bcm53xx_board.c revision 1.14
1/*	$NetBSD: bcm53xx_board.c,v 1.14 2013/02/19 02:15:17 matt Exp $	*/
2/*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "opt_broadcom.h"
32
33#define	_ARM32_BUS_DMA_PRIVATE
34
35#include <sys/cdefs.h>
36
37__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.14 2013/02/19 02:15:17 matt Exp $");
38
39#include <sys/param.h>
40#include <sys/bus.h>
41#include <sys/cpu.h>
42#include <sys/device.h>
43
44#include <prop/proplib.h>
45
46#include <net/if.h>
47#include <net/if_ether.h>
48
49#define CRU_PRIVATE
50#define DDR_PRIVATE
51#define DMU_PRIVATE
52#define ARMCORE_PRIVATE
53#define SRAB_PRIVATE
54
55#include <arm/cortex/a9tmr_var.h>
56#include <arm/cortex/pl310_var.h>
57#include <arm/mainbus/mainbus.h>
58
59#include <arm/broadcom/bcm53xx_reg.h>
60#include <arm/broadcom/bcm53xx_var.h>
61
62bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63bus_space_handle_t bcm53xx_ioreg_bsh;
64bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65bus_space_handle_t bcm53xx_armcore_bsh;
66
67static struct cpu_softc cpu_softc;
68
69struct arm32_dma_range bcm53xx_dma_ranges[] = {
70	[0] = {
71		.dr_sysbase = 0x80000000,
72		.dr_busbase = 0x80000000,
73		.dr_len = 0x10000000,
74	}, [1] = {
75		.dr_sysbase = 0x90000000,
76		.dr_busbase = 0x90000000,
77	},
78};
79
80struct arm32_bus_dma_tag bcm53xx_dma_tag = {
81	._ranges = bcm53xx_dma_ranges,
82	._nranges = __arraycount(bcm53xx_dma_ranges),
83	_BUS_DMAMAP_FUNCS,
84	_BUS_DMAMEM_FUNCS,
85	_BUS_DMATAG_FUNCS,
86};
87
88struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
89	[0] = {
90		.dr_sysbase = 0x80000000,
91		.dr_busbase = 0x80000000,
92		.dr_len = 0x10000000,
93		.dr_flags = _BUS_DMAMAP_COHERENT,
94	}, [1] = {
95		.dr_sysbase = 0x90000000,
96		.dr_busbase = 0x90000000,
97	},
98};
99
100struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
101	._ranges = bcm53xx_coherent_dma_ranges,
102	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
103	_BUS_DMAMAP_FUNCS,
104	_BUS_DMAMEM_FUNCS,
105	_BUS_DMATAG_FUNCS,
106};
107
108#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
109struct arm32_dma_range bcm53xx_bounce_dma_ranges[] = {
110	[0] = {
111		.dr_sysbase = 0x80000000,
112		.dr_busbase = 0x80000000,
113		.dr_len = 0x10000000,
114		.dr_flags = _BUS_DMAMAP_COHERENT,
115	},
116};
117
118struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
119	._ranges = bcm53xx_bounce_dma_ranges,
120	._nranges = __arraycount(bcm53xx_bounce_dma_ranges),
121	_BUS_DMAMAP_FUNCS,
122	_BUS_DMAMEM_FUNCS,
123	_BUS_DMATAG_FUNCS,
124};
125#endif
126
127#ifdef BCM53XX_CONSOLE_EARLY
128#include <dev/ic/ns16550reg.h>
129#include <dev/ic/comreg.h>
130#include <dev/cons.h>
131
132static vaddr_t com_base;
133
134static inline uint32_t
135uart_read(bus_size_t o)
136{
137	return *(volatile uint8_t *)(com_base + o);
138}
139
140static inline void
141uart_write(bus_size_t o, uint32_t v)
142{
143	*(volatile uint8_t *)(com_base + o) = v;
144}
145
146static int
147bcm53xx_cngetc(dev_t dv)
148{
149        if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
150		return -1;
151
152	return uart_read(com_data) & 0xff;
153}
154
155static void
156bcm53xx_cnputc(dev_t dv, int c)
157{
158	int timo = 150000;
159
160        while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
161		;
162
163	uart_write(com_data, c);
164
165	timo = 150000;
166        while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
167		;
168}
169
170static struct consdev bcm53xx_earlycons = {
171	.cn_putc = bcm53xx_cnputc,
172	.cn_getc = bcm53xx_cngetc,
173	.cn_pollc = nullcnpollc,
174};
175#endif /* BCM53XX_CONSOLE_EARLY */
176
177psize_t
178bcm53xx_memprobe(void)
179{
180	bus_space_tag_t bst = bcm53xx_ioreg_bst;
181	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
182
183	/*
184	 * First, let's read the magic DDR registers!
185	 */
186	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
187	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
188	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
189	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
190
191	/*
192	 * Calculate chip parameters
193	 * */
194	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
195	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
196	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
197	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
198	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
199
200	/*
201	 * For each chip select, increase the chip count if if is enabled.
202	 */
203	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
204	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
205	u_int chips = 0;
206
207	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
208		chips += (cs_map & 1);
209	}
210
211	/* get log2(ddr width) */
212
213	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
214
215	/*
216	 * Let's add up all the things that contribute to the size of a chip.
217	 */
218	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
219
220	/*
221	 * Now our memory size is simply the number of chip shifted by the
222	 * log2(chip_size).
223	 */
224	return (psize_t) chips << chip_size_log2;
225}
226
227static inline uint32_t
228bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
229	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
230{
231	if (ndiv_frac == 0 && pdiv == 1)
232		return ndiv_int * clk->clk_ref;
233
234	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
235	freq64 *= clk->clk_ref;
236	if (pdiv > 1)
237		freq64 /= pdiv;
238	return (uint32_t) (freq64 >> 30);
239}
240
241static uint32_t
242bcm53xx_value_wrap(uint32_t value, uint32_t mask)
243{
244	/*
245	 * n is n except when n is 0 then n = mask + 1.
246	 */
247	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
248}
249
250static void
251bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
252	uint32_t control6, uint32_t control7)
253{
254	const uint32_t pdiv = bcm53xx_value_wrap(control6,
255	    GENPLL_CONTROL6_PDIV);
256	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
257	    GENPLL_CONTROL5_NDIV_INT);
258	const uint32_t ndiv_frac = __SHIFTOUT(control5,
259	    GENPLL_CONTROL5_NDIV_FRAC);
260
261	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
262
263	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
264	    GENPLL_CONTROL6_CH0_MDIV);
265	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
266	    GENPLL_CONTROL6_CH1_MDIV);
267	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
268	    GENPLL_CONTROL6_CH2_MDIV);
269	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
270	    GENPLL_CONTROL7_CH3_MDIV);
271
272	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
273	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
274	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
275	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
276}
277
278static void
279bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
280	uint32_t control2)
281{
282	const uint32_t pdiv = bcm53xx_value_wrap(control1,
283	    LCPLL_CONTROL1_PDIV);
284	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
285	    LCPLL_CONTROL1_NDIV_INT);
286	const uint32_t ndiv_frac = __SHIFTOUT(control1,
287	    LCPLL_CONTROL1_NDIV_FRAC);
288
289	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
290
291	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
292	    LCPLL_CONTROL2_CH0_MDIV);
293	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
294	    LCPLL_CONTROL2_CH1_MDIV);
295	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
296	    LCPLL_CONTROL2_CH2_MDIV);
297	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
298	    LCPLL_CONTROL2_CH3_MDIV);
299
300	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
301	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
302	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
303	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
304}
305
306static void
307bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
308{
309	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
310	    USB2_CONTROL_PDIV);
311	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
312	    USB2_CONTROL_NDIV_INT);
313
314	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
315	if (usb_ref != USB2_REF_CLK) {
316		/*
317		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
318		 * USB2_CONTROL to produce it.
319		 */
320		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
321		usb2_control &= ~USB2_CONTROL_NDIV_INT;
322		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
323
324		// Allow Clocks to be modified
325		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
326		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
327
328		// Update USB2 clock generator
329		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
330		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
331
332		// Prevent Clock modification
333		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
334		    CRU_BASE + CRU_CLKSET_KEY, 0);
335
336		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
337	}
338
339	clk->clk_usb_ref = usb_ref;
340}
341
342
343static void
344bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
345{
346	clk->clk_ref = BCM53XX_REF_CLK;
347	clk->clk_sys = 8*clk->clk_ref;
348}
349
350/*
351 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
352 */
353static void
354bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
355    uint32_t pll_dividers)
356{
357	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
358	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
359	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
360	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
361
362	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
363
364	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
365	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
366}
367
368/*
369 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
370 */
371static void
372bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
373	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
374{
375	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
376
377	if (policy == CLK_POLICY_REF_CLK) {
378		clk->clk_cpu = clk->clk_ref;
379		clk->clk_apb = clk->clk_cpu;
380		return;
381	}
382
383	if (policy == CLK_POLICY_SYS_CLK) {
384		clk->clk_cpu = clk->clk_sys;
385		clk->clk_apb = clk->clk_cpu / 4;
386		return;
387	}
388
389	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
390	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
391	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
392	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
393
394	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
395
396	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
397	clk->clk_apb = clk->clk_cpu / 4;
398}
399
400struct bcm53xx_chip_state {
401	uint32_t bcs_lcpll_control1;
402	uint32_t bcs_lcpll_control2;
403
404	uint32_t bcs_genpll_control5;
405	uint32_t bcs_genpll_control6;
406	uint32_t bcs_genpll_control7;
407
408	uint32_t bcs_usb2_control;
409
410	uint32_t bcs_ddr_phy_ctl_pll_status;
411	uint32_t bcs_ddr_phy_ctl_pll_dividers;
412
413	uint32_t bcs_armcore_clk_policy;
414	uint32_t bcs_armcore_clk_pllarma;
415	uint32_t bcs_armcore_clk_pllarmb;
416};
417
418static void
419bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
420	bus_space_tag_t bst, bus_space_handle_t bsh)
421{
422	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
423	    DMU_BASE + DMU_LCPLL_CONTROL1);
424	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
425	    DMU_BASE + DMU_LCPLL_CONTROL2);
426
427	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
428	    CRU_BASE + CRU_GENPLL_CONTROL5);
429	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
430	    CRU_BASE + CRU_GENPLL_CONTROL6);
431	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
432	    CRU_BASE + CRU_GENPLL_CONTROL7);
433
434	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
435	    CRU_BASE + CRU_USB2_CONTROL);
436
437	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
438	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
439	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
440	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
441}
442
443static void
444bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
445	bus_space_tag_t bst, bus_space_handle_t bsh)
446{
447	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
448	    ARMCORE_CLK_POLICY_FREQ);
449	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
450	    ARMCORE_CLK_PLLARMA);
451	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
452	    ARMCORE_CLK_PLLARMB);
453}
454
455void
456bcm53xx_cpu_softc_init(struct cpu_info *ci)
457{
458	struct cpu_softc * const cpu = ci->ci_softc;
459
460	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
461	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
462
463	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
464	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
465}
466
467void
468bcm53xx_print_clocks(void)
469{
470#if defined(VERBOSE_ARM_INIT)
471	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
472	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
473	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
474	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
475	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
476	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
477	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
478	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
479	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
480	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
481	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
482	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
483	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
484	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
485	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
486	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
487	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
488	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
489#endif
490}
491
492void
493bcm53xx_bootstrap(vaddr_t iobase)
494{
495	struct bcm53xx_chip_state bcs;
496	int error;
497
498#ifdef BCM53XX_CONSOLE_EARLY
499	com_base = iobase + CCA_UART0_BASE;
500	cn_tab = &bcm53xx_earlycons;
501#endif
502
503	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
504	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
505	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
506	if (error)
507		panic("%s: failed to map BCM53xx %s registers: %d",
508		    __func__, "io", error);
509
510	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
511	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
512	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
513	if (error)
514		panic("%s: failed to map BCM53xx %s registers: %d",
515		    __func__, "armcore", error);
516
517	curcpu()->ci_softc = &cpu_softc;
518
519	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
520	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
521
522	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
523
524	bcm53xx_clock_init(clk);
525	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
526	    bcs.bcs_lcpll_control2);
527	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
528	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
529	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
530	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
531	    bcs.bcs_ddr_phy_ctl_pll_dividers);
532	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
533	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
534
535	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
536
537	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
538}
539
540void
541bcm53xx_dma_bootstrap(psize_t memsize)
542{
543	if (memsize <= 256*1024*1024) {
544		bcm53xx_dma_ranges[0].dr_len = memsize;
545		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
546		bcm53xx_dma_tag._nranges = 1;
547#ifndef _ARM32_NEED_BUS_DMA_BOUNCE
548		bcm53xx_coherent_dma_tag._nranges = 1;
549#else
550		bcm53xx_bounce_dma_ranges[0].dr_len = memsize;
551#endif
552	} else {
553		/*
554		 * By setting up two ranges, bus_dmamem_alloc will always
555		 * try to allocate from range 0 first resulting in allocations
556		 * below 256MB which for PCI and GMAC are coherent.
557		 */
558		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
559		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
560#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
561		bcm53xx_bounce_dma_ranges[1].dr_len = memsize - 0x10000000;
562#endif
563	}
564	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
565	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
566#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
567	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
568#endif
569}
570
571#ifdef MULTIPROCESSOR
572void
573bcm53xx_cpu_hatch(struct cpu_info *ci)
574{
575	a9tmr_init_cpu_clock(ci);
576}
577#endif
578
579void
580bcm53xx_device_register(device_t self, void *aux)
581{
582	prop_dictionary_t dict = device_properties(self);
583
584	if (device_is_a(self, "armperiph")
585	    && device_is_a(device_parent(self), "mainbus")) {
586		/*
587		 * XXX KLUDGE ALERT XXX
588		 * The iot mainbus supplies is completely wrong since it scales
589		 * addresses by 2.  The simpliest remedy is to replace with our
590		 * bus space used for the armcore regisers (which armperiph uses).
591		 */
592		struct mainbus_attach_args * const mb = aux;
593		mb->mb_iot = bcm53xx_armcore_bst;
594		return;
595	}
596
597	/*
598	 * We need to tell the A9 Global/Watchdog Timer
599	 * what frequency it runs at.
600	 */
601	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
602		/*
603		 * This clock always runs at (arm_clk div 2) and only goes
604		 * to timers that are part of the A9 MP core subsystem.
605		 */
606                prop_dictionary_set_uint32(dict, "frequency",
607		    cpu_softc.cpu_clk.clk_cpu / 2);
608		return;
609	}
610
611	if (device_is_a(self, "bcmeth")) {
612		const struct bcmccb_attach_args * const ccbaa = aux;
613		const uint8_t enaddr[ETHER_ADDR_LEN] = {
614			0x00, 0x01, 0x02, 0x03, 0x04,
615			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
616		};
617		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
618		KASSERT(pd != NULL);
619		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
620			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
621		}
622		prop_object_release(pd);
623	}
624}
625
626static kmutex_t srab_lock __cacheline_aligned;
627
628void
629bcm53xx_srab_init(void)
630{
631	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
632
633	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
634	for (u_int port = 0; port < 8; port++) {
635		/* per port control: no stp */
636		bcm53xx_srab_write_4(port, 0x00);
637	}
638	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
639	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
640	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
641	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
642	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
643	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
644	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
645}
646
647static inline void
648bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
649{
650	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
651		delay(10);
652	}
653}
654
655uint32_t
656bcm53xx_srab_read_4(u_int pageoffset)
657{
658	bus_space_tag_t bst = bcm53xx_ioreg_bst;
659	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
660	uint32_t rv;
661
662	mutex_spin_enter(&srab_lock);
663
664	bcm53xx_srab_busywait(bst, bsh);
665	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
666	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
667	bcm53xx_srab_busywait(bst, bsh);
668	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
669
670	mutex_spin_exit(&srab_lock);
671	return rv;
672}
673
674uint64_t
675bcm53xx_srab_read_8(u_int pageoffset)
676{
677	bus_space_tag_t bst = bcm53xx_ioreg_bst;
678	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
679	uint64_t rv;
680
681	mutex_spin_enter(&srab_lock);
682
683	bcm53xx_srab_busywait(bst, bsh);
684	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
685	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
686	bcm53xx_srab_busywait(bst, bsh);
687	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
688	rv <<= 32;
689	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
690
691	mutex_spin_exit(&srab_lock);
692	return rv;
693}
694
695void
696bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
697{
698	bus_space_tag_t bst = bcm53xx_ioreg_bst;
699	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
700
701	mutex_spin_enter(&srab_lock);
702
703	bcm53xx_srab_busywait(bst, bsh);
704	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
705	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
706	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
707	bcm53xx_srab_busywait(bst, bsh);
708
709	mutex_spin_exit(&srab_lock);
710}
711
712void
713bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
714{
715	bus_space_tag_t bst = bcm53xx_ioreg_bst;
716	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
717
718	mutex_spin_enter(&srab_lock);
719
720	bcm53xx_srab_busywait(bst, bsh);
721	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
722	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
723	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
724	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
725	bcm53xx_srab_busywait(bst, bsh);
726	mutex_spin_exit(&srab_lock);
727}
728