1/*	$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $	*/
2/* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */
3
4/*
5 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org>
6 * Copyright (c) 2003, 2004 Theo de Raadt
7 * Copyright (c) 2003 Jason Wright
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 */
21
22/*
23 * Driver for the security block on the AMD Geode LX processors
24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf
25 */
26
27#include <sys/cdefs.h>
28__KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/device.h>
33#include <sys/malloc.h>
34#include <sys/mbuf.h>
35#include <sys/types.h>
36#include <sys/callout.h>
37#include <sys/bus.h>
38#include <sys/cprng.h>
39#include <sys/rndsource.h>
40
41#include <machine/cpufunc.h>
42
43#include <dev/pci/pcivar.h>
44#include <dev/pci/pcidevs.h>
45
46#include <opencrypto/cryptodev.h>
47
48#define SB_GLD_MSR_CAP		0x58002000	/* RO - Capabilities */
49#define SB_GLD_MSR_CONFIG	0x58002001	/* RW - Master Config */
50#define SB_GLD_MSR_SMI		0x58002002	/* RW - SMI */
51#define SB_GLD_MSR_ERROR	0x58002003	/* RW - Error */
52#define SB_GLD_MSR_PM		0x58002004	/* RW - Power Mgmt */
53#define SB_GLD_MSR_DIAG		0x58002005	/* RW - Diagnostic */
54#define SB_GLD_MSR_CTRL		0x58002006	/* RW - Security Block Cntrl */
55
56						/* For GLD_MSR_CTRL: */
57#define SB_GMC_DIV0		0x0000		/* AES update divisor values */
58#define SB_GMC_DIV1		0x0001
59#define SB_GMC_DIV2		0x0002
60#define SB_GMC_DIV3		0x0003
61#define SB_GMC_DIV_MASK		0x0003
62#define SB_GMC_SBI		0x0004		/* AES swap bits */
63#define SB_GMC_SBY		0x0008		/* AES swap bytes */
64#define SB_GMC_TW		0x0010		/* Time write (EEPROM) */
65#define SB_GMC_T_SEL0		0x0000		/* RNG post-proc: none */
66#define SB_GMC_T_SEL1		0x0100		/* RNG post-proc: LFSR */
67#define SB_GMC_T_SEL2		0x0200		/* RNG post-proc: whitener */
68#define SB_GMC_T_SEL3		0x0300		/* RNG LFSR+whitener */
69#define SB_GMC_T_SEL_MASK	0x0300
70#define SB_GMC_T_NE		0x0400		/* Noise (generator) Enable */
71#define SB_GMC_T_TM		0x0800		/* RNG test mode */
72						/*     (deterministic) */
73
74/* Security Block configuration/control registers (offsets from base) */
75
76#define SB_CTL_A		0x0000		/* RW - SB Control A */
77#define SB_CTL_B		0x0004		/* RW - SB Control B */
78#define SB_AES_INT		0x0008		/* RW - SB AES Interrupt */
79#define SB_SOURCE_A		0x0010		/* RW - Source A */
80#define SB_DEST_A		0x0014		/* RW - Destination A */
81#define SB_LENGTH_A		0x0018		/* RW - Length A */
82#define SB_SOURCE_B		0x0020		/* RW - Source B */
83#define SB_DEST_B		0x0024		/* RW - Destination B */
84#define SB_LENGTH_B		0x0028		/* RW - Length B */
85#define SB_WKEY			0x0030		/* WO - Writable Key 0-3 */
86#define SB_WKEY_0		0x0030		/* WO - Writable Key 0 */
87#define SB_WKEY_1		0x0034		/* WO - Writable Key 1 */
88#define SB_WKEY_2		0x0038		/* WO - Writable Key 2 */
89#define SB_WKEY_3		0x003C		/* WO - Writable Key 3 */
90#define SB_CBC_IV		0x0040		/* RW - CBC IV 0-3 */
91#define SB_CBC_IV_0		0x0040		/* RW - CBC IV 0 */
92#define SB_CBC_IV_1		0x0044		/* RW - CBC IV 1 */
93#define SB_CBC_IV_2		0x0048		/* RW - CBC IV 2 */
94#define SB_CBC_IV_3		0x004C		/* RW - CBC IV 3 */
95#define SB_RANDOM_NUM		0x0050		/* RW - Random Number */
96#define SB_RANDOM_NUM_STATUS	0x0054		/* RW - Random Number Status */
97#define SB_EEPROM_COMM		0x0800		/* RW - EEPROM Command */
98#define SB_EEPROM_ADDR		0x0804		/* RW - EEPROM Address */
99#define SB_EEPROM_DATA		0x0808		/* RW - EEPROM Data */
100#define SB_EEPROM_SEC_STATE	0x080C		/* RW - EEPROM Security State */
101
102						/* For SB_CTL_A and _B */
103#define SB_CTL_ST		0x0001		/* Start operation (enc/dec) */
104#define SB_CTL_ENC		0x0002		/* Encrypt (0 is decrypt) */
105#define SB_CTL_DEC		0x0000		/* Decrypt */
106#define SB_CTL_WK		0x0004		/* Use writable key (we set) */
107#define SB_CTL_DC		0x0008		/* Destination coherent */
108#define SB_CTL_SC		0x0010		/* Source coherent */
109#define SB_CTL_CBC		0x0020		/* CBC (0 is ECB) */
110
111						/* For SB_AES_INT */
112#define SB_AI_DISABLE_AES_A	0x0001		/* Disable AES A compl int */
113#define SB_AI_ENABLE_AES_A	0x0000		/* Enable AES A compl int */
114#define SB_AI_DISABLE_AES_B	0x0002		/* Disable AES B compl int */
115#define SB_AI_ENABLE_AES_B	0x0000		/* Enable AES B compl int */
116#define SB_AI_DISABLE_EEPROM	0x0004		/* Disable EEPROM op comp int */
117#define SB_AI_ENABLE_EEPROM	0x0000		/* Enable EEPROM op compl int */
118#define SB_AI_AES_A_COMPLETE	0x0100		/* AES A operation complete */
119#define SB_AI_AES_B_COMPLETE	0x0200		/* AES B operation complete */
120#define SB_AI_EEPROM_COMPLETE	0x0400		/* EEPROM operation complete */
121
122#define SB_RNS_TRNG_VALID	0x0001		/* in SB_RANDOM_NUM_STATUS */
123
124#define SB_MEM_SIZE		0x0810		/* Size of memory block */
125
126#define SB_AES_ALIGN		0x0010		/* Source and dest buffers */
127						/* must be 16-byte aligned */
128#define SB_AES_BLOCK_SIZE	0x0010
129
130/*
131 * The Geode LX security block AES acceleration doesn't perform scatter-
132 * gather: it just takes source and destination addresses.  Therefore the
133 * plain- and ciphertexts need to be contiguous.  To this end, we allocate
134 * a buffer for both, and accept the overhead of copying in and out.  If
135 * the number of bytes in one operation is bigger than allowed for by the
136 * buffer (buffer is twice the size of the max length, as it has both input
137 * and output) then we have to perform multiple encryptions/decryptions.
138 */
139#define GLXSB_MAX_AES_LEN	16384
140
141struct glxsb_dma_map {
142	bus_dmamap_t		dma_map;
143	bus_dma_segment_t	dma_seg;
144	int			dma_nsegs;
145	int			dma_size;
146	void *			dma_vaddr;
147	uint32_t		dma_paddr;
148};
149struct glxsb_session {
150	uint32_t	ses_key[4];
151	int		ses_klen;
152	int		ses_used;
153};
154
155struct glxsb_softc {
156	device_t		sc_dev;
157	bus_space_tag_t		sc_iot;
158	bus_space_handle_t	sc_ioh;
159	struct callout		sc_co;
160
161	bus_dma_tag_t		sc_dmat;
162	struct glxsb_dma_map	sc_dma;
163	int32_t			sc_cid;
164	int			sc_nsessions;
165	struct glxsb_session	*sc_sessions;
166
167	krndsource_t	sc_rnd_source;
168};
169
170int	glxsb_match(device_t, cfdata_t, void *);
171void	glxsb_attach(device_t, device_t, void *);
172void	glxsb_rnd(void *);
173
174CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc),
175    glxsb_match, glxsb_attach, NULL, NULL);
176
177#define GLXSB_SESSION(sid)		((sid) & 0x0fffffff)
178#define	GLXSB_SID(crd,ses)		(((crd) << 28) | ((ses) & 0x0fffffff))
179
180int glxsb_crypto_setup(struct glxsb_softc *);
181int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *);
182int glxsb_crypto_process(void *, struct cryptop *, int);
183void glxsb_crypto_freesession(void *, uint64_t);
184static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t,
185    uint32_t, void *, int, void *);
186
187int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *);
188void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *);
189void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *);
190void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *);
191
192int
193glxsb_match(device_t parent, cfdata_t match, void *aux)
194{
195	struct pci_attach_args *pa = aux;
196
197	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD &&
198	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES)
199		return (1);
200
201	return (0);
202}
203
204void
205glxsb_attach(device_t parent, device_t self, void *aux)
206{
207	struct glxsb_softc *sc = device_private(self);
208	struct pci_attach_args *pa = aux;
209	bus_addr_t membase;
210	bus_size_t memsize;
211	uint64_t msr;
212	uint32_t intr;
213
214	msr = rdmsr(SB_GLD_MSR_CAP);
215	if ((msr & 0xFFFF00) != 0x130400) {
216		aprint_error(": unknown ID 0x%x\n",
217		    (int)((msr & 0xFFFF00) >> 16));
218		return;
219	}
220
221	/* printf(": revision %d", (int) (msr & 0xFF)); */
222
223	/* Map in the security block configuration/control registers */
224	if (pci_mapreg_map(pa, PCI_MAPREG_START,
225	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0,
226	    &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) {
227		aprint_error(": can't find mem space\n");
228		return;
229	}
230
231	sc->sc_dev = self;
232
233	/*
234	 * Configure the Security Block.
235	 *
236	 * We want to enable the noise generator (T_NE), and enable the
237	 * linear feedback shift register and whitener post-processing
238	 * (T_SEL = 3).  Also ensure that test mode (deterministic values)
239	 * is disabled.
240	 */
241	msr = rdmsr(SB_GLD_MSR_CTRL);
242	msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK);
243	msr |= SB_GMC_T_NE | SB_GMC_T_SEL3;
244#if 0
245	msr |= SB_GMC_SBI | SB_GMC_SBY;		/* for AES, if necessary */
246#endif
247	wrmsr(SB_GLD_MSR_CTRL, msr);
248
249	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
250			  RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE);
251
252	/* Install a periodic collector for the "true" (AMD's word) RNG */
253	callout_init(&sc->sc_co, 0);
254	callout_setfunc(&sc->sc_co, glxsb_rnd, sc);
255	glxsb_rnd(sc);
256	aprint_normal(": RNG");
257
258	/* We don't have an interrupt handler, so disable completion INTs */
259	intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B |
260	    SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE |
261	    SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE;
262	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr);
263
264	sc->sc_dmat = pa->pa_dmat;
265
266	if (glxsb_crypto_setup(sc))
267		aprint_normal(" AES");
268
269	aprint_normal("\n");
270}
271
272void
273glxsb_rnd(void *v)
274{
275	struct glxsb_softc *sc = v;
276	uint32_t status, value;
277	extern int hz;
278
279	status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS);
280	if (status & SB_RNS_TRNG_VALID) {
281		value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM);
282		rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value),
283			     sizeof(value) * NBBY);
284	}
285
286	callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1);
287}
288
289int
290glxsb_crypto_setup(struct glxsb_softc *sc)
291{
292
293	/* Allocate a contiguous DMA-able buffer to work in */
294	if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0)
295		return 0;
296
297	sc->sc_cid = crypto_get_driverid(0);
298	if (sc->sc_cid < 0)
299		return 0;
300
301	crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0,
302	    glxsb_crypto_newsession, glxsb_crypto_freesession,
303	    glxsb_crypto_process, sc);
304
305	sc->sc_nsessions = 0;
306
307	return 1;
308}
309
310int
311glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri)
312{
313	struct glxsb_softc *sc = aux;
314	struct glxsb_session *ses = NULL;
315	int sesn;
316
317	if (cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC ||
318	    cri->cri_klen != 128)
319		return (EINVAL);
320
321	for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
322		if (sc->sc_sessions[sesn].ses_used == 0) {
323			ses = &sc->sc_sessions[sesn];
324			break;
325		}
326	}
327
328	if (ses == NULL) {
329		sesn = sc->sc_nsessions;
330		ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT);
331		if (ses == NULL)
332			return (ENOMEM);
333		if (sesn != 0) {
334			memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses));
335			memset(sc->sc_sessions, 0, sesn * sizeof(*ses));
336			free(sc->sc_sessions, M_DEVBUF);
337		}
338		sc->sc_sessions = ses;
339		ses = &sc->sc_sessions[sesn];
340		sc->sc_nsessions++;
341	}
342
343	memset(ses, 0, sizeof(*ses));
344	ses->ses_used = 1;
345
346	ses->ses_klen = cri->cri_klen;
347
348	/* Copy the key (Geode LX wants the primary key only) */
349	memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key));
350
351	*sidp = GLXSB_SID(0, sesn);
352	return (0);
353}
354
355void
356glxsb_crypto_freesession(void *aux, uint64_t tid)
357{
358	struct glxsb_softc *sc = aux;
359	int sesn;
360	uint32_t sid = ((uint32_t)tid) & 0xffffffff;
361
362	sesn = GLXSB_SESSION(sid);
363	KASSERTMSG(sesn < sc->sc_nsessions, "sesn=%d nsessions=%d",
364	    sesn, sc->sc_nsessions);
365
366	memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn]));
367}
368
369/*
370 * Must be called at splnet() or higher
371 */
372static __inline void
373glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc,
374    uint32_t pdst, void *key, int len, void *iv)
375{
376	uint32_t status;
377	int i;
378
379	if (len & 0xF) {
380		printf("%s: len must be a multiple of 16 (not %d)\n",
381		    device_xname(sc->sc_dev), len);
382		return;
383	}
384
385	/* Set the source */
386	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc);
387
388	/* Set the destination address */
389	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst);
390
391	/* Set the data length */
392	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len);
393
394	/* Set the IV */
395	if (iv != NULL) {
396		bus_space_write_region_4(sc->sc_iot, sc->sc_ioh,
397		    SB_CBC_IV, iv, 4);
398		control |= SB_CTL_CBC;
399	}
400
401	/* Set the key */
402	bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4);
403
404	/* Ask the security block to do it */
405	bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A,
406	    control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST);
407
408	/*
409	 * Now wait until it is done.
410	 *
411	 * We do a busy wait.  Obviously the number of iterations of
412	 * the loop required to perform the AES operation depends upon
413	 * the number of bytes to process.
414	 *
415	 * On a 500 MHz Geode LX we see
416	 *
417	 *	length (bytes)	typical max iterations
418	 *	    16		   12
419	 *	    64		   22
420	 *	   256		   59
421	 *	  1024		  212
422	 *	  8192		1,537
423	 *
424	 * Since we have a maximum size of operation defined in
425	 * GLXSB_MAX_AES_LEN, we use this constant to decide how long
426	 * to wait.  Allow an order of magnitude longer than it should
427	 * really take, just in case.
428	 */
429	for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) {
430		status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A);
431
432		if ((status & SB_CTL_ST) == 0)		/* Done */
433			return;
434	}
435
436	aprint_error_dev(sc->sc_dev, "operation failed to complete\n");
437}
438
439int
440glxsb_crypto_process(void *aux, struct cryptop *crp, int hint)
441{
442	struct glxsb_softc *sc = aux;
443	struct glxsb_session *ses;
444	struct cryptodesc *crd;
445	char *op_src, *op_dst;
446	uint32_t op_psrc, op_pdst;
447	uint8_t op_iv[SB_AES_BLOCK_SIZE];
448	int sesn, err = 0;
449	int len, tlen, xlen;
450	int offset;
451	uint32_t control;
452	int s;
453
454	s = splnet();
455
456	if (crp == NULL || crp->crp_callback == NULL) {
457		err = EINVAL;
458		goto out;
459	}
460	crd = crp->crp_desc;
461	if (crd == NULL || crd->crd_next != NULL ||
462	    crd->crd_alg != CRYPTO_AES_CBC ||
463	    (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) {
464		err = EINVAL;
465		goto out;
466	}
467
468	sesn = GLXSB_SESSION(crp->crp_sid);
469	if (sesn >= sc->sc_nsessions) {
470		err = EINVAL;
471		goto out;
472	}
473	ses = &sc->sc_sessions[sesn];
474
475	/* How much of our buffer will we need to use? */
476	xlen = crd->crd_len > GLXSB_MAX_AES_LEN ?
477	    GLXSB_MAX_AES_LEN : crd->crd_len;
478
479	/*
480	 * XXX Check if we can have input == output on Geode LX.
481	 * XXX In the meantime, use two separate (adjacent) buffers.
482	 */
483	op_src = sc->sc_dma.dma_vaddr;
484	op_dst = (char *)sc->sc_dma.dma_vaddr + xlen;
485
486	op_psrc = sc->sc_dma.dma_paddr;
487	op_pdst = sc->sc_dma.dma_paddr + xlen;
488
489	if (crd->crd_flags & CRD_F_ENCRYPT) {
490		control = SB_CTL_ENC;
491		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
492			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
493		else
494			cprng_fast(op_iv, sizeof(op_iv));
495
496		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) {
497			if (crp->crp_flags & CRYPTO_F_IMBUF)
498				m_copyback((struct mbuf *)crp->crp_buf,
499				    crd->crd_inject, sizeof(op_iv), op_iv);
500			else if (crp->crp_flags & CRYPTO_F_IOV)
501				cuio_copyback((struct uio *)crp->crp_buf,
502				    crd->crd_inject, sizeof(op_iv), op_iv);
503			else
504				bcopy(op_iv,
505				    (char *)crp->crp_buf + crd->crd_inject,
506				    sizeof(op_iv));
507		}
508	} else {
509		control = SB_CTL_DEC;
510		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
511			memcpy(op_iv, crd->crd_iv, sizeof(op_iv));
512		else {
513			if (crp->crp_flags & CRYPTO_F_IMBUF)
514				m_copydata((struct mbuf *)crp->crp_buf,
515				    crd->crd_inject, sizeof(op_iv), op_iv);
516			else if (crp->crp_flags & CRYPTO_F_IOV)
517				cuio_copydata((struct uio *)crp->crp_buf,
518				    crd->crd_inject, sizeof(op_iv), op_iv);
519			else
520				bcopy((char *)crp->crp_buf + crd->crd_inject,
521				    op_iv, sizeof(op_iv));
522		}
523	}
524
525	offset = 0;
526	tlen = crd->crd_len;
527
528	/* Process the data in GLXSB_MAX_AES_LEN chunks */
529	while (tlen > 0) {
530		len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen;
531
532		if (crp->crp_flags & CRYPTO_F_IMBUF)
533			m_copydata((struct mbuf *)crp->crp_buf,
534			    crd->crd_skip + offset, len, op_src);
535		else if (crp->crp_flags & CRYPTO_F_IOV)
536			cuio_copydata((struct uio *)crp->crp_buf,
537			    crd->crd_skip + offset, len, op_src);
538		else
539			bcopy((char *)crp->crp_buf + crd->crd_skip + offset,
540			    op_src, len);
541
542		glxsb_dma_pre_op(sc, &sc->sc_dma);
543
544		glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key,
545		    len, op_iv);
546
547		glxsb_dma_post_op(sc, &sc->sc_dma);
548
549		if (crp->crp_flags & CRYPTO_F_IMBUF)
550			m_copyback((struct mbuf *)crp->crp_buf,
551			    crd->crd_skip + offset, len, op_dst);
552		else if (crp->crp_flags & CRYPTO_F_IOV)
553			cuio_copyback((struct uio *)crp->crp_buf,
554			    crd->crd_skip + offset, len, op_dst);
555		else
556			memcpy((char *)crp->crp_buf + crd->crd_skip + offset,
557			    op_dst, len);
558
559		offset += len;
560		tlen -= len;
561
562		if (crd->crd_flags & CRD_F_ENCRYPT) {
563			memcpy(op_iv, op_dst + len - sizeof(op_iv),
564			    sizeof(op_iv));
565		} else {
566			/* Decryption, only need this if another iteration */
567			if (tlen > 0) {
568				memcpy(op_iv, op_src + len - sizeof(op_iv),
569				    sizeof(op_iv));
570			}
571		}
572	}
573
574	/* All AES processing has now been done. */
575
576	memset(sc->sc_dma.dma_vaddr, 0, xlen * 2);
577out:
578	crp->crp_etype = err;
579	crypto_done(crp);
580	splx(s);
581	return 0;
582}
583
584int
585glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma)
586{
587	int rc;
588
589	dma->dma_nsegs = 1;
590	dma->dma_size = size;
591
592	rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size,
593	    0, BUS_DMA_NOWAIT, &dma->dma_map);
594	if (rc != 0) {
595		aprint_error_dev(sc->sc_dev,
596		    "couldn't create DMA map for %d bytes (%d)\n", size, rc);
597
598		goto fail0;
599	}
600
601	rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0,
602	    &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT);
603	if (rc != 0) {
604		aprint_error_dev(sc->sc_dev,
605		    "couldn't allocate DMA memory of %d bytes (%d)\n",
606		    size, rc);
607
608		goto fail1;
609	}
610
611	rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size,
612	    &dma->dma_vaddr, BUS_DMA_NOWAIT);
613	if (rc != 0) {
614		aprint_error_dev(sc->sc_dev,
615		    "couldn't map DMA memory for %d bytes (%d)\n", size, rc);
616
617		goto fail2;
618	}
619
620	rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
621	    size, NULL, BUS_DMA_NOWAIT);
622	if (rc != 0) {
623		aprint_error_dev(sc->sc_dev,
624		    "couldn't load DMA memory for %d bytes (%d)\n", size, rc);
625
626		goto fail3;
627	}
628
629	dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
630
631	return 0;
632
633fail3:
634	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
635fail2:
636	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
637fail1:
638	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
639fail0:
640	return rc;
641}
642
643void
644glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
645{
646	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
647	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
648}
649
650void
651glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
652{
653	bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size,
654	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
655}
656
657void
658glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma)
659{
660	bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
661	bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size);
662	bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs);
663	bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
664}
665