bcm53xx_board.c revision 1.26
1/*	$NetBSD: bcm53xx_board.c,v 1.26 2024/02/16 15:11:17 skrll Exp $	*/
2/*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "opt_arm_debug.h"
32#include "opt_broadcom.h"
33#include "arml2cc.h"
34
35#define	_ARM32_BUS_DMA_PRIVATE
36
37#include <sys/cdefs.h>
38
39__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.26 2024/02/16 15:11:17 skrll Exp $");
40
41#include <sys/param.h>
42#include <sys/bus.h>
43#include <sys/cpu.h>
44#include <sys/device.h>
45
46#include <prop/proplib.h>
47
48#include <net/if.h>
49#include <net/if_ether.h>
50
51#define CCA_PRIVATE
52#define CRU_PRIVATE
53#define DDR_PRIVATE
54#define DMU_PRIVATE
55#define ARMCORE_PRIVATE
56#define SRAB_PRIVATE
57
58#include <arm/cortex/a9tmr_var.h>
59#include <arm/cortex/pl310_var.h>
60#include <arm/mainbus/mainbus.h>
61
62#include <arm/broadcom/bcm53xx_reg.h>
63#include <arm/broadcom/bcm53xx_var.h>
64
65bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
66bus_space_handle_t bcm53xx_ioreg_bsh;
67bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
68bus_space_handle_t bcm53xx_armcore_bsh;
69
70static struct cpu_softc cpu_softc;
71
72struct arm32_dma_range bcm53xx_dma_ranges[] = {
73#ifdef BCM5301X
74	[0] = {
75		.dr_sysbase = 0x80000000,
76		.dr_busbase = 0x80000000,
77		.dr_len = 0x10000000,
78	}, [1] = {
79		.dr_sysbase = 0x90000000,
80		.dr_busbase = 0x90000000,
81	},
82#elif defined(BCM563XX)
83	[0] = {
84		.dr_sysbase = 0x60000000,
85		.dr_busbase = 0x60000000,
86		.dr_len = 0x20000000,
87	}, [1] = {
88		.dr_sysbase = 0x80000000,
89		.dr_busbase = 0x80000000,
90	},
91#endif
92};
93
94struct arm32_bus_dma_tag bcm53xx_dma_tag = {
95	._ranges = bcm53xx_dma_ranges,
96	._nranges = __arraycount(bcm53xx_dma_ranges),
97	_BUS_DMAMAP_FUNCS,
98	_BUS_DMAMEM_FUNCS,
99	_BUS_DMATAG_FUNCS,
100};
101
102struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
103#ifdef BCM5301X
104	[0] = {
105		.dr_sysbase = 0x80000000,
106		.dr_busbase = 0x80000000,
107		.dr_len = 0x10000000,
108		.dr_flags = _BUS_DMAMAP_COHERENT,
109	}, [1] = {
110		.dr_sysbase = 0x90000000,
111		.dr_busbase = 0x90000000,
112	},
113#elif defined(BCM563XX)
114	[0] = {
115		.dr_sysbase = 0x60000000,
116		.dr_busbase = 0x60000000,
117		.dr_len = 0x20000000,
118		.dr_flags = _BUS_DMAMAP_COHERENT,
119	}, [1] = {
120		.dr_sysbase = 0x80000000,
121		.dr_busbase = 0x80000000,
122	},
123#endif
124};
125
126struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
127	._ranges = bcm53xx_coherent_dma_ranges,
128	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
129	_BUS_DMAMAP_FUNCS,
130	_BUS_DMAMEM_FUNCS,
131	_BUS_DMATAG_FUNCS,
132};
133
134#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
135struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
136	._ranges = bcm53xx_coherent_dma_ranges,
137	._nranges = 1,
138	_BUS_DMAMAP_FUNCS,
139	_BUS_DMAMEM_FUNCS,
140	_BUS_DMATAG_FUNCS,
141};
142#endif
143
144#ifdef BCM53XX_CONSOLE_EARLY
145#include <dev/ic/ns16550reg.h>
146#include <dev/ic/comreg.h>
147#include <dev/cons.h>
148
149static vaddr_t com_base;
150
151static inline uint32_t
152uart_read(bus_size_t o)
153{
154	return *(volatile uint8_t *)(com_base + o);
155}
156
157static inline void
158uart_write(bus_size_t o, uint32_t v)
159{
160	*(volatile uint8_t *)(com_base + o) = v;
161}
162
163static int
164bcm53xx_cngetc(dev_t dv)
165{
166        if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
167		return -1;
168
169	return uart_read(com_data) & 0xff;
170}
171
172static void
173bcm53xx_cnputc(dev_t dv, int c)
174{
175	int timo = 150000;
176
177        while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
178		;
179
180	uart_write(com_data, c);
181
182	timo = 150000;
183        while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
184		;
185}
186
187static struct consdev bcm53xx_earlycons = {
188	.cn_putc = bcm53xx_cnputc,
189	.cn_getc = bcm53xx_cngetc,
190	.cn_pollc = nullcnpollc,
191};
192#endif /* BCM53XX_CONSOLE_EARLY */
193
194psize_t
195bcm53xx_memprobe(void)
196{
197	bus_space_tag_t bst = bcm53xx_ioreg_bst;
198	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
199
200	/*
201	 * First, let's read the magic DDR registers!
202	 */
203	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
204	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
205	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
206	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
207
208	/*
209	 * Calculate chip parameters
210	 * */
211	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
212	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
213	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
214	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
215	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
216
217	/*
218	 * For each chip select, increase the chip count if if is enabled.
219	 */
220	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
221	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
222	u_int chips = 0;
223
224	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
225		chips += (cs_map & 1);
226	}
227
228	/* get log2(ddr width) */
229
230	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
231
232	/*
233	 * Let's add up all the things that contribute to the size of a chip.
234	 */
235	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
236
237	/*
238	 * Now our memory size is simply the number of chip shifted by the
239	 * log2(chip_size).
240	 */
241	return (psize_t) chips << chip_size_log2;
242}
243
244static inline uint32_t
245bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
246	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
247{
248	if (ndiv_frac == 0 && pdiv == 1)
249		return ndiv_int * clk->clk_ref;
250
251	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
252	freq64 *= clk->clk_ref;
253	if (pdiv > 1)
254		freq64 /= pdiv;
255	return (uint32_t) (freq64 >> 30);
256}
257
258static uint32_t
259bcm53xx_value_wrap(uint32_t value, uint32_t mask)
260{
261	/*
262	 * n is n except when n is 0 then n = mask + 1.
263	 */
264	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
265}
266
267static void
268bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
269	uint32_t control6, uint32_t control7)
270{
271	const uint32_t pdiv = bcm53xx_value_wrap(control6,
272	    GENPLL_CONTROL6_PDIV);
273	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
274	    GENPLL_CONTROL5_NDIV_INT);
275	const uint32_t ndiv_frac = __SHIFTOUT(control5,
276	    GENPLL_CONTROL5_NDIV_FRAC);
277
278	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
279
280	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
281	    GENPLL_CONTROL6_CH0_MDIV);
282	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
283	    GENPLL_CONTROL6_CH1_MDIV);
284	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
285	    GENPLL_CONTROL6_CH2_MDIV);
286	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
287	    GENPLL_CONTROL7_CH3_MDIV);
288
289	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
290	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
291	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
292	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
293}
294
295static void
296bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
297	uint32_t control2)
298{
299	const uint32_t pdiv = bcm53xx_value_wrap(control1,
300	    LCPLL_CONTROL1_PDIV);
301	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
302	    LCPLL_CONTROL1_NDIV_INT);
303	const uint32_t ndiv_frac = __SHIFTOUT(control1,
304	    LCPLL_CONTROL1_NDIV_FRAC);
305
306	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
307
308	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
309	    LCPLL_CONTROL2_CH0_MDIV);
310	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
311	    LCPLL_CONTROL2_CH1_MDIV);
312	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
313	    LCPLL_CONTROL2_CH2_MDIV);
314	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
315	    LCPLL_CONTROL2_CH3_MDIV);
316
317	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
318	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
319	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
320	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
321}
322
323static void
324bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
325{
326	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
327	    USB2_CONTROL_PDIV);
328	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
329	    USB2_CONTROL_NDIV_INT);
330
331	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
332	if (usb_ref != USB2_REF_CLK) {
333		/*
334		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
335		 * USB2_CONTROL to produce it.
336		 */
337		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
338		usb2_control &= ~USB2_CONTROL_NDIV_INT;
339		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
340
341		// Allow Clocks to be modified
342		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
343		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
344
345		// Update USB2 clock generator
346		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
347		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
348
349		// Prevent Clock modification
350		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
351		    CRU_BASE + CRU_CLKSET_KEY, 0);
352
353		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
354	}
355
356	clk->clk_usb_ref = usb_ref;
357}
358
359
360static void
361bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
362{
363	clk->clk_ref = BCM53XX_REF_CLK;
364	clk->clk_sys = 8*clk->clk_ref;
365}
366
367/*
368 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
369 */
370static void
371bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
372    uint32_t pll_dividers)
373{
374	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
375	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
376	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
377	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
378
379	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
380
381	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
382	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
383}
384
385/*
386 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
387 */
388static void
389bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
390	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
391{
392	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
393
394	if (policy == CLK_POLICY_REF_CLK) {
395		clk->clk_cpu = clk->clk_ref;
396		clk->clk_apb = clk->clk_cpu;
397		return;
398	}
399
400	if (policy == CLK_POLICY_SYS_CLK) {
401		clk->clk_cpu = clk->clk_sys;
402		clk->clk_apb = clk->clk_cpu / 4;
403		return;
404	}
405
406	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
407	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
408	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
409	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
410
411	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
412
413	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
414	clk->clk_apb = clk->clk_cpu / 4;
415}
416
417struct bcm53xx_chip_state {
418	uint32_t bcs_lcpll_control1;
419	uint32_t bcs_lcpll_control2;
420
421	uint32_t bcs_genpll_control5;
422	uint32_t bcs_genpll_control6;
423	uint32_t bcs_genpll_control7;
424
425	uint32_t bcs_usb2_control;
426
427	uint32_t bcs_ddr_phy_ctl_pll_status;
428	uint32_t bcs_ddr_phy_ctl_pll_dividers;
429
430	uint32_t bcs_armcore_clk_policy;
431	uint32_t bcs_armcore_clk_pllarma;
432	uint32_t bcs_armcore_clk_pllarmb;
433};
434
435static void
436bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
437	bus_space_tag_t bst, bus_space_handle_t bsh)
438{
439	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
440	    DMU_BASE + DMU_LCPLL_CONTROL1);
441	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
442	    DMU_BASE + DMU_LCPLL_CONTROL2);
443
444	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
445	    CRU_BASE + CRU_GENPLL_CONTROL5);
446	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
447	    CRU_BASE + CRU_GENPLL_CONTROL6);
448	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
449	    CRU_BASE + CRU_GENPLL_CONTROL7);
450
451	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
452	    CRU_BASE + CRU_USB2_CONTROL);
453
454	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
455	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
456	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
457	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
458}
459
460static void
461bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
462	bus_space_tag_t bst, bus_space_handle_t bsh)
463{
464	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
465	    ARMCORE_CLK_POLICY_FREQ);
466	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
467	    ARMCORE_CLK_PLLARMA);
468	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
469	    ARMCORE_CLK_PLLARMB);
470}
471
472void
473bcm53xx_cpu_softc_init(struct cpu_info *ci)
474{
475	struct cpu_softc * const cpu = ci->ci_softc;
476
477	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
478	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
479
480	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
481	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
482
483	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
484	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
485
486	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
487}
488
489void
490bcm53xx_print_clocks(void)
491{
492#if defined(VERBOSE_INIT_ARM)
493	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
494	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
495	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
496	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
497	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
498	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
499	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
500	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
501	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
502	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
503	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
504	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
505	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
506	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
507	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
508	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
509	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
510	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
511#endif
512}
513
514void
515bcm53xx_bootstrap(vaddr_t iobase)
516{
517	struct bcm53xx_chip_state bcs;
518	int error;
519
520#ifdef BCM53XX_CONSOLE_EARLY
521	com_base = iobase + CCA_UART0_BASE;
522	cn_tab = &bcm53xx_earlycons;
523#endif
524
525	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
526	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
527	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
528	if (error)
529		panic("%s: failed to map BCM53xx %s registers: %d",
530		    __func__, "io", error);
531
532	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
533	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
534	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
535	if (error)
536		panic("%s: failed to map BCM53xx %s registers: %d",
537		    __func__, "armcore", error);
538
539	curcpu()->ci_softc = &cpu_softc;
540
541	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
542	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
543
544	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
545
546	bcm53xx_clock_init(clk);
547	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
548	    bcs.bcs_lcpll_control2);
549	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
550	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
551	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
552	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
553	    bcs.bcs_ddr_phy_ctl_pll_dividers);
554	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
555	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
556
557	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
558
559#if NARML2CC > 0
560	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
561	    ARMCORE_L2C_BASE);
562#endif
563}
564
565void
566bcm53xx_dma_bootstrap(psize_t memsize)
567{
568	if (memsize <= 256*1024*1024) {
569		bcm53xx_dma_ranges[0].dr_len = memsize;
570		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
571		bcm53xx_dma_tag._nranges = 1;
572		bcm53xx_coherent_dma_tag._nranges = 1;
573	} else {
574		/*
575		 * By setting up two ranges, bus_dmamem_alloc will always
576		 * try to allocate from range 0 first resulting in allocations
577		 * below 256MB which for PCI and GMAC are coherent.
578		 */
579		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
580		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
581	}
582	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
583	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
584#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
585	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
586#endif
587}
588
589#ifdef MULTIPROCESSOR
590void
591bcm53xx_cpu_hatch(struct cpu_info *ci)
592{
593	a9tmr_init_cpu_clock(ci);
594}
595#endif
596
597void
598bcm53xx_device_register(device_t self, void *aux)
599{
600	prop_dictionary_t dict = device_properties(self);
601
602	if (device_is_a(self, "armperiph")
603	    && device_is_a(device_parent(self), "mainbus")) {
604		/*
605		 * XXX KLUDGE ALERT XXX
606		 * The iot mainbus supplies is completely wrong since it scales
607		 * addresses by 2.  The simplest remedy is to replace with our
608		 * bus space used for the armcore registers (which armperiph uses).
609		 */
610		struct mainbus_attach_args * const mb = aux;
611		mb->mb_iot = bcm53xx_armcore_bst;
612		return;
613	}
614
615	/*
616	 * We need to tell the A9 Global/Watchdog Timer
617	 * what frequency it runs at.
618	 */
619	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
620		/*
621		 * This clock always runs at (arm_clk div 2) and only goes
622		 * to timers that are part of the A9 MP core subsystem.
623		 */
624                prop_dictionary_set_uint32(dict, "frequency",
625		    cpu_softc.cpu_clk.clk_cpu / 2);
626		return;
627	}
628
629	if (device_is_a(self, "bcmeth")) {
630		const struct bcmccb_attach_args * const ccbaa = aux;
631		const uint8_t enaddr[ETHER_ADDR_LEN] = {
632			0x00, 0x01, 0x02, 0x03, 0x04,
633			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
634		};
635		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
636		KASSERT(pd != NULL);
637		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
638			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
639		}
640		prop_object_release(pd);
641	}
642}
643
644#ifdef SRAB_BASE
645static kmutex_t srab_lock __cacheline_aligned;
646
647void
648bcm53xx_srab_init(void)
649{
650	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
651
652	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
653	for (u_int port = 0; port < 8; port++) {
654		/* per port control: no stp */
655		bcm53xx_srab_write_4(port, 0x00);
656	}
657	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
658	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
659	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
660	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
661	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
662	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
663	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
664}
665
666static inline void
667bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
668{
669	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
670		delay(10);
671	}
672}
673
674uint32_t
675bcm53xx_srab_read_4(u_int pageoffset)
676{
677	bus_space_tag_t bst = bcm53xx_ioreg_bst;
678	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
679	uint32_t rv;
680
681	mutex_spin_enter(&srab_lock);
682
683	bcm53xx_srab_busywait(bst, bsh);
684	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
685	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
686	bcm53xx_srab_busywait(bst, bsh);
687	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
688
689	mutex_spin_exit(&srab_lock);
690	return rv;
691}
692
693uint64_t
694bcm53xx_srab_read_8(u_int pageoffset)
695{
696	bus_space_tag_t bst = bcm53xx_ioreg_bst;
697	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
698	uint64_t rv;
699
700	mutex_spin_enter(&srab_lock);
701
702	bcm53xx_srab_busywait(bst, bsh);
703	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
704	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
705	bcm53xx_srab_busywait(bst, bsh);
706	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
707	rv <<= 32;
708	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
709
710	mutex_spin_exit(&srab_lock);
711	return rv;
712}
713
714void
715bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
716{
717	bus_space_tag_t bst = bcm53xx_ioreg_bst;
718	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
719
720	mutex_spin_enter(&srab_lock);
721
722	bcm53xx_srab_busywait(bst, bsh);
723	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
724	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
725	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
726	bcm53xx_srab_busywait(bst, bsh);
727
728	mutex_spin_exit(&srab_lock);
729}
730
731void
732bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
733{
734	bus_space_tag_t bst = bcm53xx_ioreg_bst;
735	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
736
737	mutex_spin_enter(&srab_lock);
738
739	bcm53xx_srab_busywait(bst, bsh);
740	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
741	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
742	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
743	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
744	bcm53xx_srab_busywait(bst, bsh);
745	mutex_spin_exit(&srab_lock);
746}
747#endif
748