cpu.c revision 1.93
1/*	$NetBSD: cpu.c,v 1.93 2013/02/03 15:57:23 matt Exp $	*/
2
3/*
4 * Copyright (c) 1995 Mark Brinicombe.
5 * Copyright (c) 1995 Brini.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 *    endorse or promote products derived from this software without specific
21 *    prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * cpu.c
38 *
39 * Probing and configuration for the master CPU
40 *
41 * Created      : 10/10/95
42 */
43
44#include "opt_armfpe.h"
45#include "opt_multiprocessor.h"
46
47#include <sys/param.h>
48
49__KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93 2013/02/03 15:57:23 matt Exp $");
50
51#include <sys/systm.h>
52#include <sys/conf.h>
53#include <sys/cpu.h>
54#include <sys/device.h>
55#include <sys/kmem.h>
56#include <sys/proc.h>
57
58#include <uvm/uvm_extern.h>
59
60#include <arm/cpuconf.h>
61#include <arm/undefined.h>
62
63char cpu_model[256];
64extern const char *cpu_arch;
65
66#ifdef MULTIPROCESSOR
67volatile u_int arm_cpu_hatched = 0;
68u_int arm_cpu_max = 0;
69uint32_t arm_cpu_mbox __cacheline_aligned = 0;
70uint32_t arm_cpu_marker __cacheline_aligned = 1;
71#endif
72
73/* Prototypes */
74void identify_arm_cpu(device_t dv, struct cpu_info *);
75void identify_cortex_caches(device_t dv);
76void identify_features(device_t dv);
77
78/*
79 * Identify the master (boot) CPU
80 */
81
82void
83cpu_attach(device_t dv, cpuid_t id)
84{
85	const char * const xname = device_xname(dv);
86	struct cpu_info *ci;
87
88	if (id == 0) {
89		ci = curcpu();
90
91		/* Get the CPU ID from coprocessor 15 */
92
93		ci->ci_arm_cpuid = cpu_id();
94		ci->ci_arm_cputype = ci->ci_arm_cpuid & CPU_ID_CPU_MASK;
95		ci->ci_arm_cpurev = ci->ci_arm_cpuid & CPU_ID_REVISION_MASK;
96	} else {
97#ifdef MULTIPROCESSOR
98		KASSERT(cpu_info[id] == NULL);
99		ci = kmem_zalloc(sizeof(*ci), KM_SLEEP);
100		KASSERT(ci != NULL);
101		ci->ci_cpl = IPL_HIGH;
102		ci->ci_cpuid = id;
103		ci->ci_data.cpu_core_id = id;
104		ci->ci_data.cpu_cc_freq = cpu_info_store.ci_data.cpu_cc_freq;
105		ci->ci_arm_cpuid = cpu_info_store.ci_arm_cpuid;
106		ci->ci_arm_cputype = cpu_info_store.ci_arm_cputype;
107		ci->ci_arm_cpurev = cpu_info_store.ci_arm_cpurev;
108		cpu_info[ci->ci_cpuid] = ci;
109		if ((arm_cpu_hatched & (1 << id)) == 0) {
110			ci->ci_dev = dv;
111			dv->dv_private = ci;
112			aprint_naive(": disabled\n");
113			aprint_normal(": disabled (unresponsive)\n");
114			return;
115		}
116#else
117		aprint_naive(": disabled\n");
118		aprint_normal(": disabled (uniprocessor kernel)\n");
119		return;
120#endif
121	}
122
123	ci->ci_dev = dv;
124	dv->dv_private = ci;
125
126	evcnt_attach_dynamic(&ci->ci_arm700bugcount, EVCNT_TYPE_MISC,
127	    NULL, xname, "arm700swibug");
128
129	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_0], EVCNT_TYPE_TRAP,
130	    NULL, xname, "vector abort");
131	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_WRTBUF_1], EVCNT_TYPE_TRAP,
132	    NULL, xname, "terminal abort");
133	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_0], EVCNT_TYPE_TRAP,
134	    NULL, xname, "external linefetch abort (S)");
135	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_1], EVCNT_TYPE_TRAP,
136	    NULL, xname, "external linefetch abort (P)");
137	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_2], EVCNT_TYPE_TRAP,
138	    NULL, xname, "external non-linefetch abort (S)");
139	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSERR_3], EVCNT_TYPE_TRAP,
140	    NULL, xname, "external non-linefetch abort (P)");
141	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL1], EVCNT_TYPE_TRAP,
142	    NULL, xname, "external translation abort (L1)");
143	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_BUSTRNL2], EVCNT_TYPE_TRAP,
144	    NULL, xname, "external translation abort (L2)");
145	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_0], EVCNT_TYPE_TRAP,
146	    NULL, xname, "alignment abort (0)");
147	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_ALIGN_1], EVCNT_TYPE_TRAP,
148	    NULL, xname, "alignment abort (1)");
149	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_S], EVCNT_TYPE_TRAP,
150	    NULL, xname, "translation abort (S)");
151	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_TRANS_P], EVCNT_TYPE_TRAP,
152	    NULL, xname, "translation abort (P)");
153	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_S], EVCNT_TYPE_TRAP,
154	    NULL, xname, "domain abort (S)");
155	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_DOMAIN_P], EVCNT_TYPE_TRAP,
156	    NULL, xname, "domain abort (P)");
157	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_S], EVCNT_TYPE_TRAP,
158	    NULL, xname, "permission abort (S)");
159	evcnt_attach_dynamic_nozero(&ci->ci_abt_evs[FAULT_PERM_P], EVCNT_TYPE_TRAP,
160	    NULL, xname, "permission abort (P)");
161
162#ifdef MULTIPROCESSOR
163	/*
164	 * and we are done if this is a secondary processor.
165	 */
166	if (!CPU_IS_PRIMARY(ci)) {
167		aprint_naive(": %s\n", cpu_model);
168		aprint_normal(": %s\n", cpu_model);
169		mi_cpu_attach(ci);
170		return;
171	}
172#endif
173
174	identify_arm_cpu(dv, ci);
175
176#ifdef CPU_STRONGARM
177	if (ci->ci_arm_cputype == CPU_ID_SA110 &&
178	    ci->ci_arm_cpurev < 3) {
179		aprint_normal_dev(dv, "SA-110 with bugged STM^ instruction\n");
180	}
181#endif
182
183#ifdef CPU_ARM8
184	if ((ci->ci_arm_cpuid & CPU_ID_CPU_MASK) == CPU_ID_ARM810) {
185		int clock = arm8_clock_config(0, 0);
186		char *fclk;
187		aprint_normal_dev(dv, "ARM810 cp15=%02x", clock);
188		aprint_normal(" clock:%s", (clock & 1) ? " dynamic" : "");
189		aprint_normal("%s", (clock & 2) ? " sync" : "");
190		switch ((clock >> 2) & 3) {
191		case 0:
192			fclk = "bus clock";
193			break;
194		case 1:
195			fclk = "ref clock";
196			break;
197		case 3:
198			fclk = "pll";
199			break;
200		default:
201			fclk = "illegal";
202			break;
203		}
204		aprint_normal(" fclk source=%s\n", fclk);
205 	}
206#endif
207
208	vfp_attach();		/* XXX SMP */
209}
210
211enum cpu_class {
212	CPU_CLASS_NONE,
213	CPU_CLASS_ARM2,
214	CPU_CLASS_ARM2AS,
215	CPU_CLASS_ARM3,
216	CPU_CLASS_ARM6,
217	CPU_CLASS_ARM7,
218	CPU_CLASS_ARM7TDMI,
219	CPU_CLASS_ARM8,
220	CPU_CLASS_ARM9TDMI,
221	CPU_CLASS_ARM9ES,
222	CPU_CLASS_ARM9EJS,
223	CPU_CLASS_ARM10E,
224	CPU_CLASS_ARM10EJ,
225	CPU_CLASS_SA1,
226	CPU_CLASS_XSCALE,
227	CPU_CLASS_ARM11J,
228	CPU_CLASS_ARMV4,
229	CPU_CLASS_CORTEX,
230};
231
232static const char * const generic_steppings[16] = {
233	"rev 0",	"rev 1",	"rev 2",	"rev 3",
234	"rev 4",	"rev 5",	"rev 6",	"rev 7",
235	"rev 8",	"rev 9",	"rev 10",	"rev 11",
236	"rev 12",	"rev 13",	"rev 14",	"rev 15",
237};
238
239static const char * const pN_steppings[16] = {
240	"*p0",	"*p1",	"*p2",	"*p3",	"*p4",	"*p5",	"*p6",	"*p7",
241	"*p8",	"*p9",	"*p10",	"*p11",	"*p12",	"*p13",	"*p14",	"*p15",
242};
243
244static const char * const sa110_steppings[16] = {
245	"rev 0",	"step J",	"step K",	"step S",
246	"step T",	"rev 5",	"rev 6",	"rev 7",
247	"rev 8",	"rev 9",	"rev 10",	"rev 11",
248	"rev 12",	"rev 13",	"rev 14",	"rev 15",
249};
250
251static const char * const sa1100_steppings[16] = {
252	"rev 0",	"step B",	"step C",	"rev 3",
253	"rev 4",	"rev 5",	"rev 6",	"rev 7",
254	"step D",	"step E",	"rev 10"	"step G",
255	"rev 12",	"rev 13",	"rev 14",	"rev 15",
256};
257
258static const char * const sa1110_steppings[16] = {
259	"step A-0",	"rev 1",	"rev 2",	"rev 3",
260	"step B-0",	"step B-1",	"step B-2",	"step B-3",
261	"step B-4",	"step B-5",	"rev 10",	"rev 11",
262	"rev 12",	"rev 13",	"rev 14",	"rev 15",
263};
264
265static const char * const ixp12x0_steppings[16] = {
266	"(IXP1200 step A)",		"(IXP1200 step B)",
267	"rev 2",			"(IXP1200 step C)",
268	"(IXP1200 step D)",		"(IXP1240/1250 step A)",
269	"(IXP1240 step B)",		"(IXP1250 step B)",
270	"rev 8",	"rev 9",	"rev 10",	"rev 11",
271	"rev 12",	"rev 13",	"rev 14",	"rev 15",
272};
273
274static const char * const xscale_steppings[16] = {
275	"step A-0",	"step A-1",	"step B-0",	"step C-0",
276	"step D-0",	"rev 5",	"rev 6",	"rev 7",
277	"rev 8",	"rev 9",	"rev 10",	"rev 11",
278	"rev 12",	"rev 13",	"rev 14",	"rev 15",
279};
280
281static const char * const i80321_steppings[16] = {
282	"step A-0",	"step B-0",	"rev 2",	"rev 3",
283	"rev 4",	"rev 5",	"rev 6",	"rev 7",
284	"rev 8",	"rev 9",	"rev 10",	"rev 11",
285	"rev 12",	"rev 13",	"rev 14",	"rev 15",
286};
287
288static const char * const i80219_steppings[16] = {
289	"step A-0",	"rev 1",	"rev 2",	"rev 3",
290	"rev 4",	"rev 5",	"rev 6",	"rev 7",
291	"rev 8",	"rev 9",	"rev 10",	"rev 11",
292	"rev 12",	"rev 13",	"rev 14",	"rev 15",
293};
294
295/* Steppings for PXA2[15]0 */
296static const char * const pxa2x0_steppings[16] = {
297	"step A-0",	"step A-1",	"step B-0",	"step B-1",
298	"step B-2",	"step C-0",	"rev 6",	"rev 7",
299	"rev 8",	"rev 9",	"rev 10",	"rev 11",
300	"rev 12",	"rev 13",	"rev 14",	"rev 15",
301};
302
303/* Steppings for PXA255/26x.
304 * rev 5: PXA26x B0, rev 6: PXA255 A0
305 */
306static const char * const pxa255_steppings[16] = {
307	"rev 0",	"rev 1",	"rev 2",	"step A-0",
308	"rev 4",	"step B-0",	"step A-0",	"rev 7",
309	"rev 8",	"rev 9",	"rev 10",	"rev 11",
310	"rev 12",	"rev 13",	"rev 14",	"rev 15",
311};
312
313/* Stepping for PXA27x */
314static const char * const pxa27x_steppings[16] = {
315	"step A-0",	"step A-1",	"step B-0",	"step B-1",
316	"step C-0",	"rev 5",	"rev 6",	"rev 7",
317	"rev 8",	"rev 9",	"rev 10",	"rev 11",
318	"rev 12",	"rev 13",	"rev 14",	"rev 15",
319};
320
321static const char * const ixp425_steppings[16] = {
322	"step 0",	"rev 1",	"rev 2",	"rev 3",
323	"rev 4",	"rev 5",	"rev 6",	"rev 7",
324	"rev 8",	"rev 9",	"rev 10",	"rev 11",
325	"rev 12",	"rev 13",	"rev 14",	"rev 15",
326};
327
328struct cpuidtab {
329	uint32_t	cpuid;
330	enum		cpu_class cpu_class;
331	const char	*cpu_classname;
332	const char * const *cpu_steppings;
333	char		cpu_arch[8];
334};
335
336const struct cpuidtab cpuids[] = {
337	{ CPU_ID_ARM2,		CPU_CLASS_ARM2,		"ARM2",
338	  generic_steppings, "2" },
339	{ CPU_ID_ARM250,	CPU_CLASS_ARM2AS,	"ARM250",
340	  generic_steppings, "2" },
341
342	{ CPU_ID_ARM3,		CPU_CLASS_ARM3,		"ARM3",
343	  generic_steppings, "2A" },
344
345	{ CPU_ID_ARM600,	CPU_CLASS_ARM6,		"ARM600",
346	  generic_steppings, "3" },
347	{ CPU_ID_ARM610,	CPU_CLASS_ARM6,		"ARM610",
348	  generic_steppings, "3" },
349	{ CPU_ID_ARM620,	CPU_CLASS_ARM6,		"ARM620",
350	  generic_steppings, "3" },
351
352	{ CPU_ID_ARM700,	CPU_CLASS_ARM7,		"ARM700",
353	  generic_steppings, "3" },
354	{ CPU_ID_ARM710,	CPU_CLASS_ARM7,		"ARM710",
355	  generic_steppings, "3" },
356	{ CPU_ID_ARM7500,	CPU_CLASS_ARM7,		"ARM7500",
357	  generic_steppings, "3" },
358	{ CPU_ID_ARM710A,	CPU_CLASS_ARM7,		"ARM710a",
359	  generic_steppings, "3" },
360	{ CPU_ID_ARM7500FE,	CPU_CLASS_ARM7,		"ARM7500FE",
361	  generic_steppings, "3" },
362
363	{ CPU_ID_ARM810,	CPU_CLASS_ARM8,		"ARM810",
364	  generic_steppings, "4" },
365
366	{ CPU_ID_SA110,		CPU_CLASS_SA1,		"SA-110",
367	  sa110_steppings, "4" },
368	{ CPU_ID_SA1100,	CPU_CLASS_SA1,		"SA-1100",
369	  sa1100_steppings, "4" },
370	{ CPU_ID_SA1110,	CPU_CLASS_SA1,		"SA-1110",
371	  sa1110_steppings, "4" },
372
373	{ CPU_ID_FA526,		CPU_CLASS_ARMV4,	"FA526",
374	  generic_steppings, "4" },
375
376	{ CPU_ID_IXP1200,	CPU_CLASS_SA1,		"IXP1200",
377	  ixp12x0_steppings, "4" },
378
379	{ CPU_ID_ARM710T,	CPU_CLASS_ARM7TDMI,	"ARM710T",
380	  generic_steppings, "4T" },
381	{ CPU_ID_ARM720T,	CPU_CLASS_ARM7TDMI,	"ARM720T",
382	  generic_steppings, "4T" },
383	{ CPU_ID_ARM740T8K,	CPU_CLASS_ARM7TDMI, "ARM740T (8 KB cache)",
384	  generic_steppings, "4T" },
385	{ CPU_ID_ARM740T4K,	CPU_CLASS_ARM7TDMI, "ARM740T (4 KB cache)",
386	  generic_steppings, "4T" },
387	{ CPU_ID_ARM920T,	CPU_CLASS_ARM9TDMI,	"ARM920T",
388	  generic_steppings, "4T" },
389	{ CPU_ID_ARM922T,	CPU_CLASS_ARM9TDMI,	"ARM922T",
390	  generic_steppings, "4T" },
391	{ CPU_ID_ARM940T,	CPU_CLASS_ARM9TDMI,	"ARM940T",
392	  generic_steppings, "4T" },
393	{ CPU_ID_TI925T,	CPU_CLASS_ARM9TDMI,	"TI ARM925T",
394	  generic_steppings, "4T" },
395
396	{ CPU_ID_ARM946ES,	CPU_CLASS_ARM9ES,	"ARM946E-S",
397	  generic_steppings, "5TE" },
398	{ CPU_ID_ARM966ES,	CPU_CLASS_ARM9ES,	"ARM966E-S",
399	  generic_steppings, "5TE" },
400	{ CPU_ID_ARM966ESR1,	CPU_CLASS_ARM9ES,	"ARM966E-S",
401	  generic_steppings, "5TE" },
402	{ CPU_ID_MV88SV131,	CPU_CLASS_ARM9ES,	"Sheeva 88SV131",
403	  generic_steppings, "5TE" },
404	{ CPU_ID_MV88FR571_VD,	CPU_CLASS_ARM9ES,	"Sheeva 88FR571-vd",
405	  generic_steppings, "5TE" },
406
407	{ CPU_ID_80200,		CPU_CLASS_XSCALE,	"i80200",
408	  xscale_steppings, "5TE" },
409
410	{ CPU_ID_80321_400,	CPU_CLASS_XSCALE,	"i80321 400MHz",
411	  i80321_steppings, "5TE" },
412	{ CPU_ID_80321_600,	CPU_CLASS_XSCALE,	"i80321 600MHz",
413	  i80321_steppings, "5TE" },
414	{ CPU_ID_80321_400_B0,	CPU_CLASS_XSCALE,	"i80321 400MHz",
415	  i80321_steppings, "5TE" },
416	{ CPU_ID_80321_600_B0,	CPU_CLASS_XSCALE,	"i80321 600MHz",
417	  i80321_steppings, "5TE" },
418
419	{ CPU_ID_80219_400,	CPU_CLASS_XSCALE,	"i80219 400MHz",
420	  i80219_steppings, "5TE" },
421	{ CPU_ID_80219_600,	CPU_CLASS_XSCALE,	"i80219 600MHz",
422	  i80219_steppings, "5TE" },
423
424	{ CPU_ID_PXA27X,	CPU_CLASS_XSCALE,	"PXA27x",
425	  pxa27x_steppings, "5TE" },
426	{ CPU_ID_PXA250A,	CPU_CLASS_XSCALE,	"PXA250",
427	  pxa2x0_steppings, "5TE" },
428	{ CPU_ID_PXA210A,	CPU_CLASS_XSCALE,	"PXA210",
429	  pxa2x0_steppings, "5TE" },
430	{ CPU_ID_PXA250B,	CPU_CLASS_XSCALE,	"PXA250",
431	  pxa2x0_steppings, "5TE" },
432	{ CPU_ID_PXA210B,	CPU_CLASS_XSCALE,	"PXA210",
433	  pxa2x0_steppings, "5TE" },
434	{ CPU_ID_PXA250C, 	CPU_CLASS_XSCALE,	"PXA255/26x",
435	  pxa255_steppings, "5TE" },
436	{ CPU_ID_PXA210C, 	CPU_CLASS_XSCALE,	"PXA210",
437	  pxa2x0_steppings, "5TE" },
438
439	{ CPU_ID_IXP425_533,	CPU_CLASS_XSCALE,	"IXP425 533MHz",
440	  ixp425_steppings, "5TE" },
441	{ CPU_ID_IXP425_400,	CPU_CLASS_XSCALE,	"IXP425 400MHz",
442	  ixp425_steppings, "5TE" },
443	{ CPU_ID_IXP425_266,	CPU_CLASS_XSCALE,	"IXP425 266MHz",
444	  ixp425_steppings, "5TE" },
445
446	{ CPU_ID_ARM1020E,	CPU_CLASS_ARM10E,	"ARM1020E",
447	  generic_steppings, "5TE" },
448	{ CPU_ID_ARM1022ES,	CPU_CLASS_ARM10E,	"ARM1022E-S",
449	  generic_steppings, "5TE" },
450
451	{ CPU_ID_ARM1026EJS,	CPU_CLASS_ARM10EJ,	"ARM1026EJ-S",
452	  generic_steppings, "5TEJ" },
453	{ CPU_ID_ARM926EJS,	CPU_CLASS_ARM9EJS,	"ARM926EJ-S",
454	  generic_steppings, "5TEJ" },
455
456	{ CPU_ID_ARM1136JS,	CPU_CLASS_ARM11J,	"ARM1136J-S r0",
457	  pN_steppings, "6J" },
458	{ CPU_ID_ARM1136JSR1,	CPU_CLASS_ARM11J,	"ARM1136J-S r1",
459	  pN_steppings, "6J" },
460#if 0
461	/* The ARM1156T2-S only has a memory protection unit */
462	{ CPU_ID_ARM1156T2S,	CPU_CLASS_ARM11J,	"ARM1156T2-S r0",
463	  pN_steppings, "6T2" },
464#endif
465	{ CPU_ID_ARM1176JZS,	CPU_CLASS_ARM11J,	"ARM1176JZ-S r0",
466	  pN_steppings, "6ZK" },
467
468	{ CPU_ID_ARM11MPCORE,	CPU_CLASS_ARM11J, 	"ARM11 MPCore",
469	  generic_steppings, "6K" },
470
471	{ CPU_ID_CORTEXA5R0,	CPU_CLASS_CORTEX,	"Cortex-A5 r0",
472	  pN_steppings, "7A" },
473	{ CPU_ID_CORTEXA8R1,	CPU_CLASS_CORTEX,	"Cortex-A8 r1",
474	  pN_steppings, "7A" },
475	{ CPU_ID_CORTEXA8R2,	CPU_CLASS_CORTEX,	"Cortex-A8 r2",
476	  pN_steppings, "7A" },
477	{ CPU_ID_CORTEXA8R3,	CPU_CLASS_CORTEX,	"Cortex-A8 r3",
478	  pN_steppings, "7A" },
479	{ CPU_ID_CORTEXA9R2,	CPU_CLASS_CORTEX,	"Cortex-A9 r2",
480	  pN_steppings, "7A" },
481	{ CPU_ID_CORTEXA9R3,	CPU_CLASS_CORTEX,	"Cortex-A9 r3",
482	  pN_steppings, "7A" },
483	{ CPU_ID_CORTEXA9R4,	CPU_CLASS_CORTEX,	"Cortex-A9 r4",
484	  pN_steppings, "7A" },
485	{ CPU_ID_CORTEXA15R2,	CPU_CLASS_CORTEX,	"Cortex-A15 r2",
486	  pN_steppings, "7A" },
487	{ CPU_ID_CORTEXA15R3,	CPU_CLASS_CORTEX,	"Cortex-A15 r3",
488	  pN_steppings, "7A" },
489
490	{ 0, CPU_CLASS_NONE, NULL, NULL, "" }
491};
492
493struct cpu_classtab {
494	const char	*class_name;
495	const char	*class_option;
496};
497
498const struct cpu_classtab cpu_classes[] = {
499	[CPU_CLASS_NONE] =	{ "unknown",	NULL },
500	[CPU_CLASS_ARM2] =	{ "ARM2",	"CPU_ARM2" },
501	[CPU_CLASS_ARM2AS] =	{ "ARM2as",	"CPU_ARM250" },
502	[CPU_CLASS_ARM3] =	{ "ARM3",	"CPU_ARM3" },
503	[CPU_CLASS_ARM6] =	{ "ARM6",	"CPU_ARM6" },
504	[CPU_CLASS_ARM7] =	{ "ARM7",	"CPU_ARM7" },
505	[CPU_CLASS_ARM7TDMI] =	{ "ARM7TDMI",	"CPU_ARM7TDMI" },
506	[CPU_CLASS_ARM8] =	{ "ARM8",	"CPU_ARM8" },
507	[CPU_CLASS_ARM9TDMI] =	{ "ARM9TDMI",	NULL },
508	[CPU_CLASS_ARM9ES] =	{ "ARM9E-S",	"CPU_ARM9E" },
509	[CPU_CLASS_ARM9EJS] =	{ "ARM9EJ-S",	"CPU_ARM9E" },
510	[CPU_CLASS_ARM10E] =	{ "ARM10E",	"CPU_ARM10" },
511	[CPU_CLASS_ARM10EJ] =	{ "ARM10EJ",	"CPU_ARM10" },
512	[CPU_CLASS_SA1] =	{ "SA-1",	"CPU_SA110" },
513	[CPU_CLASS_XSCALE] =	{ "XScale",	"CPU_XSCALE_..." },
514	[CPU_CLASS_ARM11J] =	{ "ARM11J",	"CPU_ARM11" },
515	[CPU_CLASS_ARMV4] =	{ "ARMv4",	"CPU_ARMV4" },
516	[CPU_CLASS_CORTEX] =	{ "Cortex",	"CPU_CORTEX" },
517};
518
519/*
520 * Report the type of the specified arm processor. This uses the generic and
521 * arm specific information in the CPU structure to identify the processor.
522 * The remaining fields in the CPU structure are filled in appropriately.
523 */
524
525static const char * const wtnames[] = {
526	"write-through",
527	"write-back",
528	"write-back",
529	"**unknown 3**",
530	"**unknown 4**",
531	"write-back-locking",		/* XXX XScale-specific? */
532	"write-back-locking-A",
533	"write-back-locking-B",
534	"**unknown 8**",
535	"**unknown 9**",
536	"**unknown 10**",
537	"**unknown 11**",
538	"**unknown 12**",
539	"**unknown 13**",
540	"write-back-locking-C",
541	"write-back-locking-D",
542};
543
544static void
545print_cache_info(device_t dv, struct arm_cache_info *info, u_int level)
546{
547	if (info->cache_unified) {
548		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Unified cache\n",
549		    info->dcache_size / 1024,
550		    info->dcache_line_size, info->dcache_ways,
551		    wtnames[info->cache_type], level + 1);
552	} else {
553		aprint_normal_dev(dv, "%dKB/%dB %d-way L%u Instruction cache\n",
554		    info->icache_size / 1024,
555		    info->icache_line_size, info->icache_ways, level + 1);
556		aprint_normal_dev(dv, "%dKB/%dB %d-way %s L%u Data cache\n",
557		    info->dcache_size / 1024,
558		    info->dcache_line_size, info->dcache_ways,
559		    wtnames[info->cache_type], level + 1);
560	}
561}
562
563void
564identify_arm_cpu(device_t dv, struct cpu_info *ci)
565{
566	enum cpu_class cpu_class = CPU_CLASS_NONE;
567	const u_int cpuid = ci->ci_arm_cpuid;
568	const char * const xname = device_xname(dv);
569	const char *steppingstr;
570	int i;
571
572	if (cpuid == 0) {
573		aprint_error("Processor failed probe - no CPU ID\n");
574		return;
575	}
576
577	for (i = 0; cpuids[i].cpuid != 0; i++)
578		if (cpuids[i].cpuid == (cpuid & CPU_ID_CPU_MASK)) {
579			cpu_class = cpuids[i].cpu_class;
580			cpu_arch = cpuids[i].cpu_arch;
581			steppingstr = cpuids[i].cpu_steppings[cpuid &
582			    CPU_ID_REVISION_MASK];
583			snprintf(cpu_model, sizeof(cpu_model),
584			    "%s%s%s (%s V%s core)", cpuids[i].cpu_classname,
585			    steppingstr[0] == '*' ? "" : " ",
586			    &steppingstr[steppingstr[0] == '*'],
587			    cpu_classes[cpu_class].class_name,
588			    cpu_arch);
589			break;
590		}
591
592	if (cpuids[i].cpuid == 0)
593		snprintf(cpu_model, sizeof(cpu_model),
594		    "unknown CPU (ID = 0x%x)", cpuid);
595
596	if (ci->ci_data.cpu_cc_freq != 0) {
597		char freqbuf[8];
598		humanize_number(freqbuf, sizeof(freqbuf), ci->ci_data.cpu_cc_freq,
599		    "Hz", 1000);
600
601		aprint_naive(": %s %s\n", freqbuf, cpu_model);
602		aprint_normal(": %s %s\n", freqbuf, cpu_model);
603	} else {
604		aprint_naive(": %s\n", cpu_model);
605		aprint_normal(": %s\n", cpu_model);
606	}
607
608	aprint_normal("%s:", xname);
609
610	switch (cpu_class) {
611	case CPU_CLASS_ARM6:
612	case CPU_CLASS_ARM7:
613	case CPU_CLASS_ARM7TDMI:
614	case CPU_CLASS_ARM8:
615		if ((ci->ci_ctrl & CPU_CONTROL_IDC_ENABLE) == 0)
616			aprint_normal(" IDC disabled");
617		else
618			aprint_normal(" IDC enabled");
619		break;
620	case CPU_CLASS_ARM9TDMI:
621	case CPU_CLASS_ARM9ES:
622	case CPU_CLASS_ARM9EJS:
623	case CPU_CLASS_ARM10E:
624	case CPU_CLASS_ARM10EJ:
625	case CPU_CLASS_SA1:
626	case CPU_CLASS_XSCALE:
627	case CPU_CLASS_ARM11J:
628	case CPU_CLASS_ARMV4:
629	case CPU_CLASS_CORTEX:
630		if ((ci->ci_ctrl & CPU_CONTROL_DC_ENABLE) == 0)
631			aprint_normal(" DC disabled");
632		else
633			aprint_normal(" DC enabled");
634		if ((ci->ci_ctrl & CPU_CONTROL_IC_ENABLE) == 0)
635			aprint_normal(" IC disabled");
636		else
637			aprint_normal(" IC enabled");
638		break;
639	default:
640		break;
641	}
642	if ((ci->ci_ctrl & CPU_CONTROL_WBUF_ENABLE) == 0)
643		aprint_normal(" WB disabled");
644	else
645		aprint_normal(" WB enabled");
646
647	if (ci->ci_ctrl & CPU_CONTROL_LABT_ENABLE)
648		aprint_normal(" LABT");
649	else
650		aprint_normal(" EABT");
651
652	if (ci->ci_ctrl & CPU_CONTROL_BPRD_ENABLE)
653		aprint_normal(" branch prediction enabled");
654
655	aprint_normal("\n");
656
657	if (CPU_ID_CORTEX_P(cpuid) || CPU_ID_ARM11_P(cpuid)) {
658		identify_features(dv);
659	}
660
661	/* Print cache info. */
662	if (arm_pcache.icache_line_size != 0 || arm_pcache.dcache_line_size != 0) {
663		print_cache_info(dv, &arm_pcache, 0);
664	}
665	if (arm_scache.icache_line_size != 0 || arm_scache.dcache_line_size != 0) {
666		print_cache_info(dv, &arm_scache, 1);
667	}
668
669
670	switch (cpu_class) {
671#ifdef CPU_ARM2
672	case CPU_CLASS_ARM2:
673#endif
674#ifdef CPU_ARM250
675	case CPU_CLASS_ARM2AS:
676#endif
677#ifdef CPU_ARM3
678	case CPU_CLASS_ARM3:
679#endif
680#ifdef CPU_ARM6
681	case CPU_CLASS_ARM6:
682#endif
683#ifdef CPU_ARM7
684	case CPU_CLASS_ARM7:
685#endif
686#ifdef CPU_ARM7TDMI
687	case CPU_CLASS_ARM7TDMI:
688#endif
689#ifdef CPU_ARM8
690	case CPU_CLASS_ARM8:
691#endif
692#ifdef CPU_ARM9
693	case CPU_CLASS_ARM9TDMI:
694#endif
695#if defined(CPU_ARM9E) || defined(CPU_SHEEVA)
696	case CPU_CLASS_ARM9ES:
697	case CPU_CLASS_ARM9EJS:
698#endif
699#ifdef CPU_ARM10
700	case CPU_CLASS_ARM10E:
701	case CPU_CLASS_ARM10EJ:
702#endif
703#if defined(CPU_SA110) || defined(CPU_SA1100) || \
704    defined(CPU_SA1110) || defined(CPU_IXP12X0)
705	case CPU_CLASS_SA1:
706#endif
707#if defined(CPU_XSCALE_80200) || defined(CPU_XSCALE_80321) || \
708    defined(__CPU_XSCALE_PXA2XX) || defined(CPU_XSCALE_IXP425)
709	case CPU_CLASS_XSCALE:
710#endif
711#if defined(CPU_ARM11)
712	case CPU_CLASS_ARM11J:
713#endif
714#if defined(CPU_CORTEX)
715	case CPU_CLASS_CORTEX:
716#endif
717#if defined(CPU_FA526)
718	case CPU_CLASS_ARMV4:
719#endif
720		break;
721	default:
722		if (cpu_classes[cpu_class].class_option == NULL) {
723			aprint_error_dev(dv, "%s does not fully support this CPU.\n",
724			     ostype);
725		} else {
726			aprint_error_dev(dv, "This kernel does not fully support "
727			       "this CPU.\n");
728			aprint_normal_dev(dv, "Recompile with \"options %s\" to "
729			       "correct this.\n", cpu_classes[cpu_class].class_option);
730		}
731		break;
732	}
733}
734
735extern int cpu_instruction_set_attributes[6];
736extern int cpu_memory_model_features[4];
737extern int cpu_processor_features[2];
738extern int cpu_simd_present;
739extern int cpu_simdex_present;
740
741void
742identify_features(device_t dv)
743{
744	cpu_instruction_set_attributes[0] = armreg_isar0_read();
745	cpu_instruction_set_attributes[1] = armreg_isar1_read();
746	cpu_instruction_set_attributes[2] = armreg_isar2_read();
747	cpu_instruction_set_attributes[3] = armreg_isar3_read();
748	cpu_instruction_set_attributes[4] = armreg_isar4_read();
749	cpu_instruction_set_attributes[5] = armreg_isar5_read();
750
751	cpu_simd_present =
752	    ((cpu_instruction_set_attributes[3] >> 4) & 0x0f) >= 3;
753	cpu_simdex_present = cpu_simd_present
754	    && ((cpu_instruction_set_attributes[1] >> 12) & 0x0f) >= 2;
755
756	cpu_memory_model_features[0] = armreg_mmfr0_read();
757	cpu_memory_model_features[1] = armreg_mmfr1_read();
758	cpu_memory_model_features[2] = armreg_mmfr2_read();
759	cpu_memory_model_features[3] = armreg_mmfr3_read();
760
761	if (__SHIFTOUT(cpu_memory_model_features[3], __BITS(23,20))) {
762		/*
763		 * Updates to the translation tables do not require a clean
764		 * to the point of unification to ensure visibility by
765		 * subsequent translation table walks.
766		 */
767		pmap_needs_pte_sync = 0;
768	}
769
770	cpu_processor_features[0] = armreg_pfr0_read();
771	cpu_processor_features[1] = armreg_pfr1_read();
772
773	aprint_verbose_dev(dv,
774	    "isar: [0]=%#x [1]=%#x [2]=%#x [3]=%#x, [4]=%#x, [5]=%#x\n",
775	    cpu_instruction_set_attributes[0],
776	    cpu_instruction_set_attributes[1],
777	    cpu_instruction_set_attributes[2],
778	    cpu_instruction_set_attributes[3],
779	    cpu_instruction_set_attributes[4],
780	    cpu_instruction_set_attributes[5]);
781	aprint_verbose_dev(dv,
782	    "mmfr: [0]=%#x [1]=%#x [2]=%#x [3]=%#x\n",
783	    cpu_memory_model_features[0], cpu_memory_model_features[1],
784	    cpu_memory_model_features[2], cpu_memory_model_features[3]);
785	aprint_verbose_dev(dv,
786	    "pfr: [0]=%#x [1]=%#x\n",
787	    cpu_processor_features[0], cpu_processor_features[1]);
788}
789