bcm53xx_board.c revision 1.12
1/*	$NetBSD: bcm53xx_board.c,v 1.12 2013/02/12 02:38:53 matt Exp $	*/
2/*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include "opt_broadcom.h"
32
33#define	_ARM32_BUS_DMA_PRIVATE
34
35#include <sys/cdefs.h>
36
37__KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.12 2013/02/12 02:38:53 matt Exp $");
38
39#include <sys/param.h>
40#include <sys/bus.h>
41#include <sys/cpu.h>
42#include <sys/device.h>
43
44#include <prop/proplib.h>
45
46#include <net/if.h>
47#include <net/if_ether.h>
48
49#define CRU_PRIVATE
50#define DDR_PRIVATE
51#define DMU_PRIVATE
52#define ARMCORE_PRIVATE
53#define SRAB_PRIVATE
54
55#include <arm/cortex/a9tmr_var.h>
56#include <arm/cortex/pl310_var.h>
57#include <arm/mainbus/mainbus.h>
58
59#include <arm/broadcom/bcm53xx_reg.h>
60#include <arm/broadcom/bcm53xx_var.h>
61
62bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63bus_space_handle_t bcm53xx_ioreg_bsh;
64bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65bus_space_handle_t bcm53xx_armcore_bsh;
66
67static struct cpu_softc cpu_softc;
68
69struct arm32_dma_range bcm53xx_dma_ranges[2] = {
70	[0] = {
71		.dr_sysbase = 0x80000000,
72		.dr_busbase = 0x80000000,
73		.dr_len = 0x10000000,
74	}, [1] = {
75		.dr_sysbase = 0x90000000,
76		.dr_busbase = 0x90000000,
77	},
78};
79
80struct arm32_bus_dma_tag bcm53xx_dma_tag = {
81	._ranges = bcm53xx_dma_ranges,
82	._nranges = __arraycount(bcm53xx_dma_ranges),
83	_BUS_DMAMAP_FUNCS,
84	_BUS_DMAMEM_FUNCS,
85	_BUS_DMATAG_FUNCS,
86};
87
88struct arm32_dma_range bcm53xx_coherent_dma_ranges[2] = {
89	[0] = {
90		.dr_sysbase = 0x80000000,
91		.dr_busbase = 0x80000000,
92		.dr_len = 0x10000000,
93		.dr_flags = _BUS_DMAMAP_COHERENT,
94#ifndef _ARM32_NEED_BUS_DMA_BOUNCE
95	}, [1] = {
96		.dr_sysbase = 0x90000000,
97		.dr_busbase = 0x90000000,
98#endif
99	},
100};
101
102struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
103	._ranges = bcm53xx_coherent_dma_ranges,
104	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
105	_BUS_DMAMAP_FUNCS,
106	_BUS_DMAMEM_FUNCS,
107	_BUS_DMATAG_FUNCS,
108};
109
110#ifdef BCM53XX_CONSOLE_EARLY
111#include <dev/ic/ns16550reg.h>
112#include <dev/ic/comreg.h>
113#include <dev/cons.h>
114
115static vaddr_t com_base;
116
117static inline uint32_t
118uart_read(bus_size_t o)
119{
120	return *(volatile uint8_t *)(com_base + o);
121}
122
123static inline void
124uart_write(bus_size_t o, uint32_t v)
125{
126	*(volatile uint8_t *)(com_base + o) = v;
127}
128
129static int
130bcm53xx_cngetc(dev_t dv)
131{
132        if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
133		return -1;
134
135	return uart_read(com_data) & 0xff;
136}
137
138static void
139bcm53xx_cnputc(dev_t dv, int c)
140{
141	int timo = 150000;
142
143        while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
144		;
145
146	uart_write(com_data, c);
147
148	timo = 150000;
149        while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
150		;
151}
152
153static struct consdev bcm53xx_earlycons = {
154	.cn_putc = bcm53xx_cnputc,
155	.cn_getc = bcm53xx_cngetc,
156	.cn_pollc = nullcnpollc,
157};
158#endif /* BCM53XX_CONSOLE_EARLY */
159
160psize_t
161bcm53xx_memprobe(void)
162{
163	bus_space_tag_t bst = bcm53xx_ioreg_bst;
164	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
165
166	/*
167	 * First, let's read the magic DDR registers!
168	 */
169	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
170	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
171	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
172	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
173
174	/*
175	 * Calculate chip parameters
176	 * */
177	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
178	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
179	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
180	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
181	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
182
183	/*
184	 * For each chip select, increase the chip count if if is enabled.
185	 */
186	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
187	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
188	u_int chips = 0;
189
190	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
191		chips += (cs_map & 1);
192	}
193
194	/* get log2(ddr width) */
195
196	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
197
198	/*
199	 * Let's add up all the things that contribute to the size of a chip.
200	 */
201	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
202
203	/*
204	 * Now our memory size is simply the number of chip shifted by the
205	 * log2(chip_size).
206	 */
207	return (psize_t) chips << chip_size_log2;
208}
209
210static inline uint32_t
211bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
212	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
213{
214	if (ndiv_frac == 0 && pdiv == 1)
215		return ndiv_int * clk->clk_ref;
216
217	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
218	freq64 *= clk->clk_ref;
219	if (pdiv > 1)
220		freq64 /= pdiv;
221	return (uint32_t) (freq64 >> 30);
222}
223
224static uint32_t
225bcm53xx_value_wrap(uint32_t value, uint32_t mask)
226{
227	/*
228	 * n is n except when n is 0 then n = mask + 1.
229	 */
230	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
231}
232
233static void
234bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
235	uint32_t control6, uint32_t control7)
236{
237	const uint32_t pdiv = bcm53xx_value_wrap(control6,
238	    GENPLL_CONTROL6_PDIV);
239	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
240	    GENPLL_CONTROL5_NDIV_INT);
241	const uint32_t ndiv_frac = __SHIFTOUT(control5,
242	    GENPLL_CONTROL5_NDIV_FRAC);
243
244	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
245
246	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
247	    GENPLL_CONTROL6_CH0_MDIV);
248	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
249	    GENPLL_CONTROL6_CH1_MDIV);
250	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
251	    GENPLL_CONTROL6_CH2_MDIV);
252	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
253	    GENPLL_CONTROL7_CH3_MDIV);
254
255	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
256	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
257	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
258	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
259}
260
261static void
262bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
263	uint32_t control2)
264{
265	const uint32_t pdiv = bcm53xx_value_wrap(control1,
266	    LCPLL_CONTROL1_PDIV);
267	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
268	    LCPLL_CONTROL1_NDIV_INT);
269	const uint32_t ndiv_frac = __SHIFTOUT(control1,
270	    LCPLL_CONTROL1_NDIV_FRAC);
271
272	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
273
274	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
275	    LCPLL_CONTROL2_CH0_MDIV);
276	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
277	    LCPLL_CONTROL2_CH1_MDIV);
278	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
279	    LCPLL_CONTROL2_CH2_MDIV);
280	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
281	    LCPLL_CONTROL2_CH3_MDIV);
282
283	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
284	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
285	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
286	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
287}
288
289static void
290bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
291{
292	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
293	    USB2_CONTROL_PDIV);
294	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
295	    USB2_CONTROL_NDIV_INT);
296
297	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
298	if (usb_ref != USB2_REF_CLK) {
299		/*
300		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
301		 * USB2_CONTROL to produce it.
302		 */
303		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
304		usb2_control &= ~USB2_CONTROL_NDIV_INT;
305		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
306
307		// Allow Clocks to be modified
308		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
309		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
310
311		// Update USB2 clock generator
312		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
313		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
314
315		// Prevent Clock modification
316		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
317		    CRU_BASE + CRU_CLKSET_KEY, 0);
318
319		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
320	}
321
322	clk->clk_usb_ref = usb_ref;
323}
324
325
326static void
327bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
328{
329	clk->clk_ref = BCM53XX_REF_CLK;
330	clk->clk_sys = 8*clk->clk_ref;
331}
332
333/*
334 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
335 */
336static void
337bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
338    uint32_t pll_dividers)
339{
340	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
341	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
342	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
343	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
344
345	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
346
347	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
348	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
349}
350
351/*
352 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
353 */
354static void
355bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
356	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
357{
358	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
359
360	if (policy == CLK_POLICY_REF_CLK) {
361		clk->clk_cpu = clk->clk_ref;
362		clk->clk_apb = clk->clk_cpu;
363		return;
364	}
365
366	if (policy == CLK_POLICY_SYS_CLK) {
367		clk->clk_cpu = clk->clk_sys;
368		clk->clk_apb = clk->clk_cpu / 4;
369		return;
370	}
371
372	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
373	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
374	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
375	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
376
377	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
378
379	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
380	clk->clk_apb = clk->clk_cpu / 4;
381}
382
383struct bcm53xx_chip_state {
384	uint32_t bcs_lcpll_control1;
385	uint32_t bcs_lcpll_control2;
386
387	uint32_t bcs_genpll_control5;
388	uint32_t bcs_genpll_control6;
389	uint32_t bcs_genpll_control7;
390
391	uint32_t bcs_usb2_control;
392
393	uint32_t bcs_ddr_phy_ctl_pll_status;
394	uint32_t bcs_ddr_phy_ctl_pll_dividers;
395
396	uint32_t bcs_armcore_clk_policy;
397	uint32_t bcs_armcore_clk_pllarma;
398	uint32_t bcs_armcore_clk_pllarmb;
399};
400
401static void
402bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
403	bus_space_tag_t bst, bus_space_handle_t bsh)
404{
405	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
406	    DMU_BASE + DMU_LCPLL_CONTROL1);
407	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
408	    DMU_BASE + DMU_LCPLL_CONTROL2);
409
410	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
411	    CRU_BASE + CRU_GENPLL_CONTROL5);
412	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
413	    CRU_BASE + CRU_GENPLL_CONTROL6);
414	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
415	    CRU_BASE + CRU_GENPLL_CONTROL7);
416
417	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
418	    CRU_BASE + CRU_USB2_CONTROL);
419
420	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
421	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
422	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
423	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
424}
425
426static void
427bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
428	bus_space_tag_t bst, bus_space_handle_t bsh)
429{
430	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
431	    ARMCORE_CLK_POLICY_FREQ);
432	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
433	    ARMCORE_CLK_PLLARMA);
434	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
435	    ARMCORE_CLK_PLLARMB);
436}
437
438void
439bcm53xx_cpu_softc_init(struct cpu_info *ci)
440{
441	struct cpu_softc * const cpu = ci->ci_softc;
442
443	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
444	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
445
446	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
447	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
448}
449
450void
451bcm53xx_print_clocks(void)
452{
453#if defined(VERBOSE_ARM_INIT)
454	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
455	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
456	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
457	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
458	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
459	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
460	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
461	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
462	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
463	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
464	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
465	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
466	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
467	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
468	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
469	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
470	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
471	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
472#endif
473}
474
475void
476bcm53xx_bootstrap(vaddr_t iobase)
477{
478	struct bcm53xx_chip_state bcs;
479	int error;
480
481#ifdef BCM53XX_CONSOLE_EARLY
482	com_base = iobase + CCA_UART0_BASE;
483	cn_tab = &bcm53xx_earlycons;
484#endif
485
486	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
487	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
488	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
489	if (error)
490		panic("%s: failed to map BCM53xx %s registers: %d",
491		    __func__, "io", error);
492
493	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
494	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
495	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
496	if (error)
497		panic("%s: failed to map BCM53xx %s registers: %d",
498		    __func__, "armcore", error);
499
500	curcpu()->ci_softc = &cpu_softc;
501
502	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
503	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
504
505	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
506
507	bcm53xx_clock_init(clk);
508	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
509	    bcs.bcs_lcpll_control2);
510	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
511	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
512	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
513	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
514	    bcs.bcs_ddr_phy_ctl_pll_dividers);
515	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
516	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
517
518	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
519
520	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
521}
522
523void
524bcm53xx_dma_bootstrap(psize_t memsize)
525{
526	if (memsize < 256*1024*1024) {
527		bcm53xx_dma_ranges[0].dr_len = memsize;
528		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
529		bcm53xx_dma_tag._nranges = 1;
530#ifndef _ARM32_NEED_BUS_DMA_BOUNCE
531		bcm53xx_coherent_dma_tag._nranges = 1;
532#endif
533	} else {
534		/*
535		 * By setting up two ranges, bus_dmamem_alloc will always
536		 * try to allocate from range 0 first resulting in allocations
537		 * below 256MB which for PCI and GMAC are coherent.
538		 */
539		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
540#ifndef _ARM32_NEED_BUS_DMA_BOUNCE
541		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
542#endif
543	}
544	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
545	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
546}
547
548#ifdef MULTIPROCESSOR
549void
550bcm53xx_cpu_hatch(struct cpu_info *ci)
551{
552	a9tmr_init_cpu_clock(ci);
553}
554#endif
555
556void
557bcm53xx_device_register(device_t self, void *aux)
558{
559	prop_dictionary_t dict = device_properties(self);
560
561	if (device_is_a(self, "armperiph")
562	    && device_is_a(device_parent(self), "mainbus")) {
563		/*
564		 * XXX KLUDGE ALERT XXX
565		 * The iot mainbus supplies is completely wrong since it scales
566		 * addresses by 2.  The simpliest remedy is to replace with our
567		 * bus space used for the armcore regisers (which armperiph uses).
568		 */
569		struct mainbus_attach_args * const mb = aux;
570		mb->mb_iot = bcm53xx_armcore_bst;
571		return;
572	}
573
574	/*
575	 * We need to tell the A9 Global/Watchdog Timer
576	 * what frequency it runs at.
577	 */
578	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
579		/*
580		 * This clock always runs at (arm_clk div 2) and only goes
581		 * to timers that are part of the A9 MP core subsystem.
582		 */
583                prop_dictionary_set_uint32(dict, "frequency",
584		    cpu_softc.cpu_clk.clk_cpu / 2);
585		return;
586	}
587
588	if (device_is_a(self, "bcmeth")) {
589		const struct bcmccb_attach_args * const ccbaa = aux;
590		const uint8_t enaddr[ETHER_ADDR_LEN] = {
591			0x00, 0x01, 0x02, 0x03, 0x04,
592			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
593		};
594		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
595		KASSERT(pd != NULL);
596		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
597			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
598		}
599		prop_object_release(pd);
600	}
601}
602
603static kmutex_t srab_lock __cacheline_aligned;
604
605void
606bcm53xx_srab_init(void)
607{
608	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
609
610	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
611	for (u_int port = 0; port < 8; port++) {
612		/* per port control: no stp */
613		bcm53xx_srab_write_4(port, 0x00);
614	}
615	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
616	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
617	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
618	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
619	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
620	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
621	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
622}
623
624static inline void
625bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
626{
627	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
628		delay(10);
629	}
630}
631
632uint32_t
633bcm53xx_srab_read_4(u_int pageoffset)
634{
635	bus_space_tag_t bst = bcm53xx_ioreg_bst;
636	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
637	uint32_t rv;
638
639	mutex_spin_enter(&srab_lock);
640
641	bcm53xx_srab_busywait(bst, bsh);
642	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
643	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
644	bcm53xx_srab_busywait(bst, bsh);
645	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
646
647	mutex_spin_exit(&srab_lock);
648	return rv;
649}
650
651uint64_t
652bcm53xx_srab_read_8(u_int pageoffset)
653{
654	bus_space_tag_t bst = bcm53xx_ioreg_bst;
655	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
656	uint64_t rv;
657
658	mutex_spin_enter(&srab_lock);
659
660	bcm53xx_srab_busywait(bst, bsh);
661	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
662	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
663	bcm53xx_srab_busywait(bst, bsh);
664	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
665	rv <<= 32;
666	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
667
668	mutex_spin_exit(&srab_lock);
669	return rv;
670}
671
672void
673bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
674{
675	bus_space_tag_t bst = bcm53xx_ioreg_bst;
676	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
677
678	mutex_spin_enter(&srab_lock);
679
680	bcm53xx_srab_busywait(bst, bsh);
681	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
682	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
683	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
684	bcm53xx_srab_busywait(bst, bsh);
685
686	mutex_spin_exit(&srab_lock);
687}
688
689void
690bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
691{
692	bus_space_tag_t bst = bcm53xx_ioreg_bst;
693	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
694
695	mutex_spin_enter(&srab_lock);
696
697	bcm53xx_srab_busywait(bst, bsh);
698	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
699	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
700	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
701	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
702	bcm53xx_srab_busywait(bst, bsh);
703	mutex_spin_exit(&srab_lock);
704}
705