1/*	$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $	*/
2
3/*-
4 * Copyright (c) 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#define NOT_MP_SAFE	0
33
34/*
35 * Socionext SC2A11 SynQuacer NetSec GbE driver
36 *
37 * Multiple Tx and Rx queues exist inside and dedicated descriptor
38 * fields specifies which queue is to use. Three internal micro-processors
39 * to handle incoming frames, outgoing frames and packet data crypto
40 * processing. uP programs are stored in an external flash memory and
41 * have to be loaded by device driver.
42 * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
43 * register (0x20) is known to have 0x10.36 and feature register (0x1058)
44 * reports 0x11056f37.
45 *  <24> alternative/enhanced desc format
46 *  <18> receive IP type 2 checksum offload
47 *  <16> transmit checksum offload
48 *  <11> event counter (mac management counter, MMC)
49 */
50
51#include <sys/cdefs.h>
52__KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $");
53
54#include <sys/param.h>
55#include <sys/bus.h>
56#include <sys/intr.h>
57#include <sys/device.h>
58#include <sys/callout.h>
59#include <sys/mbuf.h>
60#include <sys/errno.h>
61#include <sys/rndsource.h>
62#include <sys/kernel.h>
63#include <sys/systm.h>
64
65#include <net/if.h>
66#include <net/if_media.h>
67#include <net/if_dl.h>
68#include <net/if_ether.h>
69#include <dev/mii/mii.h>
70#include <dev/mii/miivar.h>
71#include <net/bpf.h>
72
73#include <dev/fdt/fdtvar.h>
74#include <dev/acpi/acpireg.h>
75#include <dev/acpi/acpivar.h>
76#include <dev/acpi/acpi_intr.h>
77
78/* SC2A11 GbE has 64-bit paddr descriptor */
79struct tdes {
80	uint32_t t0, t1, t2, t3;
81};
82struct rdes {
83	uint32_t r0, r1, r2, r3;
84};
85#define T0_OWN		(1U<<31)	/* desc is ready to Tx */
86#define T0_LD		(1U<<30)	/* last descriptor in array */
87#define T0_DRID		(24)		/* 29:24 desc ring id */
88#define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
89#define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
90#define T0_CC		(1U<<15)	/* ??? */
91#define T0_FS		(1U<<9)		/* first segment of frame */
92#define T0_LS		(1U<<8)		/* last segment of frame */
93#define T0_CSUM		(1U<<7)		/* enable check sum offload */
94#define T0_TSO		(1U<<6)		/* enable TCP segment offload */
95#define T0_TRS		(1U<<4)		/* 5:4 "TRS" ??? */
96/* T1 frame segment address 63:32 */
97/* T2 frame segment address 31:0 */
98/* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
99#define R0_OWN		(1U<<31)	/* desc is empty */
100#define R0_LD		(1U<<30)	/* last descriptor in array */
101#define R0_SDRID	(24)		/* 29:24 source desc ring id */
102#define R0_FR		(1U<<23)	/* found fragmented */
103#define R0_ER		(1U<<21)	/* Rx error indication */
104#define R0_ERR		(3U<<16)	/* 18:16 receive error code */
105#define R0_TDRID	(12)		/* 15:12 target desc ring id */
106#define R0_FS		(1U<<9)		/* first segment of frame */
107#define R0_LS		(1U<<8)		/* last segment of frame */
108#define R0_CSUM		(3U<<6)		/* 7:6 checksum status, 0: undone */
109#define R0_CERR		(2U<<6)		/* 2: found bad */
110#define R0_COK		(1U<<6)		/* 1: found ok */
111/* R1 frame address 63:32 */
112/* R2 frame address 31:0 */
113/* R3 31:16 received frame length, 15:0 buffer length to receive */
114
115/*
116 * SC2A11 registers. 0x100 - 1204
117 */
118#define SWRESET		0x104
119#define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
120#define COMINIT		0x120
121#define  INIT_DB	(1U<<2)		/* ???; self clear when done */
122#define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
123#define xINTSR		0x200		/* aggregated interrupt status */
124#define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
125#define  IRQ_MAC	(1U<<19)	/* ??? */
126#define  IRQ_PKT	(1U<<18)	/* ??? */
127#define  IRQ_BOOTCODE	(1U<<5)		/* ??? */
128#define  IRQ_XDONE	(1U<<4)		/* ??? mode change completed */
129#define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
130#define  IRQ_TX		(1U<<0)		/* top level Tx interrupt */
131#define xINTAEN		0x204		/* INT_A enable */
132#define xINTAE_SET	0x234		/* bit to set */
133#define xINTAE_CLR	0x238		/* bit to clr */
134#define xINTBEN		0x23c		/* INT_B enable */
135#define xINTBE_SET	0x240		/* bit to set */
136#define xINTBE_CLR	0x244		/* bit to clr */
137#define TXISR		0x400		/* transmit status; W1C */
138#define TXIEN		0x404		/* tx interrupt enable */
139#define TXIE_SET	0x428		/* bit to set */
140#define TXIE_CLR	0x42c		/* bit to clr */
141#define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
142#define  TXI_TR_ERR	(1U<<16)	/* xmit error detected */
143#define  TXI_TXDONE	(1U<<15)	/* xmit completed */
144#define  TXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
145#define RXISR		0x440		/* receive status; W1C */
146#define RXIEN		0x444		/* rx interrupt enable */
147#define RXIE_SET	0x468		/* bit to set */
148#define RXIE_CLR	0x46c		/* bit to clr */
149#define  RXI_RC_ERR	(1U<<16)	/* recv error detected */
150#define  RXI_PKTCNT	(1U<<15)	/* recv counter has new value */
151#define  RXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
152#define TDBA_LO		0x408		/* tdes array base addr 31:0 */
153#define TDBA_HI		0x434		/* tdes array base addr 63:32 */
154#define RDBA_LO		0x448		/* rdes array base addr 31:0 */
155#define RDBA_HI		0x474		/* rdes array base addr 63:32 */
156#define TXCONF		0x430		/* tdes config */
157#define RXCONF		0x470		/* rdes config */
158#define  DESCNF_UP	(1U<<31)	/* 'up-and-running' */
159#define  DESCNF_CHRST	(1U<<30)	/* channel reset */
160#define  DESCNF_TMR	(1U<<4)		/* coalesce timer unit select */
161#define  DESCNF_LE	(1)		/* little endian desc format */
162#define TXSUBMIT	0x410		/* submit frame(s) to transmit */
163#define TXCOALESC	0x418		/* tx intr coalesce upper bound */
164#define RXCOALESC	0x458		/* rx intr coalesce upper bound */
165#define TCLSCTIME	0x420		/* tintr guard time usec */
166#define RCLSCTIME	0x460		/* rintr guard time usec */
167#define TXDONECNT	0x414		/* tx completed count, auto-zero */
168#define RXAVAILCNT	0x454		/* rx available count, auto-zero */
169#define DMACTL_TMR	0x20c		/* DMA cycle tick value */
170#define PKTCTRL		0x140		/* pkt engine control */
171#define  MODENRM	(1U<<28)	/* set operational mode to 'normal' */
172#define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
173#define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
174#define  RPTHDCOMP	(1U<<2)		/* log header incomplete condition */
175#define  RPTHDERR	(1U<<1)		/* log header error */
176#define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
177#define UCODE_PKT	0x0d0		/* packet engine ucode port */
178#define UCODE_H2M	0x210		/* host2media engine ucode port */
179#define UCODE_M2H	0x21c		/* media2host engine ucode port */
180#define CORESTAT	0x218		/* engine run state */
181#define  PKTSTOP	(1U<<2)		/* pkt engine stopped */
182#define  M2HSTOP	(1U<<1)		/* M2H engine stopped */
183#define  H2MSTOP	(1U<<0)		/* H2M engine stopped */
184#define DMACTL_H2M	0x214		/* host2media engine control */
185#define DMACTL_M2H	0x220		/* media2host engine control */
186#define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
187#define  M2H_MODE_TRANS	(1U<<20)	/* initiate M2H mode change */
188#define MODE_TRANS	0x500		/* mode change completion status */
189#define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
190#define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
191#define CLKEN		0x100		/* clock distribution enable */
192#define  CLK_G		(1U<<5)		/* feed clk domain G */
193#define  CLK_C		(1U<<1)		/* feed clk domain C */
194#define  CLK_D		(1U<<0)		/* feed clk domain D */
195#define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
196#define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */
197
198/* GMAC register indirect access. thru MACCMD/MACDATA operation */
199#define MACDATA		0x11c0		/* gmac register rd/wr data */
200#define MACCMD		0x11c4		/* gmac register operation */
201#define  CMD_IOWR	(1U<<28)	/* write op */
202#define  CMD_BUSY	(1U<<31)	/* busy bit */
203#define MACSTAT		0x1024		/* mac interrupt status (unused) */
204#define MACINTE		0x1028		/* mac interrupt enable (unused) */
205
206#define FLOWTHR		0x11cc		/* flow control threshold */
207/* 31:16 pause threshold, 15:0 resume threshold */
208#define INTF_SEL	0x11d4		/* phy interface type */
209#define  INTF_GMII	0
210#define  INTF_RGMII	1
211#define  INTF_RMII	4
212
213#define MCVER		0x22c		/* micro controller version */
214#define HWVER		0x230		/* hardware version */
215
216/*
217 * GMAC registers are mostly identical to Synopsys DesignWare Core
218 * Ethernet. These must be handled by indirect access.
219 */
220#define GMACMCR		0x0000		/* MAC configuration */
221#define  MCR_IBN	(1U<<30)	/* watch in-band-signal */
222#define  MCR_CST	(1U<<25)	/* strip CRC */
223#define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
224#define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
225#define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
226#define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
227#define  MCR_DCRS	(1U<<16)	/* ignore (G)MII HDX Tx error */
228#define  MCR_PS		(1U<<15)	/* 1: MII 10/100, 0: GMII 1000 */
229#define  MCR_FES	(1U<<14)	/* force speed 100 */
230#define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
231#define  MCR_LOOP	(1U<<12)	/* run loop back */
232#define  MCR_USEFDX	(1U<<11)	/* force full duplex */
233#define  MCR_IPCEN	(1U<<10)	/* handle checksum */
234#define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
235#define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
236#define  MCR_ACS	(1U<<7)		/* auto pad auto strip CRC */
237#define  MCR_DC		(1U<<4)		/* report excessive tx deferral */
238#define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
239#define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
240#define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
241#define GMACAFR		0x0004		/* frame DA/SA address filter */
242#define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
243#define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
244#define  AFR_SAF	(1U<<9)		/* source address filter */
245#define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
246#define  AFR_PCF	(2U<<6)		/* 7:6 accept pause frame 0~3 */
247#define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
248#define  AFR_PM		(1U<<4)		/* accept all multicast frame */
249#define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
250#define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
251#define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
252#define  AFR_PR		(1U<<0)		/* run promisc mode */
253#define GMACGAR		0x0010		/* MDIO operation */
254#define  GAR_PHY	(11)		/* 15:11 mii phy */
255#define  GAR_REG	(6)		/* 10:6 mii reg */
256#define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
257#define  GAR_IOWR	(1U<<1)		/* MDIO write op */
258#define  GAR_BUSY	(1U<<0)		/* busy bit */
259#define  GAR_MDIO_25_35MHZ	2
260#define  GAR_MDIO_35_60MHZ	3
261#define  GAR_MDIO_60_100MHZ	0
262#define  GAR_MDIO_100_150MHZ	1
263#define  GAR_MDIO_150_250MHZ	4
264#define  GAR_MDIO_250_300MHZ	5
265#define GMACGDR		0x0014		/* MDIO rd/wr data */
266#define GMACFCR		0x0018		/* 802.3x flowcontrol */
267/* 31:16 pause timer value, 5:4 pause timer threshold */
268#define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
269#define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
270#define GMACIMPL	0x0020		/* implementation id */
271#define GMACISR		0x0038		/* interrupt status indication */
272#define GMACIMR		0x003c		/* interrupt mask to inhibit */
273#define  ISR_TS		(1U<<9)		/* time stamp operation detected */
274#define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
275#define  ISR_TX		(1U<<6)		/* Tx completed */
276#define  ISR_RX		(1U<<5)		/* Rx completed */
277#define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
278#define  ISR_LC		(1U<<0)		/* link status change detected */
279#define GMACMAH0	0x0040		/* my own MAC address 47:32 */
280#define GMACMAL0	0x0044		/* my own MAC address 31:0 */
281#define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
282#define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
283/* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
284#define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
285#define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
286/* supplimental MAH bit-31: slot in use, no other bit is effective */
287#define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
288#define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
289#define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
290#define GMACVTAG	0x001c		/* VLAN tag control */
291#define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
292#define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
293#define  VTAG_INV	(1U<<17)	/* run inverse match logic */
294#define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
295/* 15:0 concat of PRIO+CFI+VID */
296#define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
297#define GMACMIISR	0x00d8		/* resolved RGMII/SGMII link status */
298#define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
299#define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
300#define  MIISR_FDX	(1U<<0)		/* fdx detected */
301
302#define GMACLPIS	0x0030		/* LPI control & status */
303#define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
304#define  LPIS_PLS	(1U<<17)
305#define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
306#define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
307#define GMACLPIC	0x0034		/* LPI timer control */
308#define  LPIC_LST	(5)		/* 16:5 ??? */
309#define  LPIC_TWT	(0)		/* 15:0 ??? */
310/* 0x700-764 Time Stamp control */
311
312#define GMACBMR		0x1000		/* DMA bus mode control */
313/* 24    8xPBL multiply by 8 for RPBL & PBL values
314 * 23    USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
315 * 22:17 RPBL
316 * 16    FB fixed burst
317 * 15:14 priority between Rx and Tx
318 *  3    rxtx ratio 41
319 *  2    rxtx ratio 31
320 *  1    rxtx ratio 21
321 *  0    rxtx ratio 11
322 * 13:8  PBL possible DMA burst length
323 *  7    ATDS select 32-byte descriptor format for advanced features
324 *  6:2	 DSL descriptor skip length, 0 for adjuscent, counted on bus width
325 *  0    MAC reset op. self-clear
326 */
327#define  BMR_RST	(1)		/* reset op. self clear when done */
328#define GMACTPD		0x1004		/* write any to resume tdes */
329#define GMACRPD		0x1008		/* write any to resume rdes */
330#define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
331#define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
332#define GMACDSR		0x1014		/* DMA status detail report; W1C */
333#define GMACDIE		0x101c		/* DMA interrupt enable */
334#define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
335#define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
336#define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
337#define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
338#define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
339#define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
340#define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
341#define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
342#define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
343#define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
344#define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
345#define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
346#define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
347#define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
348#define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
349#define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
350#define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
351#define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
352#define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
353#define  DMAI_TU	(1U<<2)		/* Tx descriptor not available */
354#define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
355#define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
356#define GMACOMR		0x1018		/* DMA operation mode */
357#define  OMR_DT		(1U<<26)	/* don't drop error frames */
358#define  OMR_RSF	(1U<<25)	/* 1: Rx store&forward, 0: immed. */
359#define  OMR_DFF	(1U<<24)	/* don't flush rx frames on shortage */
360#define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
361#define  OMR_FTF	(1U<<20)	/* initiate tx FIFO reset, SC */
362#define  OMR_TTC	(14)		/* 16:14 Tx threshold */
363#define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
364#define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
365#define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
366#define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
367#define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
368#define GMACEVCS	0x1020		/* missed frame or ovf detected */
369#define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
370#define GMACAXIB	0x1028		/* AXI bus mode control */
371#define GMACAXIS	0x102c		/* AXI status report */
372/* 0x1048 current tx desc address */
373/* 0x104c current rx desc address */
374/* 0x1050 current tx buffer address */
375/* 0x1054 current rx buffer address */
376#define HWFEA		0x1058		/* DWC feature report */
377#define  FEA_EXDESC	(1U<<24)	/* alternative/enhanced desc layout */
378#define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
379#define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
380#define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
381#define  FEA_MMC	(1U<<11)	/* RMON event counter */
382
383#define GMACEVCTL	0x0100		/* event counter control */
384#define  EVC_FHP	(1U<<5)		/* full-half preset */
385#define  EVC_CP		(1U<<4)		/* counter preset */
386#define  EVC_MCF	(1U<<3)		/* counter freeze */
387#define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
388#define  EVC_CSR	(1U<<1)		/* counter stop rollover */
389#define  EVC_CR		(1U<<0)		/* reset counters */
390#define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */
391
392/* 0x400-4ac L3/L4 control */
393
394/*
395 * flash memory layout
396 * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
397 * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
398 * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
399 * 0x10 - 13	H2M program length in 4 byte count.
400 * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
401 * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
402 * 0x1c - 13	M2H program length in 4 byte count.
403 * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
404 * 0x24 - 27	packet program length in 4 byte count.
405 *
406 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
407 */
408
409#define  _BMR		0x00412080	/* NetSec BMR value, magic spell */
410/* NetSec uses local RAM to handle GMAC desc arrays */
411#define  _RDLA		0x18000
412#define  _TDLA		0x1c000
413/* lower address region is used for intermediate frame data buffers */
414
415/*
416 * all below are software construction.
417 */
418#define MD_NTXDESC		128
419#define MD_NRXDESC		64
420
421#define MD_NTXSEGS		16
422#define MD_TXQUEUELEN		8
423#define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
424#define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
425#define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
426#define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
427#define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
428
429#define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
430#define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
431
432struct control_data {
433	struct tdes cd_txdescs[MD_NTXDESC];
434	struct rdes cd_rxdescs[MD_NRXDESC];
435};
436#define SCX_CDOFF(x)		offsetof(struct control_data, x)
437#define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
438#define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
439
440struct scx_txsoft {
441	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
442	bus_dmamap_t txs_dmamap;	/* our DMA map */
443	int txs_firstdesc;		/* first descriptor in packet */
444	int txs_lastdesc;		/* last descriptor in packet */
445	int txs_ndesc;			/* # of descriptors used */
446};
447
448struct scx_rxsoft {
449	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
450	bus_dmamap_t rxs_dmamap;	/* our DMA map */
451};
452
453struct scx_softc {
454	device_t sc_dev;		/* generic device information */
455	bus_space_tag_t sc_st;		/* bus space tag */
456	bus_space_handle_t sc_sh;	/* bus space handle */
457	bus_size_t sc_sz;		/* csr map size */
458	bus_space_handle_t sc_eesh;	/* eeprom section handle */
459	bus_size_t sc_eesz;		/* eeprom map size */
460	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
461	struct ethercom sc_ethercom;	/* Ethernet common data */
462	struct mii_data sc_mii;		/* MII */
463	callout_t sc_callout;		/* PHY monitor callout */
464	bus_dma_segment_t sc_seg;	/* descriptor store seg */
465	int sc_nseg;			/* descriptor store nseg */
466	void *sc_ih;			/* interrupt cookie */
467	int sc_phy_id;			/* PHY address */
468	int sc_flowflags;		/* 802.3x PAUSE flow control */
469	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
470	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
471	int sc_miigmii;			/* 1: MII/GMII, 0: RGMII */
472	int sc_phandle;			/* fdt phandle */
473	uint64_t sc_freq;
474	uint32_t sc_maxsize;
475
476	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
477#define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
478
479	struct control_data *sc_control_data;
480#define sc_txdescs	sc_control_data->cd_txdescs
481#define sc_rxdescs	sc_control_data->cd_rxdescs
482
483	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
484	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
485	int sc_txfree;			/* number of free Tx descriptors */
486	int sc_txnext;			/* next ready Tx descriptor */
487	int sc_txsfree;			/* number of free Tx jobs */
488	int sc_txsnext;			/* next ready Tx job */
489	int sc_txsdirty;		/* dirty Tx jobs */
490	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
491
492	krndsource_t rnd_source;	/* random source */
493#ifdef GMAC_EVENT_COUNTERS
494	/* 80 event counters exist */
495#endif
496};
497
498#define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
499#define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
500
501#define SCX_CDTXSYNC(sc, x, n, ops)					\
502do {									\
503	int __x, __n;							\
504									\
505	__x = (x);							\
506	__n = (n);							\
507									\
508	/* If it will wrap around, sync to the end of the ring. */	\
509	if ((__x + __n) > MD_NTXDESC) {				\
510		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
511		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
512		    (MD_NTXDESC - __x), (ops));			\
513		__n -= (MD_NTXDESC - __x);				\
514		__x = 0;						\
515	}								\
516									\
517	/* Now sync whatever is left. */				\
518	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
519	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
520} while (/*CONSTCOND*/0)
521
522#define SCX_CDRXSYNC(sc, x, ops)					\
523do {									\
524	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
525	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
526} while (/*CONSTCOND*/0)
527
528#define SCX_INIT_RXDESC(sc, x)						\
529do {									\
530	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
531	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
532	struct mbuf *__m = __rxs->rxs_mbuf;				\
533	bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
534	bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
535	__m->m_data = __m->m_ext.ext_buf;				\
536	__rxd->r3 = htole32(__z - 4);					\
537	__rxd->r2 = htole32(BUS_ADDR_LO32(__p));			\
538	__rxd->r1 = htole32(BUS_ADDR_HI32(__p));			\
539	__rxd->r0 &= htole32(R0_LD);					\
540	__rxd->r0 |= htole32(R0_OWN);					\
541} while (/*CONSTCOND*/0)
542
543/* memory mapped CSR register access */
544#define CSR_READ(sc,off) \
545	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
546#define CSR_WRITE(sc,off,val) \
547	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
548
549/* flash memory access */
550#define EE_READ(sc,off) \
551	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
552
553static int scx_fdt_match(device_t, cfdata_t, void *);
554static void scx_fdt_attach(device_t, device_t, void *);
555static int scx_acpi_match(device_t, cfdata_t, void *);
556static void scx_acpi_attach(device_t, device_t, void *);
557
558CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
559    scx_fdt_match, scx_fdt_attach, NULL, NULL);
560
561CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
562    scx_acpi_match, scx_acpi_attach, NULL, NULL);
563
564static void scx_attach_i(struct scx_softc *);
565static void scx_reset(struct scx_softc *);
566static void scx_stop(struct ifnet *, int);
567static int scx_init(struct ifnet *);
568static int scx_ioctl(struct ifnet *, u_long, void *);
569static void scx_set_rcvfilt(struct scx_softc *);
570static void scx_start(struct ifnet *);
571static void scx_watchdog(struct ifnet *);
572static int scx_intr(void *);
573static void txreap(struct scx_softc *);
574static void rxfill(struct scx_softc *);
575static int add_rxbuf(struct scx_softc *, int);
576static void rxdrain(struct scx_softc *sc);
577static void mii_statchg(struct ifnet *);
578static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
579static int mii_readreg(device_t, int, int, uint16_t *);
580static int mii_writereg(device_t, int, int, uint16_t);
581static void phy_tick(void *);
582static void dump_hwfeature(struct scx_softc *);
583
584static void resetuengine(struct scx_softc *);
585static void loaducode(struct scx_softc *);
586static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
587static void forcephyloopback(struct scx_softc *);
588static void resetphytonormal(struct scx_softc *);
589
590static int get_mdioclk(uint32_t);
591
592#define WAIT_FOR_SET(sc, reg, set) \
593	wait_for_bits(sc, reg, set, ~0, 0)
594#define WAIT_FOR_CLR(sc, reg, clr) \
595	wait_for_bits(sc, reg, 0, clr, 0)
596
597static int
598wait_for_bits(struct scx_softc *sc, int reg,
599    uint32_t set, uint32_t clr, uint32_t fail)
600{
601	uint32_t val;
602	int ntries;
603
604	for (ntries = 0; ntries < 1000; ntries++) {
605		val = CSR_READ(sc, reg);
606		if ((val & set) || !(val & clr))
607			return 0;
608		if (val & fail)
609			return 1;
610		DELAY(1);
611	}
612	return 1;
613}
614
615/* GMAC register indirect access */
616static int
617mac_read(struct scx_softc *sc, int reg)
618{
619
620	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
621	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
622	return CSR_READ(sc, MACDATA);
623}
624
625static void
626mac_write(struct scx_softc *sc, int reg, int val)
627{
628
629	CSR_WRITE(sc, MACDATA, val);
630	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
631	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
632}
633
634/* dig and decode "clock-frequency" value for a given clkname */
635static int
636get_clk_freq(int phandle, const char *clkname)
637{
638	u_int index, n, cells;
639	const u_int *p;
640	int err, len, resid;
641	unsigned int freq = 0;
642
643	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
644	if (err == -1)
645		return -1;
646	p = fdtbus_get_prop(phandle, "clocks", &len);
647	if (p == NULL)
648		return -1;
649	for (n = 0, resid = len; resid > 0; n++) {
650		const int cc_phandle =
651		    fdtbus_get_phandle_from_native(be32toh(p[0]));
652		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
653			return -1;
654		if (n == index) {
655			if (of_getprop_uint32(cc_phandle,
656			    "clock-frequency", &freq))
657				return -1;
658			return freq;
659		}
660		resid -= (cells + 1) * 4;
661		p += (cells + 1) * 4;
662	}
663	return -1;
664}
665
666#define ATTACH_DEBUG 1
667
668static const struct device_compatible_entry compat_data[] = {
669	{ .compat = "socionext,synquacer-netsec" },
670	DEVICE_COMPAT_EOL
671};
672static const struct device_compatible_entry compatible[] = {
673	{ .compat = "SCX0001" },
674	DEVICE_COMPAT_EOL
675};
676
677static int
678scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
679{
680	struct fdt_attach_args * const faa = aux;
681
682	return of_compatible_match(faa->faa_phandle, compat_data);
683}
684
685static void
686scx_fdt_attach(device_t parent, device_t self, void *aux)
687{
688	struct scx_softc * const sc = device_private(self);
689	struct fdt_attach_args * const faa = aux;
690	const int phandle = faa->faa_phandle;
691	bus_space_handle_t bsh;
692	bus_space_handle_t eebsh;
693	bus_addr_t addr[2];
694	bus_size_t size[2];
695	void *intrh;
696	char intrstr[128];
697	int phy_phandle;
698	const char *phy_mode;
699	bus_addr_t phy_id;
700	long ref_clk;
701
702	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
703	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
704		aprint_error(": unable to map registers\n");
705		return;
706	}
707	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
708	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
709		aprint_error(": unable to map device eeprom\n");
710		goto fail;
711	}
712	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
713		aprint_error(": failed to decode interrupt\n");
714		goto fail;
715	}
716
717	phy_mode = fdtbus_get_string(phandle, "phy-mode");
718	if (phy_mode == NULL)
719		aprint_error(": missing 'phy-mode' property\n");
720	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
721	if (phy_phandle == -1
722	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
723		phy_id = MII_PHY_ANY;
724	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
725	if (ref_clk == -1)
726		ref_clk = 250 * 1000 * 1000;
727
728#if ATTACH_DEBUG == 1
729aprint_normal("\n");
730aprint_normal_dev(self,
731    "[FDT] phy mode %s, phy id %d, freq %ld\n",
732    phy_mode, (int)phy_id, ref_clk);
733aprint_normal("%s", device_xname(self));
734#endif
735
736	intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
737		NOT_MP_SAFE, scx_intr, sc);
738	if (intrh == NULL) {
739		aprint_error(": couldn't establish interrupt\n");
740		goto fail;
741	}
742	aprint_normal(" interrupt on %s", intrstr);
743
744	sc->sc_dev = self;
745	sc->sc_st = faa->faa_bst;
746	sc->sc_sh = bsh;
747	sc->sc_sz = size[0];
748	sc->sc_eesh = eebsh;
749	sc->sc_eesz = size[1];
750	sc->sc_ih = intrh;
751	sc->sc_dmat = faa->faa_dmat;
752	sc->sc_phandle = phandle;
753	sc->sc_phy_id = phy_id;
754	sc->sc_freq = ref_clk;
755
756	scx_attach_i(sc);
757
758	return;
759 fail:
760	if (sc->sc_eesz)
761		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
762	if (sc->sc_sz)
763		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
764	return;
765}
766
767static int
768scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
769{
770	struct acpi_attach_args *aa = aux;
771
772	return acpi_compatible_match(aa, compatible);
773}
774
775#define HWFEA_DEBUG 1
776
777static void
778scx_acpi_attach(device_t parent, device_t self, void *aux)
779{
780	struct scx_softc * const sc = device_private(self);
781	struct acpi_attach_args * const aa = aux;
782	ACPI_HANDLE handle = aa->aa_node->ad_handle;
783	bus_space_handle_t bsh, eebsh;
784	struct acpi_resources res;
785	struct acpi_mem *mem, *mem1;
786	struct acpi_irq *irq;
787	ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
788	ACPI_STATUS rv;
789	void *intrh;
790
791	rv = acpi_resource_parse(self, handle, "_CRS",
792	    &res, &acpi_resource_parse_ops_default);
793	if (ACPI_FAILURE(rv))
794		return;
795	mem = acpi_res_mem(&res, 0);
796	irq = acpi_res_irq(&res, 0);
797	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
798		aprint_error(": incomplete crs resources\n");
799		goto done;
800	}
801	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
802	    &bsh) != 0) {
803		aprint_error(": unable to map registers\n");
804		goto done;
805	}
806	mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
807	if (mem1 == NULL || mem1->ar_length == 0) {
808		aprint_error(": incomplete eeprom resources\n");
809		goto fail_0;
810	}
811	if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
812	    &eebsh)) {
813		aprint_error(": unable to map device eeprom\n");
814		goto fail_0;
815	}
816	rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
817	if (ACPI_FAILURE(rv))
818		max_spd = 1000;
819	rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
820	if (ACPI_FAILURE(rv))
821		max_frame = 2048;
822	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
823	if (ACPI_FAILURE(rv))
824		phy_id = MII_PHY_ANY;
825	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
826			&phy_freq);
827	if (ACPI_FAILURE(rv))
828		phy_freq = 250 * 1000 * 1000;
829
830#if ATTACH_DEBUG == 1
831aprint_normal_dev(self,
832    "[ACPI] max-speed %d, phy id %d, freq %ld\n",
833    (int)max_spd, (int)phy_id, phy_freq);
834aprint_normal("%s", device_xname(self));
835#endif
836
837	intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
838	    IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
839	if (intrh == NULL) {
840		aprint_error(": couldn't establish interrupt\n");
841		goto fail_1;
842	}
843
844	sc->sc_dev = self;
845	sc->sc_st = aa->aa_memt;
846	sc->sc_sh = bsh;
847	sc->sc_sz = mem->ar_length;
848	sc->sc_eesh = eebsh;
849	sc->sc_eesz = mem1->ar_length;
850	sc->sc_ih = intrh;
851	sc->sc_dmat =
852	    BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
853	sc->sc_phy_id = (int)phy_id;
854	sc->sc_freq = phy_freq;
855	sc->sc_maxsize = max_frame;
856
857	scx_attach_i(sc);
858 done:
859	acpi_resource_cleanup(&res);
860	return;
861 fail_1:
862	bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
863 fail_0:
864	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
865	acpi_resource_cleanup(&res);
866	return;
867}
868
869static void
870scx_attach_i(struct scx_softc *sc)
871{
872	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
873	struct mii_data * const mii = &sc->sc_mii;
874	struct ifmedia * const ifm = &mii->mii_media;
875	uint32_t which, dwimp, dwfea;
876	uint8_t enaddr[ETHER_ADDR_LEN];
877	bus_dma_segment_t seg;
878	paddr_t p, q;
879	uint32_t csr;
880	int i, nseg, error = 0;
881
882	which = CSR_READ(sc, HWVER);	/* Socionext version 5.xx */
883	dwimp = mac_read(sc, GMACIMPL);	/* DWC implementation XX.YY */
884	dwfea = mac_read(sc, HWFEA);	/* DWC feature bits */
885
886	aprint_naive("\n");
887	aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
888	    "%x.%x\n", which >> 16, which & 0xffff);
889
890	aprint_normal_dev(sc->sc_dev,
891	    "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
892	    dwimp & 0xff, dwimp >> 8, dwfea);
893	dump_hwfeature(sc);
894
895	/* detected PHY type */
896	sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
897
898	/* fetch MAC address in flash 0:7, stored in big endian order */
899	csr = EE_READ(sc, 0x00);
900	enaddr[0] = csr >> 24;
901	enaddr[1] = csr >> 16;
902	enaddr[2] = csr >> 8;
903	enaddr[3] = csr;
904	csr = EE_READ(sc, 0x04);
905	enaddr[4] = csr >> 24;
906	enaddr[5] = csr >> 16;
907	aprint_normal_dev(sc->sc_dev,
908	    "Ethernet address %s\n", ether_sprintf(enaddr));
909
910	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
911
912	mii->mii_ifp = ifp;
913	mii->mii_readreg = mii_readreg;
914	mii->mii_writereg = mii_writereg;
915	mii->mii_statchg = mii_statchg;
916
917	sc->sc_ethercom.ec_mii = mii;
918	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
919	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
920	    MII_OFFSET_ANY, MIIF_DOPAUSE);
921	if (LIST_FIRST(&mii->mii_phys) == NULL) {
922		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
923		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
924	} else
925		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
926	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
927
928	/*
929	 * Allocate the control data structures, and create and load the
930	 * DMA map for it.
931	 */
932	error = bus_dmamem_alloc(sc->sc_dmat,
933	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
934	if (error != 0) {
935		aprint_error_dev(sc->sc_dev,
936		    "unable to allocate control data, error = %d\n", error);
937		goto fail_0;
938	}
939	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
940	    sizeof(struct control_data), (void **)&sc->sc_control_data,
941	    BUS_DMA_COHERENT);
942	if (error != 0) {
943		aprint_error_dev(sc->sc_dev,
944		    "unable to map control data, error = %d\n", error);
945		goto fail_1;
946	}
947	error = bus_dmamap_create(sc->sc_dmat,
948	    sizeof(struct control_data), 1,
949	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
950	if (error != 0) {
951		aprint_error_dev(sc->sc_dev,
952		    "unable to create control data DMA map, "
953		    "error = %d\n", error);
954		goto fail_2;
955	}
956	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
957	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
958	if (error != 0) {
959		aprint_error_dev(sc->sc_dev,
960		    "unable to load control data DMA map, error = %d\n",
961		    error);
962		goto fail_3;
963	}
964	for (i = 0; i < MD_TXQUEUELEN; i++) {
965		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
966		    MD_NTXSEGS, MCLBYTES, 0, 0,
967		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
968			aprint_error_dev(sc->sc_dev,
969			    "unable to create tx DMA map %d, error = %d\n",
970			    i, error);
971			goto fail_4;
972		}
973	}
974	for (i = 0; i < MD_NRXDESC; i++) {
975		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
976		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
977			aprint_error_dev(sc->sc_dev,
978			    "unable to create rx DMA map %d, error = %d\n",
979			    i, error);
980			goto fail_5;
981		}
982		sc->sc_rxsoft[i].rxs_mbuf = NULL;
983	}
984	sc->sc_seg = seg;
985	sc->sc_nseg = nseg;
986#if 0
987aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
988#endif
989	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
990	ifp->if_softc = sc;
991	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
992	ifp->if_ioctl = scx_ioctl;
993	ifp->if_start = scx_start;
994	ifp->if_watchdog = scx_watchdog;
995	ifp->if_init = scx_init;
996	ifp->if_stop = scx_stop;
997	IFQ_SET_READY(&ifp->if_snd);
998
999	/* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
1000	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1001	/* sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; not yet */
1002
1003	sc->sc_flowflags = 0; /* track PAUSE flow caps */
1004
1005	if_attach(ifp);
1006	if_deferred_start_init(ifp, NULL);
1007	ether_ifattach(ifp, enaddr);
1008
1009	callout_init(&sc->sc_callout, 0);
1010	callout_setfunc(&sc->sc_callout, phy_tick, sc);
1011
1012	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1013	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1014
1015	resetuengine(sc);
1016	loaducode(sc);
1017
1018	/* feed NetSec descriptor array base addresses and timer value */
1019	p = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
1020	q = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
1021	CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p));
1022	CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p));
1023	CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q));
1024	CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q));
1025	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
1026	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
1027	CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
1028
1029	forcephyloopback(sc);/* make PHY loopback mode for uengine init */
1030
1031	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* pre-cautional W1C */
1032	CSR_WRITE(sc, CORESTAT, 0);	  /* start uengine to reprogram */
1033	error = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE);
1034	if (error) {
1035		aprint_error_dev(sc->sc_dev, "uengine start failed\n");
1036	}
1037	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* W1C load complete report */
1038
1039	resetphytonormal(sc); /* take back PHY to normal mode */
1040
1041	CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS);
1042	CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */
1043	error = WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE);
1044	if (error) {
1045		aprint_error_dev(sc->sc_dev, "uengine mode change failed\n");
1046	}
1047
1048	CSR_WRITE(sc, TXISR, ~0);	/* clear pending emtpry/error irq */
1049	CSR_WRITE(sc, xINTAE_CLR, ~0);	/* disable tx / rx interrupts */
1050
1051	return;
1052
1053  fail_5:
1054	for (i = 0; i < MD_NRXDESC; i++) {
1055		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1056			bus_dmamap_destroy(sc->sc_dmat,
1057			    sc->sc_rxsoft[i].rxs_dmamap);
1058	}
1059  fail_4:
1060	for (i = 0; i < MD_TXQUEUELEN; i++) {
1061		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1062			bus_dmamap_destroy(sc->sc_dmat,
1063			    sc->sc_txsoft[i].txs_dmamap);
1064	}
1065	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1066  fail_3:
1067	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1068  fail_2:
1069	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1070	    sizeof(struct control_data));
1071  fail_1:
1072	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1073  fail_0:
1074	if (sc->sc_phandle)
1075		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1076	else
1077		acpi_intr_disestablish(sc->sc_ih);
1078	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1079	return;
1080}
1081
1082static void
1083scx_reset(struct scx_softc *sc)
1084{
1085	int loop = 0, busy;
1086
1087	mac_write(sc, GMACOMR, 0);
1088	mac_write(sc, GMACBMR, BMR_RST);
1089	do {
1090		DELAY(1);
1091		busy = mac_read(sc, GMACBMR) & BMR_RST;
1092	} while (++loop < 3000 && busy);
1093	mac_write(sc, GMACBMR, _BMR);
1094	mac_write(sc, GMACAFR, 0);
1095}
1096
1097static void
1098scx_stop(struct ifnet *ifp, int disable)
1099{
1100	struct scx_softc *sc = ifp->if_softc;
1101	uint32_t csr;
1102
1103	/* Stop the one second clock. */
1104	callout_stop(&sc->sc_callout);
1105
1106	/* Down the MII. */
1107	mii_down(&sc->sc_mii);
1108
1109	/* Mark the interface down and cancel the watchdog timer. */
1110	ifp->if_flags &= ~IFF_RUNNING;
1111	ifp->if_timer = 0;
1112
1113	CSR_WRITE(sc, RXIE_CLR, ~0);
1114	CSR_WRITE(sc, TXIE_CLR, ~0);
1115	CSR_WRITE(sc, xINTAE_CLR, ~0);
1116	CSR_WRITE(sc, TXISR, ~0);
1117	CSR_WRITE(sc, RXISR, ~0);
1118
1119	csr = mac_read(sc, GMACOMR);
1120	mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST));
1121}
1122
1123static int
1124scx_init(struct ifnet *ifp)
1125{
1126	struct scx_softc *sc = ifp->if_softc;
1127	const uint8_t *ea = CLLADDR(ifp->if_sadl);
1128	uint32_t csr;
1129	int i, error;
1130
1131	/* Cancel pending I/O. */
1132	scx_stop(ifp, 0);
1133
1134	/* Reset the chip to a known state. */
1135	scx_reset(sc);
1136
1137	/* build sane Tx */
1138	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1139	sc->sc_txdescs[MD_NTXDESC - 1].t0 = htole32(T0_LD); /* tie off */
1140	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1141		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1142	sc->sc_txfree = MD_NTXDESC;
1143	sc->sc_txnext = 0;
1144	for (i = 0; i < MD_TXQUEUELEN; i++)
1145		sc->sc_txsoft[i].txs_mbuf = NULL;
1146	sc->sc_txsfree = MD_TXQUEUELEN;
1147	sc->sc_txsnext = 0;
1148	sc->sc_txsdirty = 0;
1149
1150	/* load Rx descriptors with fresh mbuf */
1151	for (i = 0; i < MD_NRXDESC; i++) {
1152		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1153			if ((error = add_rxbuf(sc, i)) != 0) {
1154				aprint_error_dev(sc->sc_dev,
1155				    "unable to allocate or map rx "
1156				    "buffer %d, error = %d\n",
1157				    i, error);
1158				rxdrain(sc);
1159				goto out;
1160			}
1161		}
1162		else
1163			SCX_INIT_RXDESC(sc, i);
1164	}
1165	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = htole32(R0_LD); /* tie off */
1166	sc->sc_rxptr = 0;
1167
1168	/* set my address in perfect match slot 0. little endian order */
1169	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
1170	mac_write(sc, GMACMAL0, csr);
1171	csr = (ea[5] << 8) | ea[4];
1172	mac_write(sc, GMACMAH0, csr);
1173
1174	/* accept multicast frame or run promisc mode */
1175	scx_set_rcvfilt(sc);
1176
1177	/* set current media */
1178	if ((error = ether_mediachange(ifp)) != 0)
1179		goto out;
1180
1181	CSR_WRITE(sc, DESC_SRST, 01);
1182	WAIT_FOR_CLR(sc, DESC_SRST, 01);
1183
1184	CSR_WRITE(sc, DESC_INIT, 01);
1185	WAIT_FOR_CLR(sc, DESC_INIT, 01);
1186
1187	/* feed local memory descriptor array base addresses */
1188	mac_write(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
1189	mac_write(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */
1190
1191	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
1192	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */
1193
1194	CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII);
1195
1196	CSR_WRITE(sc, RXCOALESC, 8);		/* Rx coalesce bound */
1197	CSR_WRITE(sc, TXCOALESC, 8);		/* Tx coalesce bound */
1198	CSR_WRITE(sc, RCLSCTIME, 500);		/* Rx co. guard time usec */
1199	CSR_WRITE(sc, TCLSCTIME, 500);		/* Tx co. guard time usec */
1200
1201	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1202	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1203	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1204#if 1
1205	/* clear event counters, auto-zero after every read */
1206	mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
1207#endif
1208	/* kick to start GMAC engine */
1209	csr = mac_read(sc, GMACOMR);
1210	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1211
1212	ifp->if_flags |= IFF_RUNNING;
1213
1214	/* start one second timer */
1215	callout_schedule(&sc->sc_callout, hz);
1216 out:
1217	return error;
1218}
1219
1220static int
1221scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1222{
1223	struct scx_softc *sc = ifp->if_softc;
1224	struct ifreq *ifr = (struct ifreq *)data;
1225	struct ifmedia *ifm = &sc->sc_mii.mii_media;
1226	int s, error;
1227
1228	s = splnet();
1229
1230	switch (cmd) {
1231	case SIOCSIFMEDIA:
1232		/* Flow control requires full-duplex mode. */
1233		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1234		    (ifr->ifr_media & IFM_FDX) == 0)
1235			ifr->ifr_media &= ~IFM_ETH_FMASK;
1236		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1237			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1238				/* We can do both TXPAUSE and RXPAUSE. */
1239				ifr->ifr_media |=
1240				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1241			}
1242			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1243		}
1244		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1245		break;
1246	default:
1247		error = ether_ioctl(ifp, cmd, data);
1248		if (error != ENETRESET)
1249			break;
1250		error = 0;
1251		if (cmd == SIOCSIFCAP)
1252			error = if_init(ifp);
1253		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1254			;
1255		else if (ifp->if_flags & IFF_RUNNING) {
1256			/*
1257			 * Multicast list has changed; set the hardware filter
1258			 * accordingly.
1259			 */
1260			scx_set_rcvfilt(sc);
1261		}
1262		break;
1263	}
1264
1265	splx(s);
1266	return error;
1267}
1268
1269static uint32_t
1270bit_reverse_32(uint32_t x)
1271{
1272	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1273	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1274	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1275	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1276	return (x >> 16) | (x << 16);
1277}
1278
1279#define MCAST_DEBUG 0
1280
1281static void
1282scx_set_rcvfilt(struct scx_softc *sc)
1283{
1284	struct ethercom * const ec = &sc->sc_ethercom;
1285	struct ifnet * const ifp = &ec->ec_if;
1286	struct ether_multistep step;
1287	struct ether_multi *enm;
1288	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
1289	uint32_t csr, crc;
1290	int i;
1291
1292	csr = mac_read(sc, GMACAFR);
1293	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1294	mac_write(sc, GMACAFR, csr);
1295
1296	/* clear 15 entry supplemental perfect match filter */
1297	for (i = 1; i < 16; i++)
1298		 mac_write(sc, GMACMAH(i), 0);
1299	/* build 64 bit multicast hash filter */
1300	crc = mchash[1] = mchash[0] = 0;
1301
1302	ETHER_LOCK(ec);
1303	if (ifp->if_flags & IFF_PROMISC) {
1304		ec->ec_flags |= ETHER_F_ALLMULTI;
1305		ETHER_UNLOCK(ec);
1306		/* run promisc. mode */
1307		csr |= AFR_PR;
1308		goto update;
1309	}
1310	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1311	ETHER_FIRST_MULTI(step, ec, enm);
1312	i = 1; /* slot 0 is occupied */
1313	while (enm != NULL) {
1314		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1315			/*
1316			 * We must listen to a range of multicast addresses.
1317			 * For now, just accept all multicasts, rather than
1318			 * trying to set only those filter bits needed to match
1319			 * the range.  (At this time, the only use of address
1320			 * ranges is for IP multicast routing, for which the
1321			 * range is big enough to require all bits set.)
1322			 */
1323			ec->ec_flags |= ETHER_F_ALLMULTI;
1324			ETHER_UNLOCK(ec);
1325			/* accept all multi */
1326			csr |= AFR_PM;
1327			goto update;
1328		}
1329#if MCAST_DEBUG == 1
1330aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1331#endif
1332		if (i < 16) {
1333			/* use 15 entry perfect match filter */
1334			uint32_t addr;
1335			uint8_t *ep = enm->enm_addrlo;
1336			addr = (ep[3] << 24) | (ep[2] << 16)
1337			     | (ep[1] <<  8) |  ep[0];
1338			mac_write(sc, GMACMAL(i), addr);
1339			addr = (ep[5] << 8) | ep[4];
1340			mac_write(sc, GMACMAH(i), addr | 1U<<31);
1341		} else {
1342			/* use hash table when too many */
1343			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1344			crc = bit_reverse_32(~crc);
1345			/* 1(31) 5(30:26) bit sampling */
1346			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1347		}
1348		ETHER_NEXT_MULTI(step, enm);
1349		i++;
1350	}
1351	ETHER_UNLOCK(ec);
1352	if (crc)
1353		csr |= AFR_MHTE; /* use mchash[] */
1354	csr |= AFR_HPF; /* use perfect match as well */
1355 update:
1356	mac_write(sc, GMACMHTH, mchash[1]);
1357	mac_write(sc, GMACMHTL, mchash[0]);
1358	mac_write(sc, GMACAFR, csr);
1359	return;
1360}
1361
1362static void
1363scx_start(struct ifnet *ifp)
1364{
1365	struct scx_softc *sc = ifp->if_softc;
1366	struct mbuf *m0;
1367	struct scx_txsoft *txs;
1368	bus_dmamap_t dmamap;
1369	int error, nexttx, lasttx, ofree, seg;
1370	uint32_t tdes0;
1371
1372	if ((ifp->if_flags & IFF_RUNNING) == 0)
1373		return;
1374
1375	/* Remember the previous number of free descriptors. */
1376	ofree = sc->sc_txfree;
1377	/*
1378	 * Loop through the send queue, setting up transmit descriptors
1379	 * until we drain the queue, or use up all available transmit
1380	 * descriptors.
1381	 */
1382	for (;;) {
1383		IFQ_POLL(&ifp->if_snd, m0);
1384		if (m0 == NULL)
1385			break;
1386		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1387			txreap(sc);
1388			if (sc->sc_txsfree == 0)
1389				break;
1390		}
1391		txs = &sc->sc_txsoft[sc->sc_txsnext];
1392		dmamap = txs->txs_dmamap;
1393		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1394		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1395		if (error) {
1396			if (error == EFBIG) {
1397				aprint_error_dev(sc->sc_dev,
1398				    "Tx packet consumes too many "
1399				    "DMA segments, dropping...\n");
1400				IFQ_DEQUEUE(&ifp->if_snd, m0);
1401				m_freem(m0);
1402				if_statinc(ifp, if_oerrors);
1403				continue;
1404			}
1405			/* Short on resources, just stop for now. */
1406			break;
1407		}
1408		if (dmamap->dm_nsegs > sc->sc_txfree) {
1409			/*
1410			 * Not enough free descriptors to transmit this
1411			 * packet.  We haven't committed anything yet,
1412			 * so just unload the DMA map, put the packet
1413			 * back on the queue, and punt.
1414			 */
1415			bus_dmamap_unload(sc->sc_dmat, dmamap);
1416			break;
1417		}
1418
1419		IFQ_DEQUEUE(&ifp->if_snd, m0);
1420		/*
1421		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1422		 */
1423		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1424		    BUS_DMASYNC_PREWRITE);
1425
1426		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1427		lasttx = -1;
1428		for (nexttx = sc->sc_txnext, seg = 0;
1429		     seg < dmamap->dm_nsegs;
1430		     seg++, nexttx = MD_NEXTTX(nexttx)) {
1431			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1432			bus_addr_t p = dmamap->dm_segs[seg].ds_addr;
1433			bus_size_t z = dmamap->dm_segs[seg].ds_len;
1434			/*
1435			 * If this is the first descriptor we're
1436			 * enqueueing, don't set the OWN bit just
1437			 * yet.	 That could cause a race condition.
1438			 * We'll do it below.
1439			 */
1440			tdes->t3 = htole32(z);
1441			tdes->t2 = htole32(BUS_ADDR_LO32(p));
1442			tdes->t1 = htole32(BUS_ADDR_HI32(p));
1443			tdes->t0 &= htole32(T0_LD);
1444			tdes->t0 |= htole32(tdes0 |
1445					(15 << T0_TDRID) | T0_PT |
1446					sc->sc_t0cotso | T0_TRS);
1447			tdes0 = T0_OWN; /* 2nd and other segments */
1448			/* NB; t0 DRID field contains zero */
1449			lasttx = nexttx;
1450		}
1451
1452		/* HW lacks of per-frame xmit done interrupt control */
1453
1454		/* Write deferred 1st segment T0_OWN at the final stage */
1455		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1456		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1457		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1458		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1459
1460		/* submit one frame to xmit */
1461		CSR_WRITE(sc, TXSUBMIT, 1);
1462
1463		txs->txs_mbuf = m0;
1464		txs->txs_firstdesc = sc->sc_txnext;
1465		txs->txs_lastdesc = lasttx;
1466		txs->txs_ndesc = dmamap->dm_nsegs;
1467		sc->sc_txfree -= txs->txs_ndesc;
1468		sc->sc_txnext = nexttx;
1469		sc->sc_txsfree--;
1470		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1471		/*
1472		 * Pass the packet to any BPF listeners.
1473		 */
1474		bpf_mtap(ifp, m0, BPF_D_OUT);
1475	}
1476	if (sc->sc_txfree != ofree) {
1477		/* Set a watchdog timer in case the chip flakes out. */
1478		ifp->if_timer = 5;
1479	}
1480}
1481
1482#define EVENT_DEBUG 1
1483
1484static void
1485scx_watchdog(struct ifnet *ifp)
1486{
1487	struct scx_softc *sc = ifp->if_softc;
1488
1489	/*
1490	 * Since we're not interrupting every packet, sweep
1491	 * up before we report an error.
1492	 */
1493	txreap(sc);
1494
1495	if (sc->sc_txfree != MD_NTXDESC) {
1496		aprint_error_dev(sc->sc_dev,
1497		    "device timeout (txfree %d txsfree %d txnext %d)\n",
1498		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1499		if_statinc(ifp, if_oerrors);
1500#if EVENT_DEBUG == 1
1501aprint_error_dev(sc->sc_dev,
1502    "tx frames %d, octects %d, bcast %d, mcast %d\n",
1503    mac_read(sc, GMACEVCNT(1)),
1504    mac_read(sc, GMACEVCNT(0)),
1505    mac_read(sc, GMACEVCNT(2)),
1506    mac_read(sc, GMACEVCNT(3)));
1507aprint_error_dev(sc->sc_dev,
1508    "rx frames %d, octects %d, bcast %d, mcast %d\n",
1509    mac_read(sc, GMACEVCNT(27)),
1510    mac_read(sc, GMACEVCNT(28)),
1511    mac_read(sc, GMACEVCNT(30)),
1512    mac_read(sc, GMACEVCNT(31)));
1513aprint_error_dev(sc->sc_dev,
1514    "current tdes addr %x, buf addr %x\n",
1515    mac_read(sc, 0x1048), mac_read(sc, 0x1050));
1516aprint_error_dev(sc->sc_dev,
1517    "current rdes addr %x, buf addr %x\n",
1518    mac_read(sc, 0x104c), mac_read(sc, 0x1054));
1519#endif
1520		/* Reset the interface. */
1521		scx_init(ifp);
1522	}
1523
1524	scx_start(ifp);
1525}
1526
1527static int
1528scx_intr(void *arg)
1529{
1530	struct scx_softc *sc = arg;
1531	uint32_t enable, status;
1532
1533	status = CSR_READ(sc, xINTSR); /* not W1C */
1534	enable = CSR_READ(sc, xINTAEN);
1535	if ((status & enable) == 0)
1536		return 0;
1537	if (status & (IRQ_TX | IRQ_RX)) {
1538		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1539
1540		status = CSR_READ(sc, RXISR);
1541		CSR_WRITE(sc, RXISR, status);
1542		if (status & RXI_RC_ERR)
1543			aprint_error_dev(sc->sc_dev, "Rx error\n");
1544		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1545			rxfill(sc);
1546			(void)CSR_READ(sc, RXAVAILCNT); /* clear IRQ_RX ? */
1547		}
1548
1549		status = CSR_READ(sc, TXISR);
1550		CSR_WRITE(sc, TXISR, status);
1551		if (status & TXI_TR_ERR)
1552			aprint_error_dev(sc->sc_dev, "Tx error\n");
1553		if (status & (TXI_TXDONE | TXI_TMREXP)) {
1554			txreap(sc);
1555			(void)CSR_READ(sc, TXDONECNT); /* clear IRQ_TX ? */
1556		}
1557
1558		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1559	}
1560	return 1;
1561}
1562
1563static void
1564txreap(struct scx_softc *sc)
1565{
1566	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1567	struct scx_txsoft *txs;
1568	uint32_t txstat;
1569	int i;
1570
1571	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1572	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1573		txs = &sc->sc_txsoft[i];
1574
1575		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1576		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1577
1578		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1579		if (txstat & T0_OWN) /* desc is still in use */
1580			break;
1581
1582		/* There is no way to tell transmission status per frame */
1583
1584		if_statinc(ifp, if_opackets);
1585
1586		sc->sc_txfree += txs->txs_ndesc;
1587		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1588		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1589		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1590		m_freem(txs->txs_mbuf);
1591		txs->txs_mbuf = NULL;
1592	}
1593	sc->sc_txsdirty = i;
1594	if (sc->sc_txsfree == MD_TXQUEUELEN)
1595		ifp->if_timer = 0;
1596}
1597
1598static void
1599rxfill(struct scx_softc *sc)
1600{
1601	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1602	struct scx_rxsoft *rxs;
1603	struct mbuf *m;
1604	uint32_t rxstat, rlen;
1605	int i;
1606
1607	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1608		SCX_CDRXSYNC(sc, i,
1609		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1610
1611		rxstat = le32toh(sc->sc_rxdescs[i].r0);
1612		if (rxstat & R0_OWN) /* desc is left empty */
1613			break;
1614
1615		/* received frame length in R3 31:16 */
1616		rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16;
1617
1618		/* R0_FS | R0_LS must have been marked for this desc */
1619		rxs = &sc->sc_rxsoft[i];
1620		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1621		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1622
1623		/* dispense new storage to receive frame */
1624		m = rxs->rxs_mbuf;
1625		if (add_rxbuf(sc, i) != 0) {
1626			if_statinc(ifp, if_ierrors);	/* resource shortage */
1627			SCX_INIT_RXDESC(sc, i);		/* then reuse */
1628			bus_dmamap_sync(sc->sc_dmat,
1629			    rxs->rxs_dmamap, 0,
1630			    rxs->rxs_dmamap->dm_mapsize,
1631			    BUS_DMASYNC_PREREAD);
1632			continue;
1633		}
1634		/* complete mbuf */
1635		m_set_rcvif(m, ifp);
1636		m->m_pkthdr.len = m->m_len = rlen;
1637		m->m_flags |= M_HASFCS;
1638		if (rxstat & R0_CSUM) {
1639			uint32_t csum = M_CSUM_IPv4;
1640			if (rxstat & R0_CERR)
1641				csum |= M_CSUM_IPv4_BAD;
1642			m->m_pkthdr.csum_flags |= csum;
1643		}
1644		/* and pass to upper layer */
1645		if_percpuq_enqueue(ifp->if_percpuq, m);
1646	}
1647	sc->sc_rxptr = i;
1648}
1649
1650static int
1651add_rxbuf(struct scx_softc *sc, int i)
1652{
1653	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1654	struct mbuf *m;
1655	int error;
1656
1657	MGETHDR(m, M_DONTWAIT, MT_DATA);
1658	if (m == NULL)
1659		return ENOBUFS;
1660	MCLGET(m, M_DONTWAIT);
1661	if ((m->m_flags & M_EXT) == 0) {
1662		m_freem(m);
1663		return ENOBUFS;
1664	}
1665	if (rxs->rxs_mbuf != NULL)
1666		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1667	rxs->rxs_mbuf = m;
1668	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1669	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1670	if (error) {
1671		aprint_error_dev(sc->sc_dev,
1672		    "can't load rx DMA map %d, error = %d\n", i, error);
1673		panic("add_rxbuf");
1674	}
1675	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1676	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1677	SCX_INIT_RXDESC(sc, i);
1678
1679	return 0;
1680}
1681
1682static void
1683rxdrain(struct scx_softc *sc)
1684{
1685	struct scx_rxsoft *rxs;
1686	int i;
1687
1688	for (i = 0; i < MD_NRXDESC; i++) {
1689		rxs = &sc->sc_rxsoft[i];
1690		if (rxs->rxs_mbuf != NULL) {
1691			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1692			m_freem(rxs->rxs_mbuf);
1693			rxs->rxs_mbuf = NULL;
1694		}
1695	}
1696}
1697
1698#define LINK_DEBUG 0
1699
1700static void
1701mii_statchg(struct ifnet *ifp)
1702{
1703	struct scx_softc *sc = ifp->if_softc;
1704	struct mii_data *mii = &sc->sc_mii;
1705	const int Mbps[4] = { 10, 100, 1000, 0 };
1706	uint32_t miisr, mcr, fcr;
1707	int spd;
1708
1709	/* decode MIISR register value */
1710	miisr = mac_read(sc, GMACMIISR);
1711	spd = Mbps[(miisr & MIISR_SPD) >> 1];
1712#if LINK_DEBUG == 1
1713	static uint32_t oldmiisr = 0;
1714	if (miisr != oldmiisr) {
1715		printf("MII link status (0x%x) %s",
1716		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
1717		if (miisr & MIISR_LUP) {
1718			printf(" spd%d", spd);
1719			if (miisr & MIISR_FDX)
1720				printf(",full-duplex");
1721		}
1722		printf("\n");
1723	}
1724#endif
1725	/* Get flow control negotiation result. */
1726	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1727	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1728		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1729
1730	/* Adjust speed 1000/100/10. */
1731	mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
1732	if (sc->sc_miigmii) {
1733		if (spd != 1000)
1734			mcr |= MCR_PS;
1735	} else {
1736		if (spd == 100)
1737			mcr |= MCR_FES;
1738	}
1739	mcr |= MCR_CST | MCR_JE;
1740	if (sc->sc_miigmii == 0)
1741		mcr |= MCR_IBN;
1742
1743	/* Adjust duplexity and PAUSE flow control. */
1744	mcr &= ~MCR_USEFDX;
1745	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1746	if (miisr & MIISR_FDX) {
1747		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1748			fcr |= FCR_TFE;
1749		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1750			fcr |= FCR_RFE;
1751		mcr |= MCR_USEFDX;
1752	}
1753	mac_write(sc, GMACMCR, mcr);
1754	mac_write(sc, GMACFCR, fcr);
1755#if LINK_DEBUG == 1
1756	if (miisr != oldmiisr) {
1757		printf("%ctxfe, %crxfe\n",
1758		    (fcr & FCR_TFE) ? '+' : '-',
1759		    (fcr & FCR_RFE) ? '+' : '-');
1760	}
1761	oldmiisr = miisr;
1762#endif
1763}
1764
1765static void
1766scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1767{
1768	struct scx_softc *sc = ifp->if_softc;
1769	struct mii_data *mii = &sc->sc_mii;
1770
1771	mii_pollstat(mii);
1772	ifmr->ifm_status = mii->mii_media_status;
1773	ifmr->ifm_active = sc->sc_flowflags |
1774	    (mii->mii_media_active & ~IFM_ETH_FMASK);
1775}
1776
1777static int
1778mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1779{
1780	struct scx_softc *sc = device_private(self);
1781	uint32_t miia;
1782	int ntries;
1783
1784	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1785	mac_write(sc, GMACGAR, miia | GAR_BUSY);
1786	for (ntries = 0; ntries < 1000; ntries++) {
1787		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1788			goto unbusy;
1789		DELAY(1);
1790	}
1791	return ETIMEDOUT;
1792 unbusy:
1793	*val = mac_read(sc, GMACGDR);
1794	return 0;
1795}
1796
1797static int
1798mii_writereg(device_t self, int phy, int reg, uint16_t val)
1799{
1800	struct scx_softc *sc = device_private(self);
1801	uint32_t miia;
1802	uint16_t dummy;
1803	int ntries;
1804
1805	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1806	mac_write(sc, GMACGDR, val);
1807	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1808	for (ntries = 0; ntries < 1000; ntries++) {
1809		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1810			goto unbusy;
1811		DELAY(1);
1812	}
1813	return ETIMEDOUT;
1814  unbusy:
1815	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1816	return 0;
1817}
1818
1819static void
1820phy_tick(void *arg)
1821{
1822	struct scx_softc *sc = arg;
1823	struct mii_data *mii = &sc->sc_mii;
1824	int s;
1825
1826	s = splnet();
1827	mii_tick(mii);
1828	splx(s);
1829#ifdef GMAC_EVENT_COUNTERS
1830	/* 80 event counters exist */
1831#endif
1832	callout_schedule(&sc->sc_callout, hz);
1833}
1834
1835static void
1836resetuengine(struct scx_softc *sc)
1837{
1838
1839	if (CSR_READ(sc, CORESTAT) == 0) {
1840		/* make sure to stop */
1841		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1842		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1843		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP);
1844		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP);
1845	}
1846	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
1847	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
1848	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1849	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS));
1850}
1851
1852#define UCODE_DEBUG 0
1853
1854/*
1855 * 3 independent uengines exist to process host2media, media2host and
1856 * packet data flows.
1857 */
1858static void
1859loaducode(struct scx_softc *sc)
1860{
1861	uint32_t up, lo, sz;
1862	uint64_t addr;
1863
1864	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1865	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1866	sz = EE_READ(sc, 0x10); /* H->M ucode size */
1867	sz *= 4;
1868	addr = ((uint64_t)up << 32) | lo;
1869	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1870#if UCODE_DEBUG == 1
1871aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1872#endif
1873
1874	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1875	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1876	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1877	sz *= 4;
1878	addr = ((uint64_t)up << 32) | lo;
1879	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1880#if UCODE_DEBUG == 1
1881aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1882#endif
1883
1884	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1885	sz = EE_READ(sc, 0x24); /* PKT ucode size */
1886	sz *= 4;
1887	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1888#if UCODE_DEBUG == 1
1889aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1890#endif
1891}
1892
1893static void
1894injectucode(struct scx_softc *sc, int port,
1895	bus_addr_t addr, bus_size_t size)
1896{
1897	bus_space_handle_t bsh;
1898	bus_size_t off;
1899	uint32_t ucode;
1900
1901	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1902		aprint_error_dev(sc->sc_dev,
1903		    "eeprom map failure for ucode port 0x%x\n", port);
1904		return;
1905	}
1906	for (off = 0; off < size; off += 4) {
1907		ucode = bus_space_read_4(sc->sc_st, bsh, off);
1908		CSR_WRITE(sc, port, ucode);
1909	}
1910	bus_space_unmap(sc->sc_st, bsh, size);
1911}
1912
1913static void
1914forcephyloopback(struct scx_softc *sc)
1915{
1916	struct device *d = sc->sc_dev;
1917	uint16_t val;
1918	int loop, err;
1919
1920	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1921	if (err) {
1922		aprint_error_dev(d, "forcephyloopback() failed\n");
1923		return;
1924	}
1925	if (val & BMCR_PDOWN)
1926		val &=  ~BMCR_PDOWN;
1927	val |= BMCR_ISO;
1928	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
1929	loop = 100;
1930	do {
1931		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1932	} while (loop-- > 0 && (val & (BMCR_PDOWN | BMCR_ISO)) != 0);
1933	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_LOOP);
1934	loop = 100;
1935	do {
1936		(void)mii_readreg(d, sc->sc_phy_id, MII_BMSR, &val);
1937	} while (loop-- > 0 && (val & BMSR_LINK) != 0);
1938}
1939
1940static void
1941resetphytonormal(struct scx_softc *sc)
1942{
1943	struct device *d = sc->sc_dev;
1944	uint16_t val;
1945	int loop, err;
1946
1947	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1948	if (err) {
1949		aprint_error_dev(d, "resetphytonormal() failed\n");
1950	}
1951	val &= ~BMCR_LOOP;
1952	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
1953	loop = 100;
1954	do {
1955		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1956	} while (loop-- > 0 && (val & BMCR_LOOP) != 0);
1957	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_RESET);
1958	loop = 100;
1959	do {
1960		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1961	} while (loop-- > 0 && (val & BMCR_RESET) != 0);
1962}
1963
1964/* GAR 5:2 MDIO frequency selection */
1965static int
1966get_mdioclk(uint32_t freq)
1967{
1968
1969	freq /= 1000 * 1000;
1970	if (freq < 35)
1971		return GAR_MDIO_25_35MHZ;
1972	if (freq < 60)
1973		return GAR_MDIO_35_60MHZ;
1974	if (freq < 100)
1975		return GAR_MDIO_60_100MHZ;
1976	if (freq < 150)
1977		return GAR_MDIO_100_150MHZ;
1978	if (freq < 250)
1979		return GAR_MDIO_150_250MHZ;
1980	return GAR_MDIO_250_300MHZ;
1981}
1982
1983#define HWFEA_DEBUG 1
1984
1985static void
1986dump_hwfeature(struct scx_softc *sc)
1987{
1988#if HWFEA_DEBUG == 1
1989	struct {
1990		uint32_t bit;
1991		const char *des;
1992	} field[] = {
1993		{ 27, "SA/VLAN insertion replacement enabled" },
1994		{ 26, "flexible PPS enabled" },
1995		{ 25, "time stamping with internal system enabled" },
1996		{ 24, "alternate/enhanced descriptor enabled" },
1997		{ 19, "rx FIFO >2048 enabled" },
1998		{ 18, "type 2 IP checksum offload enabled" },
1999		{ 17, "type 1 IP checksum offload enabled" },
2000		{ 16, "Tx checksum offload enabled" },
2001		{ 15, "AV feature enabled" },
2002		{ 14, "EEE energy save feature enabled" },
2003		{ 13, "1588-2008 version 2 advanced feature enabled" },
2004		{ 12, "only 1588-2002 version 1 feature enabled" },
2005		{ 11, "RMON event counter enabled" },
2006		{ 10, "PMT magic packet enabled" },
2007		{ 9,  "PMT remote wakeup enabled" },
2008		{ 8,  "MDIO enabled", },
2009		{ 7,  "L3/L4 filter enabled" },
2010		{ 6,  "TBI/SGMII/RTBI support enabled" },
2011		{ 5,  "supplimental MAC address enabled" },
2012		{ 4,  "receive hash filter enabled" },
2013		{ 3,  "hash size is expanded" },
2014		{ 2,  "Half Duplex enabled" },
2015		{ 1,  "1000 Mbps enabled" },
2016		{ 0,  "10/100 Mbps enabled" },
2017	};
2018	const char *nameofmii[] = {
2019		"GMII or MII",
2020		"RGMII",
2021		"SGMII",
2022		"TBI",
2023		"RMII",
2024		"RTBI",
2025		"SMII",
2026		"RevMII"
2027	};
2028	uint32_t hwfea, mtype, txchan, rxchan;
2029
2030	hwfea = CSR_READ(sc, HWFEA);
2031	mtype = (hwfea & __BITS(30,28)) >> 28;
2032	aprint_normal("HWFEA 0x%08x\n", hwfea);
2033	aprint_normal("%s <30:28>\n", nameofmii[mtype]);
2034	for (unsigned i = 0; i < __arraycount(field); i++) {
2035		if ((hwfea & (1U << field[i].bit)) == 0)
2036			continue;
2037		aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
2038	}
2039	if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
2040		aprint_normal("+%d tx channel available <23,22>\n", txchan);
2041	if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
2042		aprint_normal("+%d rx channel available <21:20>\n", rxchan);
2043	return;
2044#endif
2045}
2046