bcm53xx_board.c revision 1.15
1/*	$NetBSD: bcm53xx_board.c,v 1.15 2013/02/19 02:30:55 matt Exp $	*/
2/*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "opt_broadcom.h"
32
33#define	_ARM32_BUS_DMA_PRIVATE
34
35#include <sys/cdefs.h>
36
37__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.15 2013/02/19 02:30:55 matt Exp $");
38
39#include <sys/param.h>
40#include <sys/bus.h>
41#include <sys/cpu.h>
42#include <sys/device.h>
43
44#include <prop/proplib.h>
45
46#include <net/if.h>
47#include <net/if_ether.h>
48
49#define CRU_PRIVATE
50#define DDR_PRIVATE
51#define DMU_PRIVATE
52#define ARMCORE_PRIVATE
53#define SRAB_PRIVATE
54
55#include <arm/cortex/a9tmr_var.h>
56#include <arm/cortex/pl310_var.h>
57#include <arm/mainbus/mainbus.h>
58
59#include <arm/broadcom/bcm53xx_reg.h>
60#include <arm/broadcom/bcm53xx_var.h>
61
62bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63bus_space_handle_t bcm53xx_ioreg_bsh;
64bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65bus_space_handle_t bcm53xx_armcore_bsh;
66
67static struct cpu_softc cpu_softc;
68
69struct arm32_dma_range bcm53xx_dma_ranges[] = {
70	[0] = {
71		.dr_sysbase = 0x80000000,
72		.dr_busbase = 0x80000000,
73		.dr_len = 0x10000000,
74	}, [1] = {
75		.dr_sysbase = 0x90000000,
76		.dr_busbase = 0x90000000,
77	},
78};
79
80struct arm32_bus_dma_tag bcm53xx_dma_tag = {
81	._ranges = bcm53xx_dma_ranges,
82	._nranges = __arraycount(bcm53xx_dma_ranges),
83	_BUS_DMAMAP_FUNCS,
84	_BUS_DMAMEM_FUNCS,
85	_BUS_DMATAG_FUNCS,
86};
87
88struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
89	[0] = {
90		.dr_sysbase = 0x80000000,
91		.dr_busbase = 0x80000000,
92		.dr_len = 0x10000000,
93		.dr_flags = _BUS_DMAMAP_COHERENT,
94	}, [1] = {
95		.dr_sysbase = 0x90000000,
96		.dr_busbase = 0x90000000,
97	},
98};
99
100struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
101	._ranges = bcm53xx_coherent_dma_ranges,
102	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
103	_BUS_DMAMAP_FUNCS,
104	_BUS_DMAMEM_FUNCS,
105	_BUS_DMATAG_FUNCS,
106};
107
108#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
109struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
110	._ranges = bcm53xx_coherent_dma_ranges,
111	._nranges = 1,
112	_BUS_DMAMAP_FUNCS,
113	_BUS_DMAMEM_FUNCS,
114	_BUS_DMATAG_FUNCS,
115};
116#endif
117
118#ifdef BCM53XX_CONSOLE_EARLY
119#include <dev/ic/ns16550reg.h>
120#include <dev/ic/comreg.h>
121#include <dev/cons.h>
122
123static vaddr_t com_base;
124
125static inline uint32_t
126uart_read(bus_size_t o)
127{
128	return *(volatile uint8_t *)(com_base + o);
129}
130
131static inline void
132uart_write(bus_size_t o, uint32_t v)
133{
134	*(volatile uint8_t *)(com_base + o) = v;
135}
136
137static int
138bcm53xx_cngetc(dev_t dv)
139{
140        if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
141		return -1;
142
143	return uart_read(com_data) & 0xff;
144}
145
146static void
147bcm53xx_cnputc(dev_t dv, int c)
148{
149	int timo = 150000;
150
151        while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
152		;
153
154	uart_write(com_data, c);
155
156	timo = 150000;
157        while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
158		;
159}
160
161static struct consdev bcm53xx_earlycons = {
162	.cn_putc = bcm53xx_cnputc,
163	.cn_getc = bcm53xx_cngetc,
164	.cn_pollc = nullcnpollc,
165};
166#endif /* BCM53XX_CONSOLE_EARLY */
167
168psize_t
169bcm53xx_memprobe(void)
170{
171	bus_space_tag_t bst = bcm53xx_ioreg_bst;
172	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
173
174	/*
175	 * First, let's read the magic DDR registers!
176	 */
177	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
178	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
179	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
180	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
181
182	/*
183	 * Calculate chip parameters
184	 * */
185	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
186	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
187	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
188	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
189	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
190
191	/*
192	 * For each chip select, increase the chip count if if is enabled.
193	 */
194	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
195	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
196	u_int chips = 0;
197
198	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
199		chips += (cs_map & 1);
200	}
201
202	/* get log2(ddr width) */
203
204	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
205
206	/*
207	 * Let's add up all the things that contribute to the size of a chip.
208	 */
209	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
210
211	/*
212	 * Now our memory size is simply the number of chip shifted by the
213	 * log2(chip_size).
214	 */
215	return (psize_t) chips << chip_size_log2;
216}
217
218static inline uint32_t
219bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
220	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
221{
222	if (ndiv_frac == 0 && pdiv == 1)
223		return ndiv_int * clk->clk_ref;
224
225	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
226	freq64 *= clk->clk_ref;
227	if (pdiv > 1)
228		freq64 /= pdiv;
229	return (uint32_t) (freq64 >> 30);
230}
231
232static uint32_t
233bcm53xx_value_wrap(uint32_t value, uint32_t mask)
234{
235	/*
236	 * n is n except when n is 0 then n = mask + 1.
237	 */
238	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
239}
240
241static void
242bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
243	uint32_t control6, uint32_t control7)
244{
245	const uint32_t pdiv = bcm53xx_value_wrap(control6,
246	    GENPLL_CONTROL6_PDIV);
247	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
248	    GENPLL_CONTROL5_NDIV_INT);
249	const uint32_t ndiv_frac = __SHIFTOUT(control5,
250	    GENPLL_CONTROL5_NDIV_FRAC);
251
252	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
253
254	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
255	    GENPLL_CONTROL6_CH0_MDIV);
256	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
257	    GENPLL_CONTROL6_CH1_MDIV);
258	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
259	    GENPLL_CONTROL6_CH2_MDIV);
260	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
261	    GENPLL_CONTROL7_CH3_MDIV);
262
263	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
264	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
265	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
266	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
267}
268
269static void
270bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
271	uint32_t control2)
272{
273	const uint32_t pdiv = bcm53xx_value_wrap(control1,
274	    LCPLL_CONTROL1_PDIV);
275	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
276	    LCPLL_CONTROL1_NDIV_INT);
277	const uint32_t ndiv_frac = __SHIFTOUT(control1,
278	    LCPLL_CONTROL1_NDIV_FRAC);
279
280	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
281
282	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
283	    LCPLL_CONTROL2_CH0_MDIV);
284	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
285	    LCPLL_CONTROL2_CH1_MDIV);
286	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
287	    LCPLL_CONTROL2_CH2_MDIV);
288	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
289	    LCPLL_CONTROL2_CH3_MDIV);
290
291	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
292	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
293	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
294	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
295}
296
297static void
298bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
299{
300	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
301	    USB2_CONTROL_PDIV);
302	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
303	    USB2_CONTROL_NDIV_INT);
304
305	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
306	if (usb_ref != USB2_REF_CLK) {
307		/*
308		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
309		 * USB2_CONTROL to produce it.
310		 */
311		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
312		usb2_control &= ~USB2_CONTROL_NDIV_INT;
313		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
314
315		// Allow Clocks to be modified
316		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
317		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
318
319		// Update USB2 clock generator
320		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
321		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
322
323		// Prevent Clock modification
324		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
325		    CRU_BASE + CRU_CLKSET_KEY, 0);
326
327		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
328	}
329
330	clk->clk_usb_ref = usb_ref;
331}
332
333
334static void
335bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
336{
337	clk->clk_ref = BCM53XX_REF_CLK;
338	clk->clk_sys = 8*clk->clk_ref;
339}
340
341/*
342 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
343 */
344static void
345bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
346    uint32_t pll_dividers)
347{
348	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
349	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
350	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
351	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
352
353	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
354
355	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
356	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
357}
358
359/*
360 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
361 */
362static void
363bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
364	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
365{
366	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
367
368	if (policy == CLK_POLICY_REF_CLK) {
369		clk->clk_cpu = clk->clk_ref;
370		clk->clk_apb = clk->clk_cpu;
371		return;
372	}
373
374	if (policy == CLK_POLICY_SYS_CLK) {
375		clk->clk_cpu = clk->clk_sys;
376		clk->clk_apb = clk->clk_cpu / 4;
377		return;
378	}
379
380	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
381	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
382	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
383	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
384
385	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
386
387	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
388	clk->clk_apb = clk->clk_cpu / 4;
389}
390
391struct bcm53xx_chip_state {
392	uint32_t bcs_lcpll_control1;
393	uint32_t bcs_lcpll_control2;
394
395	uint32_t bcs_genpll_control5;
396	uint32_t bcs_genpll_control6;
397	uint32_t bcs_genpll_control7;
398
399	uint32_t bcs_usb2_control;
400
401	uint32_t bcs_ddr_phy_ctl_pll_status;
402	uint32_t bcs_ddr_phy_ctl_pll_dividers;
403
404	uint32_t bcs_armcore_clk_policy;
405	uint32_t bcs_armcore_clk_pllarma;
406	uint32_t bcs_armcore_clk_pllarmb;
407};
408
409static void
410bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
411	bus_space_tag_t bst, bus_space_handle_t bsh)
412{
413	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
414	    DMU_BASE + DMU_LCPLL_CONTROL1);
415	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
416	    DMU_BASE + DMU_LCPLL_CONTROL2);
417
418	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
419	    CRU_BASE + CRU_GENPLL_CONTROL5);
420	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
421	    CRU_BASE + CRU_GENPLL_CONTROL6);
422	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
423	    CRU_BASE + CRU_GENPLL_CONTROL7);
424
425	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
426	    CRU_BASE + CRU_USB2_CONTROL);
427
428	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
429	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
430	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
431	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
432}
433
434static void
435bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
436	bus_space_tag_t bst, bus_space_handle_t bsh)
437{
438	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
439	    ARMCORE_CLK_POLICY_FREQ);
440	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
441	    ARMCORE_CLK_PLLARMA);
442	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
443	    ARMCORE_CLK_PLLARMB);
444}
445
446void
447bcm53xx_cpu_softc_init(struct cpu_info *ci)
448{
449	struct cpu_softc * const cpu = ci->ci_softc;
450
451	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
452	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
453
454	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
455	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
456}
457
458void
459bcm53xx_print_clocks(void)
460{
461#if defined(VERBOSE_ARM_INIT)
462	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
463	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
464	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
465	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
466	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
467	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
468	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
469	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
470	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
471	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
472	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
473	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
474	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
475	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
476	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
477	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
478	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
479	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
480#endif
481}
482
483void
484bcm53xx_bootstrap(vaddr_t iobase)
485{
486	struct bcm53xx_chip_state bcs;
487	int error;
488
489#ifdef BCM53XX_CONSOLE_EARLY
490	com_base = iobase + CCA_UART0_BASE;
491	cn_tab = &bcm53xx_earlycons;
492#endif
493
494	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
495	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
496	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
497	if (error)
498		panic("%s: failed to map BCM53xx %s registers: %d",
499		    __func__, "io", error);
500
501	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
502	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
503	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
504	if (error)
505		panic("%s: failed to map BCM53xx %s registers: %d",
506		    __func__, "armcore", error);
507
508	curcpu()->ci_softc = &cpu_softc;
509
510	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
511	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
512
513	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
514
515	bcm53xx_clock_init(clk);
516	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
517	    bcs.bcs_lcpll_control2);
518	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
519	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
520	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
521	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
522	    bcs.bcs_ddr_phy_ctl_pll_dividers);
523	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
524	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
525
526	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
527
528	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
529}
530
531void
532bcm53xx_dma_bootstrap(psize_t memsize)
533{
534	if (memsize <= 256*1024*1024) {
535		bcm53xx_dma_ranges[0].dr_len = memsize;
536		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
537		bcm53xx_dma_tag._nranges = 1;
538		bcm53xx_coherent_dma_tag._nranges = 1;
539	} else {
540		/*
541		 * By setting up two ranges, bus_dmamem_alloc will always
542		 * try to allocate from range 0 first resulting in allocations
543		 * below 256MB which for PCI and GMAC are coherent.
544		 */
545		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
546		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
547	}
548	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
549	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
550#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
551	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
552#endif
553}
554
555#ifdef MULTIPROCESSOR
556void
557bcm53xx_cpu_hatch(struct cpu_info *ci)
558{
559	a9tmr_init_cpu_clock(ci);
560}
561#endif
562
563void
564bcm53xx_device_register(device_t self, void *aux)
565{
566	prop_dictionary_t dict = device_properties(self);
567
568	if (device_is_a(self, "armperiph")
569	    && device_is_a(device_parent(self), "mainbus")) {
570		/*
571		 * XXX KLUDGE ALERT XXX
572		 * The iot mainbus supplies is completely wrong since it scales
573		 * addresses by 2.  The simpliest remedy is to replace with our
574		 * bus space used for the armcore regisers (which armperiph uses).
575		 */
576		struct mainbus_attach_args * const mb = aux;
577		mb->mb_iot = bcm53xx_armcore_bst;
578		return;
579	}
580
581	/*
582	 * We need to tell the A9 Global/Watchdog Timer
583	 * what frequency it runs at.
584	 */
585	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
586		/*
587		 * This clock always runs at (arm_clk div 2) and only goes
588		 * to timers that are part of the A9 MP core subsystem.
589		 */
590                prop_dictionary_set_uint32(dict, "frequency",
591		    cpu_softc.cpu_clk.clk_cpu / 2);
592		return;
593	}
594
595	if (device_is_a(self, "bcmeth")) {
596		const struct bcmccb_attach_args * const ccbaa = aux;
597		const uint8_t enaddr[ETHER_ADDR_LEN] = {
598			0x00, 0x01, 0x02, 0x03, 0x04,
599			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
600		};
601		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
602		KASSERT(pd != NULL);
603		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
604			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
605		}
606		prop_object_release(pd);
607	}
608}
609
610static kmutex_t srab_lock __cacheline_aligned;
611
612void
613bcm53xx_srab_init(void)
614{
615	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
616
617	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
618	for (u_int port = 0; port < 8; port++) {
619		/* per port control: no stp */
620		bcm53xx_srab_write_4(port, 0x00);
621	}
622	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
623	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
624	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
625	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
626	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
627	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
628	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
629}
630
631static inline void
632bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
633{
634	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
635		delay(10);
636	}
637}
638
639uint32_t
640bcm53xx_srab_read_4(u_int pageoffset)
641{
642	bus_space_tag_t bst = bcm53xx_ioreg_bst;
643	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
644	uint32_t rv;
645
646	mutex_spin_enter(&srab_lock);
647
648	bcm53xx_srab_busywait(bst, bsh);
649	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
650	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
651	bcm53xx_srab_busywait(bst, bsh);
652	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
653
654	mutex_spin_exit(&srab_lock);
655	return rv;
656}
657
658uint64_t
659bcm53xx_srab_read_8(u_int pageoffset)
660{
661	bus_space_tag_t bst = bcm53xx_ioreg_bst;
662	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
663	uint64_t rv;
664
665	mutex_spin_enter(&srab_lock);
666
667	bcm53xx_srab_busywait(bst, bsh);
668	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
669	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
670	bcm53xx_srab_busywait(bst, bsh);
671	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
672	rv <<= 32;
673	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
674
675	mutex_spin_exit(&srab_lock);
676	return rv;
677}
678
679void
680bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
681{
682	bus_space_tag_t bst = bcm53xx_ioreg_bst;
683	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
684
685	mutex_spin_enter(&srab_lock);
686
687	bcm53xx_srab_busywait(bst, bsh);
688	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
689	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
690	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
691	bcm53xx_srab_busywait(bst, bsh);
692
693	mutex_spin_exit(&srab_lock);
694}
695
696void
697bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
698{
699	bus_space_tag_t bst = bcm53xx_ioreg_bst;
700	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
701
702	mutex_spin_enter(&srab_lock);
703
704	bcm53xx_srab_busywait(bst, bsh);
705	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
706	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
707	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
708	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
709	bcm53xx_srab_busywait(bst, bsh);
710	mutex_spin_exit(&srab_lock);
711}
712