1/*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Paul Fleischer <paul@xpg.dk>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30/*
31 * Copyright (c) 2002, 2003 Fujitsu Component Limited
32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33 * All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of The Fujitsu Component Limited nor the name of
44 *    Genetec corporation may not be used to endorse or promote products
45 *    derived from this software without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51 * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61/*
62 * Copyright (c) 2001,2002 ARM Ltd
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 * 3. The name of the company may not be used to endorse or promote
74 *    products derived from this software without specific prior written
75 *    permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87 * POSSIBILITY OF SUCH DAMAGE.
88 *
89 */
90
91/*
92 * Copyright (c) 1997,1998 Mark Brinicombe.
93 * Copyright (c) 1997,1998 Causality Limited.
94 * All rights reserved.
95 *
96 * Redistribution and use in source and binary forms, with or without
97 * modification, are permitted provided that the following conditions
98 * are met:
99 * 1. Redistributions of source code must retain the above copyright
100 *    notice, this list of conditions and the following disclaimer.
101 * 2. Redistributions in binary form must reproduce the above copyright
102 *    notice, this list of conditions and the following disclaimer in the
103 *    documentation and/or other materials provided with the distribution.
104 * 3. All advertising materials mentioning features or use of this software
105 *    must display the following acknowledgement:
106 *	This product includes software developed by Mark Brinicombe
107 *	for the NetBSD Project.
108 * 4. The name of the company nor the name of the author may be used to
109 *    endorse or promote products derived from this software without specific
110 *    prior written permission.
111 *
112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122 * SUCH DAMAGE.
123 *
124 * Machine dependant functions for kernel setup for integrator board
125 *
126 * Created      : 24/11/97
127 */
128
129/*
130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131 */
132
133#include <sys/cdefs.h>
134__KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.22 2024/02/20 23:36:02 andvar Exp $");
135
136#include "opt_arm_debug.h"
137#include "opt_console.h"
138#include "opt_ddb.h"
139#include "opt_kgdb.h"
140#include "opt_md.h"
141
142#include <sys/param.h>
143#include <sys/device.h>
144#include <sys/systm.h>
145#include <sys/kernel.h>
146#include <sys/exec.h>
147#include <sys/proc.h>
148#include <sys/msgbuf.h>
149#include <sys/reboot.h>
150#include <sys/termios.h>
151#include <sys/ksyms.h>
152#include <sys/mount.h>
153
154#include <net/if.h>
155#include <net/if_ether.h>
156#include <net/if_media.h>
157
158#include <uvm/uvm_extern.h>
159
160#include <dev/cons.h>
161#include <dev/md.h>
162
163#include <machine/db_machdep.h>
164#include <ddb/db_sym.h>
165#include <ddb/db_extern.h>
166#ifdef KGDB
167#include <sys/kgdb.h>
168#endif
169
170#include <sys/exec_elf.h>
171
172#include <sys/bus.h>
173#include <machine/cpu.h>
174#include <machine/frame.h>
175#include <machine/intr.h>
176#include <arm/undefined.h>
177
178#include <machine/autoconf.h>
179
180#include <arm/locore.h>
181#include <arm/arm32/machdep.h>
182
183#include <arm/s3c2xx0/s3c2440reg.h>
184#include <arm/s3c2xx0/s3c2440var.h>
185
186#include <arch/evbarm/mini2440/mini2440_bootinfo.h>
187
188#include "ksyms.h"
189
190#ifndef	SDRAM_START
191#define	SDRAM_START	S3C2440_SDRAM_START
192#endif
193#ifndef	SDRAM_SIZE
194#define	SDRAM_SIZE	(64*1024*1024) /* 64 Mb */
195#endif
196
197/*
198 * Address to map I/O registers in early initialize stage.
199 */
200#define MINI2440_IO_VBASE	0xfd000000
201
202/* Kernel text starts 2MB in from the bottom of the kernel address space. */
203#define KERNEL_OFFSET		0x00200000
204#define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
205#define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
206
207/*
208 * The range 0xc1000000 - 0xccffffff is available for kernel VM space
209 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
210 */
211#define KERNEL_VM_SIZE		0x0C000000
212
213/* Declared extern elsewhere in the kernel */
214BootConfig bootconfig;		/* Boot config storage */
215char *boot_args = NULL;
216//char *boot_file = NULL;
217
218char bootinfo[BOOTINFO_MAXSIZE];
219struct btinfo_rootdevice 	*bi_rdev;
220struct btinfo_net		*bi_net;
221struct btinfo_bootpath		*bi_path;
222
223vaddr_t physical_start;
224vaddr_t physical_freestart;
225vaddr_t physical_freeend;
226vaddr_t physical_freeend_low;
227vaddr_t physical_end;
228u_int free_pages;
229vaddr_t pagetables_start;
230
231/*int debug_flags;*/
232#ifndef PMAP_STATIC_L1S
233int max_processes = 64;		/* Default number */
234#endif				/* !PMAP_STATIC_L1S */
235
236paddr_t msgbufphys;
237
238#define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
239#define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
240#define KERNEL_PT_KERNEL_NUM	3	/* L2 tables for mapping kernel VM */
241
242#define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
243
244#define KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
245#define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
246
247pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
248
249/* Prototypes */
250
251void consinit(void);
252void kgdb_port_init(void);
253static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
254static void *lookup_bootinfo(int type);
255static void mini2440_device_register(device_t dev, void *aux);
256
257
258#include "com.h"
259#if NCOM > 0
260#include <dev/ic/comreg.h>
261#include <dev/ic/comvar.h>
262#endif
263
264#include "sscom.h"
265#if NSSCOM > 0
266#include "opt_sscom.h"
267#include <arm/s3c2xx0/sscom_var.h>
268#endif
269
270/*
271 * Define the default console speed for the board.  This is generally
272 * what the firmware provided with the board defaults to.
273 */
274#ifndef CONSPEED
275#define CONSPEED B115200	/* TTYDEF_SPEED */
276#endif
277#ifndef CONMODE
278#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
279#endif
280
281int comcnspeed = CONSPEED;
282int comcnmode = CONMODE;
283
284/*
285 * void cpu_reboot(int howto, char *bootstr)
286 *
287 * Reboots the system
288 *
289 * Deal with any syncing, unmounting, dumping and shutdown hooks,
290 * then reset the CPU.
291 */
292void
293cpu_reboot(int howto, char *bootstr)
294{
295#ifdef DIAGNOSTIC
296	/* info */
297	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
298#endif
299
300	cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
301
302	/*
303	 * If we are still cold then hit the air brakes
304	 * and crash to earth fast
305	 */
306	if (cold) {
307		doshutdownhooks();
308		printf("The operating system has halted.\n");
309		printf("Please press any key to reboot.\n\n");
310		cngetc();
311		printf("rebooting...\n");
312		cpu_reset();
313		/* NOTREACHED */
314	}
315	/* Disable console buffering */
316
317	/*
318	 * If RB_NOSYNC was not specified sync the discs.
319	 * Note: Unless cold is set to 1 here, syslogd will die during the
320	 * unmount.  It looks like syslogd is getting woken up only to find
321	 * that it cannot page part of the binary in as the filesystem has
322	 * been unmounted.
323	 */
324	if (!(howto & RB_NOSYNC))
325		bootsync();
326
327	/* Say NO to interrupts */
328	splhigh();
329
330	/* Do a dump if requested. */
331	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
332		dumpsys();
333
334	/* Run any shutdown hooks */
335	doshutdownhooks();
336
337	/* Make sure IRQ's are disabled */
338	IRQdisable;
339
340	if (howto & RB_HALT) {
341		printf("The operating system has halted.\n");
342		printf("Please press any key to reboot.\n\n");
343		cngetc();
344	}
345	printf("rebooting...\n");
346	cpu_reset();
347	/* NOTREACHED */
348}
349
350/*
351 * Static device mappings. These peripheral registers are mapped at
352 * fixed virtual addresses very early in initarm() so that we can use
353 * them while booting the kernel , and stay at the same address
354 * throughout whole kernel's life time.
355 *
356 * We use this table twice; once with bootstrap page table, and once
357 * with kernel's page table which we build up in initarm().
358 *
359 * Since we map these registers into the bootstrap page table using
360 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
361 * registers segment-aligned and segment-rounded in order to avoid
362 * using the 2nd page tables.
363 */
364
365#define	_V(n)	(MINI2440_IO_VBASE + (n) * L1_S_SIZE)
366
367#define	GPIO_VBASE	_V(0)
368#define	INTCTL_VBASE	_V(1)
369#define	CLKMAN_VBASE	_V(2)
370#define	UART_VBASE	_V(3)
371
372static const struct pmap_devmap mini2440_devmap[] = {
373	/* GPIO registers */
374	DEVMAP_ENTRY(
375		GPIO_VBASE,
376		S3C2440_GPIO_BASE,
377		S3C2440_GPIO_SIZE
378	),
379	DEVMAP_ENTRY(
380		INTCTL_VBASE,
381		S3C2440_INTCTL_BASE,
382		S3C2440_INTCTL_SIZE
383	),
384	DEVMAP_ENTRY(
385		CLKMAN_VBASE,
386		S3C2440_CLKMAN_BASE,
387		S3C24X0_CLKMAN_SIZE
388	),
389	/* UART registers for UART0, 1, 2. */
390	DEVMAP_ENTRY(
391		UART_VBASE,
392		S3C2440_UART0_BASE,
393		S3C2440_UART_BASE(3) - S3C2440_UART0_BASE
394	),
395	DEVMAP_ENTRY_END
396};
397
398static inline	pd_entry_t *
399read_ttb(void)
400{
401	long ttb;
402
403	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
404
405
406	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
407}
408
409
410#define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
411
412/*
413 * vaddr_t initarm(...)
414 *
415 * Initial entry point on startup. This gets called before main() is
416 * entered.
417 * It should be responsible for setting up everything that must be
418 * in place when main is called.
419 * This includes
420 *   Taking a copy of the boot configuration structure.
421 *   Initialising the physical console so characters can be printed.
422 *   Setting up page tables for the kernel
423 *   Relocating the kernel to the bottom of physical memory
424 */
425
426vaddr_t
427initarm(void *arg)
428{
429	int loop;
430	int loop1;
431	u_int l1pagetable;
432	extern int etext __asm("_etext");
433	extern int end __asm("_end");
434	uint32_t kerneldatasize;
435	struct btinfo_magic *bi_magic = arg;
436	struct btinfo_bootstring *bi_bootstring;
437	struct btinfo_symtab *bi_symtab;
438
439	boothowto = 0;
440
441	/* Copy bootinfo from boot loader into kernel memory where it remains.
442	 */
443	if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
444		memcpy(bootinfo, bi_magic, sizeof(bootinfo));
445	} else {
446		memset(bootinfo, 0, sizeof(bootinfo));
447	}
448
449	/* Extract boot_args from bootinfo */
450	bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
451	if (bi_bootstring ) {
452		printf("Bootloader args are %s\n", bi_bootstring->bootstring);
453		boot_args = bi_bootstring->bootstring;
454		parse_mi_bootargs(boot_args);
455	}
456
457#define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
458
459// 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
460#define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
461
462	__LED(0);
463
464	/*
465	 * Heads up ... Setup the CPU / MMU / TLB functions
466	 */
467	if (set_cpufuncs())
468		panic("cpu not recognized!");
469
470	/*
471	 * Map I/O registers that are used in startup.  Now we are
472	 * still using page table prepared by bootloader.  Later we'll
473	 * map those registers at the same address in the kernel page
474	 * table.
475	 */
476	pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
477
478#undef	pdatb
479#define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
480
481	/* Disable all peripheral interrupts */
482	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
483
484	__LED(1);
485
486	/* initialize some variables so that splfoo() doesn't
487	   touch illegal address.  */
488	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
489
490	__LED(2);
491	consinit();
492	__LED(3);
493
494	/* Extract information from the bootloader configuration */
495	bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
496	bi_net = lookup_bootinfo(BTINFO_NET);
497	bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
498
499#ifdef VERBOSE_INIT_ARM
500	printf("consinit done\n");
501#endif
502
503#ifdef KGDB
504	kgdb_port_init();
505#endif
506
507#ifdef VERBOSE_INIT_ARM
508	/* Talk to the user */
509	printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
510#endif
511	/*
512	 * Ok we have the following memory map
513	 *
514	 * Physical Address Range     Description
515	 * -----------------------    ----------------------------------
516	 * 0x30000000 - 0x33ffffff    SDRAM (64MB)
517         *
518         * Kernel is loaded by bootloader at 0x30200000
519	 *
520	 * The initarm() has the responsibility for creating the kernel
521	 * page tables.
522	 * It must also set up various memory pointers that are used
523	 * by pmap etc.
524	 */
525
526	/* Fake bootconfig structure for the benefit of pmap.c */
527	/* XXX must make the memory description h/w independent */
528	bootconfig.dramblocks = 1;
529	bootconfig.dram[0].address = SDRAM_START;
530	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
531
532	/*
533	 * Set up the variables that define the availability of
534	 * physical memory.
535         * We use the 2MB between the physical start and the kernel to
536         * begin with. Allocating from 0x30200000 and downwards
537	 * If we get too close to the bottom of SDRAM, we
538	 * will panic.  We will update physical_freestart and
539	 * physical_freeend later to reflect what pmap_bootstrap()
540	 * wants to see.
541	 *
542	 * XXX pmap_bootstrap() needs an enema.
543	 */
544	physical_start = bootconfig.dram[0].address;
545	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
546
547	physical_freestart = SDRAM_START;	/* XXX */
548	physical_freeend = SDRAM_START + KERNEL_OFFSET;
549
550	physmem = (physical_end - physical_start) / PAGE_SIZE;
551
552#ifdef VERBOSE_INIT_ARM
553	/* Tell the user about the memory */
554	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
555	    physical_start, physical_end - 1);
556	printf("phys_end: 0x%08lx\n", physical_end);
557#endif
558
559	/*
560	 * XXX
561	 * Okay, the kernel starts 2MB in from the bottom of physical
562	 * memory.  We are going to allocate our bootstrap pages downwards
563	 * from there.
564	 *
565	 * We need to allocate some fixed page tables to get the kernel
566	 * going.  We allocate one page directory and a number of page
567	 * tables and store the physical addresses in the kernel_pt_table
568	 * array.
569	 *
570	 * The kernel page directory must be on a 16K boundary.  The page
571	 * tables must be on 4K boundaries.  What we do is allocate the
572	 * page directory on the first 16K boundary that we encounter, and
573	 * the page tables on 4K boundaries otherwise.  Since we allocate
574	 * at least 3 L2 page tables, we are guaranteed to encounter at
575	 * least one 16K aligned region.
576	 */
577
578#ifdef VERBOSE_INIT_ARM
579	printf("Allocating page tables\n");
580#endif
581
582	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
583
584#ifdef VERBOSE_INIT_ARM
585	printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
586	    physical_freestart, free_pages, free_pages, physical_freeend);
587#endif
588
589	/* Define a macro to simplify memory allocation */
590#define	valloc_pages(var, np)				\
591	alloc_pages((var).pv_pa, (np));			\
592	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
593
594#define alloc_pages(var, np)				\
595	physical_freeend -= ((np) * PAGE_SIZE);		\
596	if (physical_freeend < physical_freestart)	\
597		panic("initarm: out of memory");	\
598	(var) = physical_freeend;			\
599	free_pages -= (np);				\
600	memset((char *)(var), 0, ((np) * PAGE_SIZE));
601
602	loop1 = 0;
603	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
604		/* Are we 16KB aligned for an L1 ? */
605		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
606		    && kernel_l1pt.pv_pa == 0) {
607			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
608		} else {
609			valloc_pages(kernel_pt_table[loop1],
610			    L2_TABLE_SIZE / PAGE_SIZE);
611			++loop1;
612		}
613	}
614
615	/* This should never be able to happen but better confirm that. */
616	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
617		panic("initarm: Failed to align the kernel page directory\n");
618
619	/*
620	 * Allocate a page for the system page mapped to V0x00000000
621	 * This page will just contain the system vectors and can be
622	 * shared by all processes.
623	 */
624	alloc_pages(systempage.pv_pa, 1);
625
626	/* Allocate stacks for all modes */
627	valloc_pages(irqstack, IRQ_STACK_SIZE);
628	valloc_pages(abtstack, ABT_STACK_SIZE);
629	valloc_pages(undstack, UND_STACK_SIZE);
630	valloc_pages(kernelstack, UPAGES);
631
632#ifdef VERBOSE_INIT_ARM
633	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
634	    irqstack.pv_va);
635	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
636	    abtstack.pv_va);
637	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
638	    undstack.pv_va);
639	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
640	    kernelstack.pv_va);
641	printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
642#endif
643
644	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
645
646	physical_freeend_low = physical_freeend;
647
648	/*
649	 * Ok we have allocated physical pages for the primary kernel
650	 * page tables
651	 */
652
653#ifdef VERBOSE_INIT_ARM
654	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
655#endif
656
657	/*
658	 * Now we start construction of the L1 page table
659	 * We start by mapping the L2 page tables into the L1.
660	 * This means that we can replace L1 mappings later on if necessary
661	 */
662	l1pagetable = kernel_l1pt.pv_pa;
663
664	/* Map the L2 pages tables in the L1 page table */
665	pmap_link_l2pt(l1pagetable, 0x00000000,
666	    &kernel_pt_table[KERNEL_PT_SYS]);
667	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
668		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
669		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
670	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
671		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
672		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
673
674	/* update the top of the kernel VM */
675	pmap_curmaxkvaddr =
676	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
677
678#ifdef VERBOSE_INIT_ARM
679	printf("Mapping kernel\n");
680#endif
681
682	/* Now we fill in the L2 pagetable for the kernel static code/data */
683	{
684		/* Total size must include symbol table, if it exists.
685		   The size of the symbol table can be acquired from the ELF
686		   header, to which a pointer is passed in the boot info (ssym).
687		 */
688		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
689		kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
690		u_int logical;
691
692		bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
693
694		if (bi_symtab) {
695			Elf_Ehdr *elfHeader;
696			Elf_Shdr *sectionHeader;
697			int nsection;
698			int sz = 0;
699
700			elfHeader = bi_symtab->ssym;
701
702#ifdef VERBOSE_INIT_ARM
703			printf("Symbol table information provided by bootloader\n");
704			printf("ELF header is at %p\n", elfHeader);
705#endif
706			sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
707						     (elfHeader->e_shoff));
708			nsection = elfHeader->e_shnum;
709#ifdef VERBOSE_INIT_ARM
710			printf("Number of sections: %d\n", nsection);
711#endif
712			for(; nsection > 0; nsection--, sectionHeader++) {
713				if (sectionHeader->sh_offset > 0 &&
714				    (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
715					sz = sectionHeader->sh_offset + sectionHeader->sh_size;
716			}
717#ifdef VERBOSE_INIT_ARM
718			printf("Max size of sections: %d\n", sz);
719#endif
720			kerneldatasize += sz;
721		}
722
723#ifdef VERBOSE_INIT_ARM
724		printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
725		       (uint)kerneldatasize);
726		printf("&etext: 0x%x\n", (uint)&etext);
727		printf("&end: 0x%x\n", (uint)&end);
728		printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
729#endif
730
731		textsize = (textsize + PGOFSET) & ~PGOFSET;
732		kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
733
734		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
735
736		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
737					  physical_start + logical, textsize,
738					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
739		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
740					  physical_start + logical, kerneldatasize - textsize,
741					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
742	}
743
744#ifdef VERBOSE_INIT_ARM
745	printf("Constructing L2 page tables\n");
746#endif
747
748	/* Map the stack pages */
749	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
750	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
751	    PTE_CACHE);
752	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
753	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
754	    PTE_CACHE);
755	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
756	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
757	    PTE_CACHE);
758	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
759	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
760
761	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
762	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
763
764	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
765		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
766		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
767		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
768	}
769
770	/* Map the vector page. */
771#if 0
772	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
773	 * cache-clean code there.  */
774	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
775	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
776#else
777	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
778	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
779#endif
780
781	/*
782	 * map integrated peripherals at same address in l1pagetable
783	 * so that we can continue to use console.
784	 */
785	pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
786
787	/*
788	 * Now we have the real page tables in place so we can switch to them.
789	 * Once this is done we will be running with the REAL kernel page
790	 * tables.
791	 */
792	/*
793	 * Update the physical_freestart/physical_freeend/free_pages
794	 * variables.
795	 */
796	physical_freestart = physical_start +
797	  (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
798	physical_freeend = physical_end;
799	free_pages =
800	  (physical_freeend - physical_freestart) / PAGE_SIZE;
801
802	/* Switch tables */
803#ifdef VERBOSE_INIT_ARM
804	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
805	    physical_freestart, free_pages, free_pages);
806	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
807#endif
808	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
809	cpu_setttb(kernel_l1pt.pv_pa, true);
810	cpu_tlb_flushID();
811	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
812
813	/*
814	 * Moved from cpu_startup() as data_abort_handler() references
815	 * this during uvm init
816	 */
817	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
818
819#ifdef VERBOSE_INIT_ARM
820	printf("done!\n");
821#endif
822
823#ifdef VERBOSE_INIT_ARM
824	printf("bootstrap done.\n");
825#endif
826
827	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
828
829	/*
830	 * Pages were allocated during the secondary bootstrap for the
831	 * stacks for different CPU modes.
832	 * We must now set the r13 registers in the different CPU modes to
833	 * point to these stacks.
834	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
835	 * of the stack memory.
836	 */
837#ifdef VERBOSE_INIT_ARM
838	printf("init subsystems: stacks ");
839#endif
840
841	set_stackptr(PSR_IRQ32_MODE,
842	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
843	set_stackptr(PSR_ABT32_MODE,
844	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
845	set_stackptr(PSR_UND32_MODE,
846	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
847
848	cpu_idcache_wbinv_all();
849
850	/*
851	 * Well we should set a data abort handler.
852	 * Once things get going this will change as we will need a proper
853	 * handler.
854	 * Until then we will use a handler that just panics but tells us
855	 * why.
856	 * Initialisation of the vectors will just panic on a data abort.
857	 * This just fills in a slightly better one.
858	 */
859#ifdef VERBOSE_INIT_ARM
860	printf("vectors ");
861#endif
862	data_abort_handler_address = (u_int)data_abort_handler;
863	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
864	undefined_handler_address = (u_int)undefinedinstruction_bounce;
865
866	/* Initialise the undefined instruction handlers */
867#ifdef VERBOSE_INIT_ARM
868	printf("undefined ");
869#endif
870	undefined_init();
871
872	/* Load memory into UVM. */
873#ifdef VERBOSE_INIT_ARM
874	printf("page ");
875#endif
876	uvm_md_init();
877	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
878	    atop(physical_freestart), atop(physical_freeend),
879	    VM_FREELIST_DEFAULT);
880	uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
881	    atop(SDRAM_START), atop(physical_freeend_low),
882	    VM_FREELIST_DEFAULT);
883
884
885	/* Boot strap pmap telling it where managed kernel virtual memory is */
886#ifdef VERBOSE_INIT_ARM
887	printf("pmap ");
888#endif
889	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
890
891#ifdef VERBOSE_INIT_ARM
892	printf("done.\n");
893#endif
894
895#ifdef BOOTHOWTO
896	boothowto |= BOOTHOWTO;
897#endif
898
899#ifdef KGDB
900	if (boothowto & RB_KDB) {
901		kgdb_debug_init = 1;
902		kgdb_connect(1);
903	}
904#endif
905
906	mini2440_ksyms(bi_symtab);
907
908#ifdef DDB
909	/*db_machine_init();*/
910	if (boothowto & RB_KDB)
911		Debugger();
912#endif
913
914	evbarm_device_register = mini2440_device_register;
915
916	/* We return the new stack pointer address */
917	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
918}
919
920void
921consinit(void)
922{
923	static int consinit_done = 0;
924#if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
925	bus_space_tag_t iot = &s3c2xx0_bs_tag;
926#endif
927	int pclk;
928
929	if (consinit_done != 0)
930		return;
931
932	consinit_done = 1;
933
934	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
935
936#if NSSCOM > 0
937#ifdef SSCOM0CONSOLE
938	if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
939		pclk, comcnmode))
940		return;
941#endif
942#ifdef SSCOM1CONSOLE
943	if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
944		pclk, comcnmode))
945		return;
946#endif
947#endif				/* NSSCOM */
948#if NCOM>0 && defined(CONCOMADDR)
949	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
950		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
951		panic("can't init serial console @%x", CONCOMADDR);
952	return;
953#endif
954
955	consinit_done = 0;
956}
957
958
959#ifdef KGDB
960
961#if (NSSCOM > 0)
962
963#ifdef KGDB_DEVNAME
964const char kgdb_devname[] = KGDB_DEVNAME;
965#else
966const char kgdb_devname[] = "";
967#endif
968
969#ifndef KGDB_DEVMODE
970#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
971#endif
972int kgdb_sscom_mode = KGDB_DEVMODE;
973
974#endif				/* NSSCOM */
975
976void
977kgdb_port_init(void)
978{
979#if (NSSCOM > 0)
980	int unit = -1;
981	int pclk;
982
983	if (strcmp(kgdb_devname, "sscom0") == 0)
984		unit = 0;
985	else if (strcmp(kgdb_devname, "sscom1") == 0)
986		unit = 1;
987
988	if (unit >= 0) {
989		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
990
991		s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
992		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
993	}
994#endif
995}
996#endif
997
998
999static struct arm32_dma_range mini2440_dma_ranges[1];
1000
1001bus_dma_tag_t
1002s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1003{
1004	extern paddr_t physical_start, physical_end;
1005	struct arm32_bus_dma_tag *dmat;
1006
1007	mini2440_dma_ranges[0].dr_sysbase = physical_start;
1008	mini2440_dma_ranges[0].dr_busbase = physical_start;
1009	mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1010
1011#if 1
1012	dmat = dma_tag_template;
1013#else
1014	dmat = malloc(sizeof *dmat, M_DEVBUF, M_WAITOK);
1015	*dmat =  *dma_tag_template;
1016#endif
1017
1018	dmat->_ranges = mini2440_dma_ranges;
1019	dmat->_nranges = 1;
1020
1021	return dmat;
1022}
1023
1024void
1025mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1026{
1027#if NKSYMS || defined(DDB) || defined(LKM)
1028	extern int end;
1029
1030#ifdef DDB
1031	db_machine_init();
1032#endif
1033	if (bi_symtab == NULL) {
1034		return;
1035	}
1036#ifdef VERBOSE_INIT_ARM
1037	printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1038	       bi_symtab->nsym,
1039	       bi_symtab->ssym,
1040	       bi_symtab->esym);
1041#endif
1042
1043	ksyms_addsyms_elf(bi_symtab->nsym,
1044			  (int*)bi_symtab->ssym,
1045			  (int*)bi_symtab->esym);
1046#endif
1047}
1048
1049void *
1050lookup_bootinfo(int type)
1051{
1052	struct btinfo_common *bt;
1053	struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1054
1055	if (help->next == 0)
1056		return (NULL);  /* bootinfo[] was not made */
1057	do {
1058		bt = help;
1059		if (bt->type == type)
1060			return (help);
1061		help = (struct btinfo_common *)((char*)help + bt->next);
1062	} while (bt->next &&
1063		 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1064
1065	return (NULL);
1066}
1067
1068
1069extern char *booted_kernel;
1070
1071static void
1072mini2440_device_register(device_t dev, void *aux) {
1073	if (device_class(dev) == DV_IFNET) {
1074#ifndef MEMORY_DISK_IS_ROOT
1075		if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1076			booted_device = dev;
1077			rootfstype = MOUNT_NFS;
1078			if( bi_path != NULL ) {
1079				booted_kernel = bi_path->bootpath;
1080			}
1081		}
1082#endif
1083		if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1084			prop_data_t pd;
1085			pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1086			KASSERT(pd != NULL);
1087			if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1088				printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1089			}
1090			prop_object_release(pd);
1091			bi_net = NULL;
1092		}
1093	}
1094#ifndef MEMORY_DISK_IS_ROOT
1095	if (bi_rdev != NULL && device_class(dev) == DV_DISK
1096	    && device_is_a(dev, bi_rdev->devname)
1097	    && device_unit(dev) == bi_rdev->cookie) {
1098		booted_device = dev;
1099		booted_partition = bi_rdev->partition;
1100		rootfstype = ROOT_FSTYPE_ANY;
1101		if( bi_path != NULL ) {
1102			booted_kernel = bi_path->bootpath;
1103		}
1104	}
1105#endif
1106}
1107