEEE80211_HTCAP_CBW20_40 |
621		    IEEE80211_HTCAP_SGI20 |
622		    IEEE80211_HTCAP_SGI40;
623		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
624			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
625		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
626			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
627		else
628			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
629	}
630#endif	/* !IEEE80211_NO_HT */
631
632	/* Set supported legacy rates. */
633	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
634	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
635	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
636		ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
637	}
638#ifndef IEEE80211_NO_HT
639	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
640		/* Set supported HT rates. */
641		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
642		if (sc->nrxchains > 1)
643			ic->ic_sup_mcs[1] = 0xff;	/* MCS 7-15 */
644		if (sc->nrxchains > 2)
645			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
646	}
647#endif
648
649	/* IBSS channel undefined for now. */
650	ic->ic_ibss_chan = &ic->ic_channels[0];
651
652	ifp->if_softc = sc;
653	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654	ifp->if_init = iwn_init;
655	ifp->if_ioctl = iwn_ioctl;
656	ifp->if_start = iwn_start;
657	ifp->if_stop = iwn_stop;
658	ifp->if_watchdog = iwn_watchdog;
659	IFQ_SET_READY(&ifp->if_snd);
660	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
661
662	if_initialize(ifp);
663	ieee80211_ifattach(ic);
664	/* Use common softint-based if_input */
665	ifp->if_percpuq = if_percpuq_create(ifp);
666	if_register(ifp);
667
668	ic->ic_node_alloc = iwn_node_alloc;
669	ic->ic_newassoc = iwn_newassoc;
670#ifdef IWN_HWCRYPTO
671	ic->ic_crypto.cs_key_set = iwn_set_key;
672	ic->ic_crypto.cs_key_delete = iwn_delete_key;
673#endif
674	ic->ic_wme.wme_update = iwn_wme_update;
675#ifndef IEEE80211_NO_HT
676	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
677	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
678	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
679	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
680#endif
681
682	/* Override 802.11 state transition machine. */
683	sc->sc_newstate = ic->ic_newstate;
684	ic->ic_newstate = iwn_newstate;
685
686	/* XXX media locking needs revisiting */
687	mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTNET);
688	ieee80211_media_init_with_lock(ic,
689	    iwn_media_change, ieee80211_media_status, &sc->sc_media_mtx);
690
691	sc->amrr.amrr_min_success_threshold =  1;
692	sc->amrr.amrr_max_success_threshold = 15;
693
694	iwn_radiotap_attach(sc);
695
696	/*
697	 * XXX for NetBSD, OpenBSD timeout_set replaced by
698	 * callout_init and callout_setfunc, above.
699	 */
700
701	if (pmf_device_register(self, NULL, iwn_resume))
702		pmf_class_network_register(self, ifp);
703	else
704		aprint_error_dev(self, "couldn't establish power handler\n");
705
706	/* XXX NetBSD add call to ieee80211_announce for dmesg. */
707	ieee80211_announce(ic);
708
709	sc->sc_flags |= IWN_FLAG_ATTACHED;
710	return;
711
712	/* Free allocated memory if something failed during attachment. */
713fail4:	while (--i >= 0)
714		iwn_free_tx_ring(sc, &sc->txq[i]);
715#ifdef IWN_USE_RBUF
716	iwn_free_rpool(sc);
717#endif
718	iwn_free_sched(sc);
719fail3:	if (sc->ict != NULL)
720		iwn_free_ict(sc);
721fail2:	iwn_free_kw(sc);
722fail1:	iwn_free_fwmem(sc);
723failih:	pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
724	sc->sc_ih = NULL;
725failia:	pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
726	sc->sc_pihp = NULL;
727failsi:	softint_disestablish(sc->sc_soft_ih);
728	sc->sc_soft_ih = NULL;
729unmap:	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
730}
731
732int
733iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
734{
735	struct iwn_ops *ops = &sc->ops;
736
737	ops->load_firmware = iwn4965_load_firmware;
738	ops->read_eeprom = iwn4965_read_eeprom;
739	ops->post_alive = iwn4965_post_alive;
740	ops->nic_config = iwn4965_nic_config;
741	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
742	ops->update_sched = iwn4965_update_sched;
743	ops->get_temperature = iwn4965_get_temperature;
744	ops->get_rssi = iwn4965_get_rssi;
745	ops->set_txpower = iwn4965_set_txpower;
746	ops->init_gains = iwn4965_init_gains;
747	ops->set_gains = iwn4965_set_gains;
748	ops->add_node = iwn4965_add_node;
749	ops->tx_done = iwn4965_tx_done;
750#ifndef IEEE80211_NO_HT
751	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
752	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
753#endif
754	sc->ntxqs = IWN4965_NTXQUEUES;
755	sc->ndmachnls = IWN4965_NDMACHNLS;
756	sc->broadcast_id = IWN4965_ID_BROADCAST;
757	sc->rxonsz = IWN4965_RXONSZ;
758	sc->schedsz = IWN4965_SCHEDSZ;
759	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
760	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
761	sc->fwsz = IWN4965_FWSZ;
762	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
763	sc->limits = &iwn4965_sensitivity_limits;
764	sc->fwname = "iwlwifi-4965-2.ucode";
765	/* Override chains masks, ROM is known to be broken. */
766	sc->txchainmask = IWN_ANT_AB;
767	sc->rxchainmask = IWN_ANT_ABC;
768
769	return 0;
770}
771
772int
773iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
774{
775	struct iwn_ops *ops = &sc->ops;
776
777	ops->load_firmware = iwn5000_load_firmware;
778	ops->read_eeprom = iwn5000_read_eeprom;
779	ops->post_alive = iwn5000_post_alive;
780	ops->nic_config = iwn5000_nic_config;
781	ops->config_bt_coex = iwn_config_bt_coex_bluetooth;
782	ops->update_sched = iwn5000_update_sched;
783	ops->get_temperature = iwn5000_get_temperature;
784	ops->get_rssi = iwn5000_get_rssi;
785	ops->set_txpower = iwn5000_set_txpower;
786	ops->init_gains = iwn5000_init_gains;
787	ops->set_gains = iwn5000_set_gains;
788	ops->add_node = iwn5000_add_node;
789	ops->tx_done = iwn5000_tx_done;
790#ifndef IEEE80211_NO_HT
791	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
792	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
793#endif
794	sc->ntxqs = IWN5000_NTXQUEUES;
795	sc->ndmachnls = IWN5000_NDMACHNLS;
796	sc->broadcast_id = IWN5000_ID_BROADCAST;
797	sc->rxonsz = IWN5000_RXONSZ;
798	sc->schedsz = IWN5000_SCHEDSZ;
799	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
800	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
801	sc->fwsz = IWN5000_FWSZ;
802	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
803
804	switch (sc->hw_type) {
805	case IWN_HW_REV_TYPE_5100:
806		sc->limits = &iwn5000_sensitivity_limits;
807		sc->fwname = "iwlwifi-5000-2.ucode";
808		/* Override chains masks, ROM is known to be broken. */
809		sc->txchainmask = IWN_ANT_B;
810		sc->rxchainmask = IWN_ANT_AB;
811		break;
812	case IWN_HW_REV_TYPE_5150:
813		sc->limits = &iwn5150_sensitivity_limits;
814		sc->fwname = "iwlwifi-5150-2.ucode";
815		break;
816	case IWN_HW_REV_TYPE_5300:
817	case IWN_HW_REV_TYPE_5350:
818		sc->limits = &iwn5000_sensitivity_limits;
819		sc->fwname = "iwlwifi-5000-2.ucode";
820		break;
821	case IWN_HW_REV_TYPE_1000:
822		sc->limits = &iwn1000_sensitivity_limits;
823		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_1 ||
824		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_100_2)
825			sc->fwname = "iwlwifi-100-5.ucode";
826		else
827			sc->fwname = "iwlwifi-1000-3.ucode";
828		break;
829	case IWN_HW_REV_TYPE_6000:
830		sc->limits = &iwn6000_sensitivity_limits;
831		sc->fwname = "iwlwifi-6000-4.ucode";
832		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_1 ||
833		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6000_IPA_2) {
834			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
835			/* Override chains masks, ROM is known to be broken. */
836			sc->txchainmask = IWN_ANT_BC;
837			sc->rxchainmask = IWN_ANT_BC;
838		}
839		break;
840	case IWN_HW_REV_TYPE_6050:
841		sc->limits = &iwn6000_sensitivity_limits;
842		sc->fwname = "iwlwifi-6050-5.ucode";
843		break;
844	case IWN_HW_REV_TYPE_6005:
845		sc->limits = &iwn6000_sensitivity_limits;
846		/* Type 6030 cards return IWN_HW_REV_TYPE_6005 */
847		if (pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_1 ||
848		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_1030_2 ||
849		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_1  ||
850		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_130_2  ||
851		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_1 ||
852		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6230_2 ||
853		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235   ||
854		    pid == PCI_PRODUCT_INTEL_WIFI_LINK_6235_2) {
855			sc->fwname = "iwlwifi-6000g2b-6.ucode";
856			ops->config_bt_coex = iwn_config_bt_coex_adv1;
857		}
858		/*
859		 * This covers:
860		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_1
861		 * PCI_PRODUCT_INTEL_WIFI_LINK_6005_2X2_2
862		 */
863		else
864			sc->fwname = "iwlwifi-6000g2a-6.ucode";
865		break;
866	case IWN_HW_REV_TYPE_2030:
867		sc->limits = &iwn2030_sensitivity_limits;
868		sc->fwname = "iwlwifi-2030-6.ucode";
869		ops->config_bt_coex = iwn_config_bt_coex_adv2;
870		break;
871	case IWN_HW_REV_TYPE_2000:
872		sc->limits = &iwn2000_sensitivity_limits;
873		sc->fwname = "iwlwifi-2000-6.ucode";
874		break;
875	case IWN_HW_REV_TYPE_135:
876		sc->limits = &iwn2000_sensitivity_limits;
877		sc->fwname = "iwlwifi-135-6.ucode";
878		ops->config_bt_coex = iwn_config_bt_coex_adv2;
879		break;
880	case IWN_HW_REV_TYPE_105:
881		sc->limits = &iwn2000_sensitivity_limits;
882		sc->fwname = "iwlwifi-105-6.ucode";
883		break;
884	default:
885		aprint_normal(": adapter type %d not supported\n", sc->hw_type);
886		return ENOTSUP;
887	}
888	return 0;
889}
890
891/*
892 * Attach the interface to 802.11 radiotap.
893 */
894static void
895iwn_radiotap_attach(struct iwn_softc *sc)
896{
897	struct ifnet *ifp = sc->sc_ic.ic_ifp;
898
899	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
900	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
901	    &sc->sc_drvbpf);
902
903	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
904	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
905	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
906
907	sc->sc_txtap_len = sizeof sc->sc_txtapu;
908	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
909	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
910}
911
912static int
913iwn_detach(device_t self, int flags __unused)
914{
915	struct iwn_softc *sc = device_private(self);
916	struct ifnet *ifp = sc->sc_ic.ic_ifp;
917	int qid;
918
919	if (!(sc->sc_flags & IWN_FLAG_ATTACHED))
920		return 0;
921
922	callout_stop(&sc->calib_to);
923
924	/* Uninstall interrupt handler. */
925	if (sc->sc_ih != NULL)
926		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
927	if (sc->sc_pihp != NULL)
928		pci_intr_release(sc->sc_pct, sc->sc_pihp, 1);
929	if (sc->sc_soft_ih != NULL)
930		softint_disestablish(sc->sc_soft_ih);
931
932	/* Free DMA resources. */
933	iwn_free_rx_ring(sc, &sc->rxq);
934	for (qid = 0; qid < sc->ntxqs; qid++)
935		iwn_free_tx_ring(sc, &sc->txq[qid]);
936#ifdef IWN_USE_RBUF
937	iwn_free_rpool(sc);
938#endif
939	iwn_free_sched(sc);
940	iwn_free_kw(sc);
941	if (sc->ict != NULL)
942		iwn_free_ict(sc);
943	iwn_free_fwmem(sc);
944
945	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
946
947	ieee80211_ifdetach(&sc->sc_ic);
948	if_detach(ifp);
949
950	return 0;
951}
952
953#if 0
954/*
955 * XXX Investigate if clearing the PCI retry timeout could eliminate
956 * the repeated scan calls.  Also the calls to if_init and if_start
957 * are similar to the effect of adding the call to ifioctl_common .
958 */
959static void
960iwn_power(int why, void *arg)
961{
962	struct iwn_softc *sc = arg;
963	struct ifnet *ifp;
964	pcireg_t reg;
965	int s;
966
967	if (why != PWR_RESUME)
968		return;
969
970	/* Clear device-specific "PCI retry timeout" register (41h). */
971	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
972	if (reg & 0xff00)
973		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
974
975	s = splnet();
976	ifp = &sc->sc_ic.ic_if;
977	if (ifp->if_flags & IFF_UP) {
978		if_init(ifp);
979		if (ifp->if_flags & IFF_RUNNING)
980			ifp->if_start(ifp);
981	}
982	splx(s);
983}
984#endif
985
986static bool
987iwn_resume(device_t dv, const pmf_qual_t *qual)
988{
989	return true;
990}
991
992static int
993iwn_nic_lock(struct iwn_softc *sc)
994{
995	int ntries;
996
997	/* Request exclusive access to NIC. */
998	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
999
1000	/* Spin until we actually get the lock. */
1001	for (ntries = 0; ntries < 1000; ntries++) {
1002		if ((IWN_READ(sc, IWN_GP_CNTRL) &
1003		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
1004		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
1005			return 0;
1006		DELAY(10);
1007	}
1008	return ETIMEDOUT;
1009}
1010
1011static __inline void
1012iwn_nic_unlock(struct iwn_softc *sc)
1013{
1014	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
1015}
1016
1017static __inline uint32_t
1018iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
1019{
1020	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
1021	IWN_BARRIER_READ_WRITE(sc);
1022	return IWN_READ(sc, IWN_PRPH_RDATA);
1023}
1024
1025static __inline void
1026iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1027{
1028	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
1029	IWN_BARRIER_WRITE(sc);
1030	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
1031}
1032
1033static __inline void
1034iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1035{
1036	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
1037}
1038
1039static __inline void
1040iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
1041{
1042	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
1043}
1044
1045static __inline void
1046iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
1047    const uint32_t *data, int count)
1048{
1049	for (; count > 0; count--, data++, addr += 4)
1050		iwn_prph_write(sc, addr, *data);
1051}
1052
1053static __inline uint32_t
1054iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
1055{
1056	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
1057	IWN_BARRIER_READ_WRITE(sc);
1058	return IWN_READ(sc, IWN_MEM_RDATA);
1059}
1060
1061static __inline void
1062iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
1063{
1064	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
1065	IWN_BARRIER_WRITE(sc);
1066	IWN_WRITE(sc, IWN_MEM_WDATA, data);
1067}
1068
1069#ifndef IEEE80211_NO_HT
1070static __inline void
1071iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
1072{
1073	uint32_t tmp;
1074
1075	tmp = iwn_mem_read(sc, addr & ~3);
1076	if (addr & 3)
1077		tmp = (tmp & 0x0000ffff) | data << 16;
1078	else
1079		tmp = (tmp & 0xffff0000) | data;
1080	iwn_mem_write(sc, addr & ~3, tmp);
1081}
1082#endif
1083
1084static __inline void
1085iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
1086    int count)
1087{
1088	for (; count > 0; count--, addr += 4)
1089		*data++ = iwn_mem_read(sc, addr);
1090}
1091
1092static __inline void
1093iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
1094    int count)
1095{
1096	for (; count > 0; count--, addr += 4)
1097		iwn_mem_write(sc, addr, val);
1098}
1099
1100static int
1101iwn_eeprom_lock(struct iwn_softc *sc)
1102{
1103	int i, ntries;
1104
1105	for (i = 0; i < 100; i++) {
1106		/* Request exclusive access to EEPROM. */
1107		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
1108		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1109
1110		/* Spin until we actually get the lock. */
1111		for (ntries = 0; ntries < 100; ntries++) {
1112			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
1113			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
1114				return 0;
1115			DELAY(10);
1116		}
1117	}
1118	return ETIMEDOUT;
1119}
1120
1121static __inline void
1122iwn_eeprom_unlock(struct iwn_softc *sc)
1123{
1124	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
1125}
1126
1127/*
1128 * Initialize access by host to One Time Programmable ROM.
1129 * NB: This kind of ROM can be found on 1000 or 6000 Series only.
1130 */
1131static int
1132iwn_init_otprom(struct iwn_softc *sc)
1133{
1134	uint16_t prev = 0, base, next;
1135	int count, error;
1136
1137	/* Wait for clock stabilization before accessing prph. */
1138	if ((error = iwn_clock_wait(sc)) != 0)
1139		return error;
1140
1141	if ((error = iwn_nic_lock(sc)) != 0)
1142		return error;
1143	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1144	DELAY(5);
1145	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
1146	iwn_nic_unlock(sc);
1147
1148	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
1149	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
1150		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
1151		    IWN_RESET_LINK_PWR_MGMT_DIS);
1152	}
1153	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
1154	/* Clear ECC status. */
1155	IWN_SETBITS(sc, IWN_OTP_GP,
1156	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
1157
1158	/*
1159	 * Find the block before last block (contains the EEPROM image)
1160	 * for HW without OTP shadow RAM.
1161	 */
1162	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
1163		/* Switch to absolute addressing mode. */
1164		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
1165		base = 0;
1166		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
1167			error = iwn_read_prom_data(sc, base, &next, 2);
1168			if (error != 0)
1169				return error;
1170			if (next == 0)	/* End of linked-list. */
1171				break;
1172			prev = base;
1173			base = le16toh(next);
1174		}
1175		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1176			return EIO;
1177		/* Skip "next" word. */
1178		sc->prom_base = prev + 1;
1179	}
1180	return 0;
1181}
1182
1183static int
1184iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1185{
1186	uint8_t *out = data;
1187	uint32_t val, tmp;
1188	int ntries;
1189
1190	addr += sc->prom_base;
1191	for (; count > 0; count -= 2, addr++) {
1192		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1193		for (ntries = 0; ntries < 10; ntries++) {
1194			val = IWN_READ(sc, IWN_EEPROM);
1195			if (val & IWN_EEPROM_READ_VALID)
1196				break;
1197			DELAY(5);
1198		}
1199		if (ntries == 10) {
1200			aprint_error_dev(sc->sc_dev,
1201			    "timeout reading ROM at 0x%x\n", addr);
1202			return ETIMEDOUT;
1203		}
1204		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1205			/* OTPROM, check for ECC errors. */
1206			tmp = IWN_READ(sc, IWN_OTP_GP);
1207			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1208				aprint_error_dev(sc->sc_dev,
1209				    "OTPROM ECC error at 0x%x\n", addr);
1210				return EIO;
1211			}
1212			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1213				/* Correctable ECC error, clear bit. */
1214				IWN_SETBITS(sc, IWN_OTP_GP,
1215				    IWN_OTP_GP_ECC_CORR_STTS);
1216			}
1217		}
1218		*out++ = val >> 16;
1219		if (count > 1)
1220			*out++ = val >> 24;
1221	}
1222	return 0;
1223}
1224
1225static int
1226iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1227    bus_size_t size, bus_size_t alignment)
1228{
1229	int nsegs, error;
1230
1231	dma->tag = tag;
1232	dma->size = size;
1233
1234	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1235	    &dma->map);
1236	if (error != 0)
1237		goto fail;
1238
1239	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1240	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_ZERO */
1241	if (error != 0)
1242		goto fail;
1243
1244	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1245	    BUS_DMA_NOWAIT); /* XXX OpenBSD adds BUS_DMA_COHERENT */
1246	if (error != 0)
1247		goto fail;
1248
1249	error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
1250	    BUS_DMA_NOWAIT);
1251	if (error != 0)
1252		goto fail;
1253
1254	/* XXX Presumably needed because of missing BUS_DMA_ZERO, above. */
1255	memset(dma->vaddr, 0, size);
1256	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1257
1258	dma->paddr = dma->map->dm_segs[0].ds_addr;
1259	if (kvap != NULL)
1260		*kvap = dma->vaddr;
1261
1262	return 0;
1263
1264fail:	iwn_dma_contig_free(dma);
1265	return error;
1266}
1267
1268static void
1269iwn_dma_contig_free(struct iwn_dma_info *dma)
1270{
1271	if (dma->map != NULL) {
1272		if (dma->vaddr != NULL) {
1273			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1274			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1275			bus_dmamap_unload(dma->tag, dma->map);
1276			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1277			bus_dmamem_free(dma->tag, &dma->seg, 1);
1278			dma->vaddr = NULL;
1279		}
1280		bus_dmamap_destroy(dma->tag, dma->map);
1281		dma->map = NULL;
1282	}
1283}
1284
1285static int
1286iwn_alloc_sched(struct iwn_softc *sc)
1287{
1288	/* TX scheduler rings must be aligned on a 1KB boundary. */
1289	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1290	    (void **)&sc->sched, sc->schedsz, 1024);
1291}
1292
1293static void
1294iwn_free_sched(struct iwn_softc *sc)
1295{
1296	iwn_dma_contig_free(&sc->sched_dma);
1297}
1298
1299static int
1300iwn_alloc_kw(struct iwn_softc *sc)
1301{
1302	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1303	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1304	    4096);
1305}
1306
1307static void
1308iwn_free_kw(struct iwn_softc *sc)
1309{
1310	iwn_dma_contig_free(&sc->kw_dma);
1311}
1312
1313static int
1314iwn_alloc_ict(struct iwn_softc *sc)
1315{
1316	/* ICT table must be aligned on a 4KB boundary. */
1317	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1318	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1319}
1320
1321static void
1322iwn_free_ict(struct iwn_softc *sc)
1323{
1324	iwn_dma_contig_free(&sc->ict_dma);
1325}
1326
1327static int
1328iwn_alloc_fwmem(struct iwn_softc *sc)
1329{
1330	/* Must be aligned on a 16-byte boundary. */
1331	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1332	    sc->fwsz, 16);
1333}
1334
1335static void
1336iwn_free_fwmem(struct iwn_softc *sc)
1337{
1338	iwn_dma_contig_free(&sc->fw_dma);
1339}
1340
1341static int
1342iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1343{
1344	bus_size_t size;
1345	int i, error;
1346
1347	ring->cur = 0;
1348
1349	/* Allocate RX descriptors (256-byte aligned). */
1350	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1351	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1352	    (void **)&ring->desc, size, 256);
1353	if (error != 0) {
1354		aprint_error_dev(sc->sc_dev,
1355		    "could not allocate RX ring DMA memory\n");
1356		goto fail;
1357	}
1358
1359	/* Allocate RX status area (16-byte aligned). */
1360	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1361	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1362	if (error != 0) {
1363		aprint_error_dev(sc->sc_dev,
1364		    "could not allocate RX status DMA memory\n");
1365		goto fail;
1366	}
1367
1368	/*
1369	 * Allocate and map RX buffers.
1370	 */
1371	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1372		struct iwn_rx_data *data = &ring->data[i];
1373
1374		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1375		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1376		    &data->map);
1377		if (error != 0) {
1378			aprint_error_dev(sc->sc_dev,
1379			    "could not create RX buf DMA map\n");
1380			goto fail;
1381		}
1382
1383		data->m = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
1384		if (data->m == NULL) {
1385			aprint_error_dev(sc->sc_dev,
1386			    "could not allocate RX mbuf\n");
1387			error = ENOBUFS;
1388			goto fail;
1389		}
1390
1391		error = bus_dmamap_load(sc->sc_dmat, data->map,
1392		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1393		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1394		if (error != 0) {
1395			aprint_error_dev(sc->sc_dev,
1396			    "can't not map mbuf (error %d)\n", error);
1397			goto fail;
1398		}
1399
1400		/* Set physical address of RX buffer (256-byte aligned). */
1401		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1402	}
1403
1404	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1405	    BUS_DMASYNC_PREWRITE);
1406
1407	return 0;
1408
1409fail:	iwn_free_rx_ring(sc, ring);
1410	return error;
1411}
1412
1413static void
1414iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1415{
1416	int ntries;
1417
1418	if (iwn_nic_lock(sc) == 0) {
1419		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1420		for (ntries = 0; ntries < 1000; ntries++) {
1421			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1422			    IWN_FH_RX_STATUS_IDLE)
1423				break;
1424			DELAY(10);
1425		}
1426		iwn_nic_unlock(sc);
1427	}
1428	ring->cur = 0;
1429	sc->last_rx_valid = 0;
1430}
1431
1432static void
1433iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1434{
1435	int i;
1436
1437	iwn_dma_contig_free(&ring->desc_dma);
1438	iwn_dma_contig_free(&ring->stat_dma);
1439
1440	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1441		struct iwn_rx_data *data = &ring->data[i];
1442
1443		if (data->m != NULL) {
1444			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1445			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1446			bus_dmamap_unload(sc->sc_dmat, data->map);
1447			m_freem(data->m);
1448		}
1449		if (data->map != NULL)
1450			bus_dmamap_destroy(sc->sc_dmat, data->map);
1451	}
1452}
1453
1454static int
1455iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1456{
1457	bus_addr_t paddr;
1458	bus_size_t size;
1459	int i, error;
1460
1461	ring->qid = qid;
1462	ring->queued = 0;
1463	ring->cur = 0;
1464
1465	/* Allocate TX descriptors (256-byte aligned). */
1466	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1467	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1468	    (void **)&ring->desc, size, 256);
1469	if (error != 0) {
1470		aprint_error_dev(sc->sc_dev,
1471		    "could not allocate TX ring DMA memory\n");
1472		goto fail;
1473	}
1474	/*
1475	 * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
1476	 * to allocate commands space for other rings.
1477	 * XXX Do we really need to allocate descriptors for other rings?
1478	 */
1479	if (qid > 4)
1480		return 0;
1481
1482	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1483	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1484	    (void **)&ring->cmd, size, 4);
1485	if (error != 0) {
1486		aprint_error_dev(sc->sc_dev,
1487		    "could not allocate TX cmd DMA memory\n");
1488		goto fail;
1489	}
1490
1491	paddr = ring->cmd_dma.paddr;
1492	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1493		struct iwn_tx_data *data = &ring->data[i];
1494
1495		data->cmd_paddr = paddr;
1496		data->scratch_paddr = paddr + 12;
1497		paddr += sizeof (struct iwn_tx_cmd);
1498
1499		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1500		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1501		    &data->map);
1502		if (error != 0) {
1503			aprint_error_dev(sc->sc_dev,
1504			    "could not create TX buf DMA map\n");
1505			goto fail;
1506		}
1507	}
1508	return 0;
1509
1510fail:	iwn_free_tx_ring(sc, ring);
1511	return error;
1512}
1513
1514static void
1515iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1516{
1517	int i;
1518
1519	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1520		struct iwn_tx_data *data = &ring->data[i];
1521
1522		if (data->m != NULL) {
1523			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1524			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1525			bus_dmamap_unload(sc->sc_dmat, data->map);
1526			m_freem(data->m);
1527			data->m = NULL;
1528		}
1529	}
1530	/* Clear TX descriptors. */
1531	memset(ring->desc, 0, ring->desc_dma.size);
1532	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1533	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1534	sc->qfullmsk &= ~(1 << ring->qid);
1535	ring->queued = 0;
1536	ring->cur = 0;
1537}
1538
1539static void
1540iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1541{
1542	int i;
1543
1544	iwn_dma_contig_free(&ring->desc_dma);
1545	iwn_dma_contig_free(&ring->cmd_dma);
1546
1547	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1548		struct iwn_tx_data *data = &ring->data[i];
1549
1550		if (data->m != NULL) {
1551			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1552			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1553			bus_dmamap_unload(sc->sc_dmat, data->map);
1554			m_freem(data->m);
1555		}
1556		if (data->map != NULL)
1557			bus_dmamap_destroy(sc->sc_dmat, data->map);
1558	}
1559}
1560
1561static void
1562iwn5000_ict_reset(struct iwn_softc *sc)
1563{
1564	/* Disable interrupts. */
1565	IWN_WRITE(sc, IWN_INT_MASK, 0);
1566
1567	/* Reset ICT table. */
1568	memset(sc->ict, 0, IWN_ICT_SIZE);
1569	bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWN_ICT_SIZE,
1570	    BUS_DMASYNC_PREWRITE);
1571	sc->ict_cur = 0;
1572
1573	/* Set physical address of ICT table (4KB aligned). */
1574	DPRINTF(("enabling ICT\n"));
1575	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1576	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1577
1578	/* Enable periodic RX interrupt. */
1579	sc->int_mask |= IWN_INT_RX_PERIODIC;
1580	/* Switch to ICT interrupt mode in driver. */
1581	sc->sc_flags |= IWN_FLAG_USE_ICT;
1582
1583	/* Re-enable interrupts. */
1584	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1585	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1586}
1587
1588static int
1589iwn_read_eeprom(struct iwn_softc *sc)
1590{
1591	struct iwn_ops *ops = &sc->ops;
1592	struct ieee80211com *ic = &sc->sc_ic;
1593	uint16_t val;
1594	int error;
1595
1596	/* Check whether adapter has an EEPROM or an OTPROM. */
1597	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1598	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1599		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1600	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1601	    "OTPROM" : "EEPROM"));
1602
1603	/* Adapter has to be powered on for EEPROM access to work. */
1604	if ((error = iwn_apm_init(sc)) != 0) {
1605		aprint_error_dev(sc->sc_dev,
1606		    "could not power ON adapter\n");
1607		return error;
1608	}
1609
1610	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1611		aprint_error_dev(sc->sc_dev,
1612		    "bad ROM signature\n");
1613		return EIO;
1614	}
1615	if ((error = iwn_eeprom_lock(sc)) != 0) {
1616		aprint_error_dev(sc->sc_dev,
1617		    "could not lock ROM (error=%d)\n", error);
1618		return error;
1619	}
1620	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1621		if ((error = iwn_init_otprom(sc)) != 0) {
1622			aprint_error_dev(sc->sc_dev,
1623			    "could not initialize OTPROM\n");
1624			return error;
1625		}
1626	}
1627
1628	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1629	DPRINTF(("SKU capabilities=0x%04x\n", le16toh(val)));
1630	/* Check if HT support is bonded out. */
1631	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1632		sc->sc_flags |= IWN_FLAG_HAS_11N;
1633
1634	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1635	sc->rfcfg = le16toh(val);
1636	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1637	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1638	if (sc->txchainmask == 0)
1639		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1640	if (sc->rxchainmask == 0)
1641		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1642
1643	/* Read MAC address. */
1644	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, ETHER_ADDR_LEN);
1645
1646	/* Read adapter-specific information from EEPROM. */
1647	ops->read_eeprom(sc);
1648
1649	iwn_apm_stop(sc);	/* Power OFF adapter. */
1650
1651	iwn_eeprom_unlock(sc);
1652	return 0;
1653}
1654
1655static void
1656iwn4965_read_eeprom(struct iwn_softc *sc)
1657{
1658	uint32_t addr;
1659	uint16_t val;
1660	int i;
1661
1662	/* Read regulatory domain (4 ASCII characters). */
1663	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1664
1665	/* Read the list of authorized channels (20MHz ones only). */
1666	for (i = 0; i < 5; i++) {
1667		addr = iwn4965_regulatory_bands[i];
1668		iwn_read_eeprom_channels(sc, i, addr);
1669	}
1670
1671	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1672	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1673	sc->maxpwr2GHz = val & 0xff;
1674	sc->maxpwr5GHz = val >> 8;
1675	/* Check that EEPROM values are within valid range. */
1676	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1677		sc->maxpwr5GHz = 38;
1678	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1679		sc->maxpwr2GHz = 38;
1680	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1681
1682	/* Read samples for each TX power group. */
1683	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1684	    sizeof sc->bands);
1685
1686	/* Read voltage at which samples were taken. */
1687	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1688	sc->eeprom_voltage = (int16_t)le16toh(val);
1689	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1690
1691#ifdef IWN_DEBUG
1692	/* Print samples. */
1693	if (iwn_debug > 0) {
1694		for (i = 0; i < IWN_NBANDS; i++)
1695			iwn4965_print_power_group(sc, i);
1696	}
1697#endif
1698}
1699
1700#ifdef IWN_DEBUG
1701static void
1702iwn4965_print_power_group(struct iwn_softc *sc, int i)
1703{
1704	struct iwn4965_eeprom_band *band = &sc->bands[i];
1705	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1706	int j, c;
1707
1708	aprint_normal("===band %d===\n", i);
1709	aprint_normal("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1710	aprint_normal("chan1 num=%d\n", chans[0].num);
1711	for (c = 0; c < 2; c++) {
1712		for (j = 0; j < IWN_NSAMPLES; j++) {
1713			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1714			    "power=%d pa_det=%d\n", c, j,
1715			    chans[0].samples[c][j].temp,
1716			    chans[0].samples[c][j].gain,
1717			    chans[0].samples[c][j].power,
1718			    chans[0].samples[c][j].pa_det);
1719		}
1720	}
1721	aprint_normal("chan2 num=%d\n", chans[1].num);
1722	for (c = 0; c < 2; c++) {
1723		for (j = 0; j < IWN_NSAMPLES; j++) {
1724			aprint_normal("chain %d, sample %d: temp=%d gain=%d "
1725			    "power=%d pa_det=%d\n", c, j,
1726			    chans[1].samples[c][j].temp,
1727			    chans[1].samples[c][j].gain,
1728			    chans[1].samples[c][j].power,
1729			    chans[1].samples[c][j].pa_det);
1730		}
1731	}
1732}
1733#endif
1734
1735static void
1736iwn5000_read_eeprom(struct iwn_softc *sc)
1737{
1738	struct iwn5000_eeprom_calib_hdr hdr;
1739	int32_t volt;
1740	uint32_t base, addr;
1741	uint16_t val;
1742	int i;
1743
1744	/* Read regulatory domain (4 ASCII characters). */
1745	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1746	base = le16toh(val);
1747	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1748	    sc->eeprom_domain, 4);
1749
1750	/* Read the list of authorized channels (20MHz ones only). */
1751	for (i = 0; i < 5; i++) {
1752		addr = base + iwn5000_regulatory_bands[i];
1753		iwn_read_eeprom_channels(sc, i, addr);
1754	}
1755
1756	/* Read enhanced TX power information for 6000 Series. */
1757	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1758		iwn_read_eeprom_enhinfo(sc);
1759
1760	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1761	base = le16toh(val);
1762	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1763	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1764	    hdr.version, hdr.pa_type, le16toh(hdr.volt)));
1765	sc->calib_ver = hdr.version;
1766
1767	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1768	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1769	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
1770	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1771		sc->eeprom_voltage = le16toh(hdr.volt);
1772		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1773		sc->eeprom_temp = le16toh(val);
1774		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1775		sc->eeprom_rawtemp = le16toh(val);
1776	}
1777
1778	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1779		/* Compute temperature offset. */
1780		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1781		sc->eeprom_temp = le16toh(val);
1782		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1783		volt = le16toh(val);
1784		sc->temp_off = sc->eeprom_temp - (volt / -5);
1785		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1786		    sc->eeprom_temp, volt, sc->temp_off));
1787	} else {
1788		/* Read crystal calibration. */
1789		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1790		    &sc->eeprom_crystal, sizeof (uint32_t));
1791		DPRINTF(("crystal calibration 0x%08x\n",
1792		    le32toh(sc->eeprom_crystal)));
1793	}
1794}
1795
1796static void
1797iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1798{
1799	struct ieee80211com *ic = &sc->sc_ic;
1800	const struct iwn_chan_band *band = &iwn_bands[n];
1801	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1802	uint8_t chan;
1803	int i;
1804
1805	iwn_read_prom_data(sc, addr, channels,
1806	    band->nchan * sizeof (struct iwn_eeprom_chan));
1807
1808	for (i = 0; i < band->nchan; i++) {
1809		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1810			continue;
1811
1812		chan = band->chan[i];
1813
1814		if (n == 0) {	/* 2GHz band */
1815			ic->ic_channels[chan].ic_freq =
1816			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1817			ic->ic_channels[chan].ic_flags =
1818			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1819			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1820
1821		} else {	/* 5GHz band */
1822			/*
1823			 * Some adapters support channels 7, 8, 11 and 12
1824			 * both in the 2GHz and 4.9GHz bands.
1825			 * Because of limitations in our net80211 layer,
1826			 * we don't support them in the 4.9GHz band.
1827			 */
1828			if (chan <= 14)
1829				continue;
1830
1831			ic->ic_channels[chan].ic_freq =
1832			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1833			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1834			/* We have at least one valid 5GHz channel. */
1835			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1836		}
1837
1838		/* Is active scan allowed on this channel? */
1839		if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1840			ic->ic_channels[chan].ic_flags |=
1841			    IEEE80211_CHAN_PASSIVE;
1842		}
1843
1844		/* Save maximum allowed TX power for this channel. */
1845		sc->maxpwr[chan] = channels[i].maxpwr;
1846
1847		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
1848		    chan, channels[i].flags, sc->maxpwr[chan]));
1849	}
1850}
1851
1852static void
1853iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1854{
1855	struct iwn_eeprom_enhinfo enhinfo[35];
1856	uint16_t val, base;
1857	int8_t maxpwr;
1858	uint8_t flags;
1859	int i;
1860
1861	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1862	base = le16toh(val);
1863	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1864	    enhinfo, sizeof enhinfo);
1865
1866	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1867	for (i = 0; i < __arraycount(enhinfo); i++) {
1868		flags = enhinfo[i].flags;
1869		if (!(flags & IWN_ENHINFO_VALID))
1870			continue;	/* Skip invalid entries. */
1871
1872		maxpwr = 0;
1873		if (sc->txchainmask & IWN_ANT_A)
1874			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1875		if (sc->txchainmask & IWN_ANT_B)
1876			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1877		if (sc->txchainmask & IWN_ANT_C)
1878			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1879		if (sc->ntxchains == 2)
1880			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1881		else if (sc->ntxchains == 3)
1882			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1883		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1884
1885		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1886		sc->enh_maxpwr[i] = maxpwr;
1887	}
1888}
1889
1890static struct ieee80211_node *
1891iwn_node_alloc(struct ieee80211_node_table *ic __unused)
1892{
1893	return malloc(sizeof (struct iwn_node), M_80211_NODE, M_NOWAIT | M_ZERO);
1894}
1895
1896static void
1897iwn_newassoc(struct ieee80211_node *ni, int isnew)
1898{
1899	struct iwn_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1900	struct iwn_node *wn = (void *)ni;
1901	uint8_t rate;
1902	int ridx, i;
1903
1904	ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1905	/* Start at lowest available bit-rate, AMRR will raise. */
1906	ni->ni_txrate = 0;
1907
1908	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1909		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1910		/* Map 802.11 rate to HW rate index. */
1911		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1912			if (iwn_rates[ridx].rate == rate)
1913				break;
1914		wn->ridx[i] = ridx;
1915	}
1916}
1917
1918static int
1919iwn_media_change(struct ifnet *ifp)
1920{
1921	struct iwn_softc *sc = ifp->if_softc;
1922	struct ieee80211com *ic = &sc->sc_ic;
1923	uint8_t rate, ridx;
1924	int error;
1925
1926	error = ieee80211_media_change(ifp);
1927	if (error != ENETRESET)
1928		return error;
1929
1930	if (ic->ic_fixed_rate != -1) {
1931		rate = ic->ic_sup_rates[ic->ic_curmode].
1932		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1933		/* Map 802.11 rate to HW rate index. */
1934		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1935			if (iwn_rates[ridx].rate == rate)
1936				break;
1937		sc->fixed_ridx = ridx;
1938	}
1939
1940	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1941	    (IFF_UP | IFF_RUNNING)) {
1942		iwn_stop(ifp, 0);
1943		error = iwn_init(ifp);
1944	}
1945	return error;
1946}
1947
1948static int
1949iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1950{
1951	struct ifnet *ifp = ic->ic_ifp;
1952	struct iwn_softc *sc = ifp->if_softc;
1953	int error;
1954
1955	callout_stop(&sc->calib_to);
1956
1957	switch (nstate) {
1958	case IEEE80211_S_SCAN:
1959		/* XXX Do not abort a running scan. */
1960		if (sc->sc_flags & IWN_FLAG_SCANNING) {
1961			if (ic->ic_state != nstate)
1962				aprint_debug_dev(sc->sc_dev, "scan request(%d) "
1963				    "while scanning(%d) ignored\n", nstate,
1964				    ic->ic_state);
1965			break;
1966		}
1967
1968		/* XXX Not sure if call and flags are needed. */
1969		ieee80211_node_table_reset(&ic->ic_scan);
1970		ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
1971		sc->sc_flags |= IWN_FLAG_SCANNING_2GHZ;
1972
1973		/* Make the link LED blink while we're scanning. */
1974		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1975
1976		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) {
1977			aprint_error_dev(sc->sc_dev,
1978			    "could not initiate scan\n");
1979			return error;
1980		}
1981		ic->ic_state = nstate;
1982		return 0;
1983
1984	case IEEE80211_S_ASSOC:
1985		if (ic->ic_state != IEEE80211_S_RUN)
1986			break;
1987		/* FALLTHROUGH */
1988	case IEEE80211_S_AUTH:
1989		/* Reset state to handle reassociations correctly. */
1990		sc->rxon.associd = 0;
1991		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1992		sc->calib.state = IWN_CALIB_STATE_INIT;
1993
1994		/* Wait until we hear a beacon before we transmit */
1995		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
1996			sc->sc_beacon_wait = 1;
1997
1998		if ((error = iwn_auth(sc)) != 0) {
1999			aprint_error_dev(sc->sc_dev,
2000			    "could not move to auth state\n");
2001			return error;
2002		}
2003		break;
2004
2005	case IEEE80211_S_RUN:
2006		/*
2007		 * RUN -> RUN transition; Just restart timers.
2008		 */
2009		if (ic->ic_state == IEEE80211_S_RUN) {
2010			sc->calib_cnt = 0;
2011			break;
2012		}
2013
2014		/* Wait until we hear a beacon before we transmit */
2015		if (IEEE80211_IS_CHAN_PASSIVE(ic->ic_curchan))
2016			sc->sc_beacon_wait = 1;
2017
2018		if ((error = iwn_run(sc)) != 0) {
2019			aprint_error_dev(sc->sc_dev,
2020			    "could not move to run state\n");
2021			return error;
2022		}
2023		break;
2024
2025	case IEEE80211_S_INIT:
2026		sc->sc_flags &= ~IWN_FLAG_SCANNING;
2027		sc->calib.state = IWN_CALIB_STATE_INIT;
2028		/*
2029		 * Purge the xmit queue so we don't have old frames
2030		 * during a new association attempt.
2031		 */
2032		sc->sc_beacon_wait = 0;
2033		ifp->if_flags &= ~IFF_OACTIVE;
2034		iwn_start(ifp);
2035		break;
2036	}
2037
2038	return sc->sc_newstate(ic, nstate, arg);
2039}
2040
2041static void
2042iwn_iter_func(void *arg, struct ieee80211_node *ni)
2043{
2044	struct iwn_softc *sc = arg;
2045	struct iwn_node *wn = (struct iwn_node *)ni;
2046
2047	ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
2048}
2049
2050static void
2051iwn_calib_timeout(void *arg)
2052{
2053	struct iwn_softc *sc = arg;
2054	struct ieee80211com *ic = &sc->sc_ic;
2055	int s;
2056
2057	s = splnet();
2058	if (ic->ic_fixed_rate == -1) {
2059		if (ic->ic_opmode == IEEE80211_M_STA)
2060			iwn_iter_func(sc, ic->ic_bss);
2061		else
2062			ieee80211_iterate_nodes(&ic->ic_sta, iwn_iter_func, sc);
2063	}
2064	/* Force automatic TX power calibration every 60 secs. */
2065	if (++sc->calib_cnt >= 120) {
2066		uint32_t flags = 0;
2067
2068		DPRINTF(("sending request for statistics\n"));
2069		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
2070		    sizeof flags, 1);
2071		sc->calib_cnt = 0;
2072	}
2073	splx(s);
2074
2075	/* Automatic rate control triggered every 500ms. */
2076	callout_schedule(&sc->calib_to, mstohz(500));
2077}
2078
2079/*
2080 * Process an RX_PHY firmware notification.  This is usually immediately
2081 * followed by an MPDU_RX_DONE notification.
2082 */
2083static void
2084iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2085    struct iwn_rx_data *data)
2086{
2087	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
2088
2089	DPRINTFN(2, ("received PHY stats\n"));
2090	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2091	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2092
2093	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
2094	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
2095	sc->last_rx_valid = 1;
2096}
2097
2098/*
2099 * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
2100 * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
2101 */
2102static void
2103iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2104    struct iwn_rx_data *data)
2105{
2106	struct iwn_ops *ops = &sc->ops;
2107	struct ieee80211com *ic = &sc->sc_ic;
2108	struct ifnet *ifp = ic->ic_ifp;
2109	struct iwn_rx_ring *ring = &sc->rxq;
2110	struct ieee80211_frame *wh;
2111	struct ieee80211_node *ni;
2112	struct mbuf *m, *m1;
2113	struct iwn_rx_stat *stat;
2114	char	*head;
2115	uint32_t flags;
2116	int error, len, rssi, s;
2117
2118	if (desc->type == IWN_MPDU_RX_DONE) {
2119		/* Check for prior RX_PHY notification. */
2120		if (!sc->last_rx_valid) {
2121			DPRINTF(("missing RX_PHY\n"));
2122			return;
2123		}
2124		sc->last_rx_valid = 0;
2125		stat = &sc->last_rx_stat;
2126	} else
2127		stat = (struct iwn_rx_stat *)(desc + 1);
2128
2129	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2130	    BUS_DMASYNC_POSTREAD);
2131
2132	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2133		aprint_error_dev(sc->sc_dev,
2134		    "invalid RX statistic header\n");
2135		return;
2136	}
2137	if (desc->type == IWN_MPDU_RX_DONE) {
2138		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2139		head = (char *)(mpdu + 1);
2140		len = le16toh(mpdu->len);
2141	} else {
2142		head = (char *)(stat + 1) + stat->cfg_phy_len;
2143		len = le16toh(stat->len);
2144	}
2145
2146	flags = le32toh(*(uint32_t *)(head + len));
2147
2148	/* Discard frames with a bad FCS early. */
2149	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2150		DPRINTFN(2, ("RX flags error %x\n", flags));
2151		if_statinc(ifp, if_ierrors);
2152		return;
2153	}
2154	/* Discard frames that are too short. */
2155	if (len < sizeof (*wh)) {
2156		DPRINTF(("frame too short: %d\n", len));
2157		ic->ic_stats.is_rx_tooshort++;
2158		if_statinc(ifp, if_ierrors);
2159		return;
2160	}
2161
2162	m1 = MCLGETIalt(sc, M_DONTWAIT, NULL, IWN_RBUF_SIZE);
2163	if (m1 == NULL) {
2164		ic->ic_stats.is_rx_nobuf++;
2165		if_statinc(ifp, if_ierrors);
2166		return;
2167	}
2168	bus_dmamap_unload(sc->sc_dmat, data->map);
2169
2170	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2171	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2172	if (error != 0) {
2173		m_freem(m1);
2174
2175		/* Try to reload the old mbuf. */
2176		error = bus_dmamap_load(sc->sc_dmat, data->map,
2177		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2178		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2179		if (error != 0) {
2180			panic("%s: could not load old RX mbuf",
2181			    device_xname(sc->sc_dev));
2182		}
2183		/* Physical address may have changed. */
2184		ring->desc[ring->cur] =
2185		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2186		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2187		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2188		    BUS_DMASYNC_PREWRITE);
2189		if_statinc(ifp, if_ierrors);
2190		return;
2191	}
2192
2193	m = data->m;
2194	data->m = m1;
2195	/* Update RX descriptor. */
2196	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2197	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2198	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2199	    BUS_DMASYNC_PREWRITE);
2200
2201	/* Finalize mbuf. */
2202	m_set_rcvif(m, ifp);
2203	m->m_data = head;
2204	m->m_pkthdr.len = m->m_len = len;
2205
2206	s = splnet();
2207
2208	/* Grab a reference to the source node. */
2209	wh = mtod(m, struct ieee80211_frame *);
2210	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
2211
2212	/* XXX OpenBSD adds decryption here (see also comments in iwn_tx). */
2213	/* NetBSD does decryption in ieee80211_input. */
2214
2215	rssi = ops->get_rssi(stat);
2216
2217	/* XXX Added for NetBSD: scans never stop without it */
2218	if (ic->ic_state == IEEE80211_S_SCAN)
2219		iwn_fix_channel(ic, m, stat);
2220
2221	if (sc->sc_drvbpf != NULL) {
2222		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2223
2224		tap->wr_flags = 0;
2225		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2226			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2227		tap->wr_chan_freq =
2228		    htole16(ic->ic_channels[stat->chan].ic_freq);
2229		tap->wr_chan_flags =
2230		    htole16(ic->ic_channels[stat->chan].ic_flags);
2231		tap->wr_dbm_antsignal = (int8_t)rssi;
2232		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2233		tap->wr_tsft = stat->tstamp;
2234		switch (stat->rate) {
2235		/* CCK rates. */
2236		case  10: tap->wr_rate =   2; break;
2237		case  20: tap->wr_rate =   4; break;
2238		case  55: tap->wr_rate =  11; break;
2239		case 110: tap->wr_rate =  22; break;
2240		/* OFDM rates. */
2241		case 0xd: tap->wr_rate =  12; break;
2242		case 0xf: tap->wr_rate =  18; break;
2243		case 0x5: tap->wr_rate =  24; break;
2244		case 0x7: tap->wr_rate =  36; break;
2245		case 0x9: tap->wr_rate =  48; break;
2246		case 0xb: tap->wr_rate =  72; break;
2247		case 0x1: tap->wr_rate =  96; break;
2248		case 0x3: tap->wr_rate = 108; break;
2249		/* Unknown rate: should not happen. */
2250		default:  tap->wr_rate =   0;
2251		}
2252
2253		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
2254	}
2255
2256	/*
2257	 * If it's a beacon and we're waiting, then do the wakeup.
2258	 */
2259	if (sc->sc_beacon_wait) {
2260		uint8_t type, subtype;
2261		type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2262		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2263		/*
2264		 * This assumes at this point we've received our own
2265		 * beacon.
2266		 */
2267		if (type == IEEE80211_FC0_TYPE_MGT &&
2268		    subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
2269			sc->sc_beacon_wait = 0;
2270			ifp->if_flags &= ~IFF_OACTIVE;
2271			iwn_start(ifp);
2272		}
2273	}
2274
2275	/* Send the frame to the 802.11 layer. */
2276	ieee80211_input(ic, m, ni, rssi, 0);
2277
2278	/* Node is no longer needed. */
2279	ieee80211_free_node(ni);
2280
2281	splx(s);
2282}
2283
2284#ifndef IEEE80211_NO_HT
2285/* Process an incoming Compressed BlockAck. */
2286static void
2287iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2288    struct iwn_rx_data *data)
2289{
2290	struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
2291	struct iwn_tx_ring *txq;
2292
2293	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*ba),
2294	    BUS_DMASYNC_POSTREAD);
2295
2296	txq = &sc->txq[le16toh(ba->qid)];
2297	/* XXX TBD */
2298}
2299#endif
2300
2301/*
2302 * Process a CALIBRATION_RESULT notification sent by the initialization
2303 * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2304 */
2305static void
2306iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2307    struct iwn_rx_data *data)
2308{
2309	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2310	int len, idx = -1;
2311
2312	/* Runtime firmware should not send such a notification. */
2313	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2314		return;
2315
2316	len = (le32toh(desc->len) & 0x3fff) - 4;
2317	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2318	    BUS_DMASYNC_POSTREAD);
2319
2320	switch (calib->code) {
2321	case IWN5000_PHY_CALIB_DC:
2322		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2323		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2324		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2325		    sc->hw_type == IWN_HW_REV_TYPE_135  ||
2326		    sc->hw_type == IWN_HW_REV_TYPE_105)
2327			idx = 0;
2328		break;
2329	case IWN5000_PHY_CALIB_LO:
2330		idx = 1;
2331		break;
2332	case IWN5000_PHY_CALIB_TX_IQ:
2333		idx = 2;
2334		break;
2335	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2336		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2337		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2338			idx = 3;
2339		break;
2340	case IWN5000_PHY_CALIB_BASE_BAND:
2341		idx = 4;
2342		break;
2343	}
2344	if (idx == -1)	/* Ignore other results. */
2345		return;
2346
2347	/* Save calibration result. */
2348	if (sc->calibcmd[idx].buf != NULL)
2349		free(sc->calibcmd[idx].buf, M_DEVBUF);
2350	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2351	if (sc->calibcmd[idx].buf == NULL) {
2352		DPRINTF(("not enough memory for calibration result %d\n",
2353		    calib->code));
2354		return;
2355	}
2356	DPRINTF(("saving calibration result code=%d len=%d\n",
2357	    calib->code, len));
2358	sc->calibcmd[idx].len = len;
2359	memcpy(sc->calibcmd[idx].buf, calib, len);
2360}
2361
2362/*
2363 * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2364 * The latter is sent by the firmware after each received beacon.
2365 */
2366static void
2367iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2368    struct iwn_rx_data *data)
2369{
2370	struct iwn_ops *ops = &sc->ops;
2371	struct ieee80211com *ic = &sc->sc_ic;
2372	struct iwn_calib_state *calib = &sc->calib;
2373	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2374	int temp;
2375
2376	/* Ignore statistics received during a scan. */
2377	if (ic->ic_state != IEEE80211_S_RUN)
2378		return;
2379
2380	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2381	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2382
2383	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2384	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2385
2386	/* Test if temperature has changed. */
2387	if (stats->general.temp != sc->rawtemp) {
2388		/* Convert "raw" temperature to degC. */
2389		sc->rawtemp = stats->general.temp;
2390		temp = ops->get_temperature(sc);
2391		DPRINTFN(2, ("temperature=%dC\n", temp));
2392
2393		/* Update TX power if need be (4965AGN only). */
2394		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2395			iwn4965_power_calibration(sc, temp);
2396	}
2397
2398	if (desc->type != IWN_BEACON_STATISTICS)
2399		return;	/* Reply to a statistics request. */
2400
2401	sc->noise = iwn_get_noise(&stats->rx.general);
2402
2403	/* Test that RSSI and noise are present in stats report. */
2404	if (le32toh(stats->rx.general.flags) != 1) {
2405		DPRINTF(("received statistics without RSSI\n"));
2406		return;
2407	}
2408
2409	/*
2410	 * XXX Differential gain calibration makes the 6005 firmware
2411	 * crap out, so skip it for now.  This effectively disables
2412	 * sensitivity tuning as well.
2413	 */
2414	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2415		return;
2416
2417	if (calib->state == IWN_CALIB_STATE_ASSOC)
2418		iwn_collect_noise(sc, &stats->rx.general);
2419	else if (calib->state == IWN_CALIB_STATE_RUN)
2420		iwn_tune_sensitivity(sc, &stats->rx);
2421}
2422
2423/*
2424 * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2425 * and 5000 adapters have different incompatible TX status formats.
2426 */
2427static void
2428iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2429    struct iwn_rx_data *data)
2430{
2431	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2432
2433	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2434	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2435	iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
2436}
2437
2438static void
2439iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2440    struct iwn_rx_data *data)
2441{
2442	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2443
2444#ifdef notyet
2445	/* Reset TX scheduler slot. */
2446	iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
2447#endif
2448
2449	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2450	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2451	iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
2452}
2453
2454/*
2455 * Adapter-independent backend for TX_DONE firmware notifications.
2456 */
2457static void
2458iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
2459    uint8_t status)
2460{
2461	struct ieee80211com *ic = &sc->sc_ic;
2462	struct ifnet *ifp = ic->ic_ifp;
2463	struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
2464	struct iwn_tx_data *data = &ring->data[desc->idx];
2465	struct iwn_node *wn = (struct iwn_node *)data->ni;
2466	int s;
2467
2468	s = splnet();
2469
2470	/* Update rate control statistics. */
2471	wn->amn.amn_txcnt++;
2472	if (ackfailcnt > 0)
2473		wn->amn.amn_retrycnt++;
2474
2475	if (status != 1 && status != 2)
2476		if_statinc(ifp, if_oerrors);
2477	else
2478		if_statinc(ifp, if_opackets);
2479
2480	/* Unmap and free mbuf. */
2481	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2482	    BUS_DMASYNC_POSTWRITE);
2483	bus_dmamap_unload(sc->sc_dmat, data->map);
2484	m_freem(data->m);
2485	data->m = NULL;
2486	ieee80211_free_node(data->ni);
2487	data->ni = NULL;
2488
2489	sc->sc_tx_timer = 0;
2490	if (--ring->queued < IWN_TX_RING_LOMARK) {
2491		sc->qfullmsk &= ~(1 << ring->qid);
2492		if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
2493			ifp->if_flags &= ~IFF_OACTIVE;
2494			iwn_start(ifp);
2495		}
2496	}
2497
2498	splx(s);
2499}
2500
2501/*
2502 * Process a "command done" firmware notification.  This is where we wakeup
2503 * processes waiting for a synchronous command completion.
2504 */
2505static void
2506iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2507{
2508	struct iwn_tx_ring *ring = &sc->txq[4];
2509	struct iwn_tx_data *data;
2510
2511	if ((desc->qid & 0xf) != 4)
2512		return;	/* Not a command ack. */
2513
2514	data = &ring->data[desc->idx];
2515
2516	/* If the command was mapped in an mbuf, free it. */
2517	if (data->m != NULL) {
2518		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2519		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2520		bus_dmamap_unload(sc->sc_dmat, data->map);
2521		m_freem(data->m);
2522		data->m = NULL;
2523	}
2524	wakeup(&ring->desc[desc->idx]);
2525}
2526
2527/*
2528 * Process an INT_FH_RX or INT_SW_RX interrupt.
2529 */
2530static void
2531iwn_notif_intr(struct iwn_softc *sc)
2532{
2533	struct iwn_ops *ops = &sc->ops;
2534	struct ieee80211com *ic = &sc->sc_ic;
2535	struct ifnet *ifp = ic->ic_ifp;
2536	uint16_t hw;
2537	int s;
2538
2539	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2540	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2541
2542	hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
2543	while (sc->rxq.cur != hw) {
2544		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2545		struct iwn_rx_desc *desc;
2546
2547		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2548		    BUS_DMASYNC_POSTREAD);
2549		desc = mtod(data->m, struct iwn_rx_desc *);
2550
2551		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2552		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2553
2554		if (!(desc->qid & 0x80))	/* Reply to a command. */
2555			iwn_cmd_done(sc, desc);
2556
2557		switch (desc->type) {
2558		case IWN_RX_PHY:
2559			iwn_rx_phy(sc, desc, data);
2560			break;
2561
2562		case IWN_RX_DONE:		/* 4965AGN only. */
2563		case IWN_MPDU_RX_DONE:
2564			/* An 802.11 frame has been received. */
2565			iwn_rx_done(sc, desc, data);
2566			break;
2567#ifndef IEEE80211_NO_HT
2568		case IWN_RX_COMPRESSED_BA:
2569			/* A Compressed BlockAck has been received. */
2570			iwn_rx_compressed_ba(sc, desc, data);
2571			break;
2572#endif
2573		case IWN_TX_DONE:
2574			/* An 802.11 frame has been transmitted. */
2575			ops->tx_done(sc, desc, data);
2576			break;
2577
2578		case IWN_RX_STATISTICS:
2579		case IWN_BEACON_STATISTICS:
2580			iwn_rx_statistics(sc, desc, data);
2581			break;
2582
2583		case IWN_BEACON_MISSED:
2584		{
2585			struct iwn_beacon_missed *miss =
2586			    (struct iwn_beacon_missed *)(desc + 1);
2587
2588			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2589			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2590			/*
2591			 * If more than 5 consecutive beacons are missed,
2592			 * reinitialize the sensitivity state machine.
2593			 */
2594			DPRINTF(("beacons missed %d/%d\n",
2595			    le32toh(miss->consecutive), le32toh(miss->total)));
2596			if (ic->ic_state == IEEE80211_S_RUN &&
2597			    le32toh(miss->consecutive) > 5)
2598				(void)iwn_init_sensitivity(sc);
2599			break;
2600		}
2601		case IWN_UC_READY:
2602		{
2603			struct iwn_ucode_info *uc =
2604			    (struct iwn_ucode_info *)(desc + 1);
2605
2606			/* The microcontroller is ready. */
2607			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2608			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2609			DPRINTF(("microcode alive notification version=%d.%d "
2610			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2611			    uc->subtype, le32toh(uc->valid)));
2612
2613			if (le32toh(uc->valid) != 1) {
2614				aprint_error_dev(sc->sc_dev,
2615				    "microcontroller initialization "
2616				    "failed\n");
2617				break;
2618			}
2619			if (uc->subtype == IWN_UCODE_INIT) {
2620				/* Save microcontroller report. */
2621				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2622			}
2623			/* Save the address of the error log in SRAM. */
2624			sc->errptr = le32toh(uc->errptr);
2625			break;
2626		}
2627		case IWN_STATE_CHANGED:
2628		{
2629			uint32_t *status = (uint32_t *)(desc + 1);
2630
2631			/* Enabled/disabled notification. */
2632			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2633			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2634			DPRINTF(("state changed to %x\n", le32toh(*status)));
2635
2636			if (le32toh(*status) & 1) {
2637				/* The radio button has to be pushed. */
2638				aprint_error_dev(sc->sc_dev,
2639				    "Radio transmitter is off\n");
2640				/* Turn the interface down. */
2641				s = splnet();
2642				ifp->if_flags &= ~IFF_UP;
2643				iwn_stop(ifp, 1);
2644				splx(s);
2645				return;	/* No further processing. */
2646			}
2647			break;
2648		}
2649		case IWN_START_SCAN:
2650		{
2651			struct iwn_start_scan *scan =
2652			    (struct iwn_start_scan *)(desc + 1);
2653
2654			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2655			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2656			DPRINTFN(2, ("scanning channel %d status %x\n",
2657			    scan->chan, le32toh(scan->status)));
2658
2659			/* Fix current channel. */
2660			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
2661			break;
2662		}
2663		case IWN_STOP_SCAN:
2664		{
2665			struct iwn_stop_scan *scan =
2666			    (struct iwn_stop_scan *)(desc + 1);
2667
2668			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2669			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2670			DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
2671			    scan->nchan, scan->status, scan->chan));
2672
2673			if (scan->status == 1 && scan->chan <= 14 &&
2674			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
2675				/*
2676				 * We just finished scanning 2GHz channels,
2677				 * start scanning 5GHz ones.
2678				 */
2679				sc->sc_flags &= ~IWN_FLAG_SCANNING_2GHZ;
2680				sc->sc_flags |= IWN_FLAG_SCANNING_5GHZ;
2681				if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0)
2682					break;
2683			}
2684			sc->sc_flags &= ~IWN_FLAG_SCANNING;
2685			ieee80211_end_scan(ic);
2686			break;
2687		}
2688		case IWN5000_CALIBRATION_RESULT:
2689			iwn5000_rx_calib_results(sc, desc, data);
2690			break;
2691
2692		case IWN5000_CALIBRATION_DONE:
2693			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
2694			wakeup(sc);
2695			break;
2696		}
2697
2698		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
2699	}
2700
2701	/* Tell the firmware what we have processed. */
2702	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
2703	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
2704}
2705
2706/*
2707 * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
2708 * from power-down sleep mode.
2709 */
2710static void
2711iwn_wakeup_intr(struct iwn_softc *sc)
2712{
2713	int qid;
2714
2715	DPRINTF(("ucode wakeup from power-down sleep\n"));
2716
2717	/* Wakeup RX and TX rings. */
2718	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
2719	for (qid = 0; qid < sc->ntxqs; qid++) {
2720		struct iwn_tx_ring *ring = &sc->txq[qid];
2721		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
2722	}
2723}
2724
2725/*
2726 * Dump the error log of the firmware when a firmware panic occurs.  Although
2727 * we can't debug the firmware because it is neither open source nor free, it
2728 * can help us to identify certain classes of problems.
2729 */
2730static void
2731iwn_fatal_intr(struct iwn_softc *sc)
2732{
2733	struct iwn_fw_dump dump;
2734	int i;
2735
2736	/* Force a complete recalibration on next init. */
2737	sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
2738
2739	/* Check that the error log address is valid. */
2740	if (sc->errptr < IWN_FW_DATA_BASE ||
2741	    sc->errptr + sizeof (dump) >
2742	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
2743		aprint_error_dev(sc->sc_dev,
2744		    "bad firmware error log address 0x%08x\n", sc->errptr);
2745		return;
2746	}
2747	if (iwn_nic_lock(sc) != 0) {
2748		aprint_error_dev(sc->sc_dev,
2749		    "could not read firmware error log\n");
2750		return;
2751	}
2752	/* Read firmware error log from SRAM. */
2753	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
2754	    sizeof (dump) / sizeof (uint32_t));
2755	iwn_nic_unlock(sc);
2756
2757	if (dump.valid == 0) {
2758		aprint_error_dev(sc->sc_dev,
2759		    "firmware error log is empty\n");
2760		return;
2761	}
2762	aprint_error("firmware error log:\n");
2763	aprint_error("  error type      = \"%s\" (0x%08X)\n",
2764	    (dump.id < __arraycount(iwn_fw_errmsg)) ?
2765		iwn_fw_errmsg[dump.id] : "UNKNOWN",
2766	    dump.id);
2767	aprint_error("  program counter = 0x%08X\n", dump.pc);
2768	aprint_error("  source line     = 0x%08X\n", dump.src_line);
2769	aprint_error("  error data      = 0x%08X%08X\n",
2770	    dump.error_data[0], dump.error_data[1]);
2771	aprint_error("  branch link     = 0x%08X%08X\n",
2772	    dump.branch_link[0], dump.branch_link[1]);
2773	aprint_error("  interrupt link  = 0x%08X%08X\n",
2774	    dump.interrupt_link[0], dump.interrupt_link[1]);
2775	aprint_error("  time            = %u\n", dump.time[0]);
2776
2777	/* Dump driver status (TX and RX rings) while we're here. */
2778	aprint_error("driver status:\n");
2779	for (i = 0; i < sc->ntxqs; i++) {
2780		struct iwn_tx_ring *ring = &sc->txq[i];
2781		aprint_error("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
2782		    i, ring->qid, ring->cur, ring->queued);
2783	}
2784	aprint_error("  rx ring: cur=%d\n", sc->rxq.cur);
2785	aprint_error("  802.11 state %d\n", sc->sc_ic.ic_state);
2786}
2787
2788static int
2789iwn_intr(void *arg)
2790{
2791	struct iwn_softc *sc = arg;
2792
2793	/* Disable interrupts. */
2794	IWN_WRITE(sc, IWN_INT_MASK, 0);
2795
2796	softint_schedule(sc->sc_soft_ih);
2797	return 1;
2798}
2799
2800static void
2801iwn_softintr(void *arg)
2802{
2803	struct iwn_softc *sc = arg;
2804	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2805	uint32_t r1, r2, tmp;
2806	int s;
2807
2808	/* Read interrupts from ICT (fast) or from registers (slow). */
2809	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2810		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2811		    IWN_ICT_SIZE, BUS_DMASYNC_POSTREAD);
2812		tmp = 0;
2813		while (sc->ict[sc->ict_cur] != 0) {
2814			tmp |= sc->ict[sc->ict_cur];
2815			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
2816			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
2817		}
2818		bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0,
2819		    IWN_ICT_SIZE, BUS_DMASYNC_PREWRITE);
2820		tmp = le32toh(tmp);
2821		if (tmp == 0xffffffff)	/* Shouldn't happen. */
2822			tmp = 0;
2823		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
2824			tmp |= 0x8000;
2825		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
2826		r2 = 0;	/* Unused. */
2827	} else {
2828		r1 = IWN_READ(sc, IWN_INT);
2829		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
2830			return;	/* Hardware gone! */
2831		r2 = IWN_READ(sc, IWN_FH_INT);
2832	}
2833	if (r1 == 0 && r2 == 0) {
2834		goto out;	/* Interrupt not for us. */
2835	}
2836
2837	/* Acknowledge interrupts. */
2838	IWN_WRITE(sc, IWN_INT, r1);
2839	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
2840		IWN_WRITE(sc, IWN_FH_INT, r2);
2841
2842	if (r1 & IWN_INT_RF_TOGGLED) {
2843		tmp = IWN_READ(sc, IWN_GP_CNTRL);
2844		aprint_error_dev(sc->sc_dev,
2845		    "RF switch: radio %s\n",
2846		    (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
2847	}
2848	if (r1 & IWN_INT_CT_REACHED) {
2849		aprint_error_dev(sc->sc_dev,
2850		    "critical temperature reached!\n");
2851	}
2852	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
2853		aprint_error_dev(sc->sc_dev,
2854		    "fatal firmware error\n");
2855		/* Dump firmware error log and stop. */
2856		iwn_fatal_intr(sc);
2857		s = splnet();
2858		ifp->if_flags &= ~IFF_UP;
2859		iwn_stop(ifp, 1);
2860		splx(s);
2861		return;
2862	}
2863	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
2864	    (r2 & IWN_FH_INT_RX)) {
2865		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
2866			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
2867				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
2868			IWN_WRITE_1(sc, IWN_INT_PERIODIC, IWN_INT_PERIODIC_DIS);
2869			iwn_notif_intr(sc);
2870			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
2871				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
2872				    IWN_INT_PERIODIC_ENA);
2873			}
2874		} else
2875			iwn_notif_intr(sc);
2876	}
2877
2878	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
2879		if (sc->sc_flags & IWN_FLAG_USE_ICT)
2880			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
2881		wakeup(sc);	/* FH DMA transfer completed. */
2882	}
2883
2884	if (r1 & IWN_INT_ALIVE)
2885		wakeup(sc);	/* Firmware is alive. */
2886
2887	if (r1 & IWN_INT_WAKEUP)
2888		iwn_wakeup_intr(sc);
2889
2890out:
2891	/* Re-enable interrupts. */
2892	if (ifp->if_flags & IFF_UP)
2893		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
2894}
2895
2896/*
2897 * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
2898 * 5000 adapters use a slightly different format).
2899 */
2900static void
2901iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2902    uint16_t len)
2903{
2904	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
2905
2906	*w = htole16(len + 8);
2907	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2908	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2909	    sizeof (uint16_t),
2910	    BUS_DMASYNC_PREWRITE);
2911	if (idx < IWN_SCHED_WINSZ) {
2912		*(w + IWN_TX_RING_COUNT) = *w;
2913		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2914		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2915		    (char *)(void *)sc->sched_dma.vaddr,
2916		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2917	}
2918}
2919
2920static void
2921iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
2922    uint16_t len)
2923{
2924	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2925
2926	*w = htole16(id << 12 | (len + 8));
2927	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2928	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2929	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2930	if (idx < IWN_SCHED_WINSZ) {
2931		*(w + IWN_TX_RING_COUNT) = *w;
2932		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2933		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2934		    (char *)(void *)sc->sched_dma.vaddr,
2935		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2936	}
2937}
2938
2939#ifdef notyet
2940static void
2941iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
2942{
2943	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
2944
2945	*w = (*w & htole16(0xf000)) | htole16(1);
2946	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2947	    (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
2948	    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2949	if (idx < IWN_SCHED_WINSZ) {
2950		*(w + IWN_TX_RING_COUNT) = *w;
2951		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
2952		    (char *)(void *)(w + IWN_TX_RING_COUNT) -
2953		    (char *)(void *)sc->sched_dma.vaddr,
2954		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
2955	}
2956}
2957#endif
2958
2959static int
2960iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
2961{
2962	struct ieee80211com *ic = &sc->sc_ic;
2963	struct iwn_node *wn = (void *)ni;
2964	struct iwn_tx_ring *ring;
2965	struct iwn_tx_desc *desc;
2966	struct iwn_tx_data *data;
2967	struct iwn_tx_cmd *cmd;
2968	struct iwn_cmd_data *tx;
2969	const struct iwn_rate *rinfo;
2970	struct ieee80211_frame *wh;
2971	struct ieee80211_key *k = NULL;
2972	struct mbuf *m1;
2973	uint32_t flags;
2974	u_int hdrlen;
2975	bus_dma_segment_t *seg;
2976	uint8_t tid, ridx, txant, type;
2977	int i, totlen, error, pad;
2978
2979	const struct chanAccParams *cap;
2980	int noack;
2981	int hdrlen2;
2982
2983	wh = mtod(m, struct ieee80211_frame *);
2984	hdrlen = ieee80211_anyhdrsize(wh);
2985	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
2986
2987	hdrlen2 = (ieee80211_has_qos(wh)) ?
2988	    sizeof (struct ieee80211_qosframe) :
2989	    sizeof (struct ieee80211_frame);
2990
2991	if (hdrlen != hdrlen2)
2992	    aprint_error_dev(sc->sc_dev, "hdrlen error (%d != %d)\n",
2993		hdrlen, hdrlen2);
2994
2995	/* XXX OpenBSD sets a different tid when using QOS */
2996	tid = 0;
2997	if (ieee80211_has_qos(wh)) {
2998		cap = &ic->ic_wme.wme_chanParams;
2999		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
3000	}
3001	else
3002		noack = 0;
3003
3004	ring = &sc->txq[ac];
3005	desc = &ring->desc[ring->cur];
3006	data = &ring->data[ring->cur];
3007
3008	/* Choose a TX rate index. */
3009	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3010	    type != IEEE80211_FC0_TYPE_DATA) {
3011		ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
3012		    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
3013	} else if (ic->ic_fixed_rate != -1) {
3014		ridx = sc->fixed_ridx;
3015	} else
3016		ridx = wn->ridx[ni->ni_txrate];
3017	rinfo = &iwn_rates[ridx];
3018
3019	/* Encrypt the frame if need be. */
3020	/*
3021	 * XXX For now, NetBSD swaps the encryption and bpf sections
3022	 * in order to match old code and other drivers. Tests with
3023	 * tcpdump indicates that the order is irrelevant, however,
3024	 * as bpf produces unencrypted data for both ordering choices.
3025	 */
3026	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
3027		k = ieee80211_crypto_encap(ic, ni, m);
3028		if (k == NULL) {
3029			m_freem(m);
3030			return ENOBUFS;
3031		}
3032		/* Packet header may have moved, reset our local pointer. */
3033		wh = mtod(m, struct ieee80211_frame *);
3034	}
3035	totlen = m->m_pkthdr.len;
3036
3037	if (sc->sc_drvbpf != NULL) {
3038		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3039
3040		tap->wt_flags = 0;
3041		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3042		tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
3043		tap->wt_rate = rinfo->rate;
3044		tap->wt_hwqueue = ac;
3045		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
3046			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3047
3048		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
3049	}
3050
3051	/* Prepare TX firmware command. */
3052	cmd = &ring->cmd[ring->cur];
3053	cmd->code = IWN_CMD_TX_DATA;
3054	cmd->flags = 0;
3055	cmd->qid = ring->qid;
3056	cmd->idx = ring->cur;
3057
3058	tx = (struct iwn_cmd_data *)cmd->data;
3059	/* NB: No need to clear tx, all fields are reinitialized here. */
3060	tx->scratch = 0;	/* clear "scratch" area */
3061
3062	flags = 0;
3063	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3064		/* Unicast frame, check if an ACK is expected. */
3065		if (!noack)
3066			flags |= IWN_TX_NEED_ACK;
3067	}
3068
3069#ifdef notyet
3070	/* XXX NetBSD does not define IEEE80211_FC0_SUBTYPE_BAR */
3071	if ((wh->i_fc[0] &
3072	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
3073	    (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
3074		flags |= IWN_TX_IMM_BA;		/* Cannot happen yet. */
3075#endif
3076
3077	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3078		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3079
3080	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3081	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3082		/* NB: Group frames are sent using CCK in 802.11b/g. */
3083		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3084			flags |= IWN_TX_NEED_RTS;
3085		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3086		    ridx >= IWN_RIDX_OFDM6) {
3087			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3088				flags |= IWN_TX_NEED_CTS;
3089			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3090				flags |= IWN_TX_NEED_RTS;
3091		}
3092		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3093			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3094				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3095				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3096				flags |= IWN_TX_NEED_PROTECTION;
3097			} else
3098				flags |= IWN_TX_FULL_TXOP;
3099		}
3100	}
3101
3102	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3103	    type != IEEE80211_FC0_TYPE_DATA)
3104		tx->id = sc->broadcast_id;
3105	else
3106		tx->id = wn->id;
3107
3108	if (type == IEEE80211_FC0_TYPE_MGT) {
3109		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3110
3111#ifndef IEEE80211_STA_ONLY
3112		/* Tell HW to set timestamp in probe responses. */
3113		/* XXX NetBSD rev 1.11 added probe requests here but */
3114		/* probe requests do not take timestamps (from Bergamini). */
3115		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3116			flags |= IWN_TX_INSERT_TSTAMP;
3117#endif
3118		/* XXX NetBSD rev 1.11 and 1.20 added AUTH/DAUTH and RTS/CTS */
3119		/* changes here. These are not needed (from Bergamini). */
3120		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3121		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3122			tx->timeout = htole16(3);
3123		else
3124			tx->timeout = htole16(2);
3125	} else
3126		tx->timeout = htole16(0);
3127
3128	if (hdrlen & 3) {
3129		/* First segment length must be a multiple of 4. */
3130		flags |= IWN_TX_NEED_PADDING;
3131		pad = 4 - (hdrlen & 3);
3132	} else
3133		pad = 0;
3134
3135	tx->len = htole16(totlen);
3136	tx->tid = tid;
3137	tx->rts_ntries = 60;
3138	tx->data_ntries = 15;
3139	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3140	tx->plcp = rinfo->plcp;
3141	tx->rflags = rinfo->flags;
3142	if (tx->id == sc->broadcast_id) {
3143		/* Group or management frame. */
3144		tx->linkq = 0;
3145		/* XXX Alternate between antenna A and B? */
3146		txant = IWN_LSB(sc->txchainmask);
3147		tx->rflags |= IWN_RFLAG_ANT(txant);
3148	} else {
3149		tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1;
3150		flags |= IWN_TX_LINKQ;	/* enable MRR */
3151	}
3152	/* Set physical address of "scratch area". */
3153	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3154	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3155
3156	/* Copy 802.11 header in TX command. */
3157	/* XXX NetBSD changed this in rev 1.20 */
3158	memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen);
3159
3160	/* Trim 802.11 header. */
3161	m_adj(m, hdrlen);
3162	tx->security = 0;
3163	tx->flags = htole32(flags);
3164
3165	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3166	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3167	if (error != 0) {
3168		if (error != EFBIG) {
3169			aprint_error_dev(sc->sc_dev,
3170			    "can't map mbuf (error %d)\n", error);
3171			m_freem(m);
3172			return error;
3173		}
3174		/* Too many DMA segments, linearize mbuf. */
3175		MGETHDR(m1, M_DONTWAIT, MT_DATA);
3176		if (m1 == NULL) {
3177			m_freem(m);
3178			return ENOBUFS;
3179		}
3180		if (m->m_pkthdr.len > MHLEN) {
3181			MCLGET(m1, M_DONTWAIT);
3182			if (!(m1->m_flags & M_EXT)) {
3183				m_freem(m);
3184				m_freem(m1);
3185				return ENOBUFS;
3186			}
3187		}
3188		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
3189		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
3190		m_freem(m);
3191		m = m1;
3192
3193		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3194		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3195		if (error != 0) {
3196			aprint_error_dev(sc->sc_dev,
3197			    "can't map mbuf (error %d)\n", error);
3198			m_freem(m);
3199			return error;
3200		}
3201	}
3202
3203	data->m = m;
3204	data->ni = ni;
3205
3206	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3207	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3208
3209	/* Fill TX descriptor. */
3210	desc->nsegs = 1 + data->map->dm_nsegs;
3211	/* First DMA segment is used by the TX command. */
3212	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3213	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3214	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3215	/* Other DMA segments are for data payload. */
3216	seg = data->map->dm_segs;
3217	for (i = 1; i <= data->map->dm_nsegs; i++) {
3218		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3219		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3220		    seg->ds_len << 4);
3221		seg++;
3222	}
3223
3224	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3225	    BUS_DMASYNC_PREWRITE);
3226	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3227	    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3228	    sizeof (*cmd), BUS_DMASYNC_PREWRITE);
3229	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3230	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3231	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3232
3233#ifdef notyet
3234	/* Update TX scheduler. */
3235	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3236#endif
3237
3238	/* Kick TX ring. */
3239	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3240	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3241
3242	/* Mark TX ring as full if we reach a certain threshold. */
3243	if (++ring->queued > IWN_TX_RING_HIMARK)
3244		sc->qfullmsk |= 1 << ring->qid;
3245
3246	return 0;
3247}
3248
3249static void
3250iwn_start(struct ifnet *ifp)
3251{
3252	struct iwn_softc *sc = ifp->if_softc;
3253	struct ieee80211com *ic = &sc->sc_ic;
3254	struct ieee80211_node *ni;
3255	struct ether_header *eh;
3256	struct mbuf *m;
3257	int ac;
3258
3259	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3260		return;
3261
3262	for (;;) {
3263		if (sc->sc_beacon_wait == 1) {
3264			ifp->if_flags |= IFF_OACTIVE;
3265			break;
3266		}
3267
3268		if (sc->qfullmsk != 0) {
3269			ifp->if_flags |= IFF_OACTIVE;
3270			break;
3271		}
3272		/* Send pending management frames first. */
3273		IF_DEQUEUE(&ic->ic_mgtq, m);
3274		if (m != NULL) {
3275			ni = M_GETCTX(m, struct ieee80211_node *);
3276			ac = 0;
3277			goto sendit;
3278		}
3279		if (ic->ic_state != IEEE80211_S_RUN)
3280			break;
3281
3282		/* Encapsulate and send data frames. */
3283		IFQ_DEQUEUE(&ifp->if_snd, m);
3284		if (m == NULL)
3285			break;
3286		if (m->m_len < sizeof (*eh) &&
3287		    (m = m_pullup(m, sizeof (*eh))) == NULL) {
3288			if_statinc(ifp, if_oerrors);
3289			continue;
3290		}
3291		eh = mtod(m, struct ether_header *);
3292		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
3293		if (ni == NULL) {
3294			m_freem(m);
3295			if_statinc(ifp, if_oerrors);
3296			continue;
3297		}
3298		/* classify mbuf so we can find which tx ring to use */
3299		if (ieee80211_classify(ic, m, ni) != 0) {
3300			m_freem(m);
3301			ieee80211_free_node(ni);
3302			if_statinc(ifp, if_oerrors);
3303			continue;
3304		}
3305
3306		/* No QoS encapsulation for EAPOL frames. */
3307		ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
3308		    M_WME_GETAC(m) : WME_AC_BE;
3309
3310		if (sc->sc_beacon_wait == 0)
3311			bpf_mtap(ifp, m, BPF_D_OUT);
3312
3313		if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
3314			ieee80211_free_node(ni);
3315			if_statinc(ifp, if_oerrors);
3316			continue;
3317		}
3318sendit:
3319		if (sc->sc_beacon_wait)
3320			continue;
3321
3322		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
3323
3324		if (iwn_tx(sc, m, ni, ac) != 0) {
3325			ieee80211_free_node(ni);
3326			if_statinc(ifp, if_oerrors);
3327			continue;
3328		}
3329
3330		sc->sc_tx_timer = 5;
3331		ifp->if_timer = 1;
3332	}
3333
3334	if (sc->sc_beacon_wait > 1)
3335		sc->sc_beacon_wait = 0;
3336}
3337
3338static void
3339iwn_watchdog(struct ifnet *ifp)
3340{
3341	struct iwn_softc *sc = ifp->if_softc;
3342
3343	ifp->if_timer = 0;
3344
3345	if (sc->sc_tx_timer > 0) {
3346		if (--sc->sc_tx_timer == 0) {
3347			aprint_error_dev(sc->sc_dev,
3348			    "device timeout\n");
3349			ifp->if_flags &= ~IFF_UP;
3350			iwn_stop(ifp, 1);
3351			if_statinc(ifp, if_oerrors);
3352			return;
3353		}
3354		ifp->if_timer = 1;
3355	}
3356
3357	ieee80211_watchdog(&sc->sc_ic);
3358}
3359
3360static int
3361iwn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3362{
3363	struct iwn_softc *sc = ifp->if_softc;
3364	struct ieee80211com *ic = &sc->sc_ic;
3365	const struct sockaddr *sa;
3366	int s, error = 0;
3367
3368	s = splnet();
3369
3370	switch (cmd) {
3371	case SIOCSIFADDR:
3372		ifp->if_flags |= IFF_UP;
3373		/* FALLTHROUGH */
3374	case SIOCSIFFLAGS:
3375		/* XXX Added as it is in every NetBSD driver */
3376		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3377			break;
3378		if (ifp->if_flags & IFF_UP) {
3379			if (!(ifp->if_flags & IFF_RUNNING))
3380				error = iwn_init(ifp);
3381		} else {
3382			if (ifp->if_flags & IFF_RUNNING)
3383				iwn_stop(ifp, 1);
3384		}
3385		break;
3386
3387	case SIOCADDMULTI:
3388	case SIOCDELMULTI:
3389		sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
3390		error = (cmd == SIOCADDMULTI) ?
3391		    ether_addmulti(sa, &sc->sc_ec) :
3392		    ether_delmulti(sa, &sc->sc_ec);
3393
3394		if (error == ENETRESET)
3395			error = 0;
3396		break;
3397
3398	default:
3399		error = ieee80211_ioctl(ic, cmd, data);
3400	}
3401
3402	if (error == ENETRESET) {
3403		error = 0;
3404		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3405		    (IFF_UP | IFF_RUNNING)) {
3406			iwn_stop(ifp, 0);
3407			error = iwn_init(ifp);
3408		}
3409	}
3410
3411	splx(s);
3412	return error;
3413}
3414
3415/*
3416 * Send a command to the firmware.
3417 */
3418static int
3419iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3420{
3421	struct iwn_tx_ring *ring = &sc->txq[4];
3422	struct iwn_tx_desc *desc;
3423	struct iwn_tx_data *data;
3424	struct iwn_tx_cmd *cmd;
3425	struct mbuf *m;
3426	bus_addr_t paddr;
3427	int totlen, error;
3428
3429	desc = &ring->desc[ring->cur];
3430	data = &ring->data[ring->cur];
3431	totlen = 4 + size;
3432
3433	if (size > sizeof cmd->data) {
3434		/* Command is too large to fit in a descriptor. */
3435		if (totlen > MCLBYTES)
3436			return EINVAL;
3437		MGETHDR(m, M_DONTWAIT, MT_DATA);
3438		if (m == NULL)
3439			return ENOMEM;
3440		if (totlen > MHLEN) {
3441			MCLGET(m, M_DONTWAIT);
3442			if (!(m->m_flags & M_EXT)) {
3443				m_freem(m);
3444				return ENOMEM;
3445			}
3446		}
3447		cmd = mtod(m, struct iwn_tx_cmd *);
3448		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3449		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3450		if (error != 0) {
3451			m_freem(m);
3452			return error;
3453		}
3454		data->m = m;
3455		paddr = data->map->dm_segs[0].ds_addr;
3456	} else {
3457		cmd = &ring->cmd[ring->cur];
3458		paddr = data->cmd_paddr;
3459	}
3460
3461	cmd->code = code;
3462	cmd->flags = 0;
3463	cmd->qid = ring->qid;
3464	cmd->idx = ring->cur;
3465	/*
3466	 * Coverity:[OUT_OF_BOUNDS]
3467	 * false positive since, allocated in mbuf if it does not fit
3468	 */
3469	memcpy(cmd->data, buf, size);
3470
3471	desc->nsegs = 1;
3472	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3473	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3474
3475	if (size > sizeof cmd->data) {
3476		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3477		    BUS_DMASYNC_PREWRITE);
3478	} else {
3479		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3480		    (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr,
3481		    totlen, BUS_DMASYNC_PREWRITE);
3482	}
3483	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3484	    (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr,
3485	    sizeof (*desc), BUS_DMASYNC_PREWRITE);
3486
3487#ifdef notyet
3488	/* Update TX scheduler. */
3489	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3490#endif
3491	DPRINTFN(4, ("iwn_cmd %d size=%d %s\n", code, size, async ? " (async)" : ""));
3492
3493	/* Kick command ring. */
3494	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3495	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3496
3497	return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz);
3498}
3499
3500static int
3501iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3502{
3503	struct iwn4965_node_info hnode;
3504	char *src, *dst;
3505
3506	/*
3507	 * We use the node structure for 5000 Series internally (it is
3508	 * a superset of the one for 4965AGN). We thus copy the common
3509	 * fields before sending the command.
3510	 */
3511	src = (char *)node;
3512	dst = (char *)&hnode;
3513	memcpy(dst, src, 48);
3514	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3515	memcpy(dst + 48, src + 72, 20);
3516	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3517}
3518
3519static int
3520iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3521{
3522	/* Direct mapping. */
3523	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3524}
3525
3526static int
3527iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3528{
3529	struct iwn_node *wn = (void *)ni;
3530	struct ieee80211_rateset *rs = &ni->ni_rates;
3531	struct iwn_cmd_link_quality linkq;
3532	const struct iwn_rate *rinfo;
3533	uint8_t txant;
3534	int i, txrate;
3535
3536	/* Use the first valid TX antenna. */
3537	txant = IWN_LSB(sc->txchainmask);
3538
3539	memset(&linkq, 0, sizeof linkq);
3540	linkq.id = wn->id;
3541	linkq.antmsk_1stream = txant;
3542	linkq.antmsk_2stream = IWN_ANT_AB;
3543	linkq.ampdu_max = 31;
3544	linkq.ampdu_threshold = 3;
3545	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3546
3547	/* Start at highest available bit-rate. */
3548	txrate = rs->rs_nrates - 1;
3549	for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
3550		rinfo = &iwn_rates[wn->ridx[txrate]];
3551		linkq.retry[i].plcp = rinfo->plcp;
3552		linkq.retry[i].rflags = rinfo->flags;
3553		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3554		/* Next retry at immediate lower bit-rate. */
3555		if (txrate > 0)
3556			txrate--;
3557	}
3558	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3559}
3560
3561/*
3562 * Broadcast node is used to send group-addressed and management frames.
3563 */
3564static int
3565iwn_add_broadcast_node(struct iwn_softc *sc, int async)
3566{
3567	struct iwn_ops *ops = &sc->ops;
3568	struct iwn_node_info node;
3569	struct iwn_cmd_link_quality linkq;
3570	const struct iwn_rate *rinfo;
3571	uint8_t txant;
3572	int i, error;
3573
3574	memset(&node, 0, sizeof node);
3575	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3576	node.id = sc->broadcast_id;
3577	DPRINTF(("adding broadcast node\n"));
3578	if ((error = ops->add_node(sc, &node, async)) != 0)
3579		return error;
3580
3581	/* Use the first valid TX antenna. */
3582	txant = IWN_LSB(sc->txchainmask);
3583
3584	memset(&linkq, 0, sizeof linkq);
3585	linkq.id = sc->broadcast_id;
3586	linkq.antmsk_1stream = txant;
3587	linkq.antmsk_2stream = IWN_ANT_AB;
3588	linkq.ampdu_max = 64;
3589	linkq.ampdu_threshold = 3;
3590	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3591
3592	/* Use lowest mandatory bit-rate. */
3593	rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ?
3594	    &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6];
3595	linkq.retry[0].plcp = rinfo->plcp;
3596	linkq.retry[0].rflags = rinfo->flags;
3597	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3598	/* Use same bit-rate for all TX retries. */
3599	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
3600		linkq.retry[i].plcp = linkq.retry[0].plcp;
3601		linkq.retry[i].rflags = linkq.retry[0].rflags;
3602	}
3603	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
3604}
3605
3606static void
3607iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
3608{
3609	struct iwn_cmd_led led;
3610
3611	/* Clear microcode LED ownership. */
3612	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
3613
3614	led.which = which;
3615	led.unit = htole32(10000);	/* on/off in unit of 100ms */
3616	led.off = off;
3617	led.on = on;
3618	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
3619}
3620
3621/*
3622 * Set the critical temperature at which the firmware will stop the radio
3623 * and notify us.
3624 */
3625static int
3626iwn_set_critical_temp(struct iwn_softc *sc)
3627{
3628	struct iwn_critical_temp crit;
3629	int32_t temp;
3630
3631	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
3632
3633	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
3634		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
3635	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
3636		temp = IWN_CTOK(110);
3637	else
3638		temp = 110;
3639	memset(&crit, 0, sizeof crit);
3640	crit.tempR = htole32(temp);
3641	DPRINTF(("setting critical temperature to %d\n", temp));
3642	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
3643}
3644
3645static int
3646iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
3647{
3648	struct iwn_cmd_timing cmd;
3649	uint64_t val, mod;
3650
3651	memset(&cmd, 0, sizeof cmd);
3652	memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
3653	cmd.bintval = htole16(ni->ni_intval);
3654	cmd.lintval = htole16(10);
3655
3656	/* Compute remaining time until next beacon. */
3657	val = (uint64_t)ni->ni_intval * 1024;	/* msecs -> usecs */
3658	mod = le64toh(cmd.tstamp) % val;
3659	cmd.binitval = htole32((uint32_t)(val - mod));
3660
3661	DPRINTF(("timing bintval=%u, tstamp=%" PRIu64 ", init=%" PRIu32 "\n",
3662	    ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod)));
3663
3664	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
3665}
3666
3667static void
3668iwn4965_power_calibration(struct iwn_softc *sc, int temp)
3669{
3670	/* Adjust TX power if need be (delta >= 3 degC). */
3671	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
3672	if (abs(temp - sc->temp) >= 3) {
3673		/* Record temperature of last calibration. */
3674		sc->temp = temp;
3675		(void)iwn4965_set_txpower(sc, 1);
3676	}
3677}
3678
3679/*
3680 * Set TX power for current channel (each rate has its own power settings).
3681 * This function takes into account the regulatory information from EEPROM,
3682 * the current temperature and the current voltage.
3683 */
3684static int
3685iwn4965_set_txpower(struct iwn_softc *sc, int async)
3686{
3687/* Fixed-point arithmetic division using a n-bit fractional part. */
3688#define fdivround(a, b, n)	\
3689	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3690/* Linear interpolation. */
3691#define interpolate(x, x1, y1, x2, y2, n)	\
3692	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3693
3694	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
3695	struct ieee80211com *ic = &sc->sc_ic;
3696	struct iwn_ucode_info *uc = &sc->ucode_info;
3697	struct ieee80211_channel *ch;
3698	struct iwn4965_cmd_txpower cmd;
3699	struct iwn4965_eeprom_chan_samples *chans;
3700	const uint8_t *rf_gain, *dsp_gain;
3701	int32_t vdiff, tdiff;
3702	int i, c, grp, maxpwr;
3703	uint8_t chan;
3704
3705	/* Retrieve current channel from last RXON. */
3706	chan = sc->rxon.chan;
3707	DPRINTF(("setting TX power for channel %d\n", chan));
3708	ch = &ic->ic_channels[chan];
3709
3710	memset(&cmd, 0, sizeof cmd);
3711	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
3712	cmd.chan = chan;
3713
3714	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
3715		maxpwr   = sc->maxpwr5GHz;
3716		rf_gain  = iwn4965_rf_gain_5ghz;
3717		dsp_gain = iwn4965_dsp_gain_5ghz;
3718	} else {
3719		maxpwr   = sc->maxpwr2GHz;
3720		rf_gain  = iwn4965_rf_gain_2ghz;
3721		dsp_gain = iwn4965_dsp_gain_2ghz;
3722	}
3723
3724	/* Compute voltage compensation. */
3725	vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
3726	if (vdiff > 0)
3727		vdiff *= 2;
3728	if (abs(vdiff) > 2)
3729		vdiff = 0;
3730	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
3731	    vdiff, le32toh(uc->volt), sc->eeprom_voltage));
3732
3733	/* Get channel attenuation group. */
3734	if (chan <= 20)		/* 1-20 */
3735		grp = 4;
3736	else if (chan <= 43)	/* 34-43 */
3737		grp = 0;
3738	else if (chan <= 70)	/* 44-70 */
3739		grp = 1;
3740	else if (chan <= 124)	/* 71-124 */
3741		grp = 2;
3742	else			/* 125-200 */
3743		grp = 3;
3744	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
3745
3746	/* Get channel sub-band. */
3747	for (i = 0; i < IWN_NBANDS; i++)
3748		if (sc->bands[i].lo != 0 &&
3749		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
3750			break;
3751	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
3752		return EINVAL;
3753	chans = sc->bands[i].chans;
3754	DPRINTF(("chan %d sub-band=%d\n", chan, i));
3755
3756	for (c = 0; c < 2; c++) {
3757		uint8_t power, gain, temp;
3758		int maxchpwr, pwr, ridx, idx;
3759
3760		power = interpolate(chan,
3761		    chans[0].num, chans[0].samples[c][1].power,
3762		    chans[1].num, chans[1].samples[c][1].power, 1);
3763		gain  = interpolate(chan,
3764		    chans[0].num, chans[0].samples[c][1].gain,
3765		    chans[1].num, chans[1].samples[c][1].gain, 1);
3766		temp  = interpolate(chan,
3767		    chans[0].num, chans[0].samples[c][1].temp,
3768		    chans[1].num, chans[1].samples[c][1].temp, 1);
3769		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
3770		    c, power, gain, temp));
3771
3772		/* Compute temperature compensation. */
3773		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
3774		DPRINTF(("temperature compensation=%d (current=%d, "
3775		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
3776
3777		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
3778			/* Convert dBm to half-dBm. */
3779			maxchpwr = sc->maxpwr[chan] * 2;
3780			if ((ridx / 8) & 1)
3781				maxchpwr -= 6;	/* MIMO 2T: -3dB */
3782
3783			pwr = maxpwr;
3784
3785			/* Adjust TX power based on rate. */
3786			if ((ridx % 8) == 5)
3787				pwr -= 15;	/* OFDM48: -7.5dB */
3788			else if ((ridx % 8) == 6)
3789				pwr -= 17;	/* OFDM54: -8.5dB */
3790			else if ((ridx % 8) == 7)
3791				pwr -= 20;	/* OFDM60: -10dB */
3792			else
3793				pwr -= 10;	/* Others: -5dB */
3794
3795			/* Do not exceed channel max TX power. */
3796			if (pwr > maxchpwr)
3797				pwr = maxchpwr;
3798
3799			idx = gain - (pwr - power) - tdiff - vdiff;
3800			if ((ridx / 8) & 1)	/* MIMO */
3801				idx += (int32_t)le32toh(uc->atten[grp][c]);
3802
3803			if (cmd.band == 0)
3804				idx += 9;	/* 5GHz */
3805			if (ridx == IWN_RIDX_MAX)
3806				idx += 5;	/* CCK */
3807
3808			/* Make sure idx stays in a valid range. */
3809			if (idx < 0)
3810				idx = 0;
3811			else if (idx > IWN4965_MAX_PWR_INDEX)
3812				idx = IWN4965_MAX_PWR_INDEX;
3813
3814			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
3815			    c, ridx, idx));
3816			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
3817			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
3818		}
3819	}
3820
3821	DPRINTF(("setting TX power for chan %d\n", chan));
3822	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
3823
3824#undef interpolate
3825#undef fdivround
3826}
3827
3828static int
3829iwn5000_set_txpower(struct iwn_softc *sc, int async)
3830{
3831	struct iwn5000_cmd_txpower cmd;
3832	int cmdid;
3833
3834	/*
3835	 * TX power calibration is handled automatically by the firmware
3836	 * for 5000 Series.
3837	 */
3838	memset(&cmd, 0, sizeof cmd);
3839	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
3840	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
3841	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
3842	DPRINTF(("setting TX power\n"));
3843	if (IWN_UCODE_API(sc->ucode_rev) == 1)
3844		cmdid = IWN_CMD_TXPOWER_DBM_V1;
3845	else
3846		cmdid = IWN_CMD_TXPOWER_DBM;
3847	return iwn_cmd(sc, cmdid, &cmd, sizeof cmd, async);
3848}
3849
3850/*
3851 * Retrieve the maximum RSSI (in dBm) among receivers.
3852 */
3853static int
3854iwn4965_get_rssi(const struct iwn_rx_stat *stat)
3855{
3856	const struct iwn4965_rx_phystat *phy = (const void *)stat->phybuf;
3857	uint8_t mask, agc;
3858	int rssi;
3859
3860	mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
3861	agc  = (le16toh(phy->agc) >> 7) & 0x7f;
3862
3863	rssi = 0;
3864	if (mask & IWN_ANT_A)
3865		rssi = MAX(rssi, phy->rssi[0]);
3866	if (mask & IWN_ANT_B)
3867		rssi = MAX(rssi, phy->rssi[2]);
3868	if (mask & IWN_ANT_C)
3869		rssi = MAX(rssi, phy->rssi[4]);
3870
3871	return rssi - agc - IWN_RSSI_TO_DBM;
3872}
3873
3874static int
3875iwn5000_get_rssi(const struct iwn_rx_stat *stat)
3876{
3877	const struct iwn5000_rx_phystat *phy = (const void *)stat->phybuf;
3878	uint8_t agc;
3879	int rssi;
3880
3881	agc = (le32toh(phy->agc) >> 9) & 0x7f;
3882
3883	rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
3884		   le16toh(phy->rssi[1]) & 0xff);
3885	rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
3886
3887	return rssi - agc - IWN_RSSI_TO_DBM;
3888}
3889
3890/*
3891 * Retrieve the average noise (in dBm) among receivers.
3892 */
3893static int
3894iwn_get_noise(const struct iwn_rx_general_stats *stats)
3895{
3896	int i, total, nbant, noise;
3897
3898	total = nbant = 0;
3899	for (i = 0; i < 3; i++) {
3900		if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
3901			continue;
3902		total += noise;
3903		nbant++;
3904	}
3905	/* There should be at least one antenna but check anyway. */
3906	return (nbant == 0) ? -127 : (total / nbant) - 107;
3907}
3908
3909/*
3910 * Compute temperature (in degC) from last received statistics.
3911 */
3912static int
3913iwn4965_get_temperature(struct iwn_softc *sc)
3914{
3915	struct iwn_ucode_info *uc = &sc->ucode_info;
3916	int32_t r1, r2, r3, r4, temp;
3917
3918	r1 = le32toh(uc->temp[0].chan20MHz);
3919	r2 = le32toh(uc->temp[1].chan20MHz);
3920	r3 = le32toh(uc->temp[2].chan20MHz);
3921	r4 = le32toh(sc->rawtemp);
3922
3923	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
3924		return 0;
3925
3926	/* Sign-extend 23-bit R4 value to 32-bit. */
3927	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
3928	/* Compute temperature in Kelvin. */
3929	temp = (259 * (r4 - r2)) / (r3 - r1);
3930	temp = (temp * 97) / 100 + 8;
3931
3932	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
3933	return IWN_KTOC(temp);
3934}
3935
3936static int
3937iwn5000_get_temperature(struct iwn_softc *sc)
3938{
3939	int32_t temp;
3940
3941	/*
3942	 * Temperature is not used by the driver for 5000 Series because
3943	 * TX power calibration is handled by firmware.  We export it to
3944	 * users through the sensor framework though.
3945	 */
3946	temp = le32toh(sc->rawtemp);
3947	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
3948		temp = (temp / -5) + sc->temp_off;
3949		temp = IWN_KTOC(temp);
3950	}
3951	return temp;
3952}
3953
3954/*
3955 * Initialize sensitivity calibration state machine.
3956 */
3957static int
3958iwn_init_sensitivity(struct iwn_softc *sc)
3959{
3960	struct iwn_ops *ops = &sc->ops;
3961	struct iwn_calib_state *calib = &sc->calib;
3962	uint32_t flags;
3963	int error;
3964
3965	/* Reset calibration state machine. */
3966	memset(calib, 0, sizeof (*calib));
3967	calib->state = IWN_CALIB_STATE_INIT;
3968	calib->cck_state = IWN_CCK_STATE_HIFA;
3969	/* Set initial correlation values. */
3970	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
3971	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
3972	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
3973	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
3974	calib->cck_x4      = 125;
3975	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
3976	calib->energy_cck  = sc->limits->energy_cck;
3977
3978	/* Write initial sensitivity. */
3979	if ((error = iwn_send_sensitivity(sc)) != 0)
3980		return error;
3981
3982	/* Write initial gains. */
3983	if ((error = ops->init_gains(sc)) != 0)
3984		return error;
3985
3986	/* Request statistics at each beacon interval. */
3987	flags = 0;
3988	DPRINTF(("sending request for statistics\n"));
3989	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
3990}
3991
3992/*
3993 * Collect noise and RSSI statistics for the first 20 beacons received
3994 * after association and use them to determine connected antennas and
3995 * to set differential gains.
3996 */
3997static void
3998iwn_collect_noise(struct iwn_softc *sc,
3999    const struct iwn_rx_general_stats *stats)
4000{
4001	struct iwn_ops *ops = &sc->ops;
4002	struct iwn_calib_state *calib = &sc->calib;
4003	uint32_t val;
4004	int i;
4005
4006	/* Accumulate RSSI and noise for all 3 antennas. */
4007	for (i = 0; i < 3; i++) {
4008		calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
4009		calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
4010	}
4011	/* NB: We update differential gains only once after 20 beacons. */
4012	if (++calib->nbeacons < 20)
4013		return;
4014
4015	/* Determine highest average RSSI. */
4016	val = MAX(calib->rssi[0], calib->rssi[1]);
4017	val = MAX(calib->rssi[2], val);
4018
4019	/* Determine which antennas are connected. */
4020	sc->chainmask = sc->rxchainmask;
4021	for (i = 0; i < 3; i++)
4022		if (val - calib->rssi[i] > 15 * 20)
4023			sc->chainmask &= ~(1 << i);
4024	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4025	    sc->rxchainmask, sc->chainmask));
4026
4027	/* If none of the TX antennas are connected, keep at least one. */
4028	if ((sc->chainmask & sc->txchainmask) == 0)
4029		sc->chainmask |= IWN_LSB(sc->txchainmask);
4030
4031	(void)ops->set_gains(sc);
4032	calib->state = IWN_CALIB_STATE_RUN;
4033
4034#ifdef notyet
4035	/* XXX Disable RX chains with no antennas connected. */
4036	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4037	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4038#endif
4039
4040	/* Enable power-saving mode if requested by user. */
4041	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4042		(void)iwn_set_pslevel(sc, 0, 3, 1);
4043}
4044
4045static int
4046iwn4965_init_gains(struct iwn_softc *sc)
4047{
4048	struct iwn_phy_calib_gain cmd;
4049
4050	memset(&cmd, 0, sizeof cmd);
4051	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4052	/* Differential gains initially set to 0 for all 3 antennas. */
4053	DPRINTF(("setting initial differential gains\n"));
4054	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4055}
4056
4057static int
4058iwn5000_init_gains(struct iwn_softc *sc)
4059{
4060	struct iwn_phy_calib cmd;
4061
4062	memset(&cmd, 0, sizeof cmd);
4063	cmd.code = sc->reset_noise_gain;
4064	cmd.ngroups = 1;
4065	cmd.isvalid = 1;
4066	DPRINTF(("setting initial differential gains\n"));
4067	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4068}
4069
4070static int
4071iwn4965_set_gains(struct iwn_softc *sc)
4072{
4073	struct iwn_calib_state *calib = &sc->calib;
4074	struct iwn_phy_calib_gain cmd;
4075	int i, delta, noise;
4076
4077	/* Get minimal noise among connected antennas. */
4078	noise = INT_MAX;	/* NB: There's at least one antenna. */
4079	for (i = 0; i < 3; i++)
4080		if (sc->chainmask & (1 << i))
4081			noise = MIN(calib->noise[i], noise);
4082
4083	memset(&cmd, 0, sizeof cmd);
4084	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4085	/* Set differential gains for connected antennas. */
4086	for (i = 0; i < 3; i++) {
4087		if (sc->chainmask & (1 << i)) {
4088			/* Compute attenuation (in unit of 1.5dB). */
4089			delta = (noise - (int32_t)calib->noise[i]) / 30;
4090			/* NB: delta <= 0 */
4091			/* Limit to [-4.5dB,0]. */
4092			cmd.gain[i] = MIN(abs(delta), 3);
4093			if (delta < 0)
4094				cmd.gain[i] |= 1 << 2;	/* sign bit */
4095		}
4096	}
4097	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4098	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4099	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4100}
4101
4102static int
4103iwn5000_set_gains(struct iwn_softc *sc)
4104{
4105	struct iwn_calib_state *calib = &sc->calib;
4106	struct iwn_phy_calib_gain cmd;
4107	int i, ant, div, delta;
4108
4109	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4110	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4111
4112	memset(&cmd, 0, sizeof cmd);
4113	cmd.code = sc->noise_gain;
4114	cmd.ngroups = 1;
4115	cmd.isvalid = 1;
4116	/* Get first available RX antenna as referential. */
4117	ant = IWN_LSB(sc->rxchainmask);
4118	/* Set differential gains for other antennas. */
4119	for (i = ant + 1; i < 3; i++) {
4120		if (sc->chainmask & (1 << i)) {
4121			/* The delta is relative to antenna "ant". */
4122			delta = ((int32_t)calib->noise[ant] -
4123			    (int32_t)calib->noise[i]) / div;
4124			/* Limit to [-4.5dB,+4.5dB]. */
4125			cmd.gain[i - 1] = MIN(abs(delta), 3);
4126			if (delta < 0)
4127				cmd.gain[i - 1] |= 1 << 2;	/* sign bit */
4128		}
4129	}
4130	DPRINTF(("setting differential gains: %x/%x (%x)\n",
4131	    cmd.gain[0], cmd.gain[1], sc->chainmask));
4132	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4133}
4134
4135/*
4136 * Tune RF RX sensitivity based on the number of false alarms detected
4137 * during the last beacon period.
4138 */
4139static void
4140iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4141{
4142#define inc(val, inc, max)			\
4143	if ((val) < (max)) {			\
4144		if ((val) < (max) - (inc))	\
4145			(val) += (inc);		\
4146		else				\
4147			(val) = (max);		\
4148		needs_update = 1;		\
4149	}
4150#define dec(val, dec, min)			\
4151	if ((val) > (min)) {			\
4152		if ((val) > (min) + (dec))	\
4153			(val) -= (dec);		\
4154		else				\
4155			(val) = (min);		\
4156		needs_update = 1;		\
4157	}
4158
4159	const struct iwn_sensitivity_limits *limits = sc->limits;
4160	struct iwn_calib_state *calib = &sc->calib;
4161	uint32_t val, rxena, fa;
4162	uint32_t energy[3], energy_min;
4163	uint8_t noise[3], noise_ref;
4164	int i, needs_update = 0;
4165
4166	/* Check that we've been enabled long enough. */
4167	if ((rxena = le32toh(stats->general.load)) == 0)
4168		return;
4169
4170	/* Compute number of false alarms since last call for OFDM. */
4171	fa  = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4172	fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
4173	fa *= 200 * 1024;	/* 200TU */
4174
4175	/* Save counters values for next call. */
4176	calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
4177	calib->fa_ofdm = le32toh(stats->ofdm.fa);
4178
4179	if (fa > 50 * rxena) {
4180		/* High false alarm count, decrease sensitivity. */
4181		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4182		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4183		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4184		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4185		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4186
4187	} else if (fa < 5 * rxena) {
4188		/* Low false alarm count, increase sensitivity. */
4189		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4190		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4191		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4192		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4193		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4194	}
4195
4196	/* Compute maximum noise among 3 receivers. */
4197	for (i = 0; i < 3; i++)
4198		noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
4199	val = MAX(noise[0], noise[1]);
4200	val = MAX(noise[2], val);
4201	/* Insert it into our samples table. */
4202	calib->noise_samples[calib->cur_noise_sample] = val;
4203	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4204
4205	/* Compute maximum noise among last 20 samples. */
4206	noise_ref = calib->noise_samples[0];
4207	for (i = 1; i < 20; i++)
4208		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4209
4210	/* Compute maximum energy among 3 receivers. */
4211	for (i = 0; i < 3; i++)
4212		energy[i] = le32toh(stats->general.energy[i]);
4213	val = MIN(energy[0], energy[1]);
4214	val = MIN(energy[2], val);
4215	/* Insert it into our samples table. */
4216	calib->energy_samples[calib->cur_energy_sample] = val;
4217	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4218
4219	/* Compute minimum energy among last 10 samples. */
4220	energy_min = calib->energy_samples[0];
4221	for (i = 1; i < 10; i++)
4222		energy_min = MAX(energy_min, calib->energy_samples[i]);
4223	energy_min += 6;
4224
4225	/* Compute number of false alarms since last call for CCK. */
4226	fa  = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4227	fa += le32toh(stats->cck.fa) - calib->fa_cck;
4228	fa *= 200 * 1024;	/* 200TU */
4229
4230	/* Save counters values for next call. */
4231	calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
4232	calib->fa_cck = le32toh(stats->cck.fa);
4233
4234	if (fa > 50 * rxena) {
4235		/* High false alarm count, decrease sensitivity. */
4236		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4237		calib->cck_state = IWN_CCK_STATE_HIFA;
4238		calib->low_fa = 0;
4239
4240		if (calib->cck_x4 > 160) {
4241			calib->noise_ref = noise_ref;
4242			if (calib->energy_cck > 2)
4243				dec(calib->energy_cck, 2, energy_min);
4244		}
4245		if (calib->cck_x4 < 160) {
4246			calib->cck_x4 = 161;
4247			needs_update = 1;
4248		} else
4249			inc(calib->cck_x4, 3, limits->max_cck_x4);
4250
4251		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4252
4253	} else if (fa < 5 * rxena) {
4254		/* Low false alarm count, increase sensitivity. */
4255		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4256		calib->cck_state = IWN_CCK_STATE_LOFA;
4257		calib->low_fa++;
4258
4259		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4260		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4261		     calib->low_fa > 100)) {
4262			inc(calib->energy_cck, 2, limits->min_energy_cck);
4263			dec(calib->cck_x4,     3, limits->min_cck_x4);
4264			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4265		}
4266	} else {
4267		/* Not worth to increase or decrease sensitivity. */
4268		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4269		calib->low_fa = 0;
4270		calib->noise_ref = noise_ref;
4271
4272		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4273			/* Previous interval had many false alarms. */
4274			dec(calib->energy_cck, 8, energy_min);
4275		}
4276		calib->cck_state = IWN_CCK_STATE_INIT;
4277	}
4278
4279	if (needs_update)
4280		(void)iwn_send_sensitivity(sc);
4281#undef dec
4282#undef inc
4283}
4284
4285static int
4286iwn_send_sensitivity(struct iwn_softc *sc)
4287{
4288	struct iwn_calib_state *calib = &sc->calib;
4289	struct iwn_enhanced_sensitivity_cmd cmd;
4290	int len;
4291
4292	memset(&cmd, 0, sizeof cmd);
4293	len = sizeof (struct iwn_sensitivity_cmd);
4294	cmd.which = IWN_SENSITIVITY_WORKTBL;
4295	/* OFDM modulation. */
4296	cmd.corr_ofdm_x1     = htole16(calib->ofdm_x1);
4297	cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
4298	cmd.corr_ofdm_x4     = htole16(calib->ofdm_x4);
4299	cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
4300	cmd.energy_ofdm      = htole16(sc->limits->energy_ofdm);
4301	cmd.energy_ofdm_th   = htole16(62);
4302	/* CCK modulation. */
4303	cmd.corr_cck_x4      = htole16(calib->cck_x4);
4304	cmd.corr_cck_mrc_x4  = htole16(calib->cck_mrc_x4);
4305	cmd.energy_cck       = htole16(calib->energy_cck);
4306	/* Barker modulation: use default values. */
4307	cmd.corr_barker      = htole16(190);
4308	cmd.corr_barker_mrc  = htole16(sc->limits->barker_mrc);
4309	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4310		goto send;
4311	/* Enhanced sensitivity settings. */
4312	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4313	cmd.ofdm_det_slope_mrc = htole16(668);
4314	cmd.ofdm_det_icept_mrc = htole16(4);
4315	cmd.ofdm_det_slope     = htole16(486);
4316	cmd.ofdm_det_icept     = htole16(37);
4317	cmd.cck_det_slope_mrc  = htole16(853);
4318	cmd.cck_det_icept_mrc  = htole16(4);
4319	cmd.cck_det_slope      = htole16(476);
4320	cmd.cck_det_icept      = htole16(99);
4321send:
4322	DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n",
4323	    calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
4324	    calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4,
4325	    calib->energy_cck));
4326	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4327}
4328
4329/*
4330 * Set STA mode power saving level (between 0 and 5).
4331 * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4332 */
4333static int
4334iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4335{
4336	struct iwn_pmgt_cmd cmd;
4337	const struct iwn_pmgt *pmgt;
4338	uint32_t maxp, skip_dtim;
4339	pcireg_t reg;
4340	int i;
4341
4342	/* Select which PS parameters to use. */
4343	if (dtim <= 2)
4344		pmgt = &iwn_pmgt[0][level];
4345	else if (dtim <= 10)
4346		pmgt = &iwn_pmgt[1][level];
4347	else
4348		pmgt = &iwn_pmgt[2][level];
4349
4350	memset(&cmd, 0, sizeof cmd);
4351	if (level != 0)	/* not CAM */
4352		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4353	if (level == 5)
4354		cmd.flags |= htole16(IWN_PS_FAST_PD);
4355	/* Retrieve PCIe Active State Power Management (ASPM). */
4356	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4357	    sc->sc_cap_off + PCIE_LCSR);
4358	if (!(reg & PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4359		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4360	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4361	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4362
4363	if (dtim == 0) {
4364		dtim = 1;
4365		skip_dtim = 0;
4366	} else
4367		skip_dtim = pmgt->skip_dtim;
4368	if (skip_dtim != 0) {
4369		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4370		maxp = pmgt->intval[4];
4371		if (maxp == (uint32_t)-1)
4372			maxp = dtim * (skip_dtim + 1);
4373		else if (maxp > dtim)
4374			maxp = (maxp / dtim) * dtim;
4375	} else
4376		maxp = dtim;
4377	for (i = 0; i < 5; i++)
4378		cmd.intval[i] = htole32(MIN(maxp, pmgt->intval[i]));
4379
4380	DPRINTF(("setting power saving level to %d\n", level));
4381	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4382}
4383
4384int
4385iwn5000_runtime_calib(struct iwn_softc *sc)
4386{
4387	struct iwn5000_calib_config cmd;
4388
4389	memset(&cmd, 0, sizeof cmd);
4390	cmd.ucode.once.enable = 0xffffffff;
4391	cmd.ucode.once.start = IWN5000_CALIB_DC;
4392	DPRINTF(("configuring runtime calibration\n"));
4393	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4394}
4395
4396static int
4397iwn_config_bt_coex_bluetooth(struct iwn_softc *sc)
4398{
4399	struct iwn_bluetooth bluetooth;
4400
4401	memset(&bluetooth, 0, sizeof bluetooth);
4402	bluetooth.flags = IWN_BT_COEX_ENABLE;
4403	bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
4404	bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
4405
4406	DPRINTF(("configuring bluetooth coexistence\n"));
4407	return iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
4408}
4409
4410static int
4411iwn_config_bt_coex_prio_table(struct iwn_softc *sc)
4412{
4413	uint8_t prio_table[16];
4414
4415	memset(&prio_table, 0, sizeof prio_table);
4416	prio_table[ 0] =  6;	/* init calibration 1		*/
4417	prio_table[ 1] =  7;	/* init calibration 2		*/
4418	prio_table[ 2] =  2;	/* periodic calib low 1		*/
4419	prio_table[ 3] =  3;	/* periodic calib low 2		*/
4420	prio_table[ 4] =  4;	/* periodic calib high 1	*/
4421	prio_table[ 5] =  5;	/* periodic calib high 2	*/
4422	prio_table[ 6] =  6;	/* dtim				*/
4423	prio_table[ 7] =  8;	/* scan52			*/
4424	prio_table[ 8] = 10;	/* scan24			*/
4425
4426	DPRINTF(("sending priority lookup table\n"));
4427	return iwn_cmd(sc, IWN_CMD_BT_COEX_PRIO_TABLE,
4428	               &prio_table, sizeof prio_table, 0);
4429}
4430
4431static int
4432iwn_config_bt_coex_adv_config(struct iwn_softc *sc, struct iwn_bt_basic *basic,
4433    size_t len)
4434{
4435	struct iwn_btcoex_prot btprot;
4436	int error;
4437
4438	basic->bt.flags = IWN_BT_COEX_ENABLE;
4439	basic->bt.lead_time = IWN_BT_LEAD_TIME_DEF;
4440	basic->bt.max_kill = IWN_BT_MAX_KILL_DEF;
4441	basic->bt.bt3_timer_t7_value = IWN_BT_BT3_T7_DEF;
4442	basic->bt.kill_ack_mask = IWN_BT_KILL_ACK_MASK_DEF;
4443	basic->bt.kill_cts_mask = IWN_BT_KILL_CTS_MASK_DEF;
4444	basic->bt3_prio_sample_time = IWN_BT_BT3_PRIO_SAMPLE_DEF;
4445	basic->bt3_timer_t2_value = IWN_BT_BT3_T2_DEF;
4446	basic->bt3_lookup_table[ 0] = htole32(0xaaaaaaaa); /* Normal */
4447	basic->bt3_lookup_table[ 1] = htole32(0xaaaaaaaa);
4448	basic->bt3_lookup_table[ 2] = htole32(0xaeaaaaaa);
4449	basic->bt3_lookup_table[ 3] = htole32(0xaaaaaaaa);
4450	basic->bt3_lookup_table[ 4] = htole32(0xcc00ff28);
4451	basic->bt3_lookup_table[ 5] = htole32(0x0000aaaa);
4452	basic->bt3_lookup_table[ 6] = htole32(0xcc00aaaa);
4453	basic->bt3_lookup_table[ 7] = htole32(0x0000aaaa);
4454	basic->bt3_lookup_table[ 8] = htole32(0xc0004000);
4455	basic->bt3_lookup_table[ 9] = htole32(0x00004000);
4456	basic->bt3_lookup_table[10] = htole32(0xf0005000);
4457	basic->bt3_lookup_table[11] = htole32(0xf0005000);
4458	basic->reduce_txpower = 0; /* as not implemented */
4459	basic->valid = IWN_BT_ALL_VALID_MASK;
4460
4461	DPRINTF(("configuring advanced bluetooth coexistence v1\n"));
4462	error = iwn_cmd(sc, IWN_CMD_BT_COEX, basic, len, 0);
4463	if (error != 0) {
4464		aprint_error_dev(sc->sc_dev,
4465			"could not configure advanced bluetooth coexistence\n");
4466		return error;
4467	}
4468
4469	error = iwn_config_bt_coex_prio_table(sc);
4470	if (error != 0) {
4471		aprint_error_dev(sc->sc_dev,
4472			"could not configure send BT priority table\n");
4473		return error;
4474	}
4475
4476	/* Force BT state machine change */
4477	memset(&btprot, 0, sizeof btprot);
4478	btprot.open = 1;
4479	btprot.type = 1;
4480	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4481	if (error != 0) {
4482		aprint_error_dev(sc->sc_dev, "could not open BT protocol\n");
4483		return error;
4484	}
4485
4486	btprot.open = 0;
4487	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof btprot, 1);
4488	if (error != 0) {
4489		aprint_error_dev(sc->sc_dev, "could not close BT protocol\n");
4490		return error;
4491	}
4492	return 0;
4493}
4494
4495static int
4496iwn_config_bt_coex_adv1(struct iwn_softc *sc)
4497{
4498	struct iwn_bt_adv1 d;
4499
4500	memset(&d, 0, sizeof d);
4501	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4502	d.tx_prio_boost = 0;
4503	d.rx_prio_boost = 0;
4504	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4505}
4506
4507static int
4508iwn_config_bt_coex_adv2(struct iwn_softc *sc)
4509{
4510	struct iwn_bt_adv2 d;
4511
4512	memset(&d, 0, sizeof d);
4513	d.prio_boost = IWN_BT_PRIO_BOOST_DEF;
4514	d.tx_prio_boost = 0;
4515	d.rx_prio_boost = 0;
4516	return iwn_config_bt_coex_adv_config(sc, &d.basic, sizeof d);
4517}
4518
4519static int
4520iwn_config(struct iwn_softc *sc)
4521{
4522	struct iwn_ops *ops = &sc->ops;
4523	struct ieee80211com *ic = &sc->sc_ic;
4524	struct ifnet *ifp = ic->ic_ifp;
4525	uint32_t txmask;
4526	uint16_t rxchain;
4527	int error;
4528
4529	error = ops->config_bt_coex(sc);
4530	if (error != 0) {
4531		aprint_error_dev(sc->sc_dev,
4532			"could not configure bluetooth coexistence\n");
4533		return error;
4534	}
4535
4536	/* Set radio temperature sensor offset. */
4537	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4538		error = iwn6000_temp_offset_calib(sc);
4539		if (error != 0) {
4540			aprint_error_dev(sc->sc_dev,
4541			    "could not set temperature offset\n");
4542			return error;
4543		}
4544	}
4545
4546	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4547	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4548	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
4549	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4550		error = iwn2000_temp_offset_calib(sc);
4551		if (error != 0) {
4552			aprint_error_dev(sc->sc_dev,
4553			    "could not set temperature offset\n");
4554			return error;
4555		}
4556	}
4557
4558	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4559	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4560		/* Configure runtime DC calibration. */
4561		error = iwn5000_runtime_calib(sc);
4562		if (error != 0) {
4563			aprint_error_dev(sc->sc_dev,
4564			    "could not configure runtime calibration\n");
4565			return error;
4566		}
4567	}
4568
4569	/* Configure valid TX chains for 5000 Series. */
4570	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4571		txmask = htole32(sc->txchainmask);
4572		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4573		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4574		    sizeof txmask, 0);
4575		if (error != 0) {
4576			aprint_error_dev(sc->sc_dev,
4577			    "could not configure valid TX chains\n");
4578			return error;
4579		}
4580	}
4581
4582	/* Set mode, channel, RX filter and enable RX. */
4583	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
4584	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
4585	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
4586	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
4587	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
4588	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4589	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan))
4590		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4591	switch (ic->ic_opmode) {
4592	case IEEE80211_M_STA:
4593		sc->rxon.mode = IWN_MODE_STA;
4594		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
4595		break;
4596	case IEEE80211_M_MONITOR:
4597		sc->rxon.mode = IWN_MODE_MONITOR;
4598		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
4599		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
4600		break;
4601	default:
4602		/* Should not get there. */
4603		break;
4604	}
4605	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
4606	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
4607	sc->rxon.ht_single_mask = 0xff;
4608	sc->rxon.ht_dual_mask = 0xff;
4609	sc->rxon.ht_triple_mask = 0xff;
4610	rxchain =
4611	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4612	    IWN_RXCHAIN_MIMO_COUNT(2) |
4613	    IWN_RXCHAIN_IDLE_COUNT(2);
4614	sc->rxon.rxchain = htole16(rxchain);
4615	DPRINTF(("setting configuration\n"));
4616	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
4617	if (error != 0) {
4618		aprint_error_dev(sc->sc_dev,
4619		    "RXON command failed\n");
4620		return error;
4621	}
4622
4623	if ((error = iwn_add_broadcast_node(sc, 0)) != 0) {
4624		aprint_error_dev(sc->sc_dev,
4625		    "could not add broadcast node\n");
4626		return error;
4627	}
4628
4629	/* Configuration has changed, set TX power accordingly. */
4630	if ((error = ops->set_txpower(sc, 0)) != 0) {
4631		aprint_error_dev(sc->sc_dev,
4632		    "could not set TX power\n");
4633		return error;
4634	}
4635
4636	if ((error = iwn_set_critical_temp(sc)) != 0) {
4637		aprint_error_dev(sc->sc_dev,
4638		    "could not set critical temperature\n");
4639		return error;
4640	}
4641
4642	/* Set power saving level to CAM during initialization. */
4643	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
4644		aprint_error_dev(sc->sc_dev,
4645		    "could not set power saving level\n");
4646		return error;
4647	}
4648	return 0;
4649}
4650
4651static uint16_t
4652iwn_get_active_dwell_time(struct iwn_softc *sc, uint16_t flags,
4653    uint8_t n_probes)
4654{
4655	/* No channel? Default to 2GHz settings */
4656	if (flags & IEEE80211_CHAN_2GHZ)
4657		return IWN_ACTIVE_DWELL_TIME_2GHZ +
4658		    IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1);
4659
4660	/* 5GHz dwell time */
4661	return IWN_ACTIVE_DWELL_TIME_5GHZ +
4662	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1);
4663}
4664
4665/*
4666 * Limit the total dwell time to 85% of the beacon interval.
4667 *
4668 * Returns the dwell time in milliseconds.
4669 */
4670static uint16_t
4671iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
4672{
4673	struct ieee80211com *ic = &sc->sc_ic;
4674	struct ieee80211_node *ni = ic->ic_bss;
4675	int bintval = 0;
4676
4677	/* bintval is in TU (1.024mS) */
4678	if (ni != NULL)
4679		bintval = ni->ni_intval;
4680
4681	/*
4682	 * If it's non-zero, we should calculate the minimum of
4683	 * it and the DWELL_BASE.
4684	 *
4685	 * XXX Yes, the math should take into account that bintval
4686	 * is 1.024mS, not 1mS..
4687	 */
4688	if (bintval > 0)
4689		return MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100));
4690
4691	/* No association context? Default */
4692	return IWN_PASSIVE_DWELL_BASE;
4693}
4694
4695static uint16_t
4696iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
4697{
4698	uint16_t passive;
4699	if (flags & IEEE80211_CHAN_2GHZ)
4700		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
4701	else
4702		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
4703
4704	/* Clamp to the beacon interval if we're associated */
4705	return iwn_limit_dwell(sc, passive);
4706}
4707
4708static int
4709iwn_scan(struct iwn_softc *sc, uint16_t flags)
4710{
4711	struct ieee80211com *ic = &sc->sc_ic;
4712	struct iwn_scan_hdr *hdr;
4713	struct iwn_cmd_data *tx;
4714	struct iwn_scan_essid *essid;
4715	struct iwn_scan_chan *chan;
4716	struct ieee80211_frame *wh;
4717	struct ieee80211_rateset *rs;
4718	struct ieee80211_channel *c;
4719	uint8_t *buf, *frm;
4720	uint16_t rxchain, dwell_active, dwell_passive;
4721	uint8_t txant;
4722	int buflen, error, is_active;
4723
4724	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
4725	if (buf == NULL) {
4726		aprint_error_dev(sc->sc_dev,
4727		    "could not allocate buffer for scan command\n");
4728		return ENOMEM;
4729	}
4730	hdr = (struct iwn_scan_hdr *)buf;
4731	/*
4732	 * Move to the next channel if no frames are received within 10ms
4733	 * after sending the probe request.
4734	 */
4735	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
4736	hdr->quiet_threshold = htole16(1);	/* min # of packets */
4737
4738	/* Select antennas for scanning. */
4739	rxchain =
4740	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
4741	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
4742	    IWN_RXCHAIN_DRIVER_FORCE;
4743	if ((flags & IEEE80211_CHAN_5GHZ) &&
4744	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
4745		/* Ant A must be avoided in 5GHz because of an HW bug. */
4746		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
4747	} else	/* Use all available RX antennas. */
4748		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
4749	hdr->rxchain = htole16(rxchain);
4750	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
4751
4752	tx = (struct iwn_cmd_data *)(hdr + 1);
4753	tx->flags = htole32(IWN_TX_AUTO_SEQ);
4754	tx->id = sc->broadcast_id;
4755	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
4756
4757	if (flags & IEEE80211_CHAN_5GHZ) {
4758		hdr->crc_threshold = 0xffff;
4759		/* Send probe requests at 6Mbps. */
4760		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
4761		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
4762	} else {
4763		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
4764		/* Send probe requests at 1Mbps. */
4765		tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
4766		tx->rflags = IWN_RFLAG_CCK;
4767		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
4768	}
4769	/* Use the first valid TX antenna. */
4770	txant = IWN_LSB(sc->txchainmask);
4771	tx->rflags |= IWN_RFLAG_ANT(txant);
4772
4773	/*
4774	 * Only do active scanning if we're announcing a probe request
4775	 * for a given SSID (or more, if we ever add it to the driver.)
4776	 */
4777	is_active = 0;
4778
4779	essid = (struct iwn_scan_essid *)(tx + 1);
4780	if (ic->ic_des_esslen != 0) {
4781		essid[0].id = IEEE80211_ELEMID_SSID;
4782		essid[0].len = ic->ic_des_esslen;
4783		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
4784
4785		is_active = 1;
4786	}
4787	/*
4788	 * Build a probe request frame.  Most of the following code is a
4789	 * copy & paste of what is done in net80211.
4790	 */
4791	wh = (struct ieee80211_frame *)(essid + 20);
4792	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
4793	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
4794	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
4795	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
4796	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
4797	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
4798	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
4799	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
4800
4801	frm = (uint8_t *)(wh + 1);
4802	frm = ieee80211_add_ssid(frm, NULL, 0);
4803	frm = ieee80211_add_rates(frm, rs);
4804#ifndef IEEE80211_NO_HT
4805	if (ic->ic_flags & IEEE80211_F_HTON)
4806		frm = ieee80211_add_htcaps(frm, ic);
4807#endif
4808	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
4809		frm = ieee80211_add_xrates(frm, rs);
4810
4811	/* Set length of probe request. */
4812	tx->len = htole16(frm - (uint8_t *)wh);
4813
4814
4815	/*
4816	 * If active scanning is requested but a certain channel is
4817	 * marked passive, we can do active scanning if we detect
4818	 * transmissions.
4819	 *
4820	 * There is an issue with some firmware versions that triggers
4821	 * a sysassert on a "good CRC threshold" of zero (== disabled),
4822	 * on a radar channel even though this means that we should NOT
4823	 * send probes.
4824	 *
4825	 * The "good CRC threshold" is the number of frames that we
4826	 * need to receive during our dwell time on a channel before
4827	 * sending out probes -- setting this to a huge value will
4828	 * mean we never reach it, but at the same time work around
4829	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
4830	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
4831	 *
4832	 * This was fixed in later versions along with some other
4833	 * scan changes, and the threshold behaves as a flag in those
4834	 * versions.
4835	 */
4836
4837	/*
4838	 * If we're doing active scanning, set the crc_threshold
4839	 * to a suitable value.  This is different to active veruss
4840	 * passive scanning depending upon the channel flags; the
4841	 * firmware will obey that particular check for us.
4842	 */
4843	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
4844		hdr->crc_threshold = is_active ?
4845		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
4846	else
4847		hdr->crc_threshold = is_active ?
4848		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
4849
4850	chan = (struct iwn_scan_chan *)frm;
4851	for (c  = &ic->ic_channels[1];
4852	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
4853		if ((c->ic_flags & flags) != flags)
4854			continue;
4855
4856		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
4857		DPRINTFN(2, ("adding channel %d\n", chan->chan));
4858		chan->flags = 0;
4859		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE))
4860			chan->flags |= htole32(IWN_CHAN_ACTIVE);
4861		if (ic->ic_des_esslen != 0)
4862			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
4863
4864		/*
4865		 * Calculate the active/passive dwell times.
4866		 */
4867
4868		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
4869		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
4870
4871		/* Make sure they're valid */
4872		if (dwell_passive <= dwell_active)
4873			dwell_passive = dwell_active + 1;
4874
4875		chan->active = htole16(dwell_active);
4876		chan->passive = htole16(dwell_passive);
4877
4878		chan->dsp_gain = 0x6e;
4879		if (IEEE80211_IS_CHAN_5GHZ(c)) {
4880			chan->rf_gain = 0x3b;
4881		} else {
4882			chan->rf_gain = 0x28;
4883		}
4884		hdr->nchan++;
4885		chan++;
4886	}
4887
4888	buflen = (uint8_t *)chan - buf;
4889	hdr->len = htole16(buflen);
4890
4891	DPRINTF(("sending scan command nchan=%d\n", hdr->nchan));
4892	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
4893	free(buf, M_DEVBUF);
4894	return error;
4895}
4896
4897static int
4898iwn_auth(struct iwn_softc *sc)
4899{
4900	struct iwn_ops *ops = &sc->ops;
4901	struct ieee80211com *ic = &sc->sc_ic;
4902	struct ieee80211_node *ni = ic->ic_bss;
4903	int error;
4904
4905	/* Update adapter configuration. */
4906	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
4907	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
4908	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
4909	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
4910		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
4911	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4912		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4913	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4914		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4915	switch (ic->ic_curmode) {
4916	case IEEE80211_MODE_11A:
4917		sc->rxon.cck_mask  = 0;
4918		sc->rxon.ofdm_mask = 0x15;
4919		break;
4920	case IEEE80211_MODE_11B:
4921		sc->rxon.cck_mask  = 0x03;
4922		sc->rxon.ofdm_mask = 0;
4923		break;
4924	default:	/* Assume 802.11b/g. */
4925		sc->rxon.cck_mask  = 0x0f;
4926		sc->rxon.ofdm_mask = 0x15;
4927	}
4928	DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan,
4929	    sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask));
4930	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4931	if (error != 0) {
4932		aprint_error_dev(sc->sc_dev,
4933		    "RXON command failed\n");
4934		return error;
4935	}
4936
4937	/* Configuration has changed, set TX power accordingly. */
4938	if ((error = ops->set_txpower(sc, 1)) != 0) {
4939		aprint_error_dev(sc->sc_dev,
4940		    "could not set TX power\n");
4941		return error;
4942	}
4943	/*
4944	 * Reconfiguring RXON clears the firmware nodes table so we must
4945	 * add the broadcast node again.
4946	 */
4947	if ((error = iwn_add_broadcast_node(sc, 1)) != 0) {
4948		aprint_error_dev(sc->sc_dev,
4949		    "could not add broadcast node\n");
4950		return error;
4951	}
4952	return 0;
4953}
4954
4955static int
4956iwn_run(struct iwn_softc *sc)
4957{
4958	struct iwn_ops *ops = &sc->ops;
4959	struct ieee80211com *ic = &sc->sc_ic;
4960	struct ieee80211_node *ni = ic->ic_bss;
4961	struct iwn_node_info node;
4962	int error;
4963
4964	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4965		/* Link LED blinks while monitoring. */
4966		iwn_set_led(sc, IWN_LED_LINK, 5, 5);
4967		return 0;
4968	}
4969	if ((error = iwn_set_timing(sc, ni)) != 0) {
4970		aprint_error_dev(sc->sc_dev,
4971		    "could not set timing\n");
4972		return error;
4973	}
4974
4975	/* Update adapter configuration. */
4976	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
4977	/* Short preamble and slot time are negotiated when associating. */
4978	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
4979	if (ic->ic_flags & IEEE80211_F_SHSLOT)
4980		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
4981	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
4982		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
4983	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
4984	DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags));
4985	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4986	if (error != 0) {
4987		aprint_error_dev(sc->sc_dev,
4988		    "could not update configuration\n");
4989		return error;
4990	}
4991
4992	/* Configuration has changed, set TX power accordingly. */
4993	if ((error = ops->set_txpower(sc, 1)) != 0) {
4994		aprint_error_dev(sc->sc_dev,
4995		    "could not set TX power\n");
4996		return error;
4997	}
4998
4999	/* Fake a join to initialize the TX rate. */
5000	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5001	iwn_newassoc(ni, 1);
5002
5003	/* Add BSS node. */
5004	memset(&node, 0, sizeof node);
5005	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5006	node.id = IWN_ID_BSS;
5007#ifdef notyet
5008	node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
5009	    IWN_AMDPU_DENSITY(5));	/* 2us */
5010#endif
5011	DPRINTF(("adding BSS node\n"));
5012	error = ops->add_node(sc, &node, 1);
5013	if (error != 0) {
5014		aprint_error_dev(sc->sc_dev,
5015		    "could not add BSS node\n");
5016		return error;
5017	}
5018	DPRINTF(("setting link quality for node %d\n", node.id));
5019	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5020		aprint_error_dev(sc->sc_dev,
5021		    "could not setup link quality for node %d\n", node.id);
5022		return error;
5023	}
5024
5025	if ((error = iwn_init_sensitivity(sc)) != 0) {
5026		aprint_error_dev(sc->sc_dev,
5027		    "could not set sensitivity\n");
5028		return error;
5029	}
5030	/* Start periodic calibration timer. */
5031	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5032	sc->calib_cnt = 0;
5033	callout_schedule(&sc->calib_to, hz/2);
5034
5035	/* Link LED always on while associated. */
5036	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5037	return 0;
5038}
5039
5040#ifdef IWN_HWCRYPTO
5041/*
5042 * We support CCMP hardware encryption/decryption of unicast frames only.
5043 * HW support for TKIP really sucks.  We should let TKIP die anyway.
5044 */
5045static int
5046iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5047    struct ieee80211_key *k)
5048{
5049	struct iwn_softc *sc = ic->ic_softc;
5050	struct iwn_ops *ops = &sc->ops;
5051	struct iwn_node *wn = (void *)ni;
5052	struct iwn_node_info node;
5053	uint16_t kflags;
5054
5055	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5056	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5057		return ieee80211_set_key(ic, ni, k);
5058
5059	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5060	if (k->k_flags & IEEE80211_KEY_GROUP)
5061		kflags |= IWN_KFLAG_GROUP;
5062
5063	memset(&node, 0, sizeof node);
5064	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5065	    sc->broadcast_id : wn->id;
5066	node.control = IWN_NODE_UPDATE;
5067	node.flags = IWN_FLAG_SET_KEY;
5068	node.kflags = htole16(kflags);
5069	node.kid = k->k_id;
5070	memcpy(node.key, k->k_key, k->k_len);
5071	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5072	return ops->add_node(sc, &node, 1);
5073}
5074
5075static void
5076iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5077    struct ieee80211_key *k)
5078{
5079	struct iwn_softc *sc = ic->ic_softc;
5080	struct iwn_ops *ops = &sc->ops;
5081	struct iwn_node *wn = (void *)ni;
5082	struct iwn_node_info node;
5083
5084	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5085	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5086		/* See comment about other ciphers above. */
5087		ieee80211_delete_key(ic, ni, k);
5088		return;
5089	}
5090	if (ic->ic_state != IEEE80211_S_RUN)
5091		return;	/* Nothing to do. */
5092	memset(&node, 0, sizeof node);
5093	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5094	    sc->broadcast_id : wn->id;
5095	node.control = IWN_NODE_UPDATE;
5096	node.flags = IWN_FLAG_SET_KEY;
5097	node.kflags = htole16(IWN_KFLAG_INVALID);
5098	node.kid = 0xff;
5099	DPRINTF(("delete keys for node %d\n", node.id));
5100	(void)ops->add_node(sc, &node, 1);
5101}
5102#endif
5103
5104/* XXX Added for NetBSD (copied from rev 1.39). */
5105
5106static int
5107iwn_wme_update(struct ieee80211com *ic)
5108{
5109#define IWN_EXP2(v)    htole16((1 << (v)) - 1)
5110#define IWN_USEC(v)    htole16(IEEE80211_TXOP_TO_US(v))
5111	struct iwn_softc *sc = ic->ic_ifp->if_softc;
5112	const struct wmeParams *wmep;
5113	struct iwn_edca_params cmd;
5114	int ac;
5115
5116	/* don't override default WME values if WME is not actually enabled */
5117	if (!(ic->ic_flags & IEEE80211_F_WME))
5118		return 0;
5119	cmd.flags = 0;
5120	for (ac = 0; ac < WME_NUM_AC; ac++) {
5121		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
5122		cmd.ac[ac].aifsn = wmep->wmep_aifsn;
5123		cmd.ac[ac].cwmin = IWN_EXP2(wmep->wmep_logcwmin);
5124		cmd.ac[ac].cwmax = IWN_EXP2(wmep->wmep_logcwmax);
5125		cmd.ac[ac].txoplimit  = IWN_USEC(wmep->wmep_txopLimit);
5126
5127		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
5128					"txop=%d\n", ac, cmd.ac[ac].aifsn,
5129					cmd.ac[ac].cwmin,
5130					cmd.ac[ac].cwmax, cmd.ac[ac].txoplimit));
5131	}
5132	return iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
5133#undef IWN_USEC
5134#undef IWN_EXP2
5135}
5136
5137#ifndef IEEE80211_NO_HT
5138/*
5139 * This function is called by upper layer when an ADDBA request is received
5140 * from another STA and before the ADDBA response is sent.
5141 */
5142static int
5143iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5144    uint8_t tid)
5145{
5146	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5147	struct iwn_softc *sc = ic->ic_softc;
5148	struct iwn_ops *ops = &sc->ops;
5149	struct iwn_node *wn = (void *)ni;
5150	struct iwn_node_info node;
5151
5152	memset(&node, 0, sizeof node);
5153	node.id = wn->id;
5154	node.control = IWN_NODE_UPDATE;
5155	node.flags = IWN_FLAG_SET_ADDBA;
5156	node.addba_tid = tid;
5157	node.addba_ssn = htole16(ba->ba_winstart);
5158	DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5159	    ba->ba_winstart));
5160	return ops->add_node(sc, &node, 1);
5161}
5162
5163/*
5164 * This function is called by upper layer on teardown of an HT-immediate
5165 * Block Ack agreement (eg. uppon receipt of a DELBA frame).
5166 */
5167static void
5168iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5169    uint8_t tid)
5170{
5171	struct iwn_softc *sc = ic->ic_softc;
5172	struct iwn_ops *ops = &sc->ops;
5173	struct iwn_node *wn = (void *)ni;
5174	struct iwn_node_info node;
5175
5176	memset(&node, 0, sizeof node);
5177	node.id = wn->id;
5178	node.control = IWN_NODE_UPDATE;
5179	node.flags = IWN_FLAG_SET_DELBA;
5180	node.delba_tid = tid;
5181	DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid));
5182	(void)ops->add_node(sc, &node, 1);
5183}
5184
5185/*
5186 * This function is called by upper layer when an ADDBA response is received
5187 * from another STA.
5188 */
5189static int
5190iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5191    uint8_t tid)
5192{
5193	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5194	struct iwn_softc *sc = ic->ic_softc;
5195	struct iwn_ops *ops = &sc->ops;
5196	struct iwn_node *wn = (void *)ni;
5197	struct iwn_node_info node;
5198	int error;
5199
5200	/* Enable TX for the specified RA/TID. */
5201	wn->disable_tid &= ~(1 << tid);
5202	memset(&node, 0, sizeof node);
5203	node.id = wn->id;
5204	node.control = IWN_NODE_UPDATE;
5205	node.flags = IWN_FLAG_SET_DISABLE_TID;
5206	node.disable_tid = htole16(wn->disable_tid);
5207	error = ops->add_node(sc, &node, 1);
5208	if (error != 0)
5209		return error;
5210
5211	if ((error = iwn_nic_lock(sc)) != 0)
5212		return error;
5213	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5214	iwn_nic_unlock(sc);
5215	return 0;
5216}
5217
5218static void
5219iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5220    uint8_t tid)
5221{
5222	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5223	struct iwn_softc *sc = ic->ic_softc;
5224	struct iwn_ops *ops = &sc->ops;
5225
5226	if (iwn_nic_lock(sc) != 0)
5227		return;
5228	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5229	iwn_nic_unlock(sc);
5230}
5231
5232static void
5233iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5234    uint8_t tid, uint16_t ssn)
5235{
5236	struct iwn_node *wn = (void *)ni;
5237	int qid = 7 + tid;
5238
5239	/* Stop TX scheduler while we're changing its configuration. */
5240	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5241	    IWN4965_TXQ_STATUS_CHGACT);
5242
5243	/* Assign RA/TID translation to the queue. */
5244	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5245	    wn->id << 4 | tid);
5246
5247	/* Enable chain-building mode for the queue. */
5248	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5249
5250	/* Set starting sequence number from the ADDBA request. */
5251	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5252	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5253
5254	/* Set scheduler window size. */
5255	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
5256	    IWN_SCHED_WINSZ);
5257	/* Set scheduler frame limit. */
5258	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5259	    IWN_SCHED_LIMIT << 16);
5260
5261	/* Enable interrupts for the queue. */
5262	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5263
5264	/* Mark the queue as active. */
5265	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5266	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
5267	    iwn_tid2fifo[tid] << 1);
5268}
5269
5270static void
5271iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5272{
5273	int qid = 7 + tid;
5274
5275	/* Stop TX scheduler while we're changing its configuration. */
5276	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5277	    IWN4965_TXQ_STATUS_CHGACT);
5278
5279	/* Set starting sequence number from the ADDBA request. */
5280	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5281	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
5282
5283	/* Disable interrupts for the queue. */
5284	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
5285
5286	/* Mark the queue as inactive. */
5287	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5288	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
5289}
5290
5291static void
5292iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5293    uint8_t tid, uint16_t ssn)
5294{
5295	struct iwn_node *wn = (void *)ni;
5296	int qid = 10 + tid;
5297
5298	/* Stop TX scheduler while we're changing its configuration. */
5299	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5300	    IWN5000_TXQ_STATUS_CHGACT);
5301
5302	/* Assign RA/TID translation to the queue. */
5303	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
5304	    wn->id << 4 | tid);
5305
5306	/* Enable chain-building mode for the queue. */
5307	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
5308
5309	/* Enable aggregation for the queue. */
5310	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5311
5312	/* Set starting sequence number from the ADDBA request. */
5313	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5314	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5315
5316	/* Set scheduler window size and frame limit. */
5317	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5318	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5319
5320	/* Enable interrupts for the queue. */
5321	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5322
5323	/* Mark the queue as active. */
5324	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5325	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
5326}
5327
5328static void
5329iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
5330{
5331	int qid = 10 + tid;
5332
5333	/* Stop TX scheduler while we're changing its configuration. */
5334	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5335	    IWN5000_TXQ_STATUS_CHGACT);
5336
5337	/* Disable aggregation for the queue. */
5338	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
5339
5340	/* Set starting sequence number from the ADDBA request. */
5341	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
5342	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
5343
5344	/* Disable interrupts for the queue. */
5345	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
5346
5347	/* Mark the queue as inactive. */
5348	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5349	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
5350}
5351#endif	/* !IEEE80211_NO_HT */
5352
5353/*
5354 * Query calibration tables from the initialization firmware.  We do this
5355 * only once at first boot.  Called from a process context.
5356 */
5357static int
5358iwn5000_query_calibration(struct iwn_softc *sc)
5359{
5360	struct iwn5000_calib_config cmd;
5361	int error;
5362
5363	memset(&cmd, 0, sizeof cmd);
5364	cmd.ucode.once.enable = 0xffffffff;
5365	cmd.ucode.once.start  = 0xffffffff;
5366	cmd.ucode.once.send   = 0xffffffff;
5367	cmd.ucode.flags       = 0xffffffff;
5368	DPRINTF(("sending calibration query\n"));
5369	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
5370	if (error != 0)
5371		return error;
5372
5373	/* Wait at most two seconds for calibration to complete. */
5374	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
5375		error = tsleep(sc, PCATCH, "iwncal", 2 * hz);
5376	return error;
5377}
5378
5379/*
5380 * Send calibration results to the runtime firmware.  These results were
5381 * obtained on first boot from the initialization firmware.
5382 */
5383static int
5384iwn5000_send_calibration(struct iwn_softc *sc)
5385{
5386	int idx, error;
5387
5388	for (idx = 0; idx < 5; idx++) {
5389		if (sc->calibcmd[idx].buf == NULL)
5390			continue;	/* No results available. */
5391		DPRINTF(("send calibration result idx=%d len=%d\n",
5392		    idx, sc->calibcmd[idx].len));
5393		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
5394		    sc->calibcmd[idx].len, 0);
5395		if (error != 0) {
5396			aprint_error_dev(sc->sc_dev,
5397			    "could not send calibration result\n");
5398			return error;
5399		}
5400	}
5401	return 0;
5402}
5403
5404static int
5405iwn5000_send_wimax_coex(struct iwn_softc *sc)
5406{
5407	struct iwn5000_wimax_coex wimax;
5408
5409#ifdef notyet
5410	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
5411		/* Enable WiMAX coexistence for combo adapters. */
5412		wimax.flags =
5413		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
5414		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
5415		    IWN_WIMAX_COEX_STA_TABLE_VALID |
5416		    IWN_WIMAX_COEX_ENABLE;
5417		memcpy(wimax.events, iwn6050_wimax_events,
5418		    sizeof iwn6050_wimax_events);
5419	} else
5420#endif
5421	{
5422		/* Disable WiMAX coexistence. */
5423		wimax.flags = 0;
5424		memset(wimax.events, 0, sizeof wimax.events);
5425	}
5426	DPRINTF(("Configuring WiMAX coexistence\n"));
5427	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
5428}
5429
5430static int
5431iwn6000_temp_offset_calib(struct iwn_softc *sc)
5432{
5433	struct iwn6000_phy_calib_temp_offset cmd;
5434
5435	memset(&cmd, 0, sizeof cmd);
5436	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
5437	cmd.ngroups = 1;
5438	cmd.isvalid = 1;
5439	if (sc->eeprom_temp != 0)
5440		cmd.offset = htole16(sc->eeprom_temp);
5441	else
5442		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
5443	DPRINTF(("setting radio sensor offset to %d\n", le16toh(cmd.offset)));
5444	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5445}
5446
5447static int
5448iwn2000_temp_offset_calib(struct iwn_softc *sc)
5449{
5450	struct iwn2000_phy_calib_temp_offset cmd;
5451
5452	memset(&cmd, 0, sizeof cmd);
5453	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
5454	cmd.ngroups = 1;
5455	cmd.isvalid = 1;
5456	if (sc->eeprom_rawtemp != 0) {
5457		cmd.offset_low = htole16(sc->eeprom_rawtemp);
5458		cmd.offset_high = htole16(sc->eeprom_temp);
5459	} else {
5460		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
5461		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
5462	}
5463	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
5464	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
5465	    le16toh(cmd.offset_low), le16toh(cmd.offset_high),
5466	    le16toh(cmd.burnt_voltage_ref)));
5467	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5468}
5469
5470/*
5471 * This function is called after the runtime firmware notifies us of its
5472 * readiness (called in a process context).
5473 */
5474static int
5475iwn4965_post_alive(struct iwn_softc *sc)
5476{
5477	int error, qid;
5478
5479	if ((error = iwn_nic_lock(sc)) != 0)
5480		return error;
5481
5482	/* Clear TX scheduler state in SRAM. */
5483	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5484	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
5485	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
5486
5487	/* Set physical address of TX scheduler rings (1KB aligned). */
5488	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5489
5490	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5491
5492	/* Disable chain mode for all our 16 queues. */
5493	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
5494
5495	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
5496		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
5497		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5498
5499		/* Set scheduler window size. */
5500		iwn_mem_write(sc, sc->sched_base +
5501		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
5502		/* Set scheduler frame limit. */
5503		iwn_mem_write(sc, sc->sched_base +
5504		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
5505		    IWN_SCHED_LIMIT << 16);
5506	}
5507
5508	/* Enable interrupts for all our 16 queues. */
5509	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
5510	/* Identify TX FIFO rings (0-7). */
5511	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
5512
5513	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5514	for (qid = 0; qid < 7; qid++) {
5515		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
5516		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5517		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
5518	}
5519	iwn_nic_unlock(sc);
5520	return 0;
5521}
5522
5523/*
5524 * This function is called after the initialization or runtime firmware
5525 * notifies us of its readiness (called in a process context).
5526 */
5527static int
5528iwn5000_post_alive(struct iwn_softc *sc)
5529{
5530	int error, qid;
5531
5532	/* Switch to using ICT interrupt mode. */
5533	iwn5000_ict_reset(sc);
5534
5535	if ((error = iwn_nic_lock(sc)) != 0)
5536		return error;
5537
5538	/* Clear TX scheduler state in SRAM. */
5539	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
5540	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
5541	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
5542
5543	/* Set physical address of TX scheduler rings (1KB aligned). */
5544	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
5545
5546	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
5547
5548	/* Enable chain mode for all queues, except command queue. */
5549	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
5550	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
5551
5552	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
5553		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
5554		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
5555
5556		iwn_mem_write(sc, sc->sched_base +
5557		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
5558		/* Set scheduler window size and frame limit. */
5559		iwn_mem_write(sc, sc->sched_base +
5560		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
5561		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
5562	}
5563
5564	/* Enable interrupts for all our 20 queues. */
5565	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
5566	/* Identify TX FIFO rings (0-7). */
5567	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
5568
5569	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
5570	for (qid = 0; qid < 7; qid++) {
5571		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
5572		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
5573		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
5574	}
5575	iwn_nic_unlock(sc);
5576
5577	/* Configure WiMAX coexistence for combo adapters. */
5578	error = iwn5000_send_wimax_coex(sc);
5579	if (error != 0) {
5580		aprint_error_dev(sc->sc_dev,
5581		    "could not configure WiMAX coexistence\n");
5582		return error;
5583	}
5584	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
5585		struct iwn5000_phy_calib_crystal cmd;
5586
5587		/* Perform crystal calibration. */
5588		memset(&cmd, 0, sizeof cmd);
5589		cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
5590		cmd.ngroups = 1;
5591		cmd.isvalid = 1;
5592		cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
5593		cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
5594		DPRINTF(("sending crystal calibration %d, %d\n",
5595		    cmd.cap_pin[0], cmd.cap_pin[1]));
5596		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
5597		if (error != 0) {
5598			aprint_error_dev(sc->sc_dev,
5599			    "crystal calibration failed\n");
5600			return error;
5601		}
5602	}
5603	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
5604		/* Query calibration from the initialization firmware. */
5605		if ((error = iwn5000_query_calibration(sc)) != 0) {
5606			aprint_error_dev(sc->sc_dev,
5607			    "could not query calibration\n");
5608			return error;
5609		}
5610		/*
5611		 * We have the calibration results now, reboot with the
5612		 * runtime firmware (call ourselves recursively!)
5613		 */
5614		iwn_hw_stop(sc);
5615		error = iwn_hw_init(sc);
5616	} else {
5617		/* Send calibration results to runtime firmware. */
5618		error = iwn5000_send_calibration(sc);
5619	}
5620	return error;
5621}
5622
5623/*
5624 * The firmware boot code is small and is intended to be copied directly into
5625 * the NIC internal memory (no DMA transfer).
5626 */
5627static int
5628iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
5629{
5630	int error, ntries;
5631
5632	size /= sizeof (uint32_t);
5633
5634	if ((error = iwn_nic_lock(sc)) != 0)
5635		return error;
5636
5637	/* Copy microcode image into NIC memory. */
5638	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
5639	    (const uint32_t *)ucode, size);
5640
5641	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
5642	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
5643	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
5644
5645	/* Start boot load now. */
5646	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
5647
5648	/* Wait for transfer to complete. */
5649	for (ntries = 0; ntries < 1000; ntries++) {
5650		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
5651		    IWN_BSM_WR_CTRL_START))
5652			break;
5653		DELAY(10);
5654	}
5655	if (ntries == 1000) {
5656		aprint_error_dev(sc->sc_dev,
5657		    "could not load boot firmware\n");
5658		iwn_nic_unlock(sc);
5659		return ETIMEDOUT;
5660	}
5661
5662	/* Enable boot after power up. */
5663	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
5664
5665	iwn_nic_unlock(sc);
5666	return 0;
5667}
5668
5669static int
5670iwn4965_load_firmware(struct iwn_softc *sc)
5671{
5672	struct iwn_fw_info *fw = &sc->fw;
5673	struct iwn_dma_info *dma = &sc->fw_dma;
5674	int error;
5675
5676	/* Copy initialization sections into pre-allocated DMA-safe memory. */
5677	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
5678	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
5679	    BUS_DMASYNC_PREWRITE);
5680	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5681	    fw->init.text, fw->init.textsz);
5682	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5683	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
5684
5685	/* Tell adapter where to find initialization sections. */
5686	if ((error = iwn_nic_lock(sc)) != 0)
5687		return error;
5688	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5689	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
5690	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5691	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5692	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
5693	iwn_nic_unlock(sc);
5694
5695	/* Load firmware boot code. */
5696	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
5697	if (error != 0) {
5698		aprint_error_dev(sc->sc_dev,
5699		    "could not load boot firmware\n");
5700		return error;
5701	}
5702	/* Now press "execute". */
5703	IWN_WRITE(sc, IWN_RESET, 0);
5704
5705	/* Wait at most one second for first alive notification. */
5706	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
5707		aprint_error_dev(sc->sc_dev,
5708		    "timeout waiting for adapter to initialize\n");
5709		return error;
5710	}
5711
5712	/* Retrieve current temperature for initial TX power calibration. */
5713	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
5714	sc->temp = iwn4965_get_temperature(sc);
5715
5716	/* Copy runtime sections into pre-allocated DMA-safe memory. */
5717	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
5718	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
5719	    BUS_DMASYNC_PREWRITE);
5720	memcpy((char *)dma->vaddr + IWN4965_FW_DATA_MAXSZ,
5721	    fw->main.text, fw->main.textsz);
5722	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
5723	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
5724
5725	/* Tell adapter where to find runtime sections. */
5726	if ((error = iwn_nic_lock(sc)) != 0)
5727		return error;
5728	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
5729	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
5730	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
5731	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
5732	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
5733	    IWN_FW_UPDATED | fw->main.textsz);
5734	iwn_nic_unlock(sc);
5735
5736	return 0;
5737}
5738
5739static int
5740iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
5741    const uint8_t *section, int size)
5742{
5743	struct iwn_dma_info *dma = &sc->fw_dma;
5744	int error;
5745
5746	/* Copy firmware section into pre-allocated DMA-safe memory. */
5747	memcpy(dma->vaddr, section, size);
5748	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
5749
5750	if ((error = iwn_nic_lock(sc)) != 0)
5751		return error;
5752
5753	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5754	    IWN_FH_TX_CONFIG_DMA_PAUSE);
5755
5756	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
5757	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
5758	    IWN_LOADDR(dma->paddr));
5759	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
5760	    IWN_HIADDR(dma->paddr) << 28 | size);
5761	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
5762	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
5763	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
5764	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
5765
5766	/* Kick Flow Handler to start DMA transfer. */
5767	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
5768	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
5769
5770	iwn_nic_unlock(sc);
5771
5772	/* Wait at most five seconds for FH DMA transfer to complete. */
5773	return tsleep(sc, PCATCH, "iwninit", 5 * hz);
5774}
5775
5776static int
5777iwn5000_load_firmware(struct iwn_softc *sc)
5778{
5779	struct iwn_fw_part *fw;
5780	int error;
5781
5782	/* Load the initialization firmware on first boot only. */
5783	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
5784	    &sc->fw.main : &sc->fw.init;
5785
5786	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
5787	    fw->text, fw->textsz);
5788	if (error != 0) {
5789		aprint_error_dev(sc->sc_dev,
5790		    "could not load firmware %s section\n", ".text");
5791		return error;
5792	}
5793	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
5794	    fw->data, fw->datasz);
5795	if (error != 0) {
5796		aprint_error_dev(sc->sc_dev,
5797		    "could not load firmware %s section\n", ".data");
5798		return error;
5799	}
5800
5801	/* Now press "execute". */
5802	IWN_WRITE(sc, IWN_RESET, 0);
5803	return 0;
5804}
5805
5806/*
5807 * Extract text and data sections from a legacy firmware image.
5808 */
5809static int
5810iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
5811{
5812	const uint32_t *ptr;
5813	size_t hdrlen = 24;
5814	uint32_t rev;
5815
5816	ptr = (const uint32_t *)fw->data;
5817	rev = le32toh(*ptr++);
5818
5819	sc->ucode_rev = rev;
5820
5821	/* Check firmware API version. */
5822	if (IWN_FW_API(rev) <= 1) {
5823		aprint_error_dev(sc->sc_dev,
5824		    "bad firmware, need API version >=2\n");
5825		return EINVAL;
5826	}
5827	if (IWN_FW_API(rev) >= 3) {
5828		/* Skip build number (version 2 header). */
5829		hdrlen += 4;
5830		ptr++;
5831	}
5832	if (fw->size < hdrlen) {
5833		aprint_error_dev(sc->sc_dev,
5834		    "firmware too short: %zd bytes\n", fw->size);
5835		return EINVAL;
5836	}
5837	fw->main.textsz = le32toh(*ptr++);
5838	fw->main.datasz = le32toh(*ptr++);
5839	fw->init.textsz = le32toh(*ptr++);
5840	fw->init.datasz = le32toh(*ptr++);
5841	fw->boot.textsz = le32toh(*ptr++);
5842
5843	/* Check that all firmware sections fit. */
5844	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
5845	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
5846		aprint_error_dev(sc->sc_dev,
5847		    "firmware too short: %zd bytes\n", fw->size);
5848		return EINVAL;
5849	}
5850
5851	/* Get pointers to firmware sections. */
5852	fw->main.text = (const uint8_t *)ptr;
5853	fw->main.data = fw->main.text + fw->main.textsz;
5854	fw->init.text = fw->main.data + fw->main.datasz;
5855	fw->init.data = fw->init.text + fw->init.textsz;
5856	fw->boot.text = fw->init.data + fw->init.datasz;
5857	return 0;
5858}
5859
5860/*
5861 * Extract text and data sections from a TLV firmware image.
5862 */
5863static int
5864iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
5865    uint16_t alt)
5866{
5867	const struct iwn_fw_tlv_hdr *hdr;
5868	const struct iwn_fw_tlv *tlv;
5869	const uint8_t *ptr, *end;
5870	uint64_t altmask;
5871	uint32_t len;
5872
5873	if (fw->size < sizeof (*hdr)) {
5874		aprint_error_dev(sc->sc_dev,
5875		    "firmware too short: %zd bytes\n", fw->size);
5876		return EINVAL;
5877	}
5878	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
5879	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
5880		aprint_error_dev(sc->sc_dev,
5881		    "bad firmware signature 0x%08x\n", le32toh(hdr->signature));
5882		return EINVAL;
5883	}
5884	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
5885	    le32toh(hdr->build)));
5886	sc->ucode_rev = le32toh(hdr->rev);
5887
5888	/*
5889	 * Select the closest supported alternative that is less than
5890	 * or equal to the specified one.
5891	 */
5892	altmask = le64toh(hdr->altmask);
5893	while (alt > 0 && !(altmask & (1ULL << alt)))
5894		alt--;	/* Downgrade. */
5895	DPRINTF(("using alternative %d\n", alt));
5896
5897	ptr = (const uint8_t *)(hdr + 1);
5898	end = (const uint8_t *)(fw->data + fw->size);
5899
5900	/* Parse type-length-value fields. */
5901	while (ptr + sizeof (*tlv) <= end) {
5902		tlv = (const struct iwn_fw_tlv *)ptr;
5903		len = le32toh(tlv->len);
5904
5905		ptr += sizeof (*tlv);
5906		if (ptr + len > end) {
5907			aprint_error_dev(sc->sc_dev,
5908			    "firmware too short: %zd bytes\n", fw->size);
5909			return EINVAL;
5910		}
5911		/* Skip other alternatives. */
5912		if (tlv->alt != 0 && tlv->alt != htole16(alt))
5913			goto next;
5914
5915		switch (le16toh(tlv->type)) {
5916		case IWN_FW_TLV_MAIN_TEXT:
5917			fw->main.text = ptr;
5918			fw->main.textsz = len;
5919			break;
5920		case IWN_FW_TLV_MAIN_DATA:
5921			fw->main.data = ptr;
5922			fw->main.datasz = len;
5923			break;
5924		case IWN_FW_TLV_INIT_TEXT:
5925			fw->init.text = ptr;
5926			fw->init.textsz = len;
5927			break;
5928		case IWN_FW_TLV_INIT_DATA:
5929			fw->init.data = ptr;
5930			fw->init.datasz = len;
5931			break;
5932		case IWN_FW_TLV_BOOT_TEXT:
5933			fw->boot.text = ptr;
5934			fw->boot.textsz = len;
5935			break;
5936		case IWN_FW_TLV_ENH_SENS:
5937			if (len != 0) {
5938				aprint_error_dev(sc->sc_dev,
5939				    "TLV type %d has invalid size %u\n",
5940				    le16toh(tlv->type), len);
5941				goto next;
5942			}
5943			sc->sc_flags |= IWN_FLAG_ENH_SENS;
5944			break;
5945		case IWN_FW_TLV_PHY_CALIB:
5946			if (len != sizeof(uint32_t)) {
5947				aprint_error_dev(sc->sc_dev,
5948				    "TLV type %d has invalid size %u\n",
5949				    le16toh(tlv->type), len);
5950				goto next;
5951			}
5952			if (le32toh(*ptr) <= IWN5000_PHY_CALIB_MAX) {
5953				sc->reset_noise_gain = le32toh(*ptr);
5954				sc->noise_gain = le32toh(*ptr) + 1;
5955			}
5956			break;
5957		case IWN_FW_TLV_FLAGS:
5958			if (len < sizeof(uint32_t))
5959				break;
5960			if (len % sizeof(uint32_t))
5961				break;
5962			sc->tlv_feature_flags = le32toh(*ptr);
5963			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
5964			break;
5965		default:
5966			DPRINTF(("TLV type %d not handled\n",
5967			    le16toh(tlv->type)));
5968			break;
5969		}
5970 next:		/* TLV fields are 32-bit aligned. */
5971		ptr += (len + 3) & ~3;
5972	}
5973	return 0;
5974}
5975
5976static int
5977iwn_read_firmware(struct iwn_softc *sc)
5978{
5979	struct iwn_fw_info *fw = &sc->fw;
5980	firmware_handle_t fwh;
5981	int error;
5982
5983	/*
5984	 * Some PHY calibration commands are firmware-dependent; these
5985	 * are the default values that will be overridden if
5986	 * necessary.
5987	 */
5988	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
5989	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
5990
5991	/* Initialize for error returns */
5992	fw->data = NULL;
5993	fw->size = 0;
5994
5995	/* Open firmware image. */
5996	if ((error = firmware_open("if_iwn", sc->fwname, &fwh)) != 0) {
5997		aprint_error_dev(sc->sc_dev,
5998		    "could not get firmware handle %s\n", sc->fwname);
5999		return error;
6000	}
6001	fw->size = firmware_get_size(fwh);
6002	if (fw->size < sizeof (uint32_t)) {
6003		aprint_error_dev(sc->sc_dev,
6004		    "firmware too short: %zd bytes\n", fw->size);
6005		firmware_close(fwh);
6006		return EINVAL;
6007	}
6008
6009	/* Read the firmware. */
6010	fw->data = firmware_malloc(fw->size);
6011	if (fw->data == NULL) {
6012		aprint_error_dev(sc->sc_dev,
6013		    "not enough memory to stock firmware %s\n", sc->fwname);
6014		firmware_close(fwh);
6015		return ENOMEM;
6016	}
6017	error = firmware_read(fwh, 0, fw->data, fw->size);
6018	firmware_close(fwh);
6019	if (error != 0) {
6020		aprint_error_dev(sc->sc_dev,
6021		    "could not read firmware %s\n", sc->fwname);
6022		goto out;
6023	}
6024
6025	/* Retrieve text and data sections. */
6026	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6027		error = iwn_read_firmware_leg(sc, fw);
6028	else
6029		error = iwn_read_firmware_tlv(sc, fw, 1);
6030	if (error != 0) {
6031		aprint_error_dev(sc->sc_dev,
6032		    "could not read firmware sections\n");
6033		goto out;
6034	}
6035
6036	/* Make sure text and data sections fit in hardware memory. */
6037	if (fw->main.textsz > sc->fw_text_maxsz ||
6038	    fw->main.datasz > sc->fw_data_maxsz ||
6039	    fw->init.textsz > sc->fw_text_maxsz ||
6040	    fw->init.datasz > sc->fw_data_maxsz ||
6041	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6042	    (fw->boot.textsz & 3) != 0) {
6043		aprint_error_dev(sc->sc_dev,
6044		    "firmware sections too large\n");
6045		goto out;
6046	}
6047
6048	/* We can proceed with loading the firmware. */
6049	return 0;
6050out:
6051	firmware_free(fw->data, fw->size);
6052	fw->data = NULL;
6053	fw->size = 0;
6054	return error ? error : EINVAL;
6055}
6056
6057static int
6058iwn_clock_wait(struct iwn_softc *sc)
6059{
6060	int ntries;
6061
6062	/* Set "initialization complete" bit. */
6063	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6064
6065	/* Wait for clock stabilization. */
6066	for (ntries = 0; ntries < 2500; ntries++) {
6067		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6068			return 0;
6069		DELAY(10);
6070	}
6071	aprint_error_dev(sc->sc_dev,
6072	    "timeout waiting for clock stabilization\n");
6073	return ETIMEDOUT;
6074}
6075
6076static int
6077iwn_apm_init(struct iwn_softc *sc)
6078{
6079	pcireg_t reg;
6080	int error;
6081
6082	/* Disable L0s exit timer (NMI bug workaround). */
6083	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6084	/* Don't wait for ICH L0s (ICH bug workaround). */
6085	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6086
6087	/* Set FH wait threshold to max (HW bug under stress workaround). */
6088	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6089
6090	/* Enable HAP INTA to move adapter from L1a to L0s. */
6091	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6092
6093	/* Retrieve PCIe Active State Power Management (ASPM). */
6094	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6095	    sc->sc_cap_off + PCIE_LCSR);
6096	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6097	if (reg & PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6098		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6099	else
6100		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6101
6102	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6103	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6104		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6105
6106	/* Wait for clock stabilization before accessing prph. */
6107	if ((error = iwn_clock_wait(sc)) != 0)
6108		return error;
6109
6110	if ((error = iwn_nic_lock(sc)) != 0)
6111		return error;
6112	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6113		/* Enable DMA and BSM (Bootstrap State Machine). */
6114		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6115		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6116		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6117	} else {
6118		/* Enable DMA. */
6119		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6120		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6121	}
6122	DELAY(20);
6123	/* Disable L1-Active. */
6124	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6125	iwn_nic_unlock(sc);
6126
6127	return 0;
6128}
6129
6130static void
6131iwn_apm_stop_master(struct iwn_softc *sc)
6132{
6133	int ntries;
6134
6135	/* Stop busmaster DMA activity. */
6136	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6137	for (ntries = 0; ntries < 100; ntries++) {
6138		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6139			return;
6140		DELAY(10);
6141	}
6142	aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
6143}
6144
6145static void
6146iwn_apm_stop(struct iwn_softc *sc)
6147{
6148	iwn_apm_stop_master(sc);
6149
6150	/* Reset the entire device. */
6151	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6152	DELAY(10);
6153	/* Clear "initialization complete" bit. */
6154	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6155}
6156
6157static int
6158iwn4965_nic_config(struct iwn_softc *sc)
6159{
6160	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6161		/*
6162		 * I don't believe this to be correct but this is what the
6163		 * vendor driver is doing. Probably the bits should not be
6164		 * shifted in IWN_RFCFG_*.
6165		 */
6166		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6167		    IWN_RFCFG_TYPE(sc->rfcfg) |
6168		    IWN_RFCFG_STEP(sc->rfcfg) |
6169		    IWN_RFCFG_DASH(sc->rfcfg));
6170	}
6171	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6172	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6173	return 0;
6174}
6175
6176static int
6177iwn5000_nic_config(struct iwn_softc *sc)
6178{
6179	uint32_t tmp;
6180	int error;
6181
6182	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6183		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6184		    IWN_RFCFG_TYPE(sc->rfcfg) |
6185		    IWN_RFCFG_STEP(sc->rfcfg) |
6186		    IWN_RFCFG_DASH(sc->rfcfg));
6187	}
6188	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6189	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6190
6191	if ((error = iwn_nic_lock(sc)) != 0)
6192		return error;
6193	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6194
6195	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6196		/*
6197		 * Select first Switching Voltage Regulator (1.32V) to
6198		 * solve a stability issue related to noisy DC2DC line
6199		 * in the silicon of 1000 Series.
6200		 */
6201		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6202		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6203		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6204		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6205	}
6206	iwn_nic_unlock(sc);
6207
6208	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6209		/* Use internal power amplifier only. */
6210		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6211	}
6212	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6213	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6214		/* Indicate that ROM calibration version is >=6. */
6215		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6216	}
6217	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6218		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6219	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6220	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6221	    sc->hw_type == IWN_HW_REV_TYPE_135  ||
6222	    sc->hw_type == IWN_HW_REV_TYPE_105)
6223		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6224	return 0;
6225}
6226
6227/*
6228 * Take NIC ownership over Intel Active Management Technology (AMT).
6229 */
6230static int
6231iwn_hw_prepare(struct iwn_softc *sc)
6232{
6233	int ntries;
6234
6235	/* Check if hardware is ready. */
6236	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6237	for (ntries = 0; ntries < 5; ntries++) {
6238		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6239		    IWN_HW_IF_CONFIG_NIC_READY)
6240			return 0;
6241		DELAY(10);
6242	}
6243
6244	/* Hardware not ready, force into ready state. */
6245	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6246	for (ntries = 0; ntries < 15000; ntries++) {
6247		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6248		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6249			break;
6250		DELAY(10);
6251	}
6252	if (ntries == 15000)
6253		return ETIMEDOUT;
6254
6255	/* Hardware should be ready now. */
6256	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6257	for (ntries = 0; ntries < 5; ntries++) {
6258		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6259		    IWN_HW_IF_CONFIG_NIC_READY)
6260			return 0;
6261		DELAY(10);
6262	}
6263	return ETIMEDOUT;
6264}
6265
6266static int
6267iwn_hw_init(struct iwn_softc *sc)
6268{
6269	struct iwn_ops *ops = &sc->ops;
6270	int error, chnl, qid;
6271
6272	/* Clear pending interrupts. */
6273	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6274
6275	if ((error = iwn_apm_init(sc)) != 0) {
6276		aprint_error_dev(sc->sc_dev,
6277		    "could not power ON adapter\n");
6278		return error;
6279	}
6280
6281	/* Select VMAIN power source. */
6282	if ((error = iwn_nic_lock(sc)) != 0)
6283		return error;
6284	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
6285	iwn_nic_unlock(sc);
6286
6287	/* Perform adapter-specific initialization. */
6288	if ((error = ops->nic_config(sc)) != 0)
6289		return error;
6290
6291	/* Initialize RX ring. */
6292	if ((error = iwn_nic_lock(sc)) != 0)
6293		return error;
6294	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
6295	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
6296	/* Set physical address of RX ring (256-byte aligned). */
6297	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
6298	/* Set physical address of RX status (16-byte aligned). */
6299	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
6300	/* Enable RX. */
6301	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
6302	    IWN_FH_RX_CONFIG_ENA           |
6303	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
6304	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
6305	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
6306	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
6307	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
6308	iwn_nic_unlock(sc);
6309	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
6310
6311	if ((error = iwn_nic_lock(sc)) != 0)
6312		return error;
6313
6314	/* Initialize TX scheduler. */
6315	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6316
6317	/* Set physical address of "keep warm" page (16-byte aligned). */
6318	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
6319
6320	/* Initialize TX rings. */
6321	for (qid = 0; qid < sc->ntxqs; qid++) {
6322		struct iwn_tx_ring *txq = &sc->txq[qid];
6323
6324		/* Set physical address of TX ring (256-byte aligned). */
6325		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
6326		    txq->desc_dma.paddr >> 8);
6327	}
6328	iwn_nic_unlock(sc);
6329
6330	/* Enable DMA channels. */
6331	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6332		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
6333		    IWN_FH_TX_CONFIG_DMA_ENA |
6334		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
6335	}
6336
6337	/* Clear "radio off" and "commands blocked" bits. */
6338	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6339	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
6340
6341	/* Clear pending interrupts. */
6342	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6343	/* Enable interrupt coalescing. */
6344	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
6345	/* Enable interrupts. */
6346	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
6347
6348	/* _Really_ make sure "radio off" bit is cleared! */
6349	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6350	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
6351
6352	/* Enable shadow registers. */
6353	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
6354		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
6355
6356	if ((error = ops->load_firmware(sc)) != 0) {
6357		aprint_error_dev(sc->sc_dev,
6358		    "could not load firmware\n");
6359		return error;
6360	}
6361	/* Wait at most one second for firmware alive notification. */
6362	if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) {
6363		aprint_error_dev(sc->sc_dev,
6364		    "timeout waiting for adapter to initialize\n");
6365		return error;
6366	}
6367	/* Do post-firmware initialization. */
6368	return ops->post_alive(sc);
6369}
6370
6371static void
6372iwn_hw_stop(struct iwn_softc *sc)
6373{
6374	int chnl, qid, ntries;
6375
6376	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
6377
6378	/* Disable interrupts. */
6379	IWN_WRITE(sc, IWN_INT_MASK, 0);
6380	IWN_WRITE(sc, IWN_INT, 0xffffffff);
6381	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
6382	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6383
6384	/* Make sure we no longer hold the NIC lock. */
6385	iwn_nic_unlock(sc);
6386
6387	/* Stop TX scheduler. */
6388	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
6389
6390	/* Stop all DMA channels. */
6391	if (iwn_nic_lock(sc) == 0) {
6392		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
6393			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
6394			for (ntries = 0; ntries < 200; ntries++) {
6395				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
6396				    IWN_FH_TX_STATUS_IDLE(chnl))
6397					break;
6398				DELAY(10);
6399			}
6400		}
6401		iwn_nic_unlock(sc);
6402	}
6403
6404	/* Stop RX ring. */
6405	iwn_reset_rx_ring(sc, &sc->rxq);
6406
6407	/* Reset all TX rings. */
6408	for (qid = 0; qid < sc->ntxqs; qid++)
6409		iwn_reset_tx_ring(sc, &sc->txq[qid]);
6410
6411	if (iwn_nic_lock(sc) == 0) {
6412		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
6413		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6414		iwn_nic_unlock(sc);
6415	}
6416	DELAY(5);
6417	/* Power OFF adapter. */
6418	iwn_apm_stop(sc);
6419}
6420
6421static int
6422iwn_init(struct ifnet *ifp)
6423{
6424	struct iwn_softc *sc = ifp->if_softc;
6425	struct ieee80211com *ic = &sc->sc_ic;
6426	int error;
6427
6428	mutex_enter(&sc->sc_mtx);
6429	if (sc->sc_flags & IWN_FLAG_HW_INITED)
6430		goto out;
6431	if ((error = iwn_hw_prepare(sc)) != 0) {
6432		aprint_error_dev(sc->sc_dev,
6433		    "hardware not ready\n");
6434		goto fail;
6435	}
6436
6437	/* Check that the radio is not disabled by hardware switch. */
6438	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
6439		aprint_error_dev(sc->sc_dev,
6440		    "radio is disabled by hardware switch\n");
6441		error = EPERM;	/* :-) */
6442		goto fail;
6443	}
6444
6445	/* Read firmware images from the filesystem. */
6446	if ((error = iwn_read_firmware(sc)) != 0) {
6447		aprint_error_dev(sc->sc_dev,
6448		    "could not read firmware\n");
6449		goto fail;
6450	}
6451
6452	/* Initialize interrupt mask to default value. */
6453	sc->int_mask = IWN_INT_MASK_DEF;
6454	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
6455
6456	/* Initialize hardware and upload firmware. */
6457	KASSERT(sc->fw.data != NULL && sc->fw.size > 0);
6458	error = iwn_hw_init(sc);
6459	firmware_free(sc->fw.data, sc->fw.size);
6460	sc->fw.data = NULL;
6461	sc->fw.size = 0;
6462	if (error != 0) {
6463		aprint_error_dev(sc->sc_dev,
6464		    "could not initialize hardware\n");
6465		goto fail;
6466	}
6467
6468	/* Configure adapter now that it is ready. */
6469	if ((error = iwn_config(sc)) != 0) {
6470		aprint_error_dev(sc->sc_dev,
6471		    "could not configure device\n");
6472		goto fail;
6473	}
6474
6475	sc->sc_beacon_wait = 0;
6476
6477	ifp->if_flags &= ~IFF_OACTIVE;
6478	ifp->if_flags |= IFF_RUNNING;
6479
6480	if (ic->ic_opmode != IEEE80211_M_MONITOR)
6481		ieee80211_begin_scan(ic, 0);
6482	else
6483		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
6484
6485	sc->sc_flags |= IWN_FLAG_HW_INITED;
6486out:
6487	mutex_exit(&sc->sc_mtx);
6488	return 0;
6489
6490fail:	mutex_exit(&sc->sc_mtx);
6491	iwn_stop(ifp, 1);
6492	return error;
6493}
6494
6495static void
6496iwn_stop(struct ifnet *ifp, int disable)
6497{
6498	struct iwn_softc *sc = ifp->if_softc;
6499	struct ieee80211com *ic = &sc->sc_ic;
6500
6501	if (!disable)
6502		mutex_enter(&sc->sc_mtx);
6503	sc->sc_flags &= ~IWN_FLAG_HW_INITED;
6504	ifp->if_timer = sc->sc_tx_timer = 0;
6505	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6506
6507	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
6508
6509	/* Power OFF hardware. */
6510	iwn_hw_stop(sc);
6511
6512	if (!disable)
6513		mutex_exit(&sc->sc_mtx);
6514}
6515
6516/*
6517 * XXX MCLGETI alternative
6518 *
6519 * With IWN_USE_RBUF defined it uses the rbuf cache for receive buffers
6520 * as long as there are available free buffers then it uses MEXTMALLOC.,
6521 * Without IWN_USE_RBUF defined it uses MEXTMALLOC exclusively.
6522 * The MCLGET4K code is used for testing an alternative mbuf cache.
6523 */
6524
6525static struct mbuf *
6526MCLGETIalt(struct iwn_softc *sc, int how,
6527    struct ifnet *ifp __unused, u_int size)
6528{
6529	struct mbuf *m;
6530#ifdef IWN_USE_RBUF
6531	struct iwn_rbuf *rbuf;
6532#endif
6533
6534	MGETHDR(m, how, MT_DATA);
6535	if (m == NULL)
6536		return NULL;
6537
6538#ifdef IWN_USE_RBUF
6539	if (sc->rxq.nb_free_entries > 0 &&
6540	    (rbuf = iwn_alloc_rbuf(sc)) != NULL) {
6541		/* Attach buffer to mbuf header. */
6542		MEXTADD(m, rbuf->vaddr, size, 0, iwn_free_rbuf, rbuf);
6543		m->m_flags |= M_EXT_RW;
6544	}
6545	else {
6546		MEXTMALLOC(m, size, how);
6547		if ((m->m_flags & M_EXT) == 0) {
6548			m_freem(m);
6549			return NULL;
6550		}
6551	}
6552
6553#else
6554#ifdef MCLGET4K
6555	if (size == 4096)
6556		MCLGET4K(m, how);
6557	else
6558		panic("size must be 4k");
6559#else
6560	MEXTMALLOC(m, size, how);
6561#endif
6562	if ((m->m_flags & M_EXT) == 0) {
6563		m_freem(m);
6564		return NULL;
6565	}
6566#endif
6567
6568	return m;
6569}
6570
6571#ifdef IWN_USE_RBUF
6572static struct iwn_rbuf *
6573iwn_alloc_rbuf(struct iwn_softc *sc)
6574{
6575	struct iwn_rbuf *rbuf;
6576	mutex_enter(&sc->rxq.freelist_mtx);
6577
6578	rbuf = SLIST_FIRST(&sc->rxq.freelist);
6579	if (rbuf != NULL) {
6580		SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
6581		sc->rxq.nb_free_entries --;
6582	}
6583	mutex_exit(&sc->rxq.freelist_mtx);
6584	return rbuf;
6585}
6586
6587/*
6588 * This is called automatically by the network stack when the mbuf to which
6589 * our RX buffer is attached is freed.
6590 */
6591static void
6592iwn_free_rbuf(struct mbuf* m, void *buf,  size_t size, void *arg)
6593{
6594	struct iwn_rbuf *rbuf = arg;
6595	struct iwn_softc *sc = rbuf->sc;
6596
6597	/* Put the RX buffer back in the free list. */
6598	mutex_enter(&sc->rxq.freelist_mtx);
6599	SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
6600	mutex_exit(&sc->rxq.freelist_mtx);
6601
6602	sc->rxq.nb_free_entries ++;
6603	if (__predict_true(m != NULL))
6604		pool_cache_put(mb_cache, m);
6605}
6606
6607static int
6608iwn_alloc_rpool(struct iwn_softc *sc)
6609{
6610	struct iwn_rx_ring *ring = &sc->rxq;
6611	struct iwn_rbuf *rbuf;
6612	int i, error;
6613
6614	mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
6615
6616	/* Allocate a big chunk of DMA'able memory... */
6617	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
6618	    IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE);
6619	if (error != 0) {
6620		aprint_error_dev(sc->sc_dev,
6621		    "could not allocate RX buffers DMA memory\n");
6622		return error;
6623	}
6624	/* ...and split it into chunks of IWN_RBUF_SIZE bytes. */
6625	SLIST_INIT(&ring->freelist);
6626	for (i = 0; i < IWN_RBUF_COUNT; i++) {
6627		rbuf = &ring->rbuf[i];
6628
6629		rbuf->sc = sc;	/* Backpointer for callbacks. */
6630		rbuf->vaddr = (void *)((vaddr_t)ring->buf_dma.vaddr + i * IWN_RBUF_SIZE);
6631		rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE;
6632
6633		SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
6634	}
6635	ring->nb_free_entries = IWN_RBUF_COUNT;
6636	return 0;
6637}
6638
6639static void
6640iwn_free_rpool(struct iwn_softc *sc)
6641{
6642	iwn_dma_contig_free(&sc->rxq.buf_dma);
6643}
6644#endif
6645
6646/*
6647 * XXX: Hack to set the current channel to the value advertised in beacons or
6648 * probe responses. Only used during AP detection.
6649 * XXX: Duplicated from if_iwi.c
6650 */
6651static void
6652iwn_fix_channel(struct ieee80211com *ic, struct mbuf *m,
6653    struct iwn_rx_stat *stat)
6654{
6655	struct iwn_softc *sc = ic->ic_ifp->if_softc;
6656	struct ieee80211_frame *wh;
6657	uint8_t subtype;
6658	uint8_t *frm, *efrm;
6659
6660	wh = mtod(m, struct ieee80211_frame *);
6661
6662	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
6663		return;
6664
6665	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
6666
6667	if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
6668	    subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
6669		return;
6670
6671	if (sc->sc_flags & IWN_FLAG_SCANNING_5GHZ) {
6672		int chan = le16toh(stat->chan);
6673		if (chan < __arraycount(ic->ic_channels))
6674			ic->ic_curchan = &ic->ic_channels[chan];
6675		return;
6676	}
6677
6678	frm = (uint8_t *)(wh + 1);
6679	efrm = mtod(m, uint8_t *) + m->m_len;
6680
6681	frm += 12;      /* skip tstamp, bintval and capinfo fields */
6682	while (frm + 2 < efrm) {
6683		if (*frm == IEEE80211_ELEMID_DSPARMS) {
6684#if IEEE80211_CHAN_MAX < 255
6685			if (frm[2] <= IEEE80211_CHAN_MAX)
6686#endif
6687				ic->ic_curchan = &ic->ic_channels[frm[2]];
6688		}
6689
6690		frm += frm[1] + 2;
6691	}
6692}
6693
6694#ifdef notyetMODULE
6695
6696MODULE(MODULE_CLASS_DRIVER, if_iwn, "pci");
6697
6698#ifdef _MODULE
6699#include "ioconf.c"
6700#endif
6701
6702static int
6703if_iwn_modcmd(modcmd_t cmd, void *data)
6704{
6705	int error = 0;
6706
6707	switch (cmd) {
6708	case MODULE_CMD_INIT:
6709#ifdef _MODULE
6710		error = config_init_component(cfdriver_ioconf_if_iwn,
6711			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6712#endif
6713		return error;
6714	case MODULE_CMD_FINI:
6715#ifdef _MODULE
6716		error = config_fini_component(cfdriver_ioconf_if_iwn,
6717			cfattach_ioconf_if_iwn, cfdata_ioconf_if_iwn);
6718#endif
6719		return error;
6720	case MODULE_CMD_AUTOUNLOAD:
6721#ifdef _MODULE
6722		/* XXX This is not optional! */
6723#endif
6724		return error;
6725	default:
6726		return ENOTTY;
6727	}
6728}
6729#endif
6730