1/*	$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $	*/
2/*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "opt_arm_debug.h"
32#include "opt_broadcom.h"
33#include "arml2cc.h"
34
35#define	_ARM32_BUS_DMA_PRIVATE
36
37#include <sys/cdefs.h>
38
39__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.27 2024/02/16 16:28:49 skrll Exp $");
40
41#include <sys/param.h>
42#include <sys/bus.h>
43#include <sys/cpu.h>
44#include <sys/device.h>
45
46#include <prop/proplib.h>
47
48#include <net/if.h>
49#include <net/if_ether.h>
50
51#define CCA_PRIVATE
52#define CRU_PRIVATE
53#define DDR_PRIVATE
54#define DMU_PRIVATE
55#define ARMCORE_PRIVATE
56#define SRAB_PRIVATE
57
58#include <arm/cortex/a9tmr_var.h>
59#include <arm/cortex/pl310_var.h>
60#include <arm/mainbus/mainbus.h>
61
62#include <arm/broadcom/bcm53xx_reg.h>
63#include <arm/broadcom/bcm53xx_var.h>
64
65bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
66bus_space_handle_t bcm53xx_ioreg_bsh;
67bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
68bus_space_handle_t bcm53xx_armcore_bsh;
69
70static struct cpu_softc cpu_softc;
71
72struct arm32_dma_range bcm53xx_dma_ranges[] = {
73#ifdef BCM5301X
74	[0] = {
75		.dr_sysbase = 0x80000000,
76		.dr_busbase = 0x80000000,
77		.dr_len = 0x10000000,
78	}, [1] = {
79		.dr_sysbase = 0x90000000,
80		.dr_busbase = 0x90000000,
81	},
82#elif defined(BCM563XX)
83	[0] = {
84		.dr_sysbase = 0x60000000,
85		.dr_busbase = 0x60000000,
86		.dr_len = 0x20000000,
87	}, [1] = {
88		.dr_sysbase = 0x80000000,
89		.dr_busbase = 0x80000000,
90	},
91#endif
92};
93
94struct arm32_bus_dma_tag bcm53xx_dma_tag = {
95	._ranges = bcm53xx_dma_ranges,
96	._nranges = __arraycount(bcm53xx_dma_ranges),
97	_BUS_DMAMAP_FUNCS,
98	_BUS_DMAMEM_FUNCS,
99	_BUS_DMATAG_FUNCS,
100};
101
102struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
103#ifdef BCM5301X
104	[0] = {
105		.dr_sysbase = 0x80000000,
106		.dr_busbase = 0x80000000,
107		.dr_len = 0x10000000,
108		.dr_flags = _BUS_DMAMAP_COHERENT,
109	}, [1] = {
110		.dr_sysbase = 0x90000000,
111		.dr_busbase = 0x90000000,
112	},
113#elif defined(BCM563XX)
114	[0] = {
115		.dr_sysbase = 0x60000000,
116		.dr_busbase = 0x60000000,
117		.dr_len = 0x20000000,
118		.dr_flags = _BUS_DMAMAP_COHERENT,
119	}, [1] = {
120		.dr_sysbase = 0x80000000,
121		.dr_busbase = 0x80000000,
122	},
123#endif
124};
125
126struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
127	._ranges = bcm53xx_coherent_dma_ranges,
128	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
129	_BUS_DMAMAP_FUNCS,
130	_BUS_DMAMEM_FUNCS,
131	_BUS_DMATAG_FUNCS,
132};
133
134#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
135struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
136	._ranges = bcm53xx_coherent_dma_ranges,
137	._nranges = 1,
138	_BUS_DMAMAP_FUNCS,
139	_BUS_DMAMEM_FUNCS,
140	_BUS_DMATAG_FUNCS,
141};
142#endif
143
144psize_t
145bcm53xx_memprobe(void)
146{
147	bus_space_tag_t bst = bcm53xx_ioreg_bst;
148	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
149
150	/*
151	 * First, let's read the magic DDR registers!
152	 */
153	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
154	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
155	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
156	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
157
158	/*
159	 * Calculate chip parameters
160	 * */
161	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
162	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
163	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
164	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
165	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
166
167	/*
168	 * For each chip select, increase the chip count if if is enabled.
169	 */
170	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
171	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
172	u_int chips = 0;
173
174	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
175		chips += (cs_map & 1);
176	}
177
178	/* get log2(ddr width) */
179
180	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
181
182	/*
183	 * Let's add up all the things that contribute to the size of a chip.
184	 */
185	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
186
187	/*
188	 * Now our memory size is simply the number of chip shifted by the
189	 * log2(chip_size).
190	 */
191	return (psize_t) chips << chip_size_log2;
192}
193
194static inline uint32_t
195bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
196	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
197{
198	if (ndiv_frac == 0 && pdiv == 1)
199		return ndiv_int * clk->clk_ref;
200
201	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
202	freq64 *= clk->clk_ref;
203	if (pdiv > 1)
204		freq64 /= pdiv;
205	return (uint32_t) (freq64 >> 30);
206}
207
208static uint32_t
209bcm53xx_value_wrap(uint32_t value, uint32_t mask)
210{
211	/*
212	 * n is n except when n is 0 then n = mask + 1.
213	 */
214	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
215}
216
217static void
218bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
219	uint32_t control6, uint32_t control7)
220{
221	const uint32_t pdiv = bcm53xx_value_wrap(control6,
222	    GENPLL_CONTROL6_PDIV);
223	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
224	    GENPLL_CONTROL5_NDIV_INT);
225	const uint32_t ndiv_frac = __SHIFTOUT(control5,
226	    GENPLL_CONTROL5_NDIV_FRAC);
227
228	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
229
230	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
231	    GENPLL_CONTROL6_CH0_MDIV);
232	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
233	    GENPLL_CONTROL6_CH1_MDIV);
234	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
235	    GENPLL_CONTROL6_CH2_MDIV);
236	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
237	    GENPLL_CONTROL7_CH3_MDIV);
238
239	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
240	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
241	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
242	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
243}
244
245static void
246bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
247	uint32_t control2)
248{
249	const uint32_t pdiv = bcm53xx_value_wrap(control1,
250	    LCPLL_CONTROL1_PDIV);
251	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
252	    LCPLL_CONTROL1_NDIV_INT);
253	const uint32_t ndiv_frac = __SHIFTOUT(control1,
254	    LCPLL_CONTROL1_NDIV_FRAC);
255
256	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
257
258	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
259	    LCPLL_CONTROL2_CH0_MDIV);
260	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
261	    LCPLL_CONTROL2_CH1_MDIV);
262	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
263	    LCPLL_CONTROL2_CH2_MDIV);
264	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
265	    LCPLL_CONTROL2_CH3_MDIV);
266
267	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
268	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
269	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
270	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
271}
272
273static void
274bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
275{
276	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
277	    USB2_CONTROL_PDIV);
278	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
279	    USB2_CONTROL_NDIV_INT);
280
281	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
282	if (usb_ref != USB2_REF_CLK) {
283		/*
284		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
285		 * USB2_CONTROL to produce it.
286		 */
287		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
288		usb2_control &= ~USB2_CONTROL_NDIV_INT;
289		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
290
291		// Allow Clocks to be modified
292		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
293		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
294
295		// Update USB2 clock generator
296		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
297		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
298
299		// Prevent Clock modification
300		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
301		    CRU_BASE + CRU_CLKSET_KEY, 0);
302
303		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
304	}
305
306	clk->clk_usb_ref = usb_ref;
307}
308
309
310static void
311bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
312{
313	clk->clk_ref = BCM53XX_REF_CLK;
314	clk->clk_sys = 8*clk->clk_ref;
315}
316
317/*
318 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
319 */
320static void
321bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
322    uint32_t pll_dividers)
323{
324	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
325	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
326	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
327	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
328
329	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
330
331	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
332	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
333}
334
335/*
336 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
337 */
338static void
339bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
340	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
341{
342	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
343
344	if (policy == CLK_POLICY_REF_CLK) {
345		clk->clk_cpu = clk->clk_ref;
346		clk->clk_apb = clk->clk_cpu;
347		return;
348	}
349
350	if (policy == CLK_POLICY_SYS_CLK) {
351		clk->clk_cpu = clk->clk_sys;
352		clk->clk_apb = clk->clk_cpu / 4;
353		return;
354	}
355
356	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
357	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
358	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
359	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
360
361	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
362
363	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
364	clk->clk_apb = clk->clk_cpu / 4;
365}
366
367struct bcm53xx_chip_state {
368	uint32_t bcs_lcpll_control1;
369	uint32_t bcs_lcpll_control2;
370
371	uint32_t bcs_genpll_control5;
372	uint32_t bcs_genpll_control6;
373	uint32_t bcs_genpll_control7;
374
375	uint32_t bcs_usb2_control;
376
377	uint32_t bcs_ddr_phy_ctl_pll_status;
378	uint32_t bcs_ddr_phy_ctl_pll_dividers;
379
380	uint32_t bcs_armcore_clk_policy;
381	uint32_t bcs_armcore_clk_pllarma;
382	uint32_t bcs_armcore_clk_pllarmb;
383};
384
385static void
386bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
387	bus_space_tag_t bst, bus_space_handle_t bsh)
388{
389	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
390	    DMU_BASE + DMU_LCPLL_CONTROL1);
391	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
392	    DMU_BASE + DMU_LCPLL_CONTROL2);
393
394	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
395	    CRU_BASE + CRU_GENPLL_CONTROL5);
396	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
397	    CRU_BASE + CRU_GENPLL_CONTROL6);
398	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
399	    CRU_BASE + CRU_GENPLL_CONTROL7);
400
401	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
402	    CRU_BASE + CRU_USB2_CONTROL);
403
404	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
405	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
406	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
407	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
408}
409
410static void
411bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
412	bus_space_tag_t bst, bus_space_handle_t bsh)
413{
414	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
415	    ARMCORE_CLK_POLICY_FREQ);
416	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
417	    ARMCORE_CLK_PLLARMA);
418	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
419	    ARMCORE_CLK_PLLARMB);
420}
421
422void
423bcm53xx_cpu_softc_init(struct cpu_info *ci)
424{
425	struct cpu_softc * const cpu = ci->ci_softc;
426
427	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
428	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
429
430	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
431	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
432
433	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
434	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
435
436	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
437}
438
439void
440bcm53xx_print_clocks(void)
441{
442#if defined(VERBOSE_INIT_ARM)
443	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
444	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
445	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
446	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
447	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
448	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
449	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
450	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
451	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
452	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
453	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
454	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
455	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
456	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
457	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
458	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
459	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
460	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
461#endif
462}
463
464void
465bcm53xx_bootstrap(vaddr_t iobase)
466{
467	struct bcm53xx_chip_state bcs;
468	int error;
469
470	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
471	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
472	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
473	if (error)
474		panic("%s: failed to map BCM53xx %s registers: %d",
475		    __func__, "io", error);
476
477	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
478	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
479	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
480	if (error)
481		panic("%s: failed to map BCM53xx %s registers: %d",
482		    __func__, "armcore", error);
483
484	curcpu()->ci_softc = &cpu_softc;
485
486	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
487	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
488
489	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
490
491	bcm53xx_clock_init(clk);
492	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
493	    bcs.bcs_lcpll_control2);
494	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
495	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
496	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
497	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
498	    bcs.bcs_ddr_phy_ctl_pll_dividers);
499	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
500	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
501
502	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
503
504#if NARML2CC > 0
505	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
506	    ARMCORE_L2C_BASE);
507#endif
508}
509
510void
511bcm53xx_dma_bootstrap(psize_t memsize)
512{
513	if (memsize <= 256*1024*1024) {
514		bcm53xx_dma_ranges[0].dr_len = memsize;
515		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
516		bcm53xx_dma_tag._nranges = 1;
517		bcm53xx_coherent_dma_tag._nranges = 1;
518	} else {
519		/*
520		 * By setting up two ranges, bus_dmamem_alloc will always
521		 * try to allocate from range 0 first resulting in allocations
522		 * below 256MB which for PCI and GMAC are coherent.
523		 */
524		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
525		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
526	}
527	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
528	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
529#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
530	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
531#endif
532}
533
534#ifdef MULTIPROCESSOR
535void
536bcm53xx_cpu_hatch(struct cpu_info *ci)
537{
538	a9tmr_init_cpu_clock(ci);
539}
540#endif
541
542void
543bcm53xx_device_register(device_t self, void *aux)
544{
545	prop_dictionary_t dict = device_properties(self);
546
547	if (device_is_a(self, "armperiph")
548	    && device_is_a(device_parent(self), "mainbus")) {
549		/*
550		 * XXX KLUDGE ALERT XXX
551		 * The iot mainbus supplies is completely wrong since it scales
552		 * addresses by 2.  The simplest remedy is to replace with our
553		 * bus space used for the armcore registers (which armperiph uses).
554		 */
555		struct mainbus_attach_args * const mb = aux;
556		mb->mb_iot = bcm53xx_armcore_bst;
557		return;
558	}
559
560	/*
561	 * We need to tell the A9 Global/Watchdog Timer
562	 * what frequency it runs at.
563	 */
564	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
565		/*
566		 * This clock always runs at (arm_clk div 2) and only goes
567		 * to timers that are part of the A9 MP core subsystem.
568		 */
569                prop_dictionary_set_uint32(dict, "frequency",
570		    cpu_softc.cpu_clk.clk_cpu / 2);
571		return;
572	}
573
574	if (device_is_a(self, "bcmeth")) {
575		const struct bcmccb_attach_args * const ccbaa = aux;
576		const uint8_t enaddr[ETHER_ADDR_LEN] = {
577			0x00, 0x01, 0x02, 0x03, 0x04,
578			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
579		};
580		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
581		KASSERT(pd != NULL);
582		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
583			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
584		}
585		prop_object_release(pd);
586	}
587}
588
589#ifdef SRAB_BASE
590static kmutex_t srab_lock __cacheline_aligned;
591
592void
593bcm53xx_srab_init(void)
594{
595	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
596
597	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
598	for (u_int port = 0; port < 8; port++) {
599		/* per port control: no stp */
600		bcm53xx_srab_write_4(port, 0x00);
601	}
602	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
603	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
604	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
605	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
606	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
607	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
608	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
609}
610
611static inline void
612bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
613{
614	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
615		delay(10);
616	}
617}
618
619uint32_t
620bcm53xx_srab_read_4(u_int pageoffset)
621{
622	bus_space_tag_t bst = bcm53xx_ioreg_bst;
623	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
624	uint32_t rv;
625
626	mutex_spin_enter(&srab_lock);
627
628	bcm53xx_srab_busywait(bst, bsh);
629	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
630	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
631	bcm53xx_srab_busywait(bst, bsh);
632	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
633
634	mutex_spin_exit(&srab_lock);
635	return rv;
636}
637
638uint64_t
639bcm53xx_srab_read_8(u_int pageoffset)
640{
641	bus_space_tag_t bst = bcm53xx_ioreg_bst;
642	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
643	uint64_t rv;
644
645	mutex_spin_enter(&srab_lock);
646
647	bcm53xx_srab_busywait(bst, bsh);
648	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
649	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
650	bcm53xx_srab_busywait(bst, bsh);
651	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
652	rv <<= 32;
653	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
654
655	mutex_spin_exit(&srab_lock);
656	return rv;
657}
658
659void
660bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
661{
662	bus_space_tag_t bst = bcm53xx_ioreg_bst;
663	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
664
665	mutex_spin_enter(&srab_lock);
666
667	bcm53xx_srab_busywait(bst, bsh);
668	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
669	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
670	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
671	bcm53xx_srab_busywait(bst, bsh);
672
673	mutex_spin_exit(&srab_lock);
674}
675
676void
677bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
678{
679	bus_space_tag_t bst = bcm53xx_ioreg_bst;
680	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
681
682	mutex_spin_enter(&srab_lock);
683
684	bcm53xx_srab_busywait(bst, bsh);
685	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
686	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
687	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
688	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
689	bcm53xx_srab_busywait(bst, bsh);
690	mutex_spin_exit(&srab_lock);
691}
692#endif
693