arm32_kvminit.c revision 1.51
1/*	$NetBSD: arm32_kvminit.c,v 1.51 2019/02/06 13:22:54 skrll Exp $	*/
2
3/*
4 * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgement:
46 *	This product includes software developed for the NetBSD Project by
47 *	Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 *    or promote products derived from this software without specific prior
50 *    written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 *    notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 *    notice, this list of conditions and the following disclaimer in the
75 *    documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 *    must display the following acknowledgement:
78 *	This product includes software developed by Mark Brinicombe
79 *	for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 *    endorse or promote products derived from this software without specific
82 *    prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 *    notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 *    notice, this list of conditions and the following disclaimer in the
106 *    documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 *    must display the following acknowledgement:
109 *	This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124#include "opt_arm_debug.h"
125#include "opt_arm_start.h"
126#include "opt_fdt.h"
127#include "opt_multiprocessor.h"
128
129#include <sys/cdefs.h>
130__KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.51 2019/02/06 13:22:54 skrll Exp $");
131
132#include <sys/param.h>
133#include <sys/device.h>
134#include <sys/kernel.h>
135#include <sys/reboot.h>
136#include <sys/bus.h>
137
138#include <dev/cons.h>
139
140#include <uvm/uvm_extern.h>
141
142#include <arm/locore.h>
143#include <arm/db_machdep.h>
144#include <arm/undefined.h>
145#include <arm/bootconfig.h>
146#include <arm/arm32/machdep.h>
147
148#if defined(FDT)
149#include <arch/evbarm/fdt/platform.h>
150#include <arm/fdt/arm_fdtvar.h>
151#endif
152
153#ifdef MULTIPROCESSOR
154#ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
155#error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
156#endif
157#endif
158
159#ifdef VERBOSE_INIT_ARM
160#define VPRINTF(...)	printf(__VA_ARGS__)
161#else
162#define VPRINTF(...)	__nothing
163#endif
164
165struct bootmem_info bootmem_info;
166
167extern void *msgbufaddr;
168paddr_t msgbufphys;
169paddr_t physical_start;
170paddr_t physical_end;
171
172extern char etext[];
173extern char __data_start[], _edata[];
174extern char __bss_start[], __bss_end__[];
175extern char _end[];
176
177/* Page tables for mapping kernel VM */
178#define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
179
180u_long kern_vtopdiff __attribute__((__section__(".data")));
181
182void
183arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
184{
185	struct bootmem_info * const bmi = &bootmem_info;
186	pv_addr_t *pv = bmi->bmi_freeblocks;
187
188	/*
189	 * FDT/generic start fills in kern_vtopdiff early
190	 */
191#if defined(__HAVE_GENERIC_START)
192	extern char KERNEL_BASE_virt[];
193	extern char ARM_BOOTSTRAP_LxPT[];
194
195	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
196
197	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
198	vaddr_t kendva = round_page((vaddr_t)ARM_BOOTSTRAP_LxPT + L1_TABLE_SIZE);
199
200	kernelstart = KERN_VTOPHYS(kstartva);
201
202	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
203#else
204	vaddr_t kendva = round_page((vaddr_t)_end);
205
206#if defined(KERNEL_BASE_VOFFSET)
207	kern_vtopdiff = KERNEL_BASE_VOFFSET;
208#else
209	KASSERT(memstart == kernelstart);
210	kern_vtopdiff = KERNEL_BASE + memstart;
211#endif
212#endif
213	paddr_t kernelend = KERN_VTOPHYS(kendva);
214
215	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
216	    memstart, memsize);
217	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
218	    kernelstart, kernelend);
219
220	physical_start = bmi->bmi_start = memstart;
221	physical_end = bmi->bmi_end = memstart + memsize;
222#ifndef ARM_HAS_LPAE
223	if (physical_end == 0) {
224		physical_end = -PAGE_SIZE;
225		memsize -= PAGE_SIZE;
226		bmi->bmi_end -= PAGE_SIZE;
227		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
228		    __func__);
229	}
230#endif
231	physmem = memsize / PAGE_SIZE;
232
233	/*
234	 * Let's record where the kernel lives.
235	 */
236
237	bmi->bmi_kernelstart = kernelstart;
238	bmi->bmi_kernelend = kernelend;
239
240#if defined(FDT)
241	fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
242	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
243#endif
244
245	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
246	    kernelend);
247
248#if 0
249	// XXX Makes RPI abort
250	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
251#endif
252	/*
253	 * Now the rest of the free memory must be after the kernel.
254	 */
255	pv->pv_pa = bmi->bmi_kernelend;
256	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
257	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
258	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
259	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
260	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
261	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
262	pv++;
263
264	/*
265	 * Add a free block for any memory before the kernel.
266	 */
267	if (bmi->bmi_start < bmi->bmi_kernelstart) {
268		pv->pv_pa = bmi->bmi_start;
269		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
270		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
271		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
272		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
273		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
274		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
275		pv++;
276	}
277
278	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
279
280	SLIST_INIT(&bmi->bmi_freechunks);
281	SLIST_INIT(&bmi->bmi_chunks);
282}
283
284static bool
285concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
286{
287	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
288	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
289	    && acc_pv->pv_prot == pv->pv_prot
290	    && acc_pv->pv_cache == pv->pv_cache) {
291#if 0
292		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
293		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
294		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
295#endif
296		acc_pv->pv_size += pv->pv_size;
297		return true;
298	}
299
300	return false;
301}
302
303static void
304add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
305{
306	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
307	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
308		pv_addr_t * const pv0 = (*pvp);
309		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
310		if (concat_pvaddr(pv0, pv)) {
311			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
312			    __func__, "appending", pv,
313			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
314			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
315			pv = SLIST_NEXT(pv0, pv_list);
316			if (pv != NULL && concat_pvaddr(pv0, pv)) {
317				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
318				    __func__, "merging", pv,
319				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
320				    pv0->pv_pa,
321				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
322				SLIST_REMOVE_AFTER(pv0, pv_list);
323				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
324			}
325			return;
326		}
327		KASSERT(pv->pv_va != (*pvp)->pv_va);
328		pvp = &SLIST_NEXT(*pvp, pv_list);
329	}
330	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
331	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
332	KASSERT(new_pv != NULL);
333	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
334	*new_pv = *pv;
335	SLIST_NEXT(new_pv, pv_list) = *pvp;
336	(*pvp) = new_pv;
337
338	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
339	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
340	    new_pv->pv_size / PAGE_SIZE);
341	if (SLIST_NEXT(new_pv, pv_list)) {
342		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
343	} else {
344		VPRINTF("at tail\n");
345	}
346}
347
348static void
349valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
350	int prot, int cache, bool zero_p)
351{
352	size_t nbytes = npages * PAGE_SIZE;
353	pv_addr_t *free_pv = bmi->bmi_freeblocks;
354	size_t free_idx = 0;
355	static bool l1pt_found;
356
357	KASSERT(npages > 0);
358
359	/*
360	 * If we haven't allocated the kernel L1 page table and we are aligned
361	 * at a L1 table boundary, alloc the memory for it.
362	 */
363	if (!l1pt_found
364	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
365	    && free_pv->pv_size >= L1_TABLE_SIZE) {
366		l1pt_found = true;
367		VPRINTF(" l1pt");
368
369		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
370		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
371		add_pages(bmi, &kernel_l1pt);
372	}
373
374	while (nbytes > free_pv->pv_size) {
375		free_pv++;
376		free_idx++;
377		if (free_idx == bmi->bmi_nfreeblocks) {
378			panic("%s: could not allocate %zu bytes",
379			    __func__, nbytes);
380		}
381	}
382
383	/*
384	 * As we allocate the memory, make sure that we don't walk over
385	 * our current first level translation table.
386	 */
387	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
388
389#if defined(FDT)
390	fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
391#endif
392	pv->pv_pa = free_pv->pv_pa;
393	pv->pv_va = free_pv->pv_va;
394	pv->pv_size = nbytes;
395	pv->pv_prot = prot;
396	pv->pv_cache = cache;
397
398	/*
399	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
400	 * just use PTE_CACHE.
401	 */
402	if (cache == PTE_PAGETABLE
403	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
404	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
405	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
406		pv->pv_cache = PTE_CACHE;
407
408	free_pv->pv_pa += nbytes;
409	free_pv->pv_va += nbytes;
410	free_pv->pv_size -= nbytes;
411	if (free_pv->pv_size == 0) {
412		--bmi->bmi_nfreeblocks;
413		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
414			free_pv[0] = free_pv[1];
415		}
416	}
417
418	bmi->bmi_freepages -= npages;
419
420	if (zero_p)
421		memset((void *)pv->pv_va, 0, nbytes);
422}
423
424void
425arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
426	const struct pmap_devmap *devmap, bool mapallmem_p)
427{
428	struct bootmem_info * const bmi = &bootmem_info;
429#ifdef MULTIPROCESSOR
430	const size_t cpu_num = arm_cpu_max;
431#else
432	const size_t cpu_num = 1;
433#endif
434
435#ifdef ARM_HAS_VBAR
436	const bool map_vectors_p = false;
437#elif defined(CPU_ARMV7) || defined(CPU_ARM11)
438	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
439	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
440#else
441	const bool map_vectors_p = true;
442#endif
443
444#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
445	KASSERT(mapallmem_p);
446#ifdef ARM_MMU_EXTENDED
447	/*
448	 * The direct map VA space ends at the start of the kernel VM space.
449	 */
450	pmap_directlimit = kernel_vm_base;
451#else
452	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
453#endif /* ARM_MMU_EXTENDED */
454#endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
455
456	/*
457	 * Calculate the number of L2 pages needed for mapping the
458	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
459	 * and 1 for IO
460	 */
461	size_t kernel_size = bmi->bmi_kernelend;
462	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
463	kernel_size += L1_TABLE_SIZE_REAL;
464	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
465	if (map_vectors_p) {
466		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
467	}
468	if (iovbase) {
469		kernel_size += PAGE_SIZE;	/* L2PT for IO */
470	}
471	kernel_size +=
472	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
473	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
474	kernel_size += round_page(MSGBUFSIZE);
475	kernel_size += 0x10000;	/* slop */
476	if (!mapallmem_p) {
477		kernel_size += PAGE_SIZE
478		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
479	}
480	kernel_size = round_page(kernel_size);
481
482	/*
483	 * Now we know how many L2 pages it will take.
484	 */
485	const size_t KERNEL_L2PT_KERNEL_NUM =
486	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
487
488	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
489	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
490
491	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
492	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
493	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
494	pv_addr_t msgbuf;
495	pv_addr_t text;
496	pv_addr_t data;
497	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
498#if ARM_MMU_XSCALE == 1
499	pv_addr_t minidataclean;
500#endif
501
502	/*
503	 * We need to allocate some fixed page tables to get the kernel going.
504	 *
505	 * We are going to allocate our bootstrap pages from the beginning of
506	 * the free space that we just calculated.  We allocate one page
507	 * directory and a number of page tables and store the physical
508	 * addresses in the bmi_l2pts array in bootmem_info.
509	 *
510	 * The kernel page directory must be on a 16K boundary.  The page
511	 * tables must be on 4K boundaries.  What we do is allocate the
512	 * page directory on the first 16K boundary that we encounter, and
513	 * the page tables on 4K boundaries otherwise.  Since we allocate
514	 * at least 3 L2 page tables, we are guaranteed to encounter at
515	 * least one 16K aligned region.
516	 */
517
518	VPRINTF("%s: allocating page tables for", __func__);
519	for (size_t i = 0; i < __arraycount(chunks); i++) {
520		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
521	}
522
523	kernel_l1pt.pv_pa = 0;
524	kernel_l1pt.pv_va = 0;
525
526	/*
527	 * Allocate the L2 pages, but if we get to a page that is aligned for
528	 * an L1 page table, we will allocate the pages for it first and then
529	 * allocate the L2 page.
530	 */
531
532	if (map_vectors_p) {
533		/*
534		 * First allocate L2 page for the vectors.
535		 */
536		VPRINTF(" vector");
537		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
538		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
539		add_pages(bmi, &bmi->bmi_vector_l2pt);
540	}
541
542	/*
543	 * Now allocate L2 pages for the kernel
544	 */
545	VPRINTF(" kernel");
546	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
547		valloc_pages(bmi, &kernel_l2pt[idx], 1,
548		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
549		add_pages(bmi, &kernel_l2pt[idx]);
550	}
551
552	/*
553	 * Now allocate L2 pages for the initial kernel VA space.
554	 */
555	VPRINTF(" vm");
556	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
557		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
558		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
559		add_pages(bmi, &vmdata_l2pt[idx]);
560	}
561
562	/*
563	 * If someone wanted a L2 page for I/O, allocate it now.
564	 */
565	if (iovbase) {
566		VPRINTF(" io");
567		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
568		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
569		add_pages(bmi, &bmi->bmi_io_l2pt);
570	}
571
572	VPRINTF("%s: allocating stacks\n", __func__);
573
574	/* Allocate stacks for all modes and CPUs */
575	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
576	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
577	add_pages(bmi, &abtstack);
578	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
579	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
580	add_pages(bmi, &fiqstack);
581	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
582	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
583	add_pages(bmi, &irqstack);
584	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
585	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
586	add_pages(bmi, &undstack);
587	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
588	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
589	add_pages(bmi, &idlestack);
590	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
591	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
592	add_pages(bmi, &kernelstack);
593
594	/* Allocate the message buffer from the end of memory. */
595	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
596	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
597	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
598	add_pages(bmi, &msgbuf);
599	msgbufphys = msgbuf.pv_pa;
600	msgbufaddr = (void *)msgbuf.pv_va;
601
602	if (map_vectors_p) {
603		/*
604		 * Allocate a page for the system vector page.
605		 * This page will just contain the system vectors and can be
606		 * shared by all processes.
607		 */
608		VPRINTF(" vector");
609
610		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
611		    PTE_CACHE, true);
612	}
613	systempage.pv_va = vectors;
614
615	/*
616	 * If the caller needed a few extra pages for some reason, allocate
617	 * them now.
618	 */
619#if ARM_MMU_XSCALE == 1
620#if (ARM_NMMUS > 1)
621	if (xscale_use_minidata)
622#endif
623		valloc_pages(bmi, &minidataclean, 1,
624		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
625#endif
626
627	/*
628	 * Ok we have allocated physical pages for the primary kernel
629	 * page tables and stacks.  Let's just confirm that.
630	 */
631	if (kernel_l1pt.pv_va == 0
632	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
633		panic("%s: Failed to allocate or align the kernel "
634		    "page directory", __func__);
635
636	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
637	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
638
639	/*
640	 * Now we start construction of the L1 page table
641	 * We start by mapping the L2 page tables into the L1.
642	 * This means that we can replace L1 mappings later on if necessary
643	 */
644	vaddr_t l1pt_va = kernel_l1pt.pv_va;
645	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
646
647	if (map_vectors_p) {
648		/* Map the L2 pages tables in the L1 page table */
649		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
650		    &bmi->bmi_vector_l2pt);
651		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) "
652		    "for VA %#lx\n (vectors)",
653		    __func__, bmi->bmi_vector_l2pt.pv_va,
654		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
655	}
656
657	/*
658	 * This enforces a alignment requirement of L2_S_SEGSIZE for kernel
659	 * start PA
660	 */
661	const vaddr_t kernel_base =
662	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
663
664	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
665	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
666
667	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
668		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
669		    &kernel_l2pt[idx]);
670		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
671		    __func__, kernel_l2pt[idx].pv_va,
672		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
673	}
674
675	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
676	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
677
678	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
679		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
680		    &vmdata_l2pt[idx]);
681		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
682		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
683		    kernel_vm_base + idx * L2_S_SEGSIZE);
684	}
685	if (iovbase) {
686		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
687		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
688		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
689		    iovbase & -L2_S_SEGSIZE);
690	}
691
692	/* update the top of the kernel VM */
693	pmap_curmaxkvaddr =
694	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
695
696	// This could be done earlier and then the kernel data and pages
697	// allocated above would get merged (concatentated)
698
699	VPRINTF("Mapping kernel\n");
700
701	extern char etext[];
702	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
703	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
704
705	textsize = (textsize + PGOFSET) & ~PGOFSET;
706
707	/* start at offset of kernel in RAM */
708
709	text.pv_pa = bmi->bmi_kernelstart;
710	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
711	text.pv_size = textsize;
712	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
713	text.pv_cache = PTE_CACHE;
714
715	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
716	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
717
718	add_pages(bmi, &text);
719
720	data.pv_pa = text.pv_pa + textsize;
721	data.pv_va = text.pv_va + textsize;
722	data.pv_size = totalsize - textsize;
723	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
724	data.pv_cache = PTE_CACHE;
725
726	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
727	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
728
729	add_pages(bmi, &data);
730
731	VPRINTF("Listing Chunks\n");
732
733	pv_addr_t *lpv;
734	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
735		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
736		    "(PA %#lx, prot %d, cache %d)\n",
737		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
738		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
739	}
740	VPRINTF("\nMapping Chunks\n");
741
742	pv_addr_t cur_pv;
743	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
744	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
745		cur_pv = *pv;
746		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
747		pv = SLIST_NEXT(pv, pv_list);
748	} else {
749		cur_pv.pv_va = KERNEL_BASE;
750		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
751		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
752		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
753		cur_pv.pv_cache = PTE_CACHE;
754	}
755	while (pv != NULL) {
756		if (mapallmem_p) {
757			if (concat_pvaddr(&cur_pv, pv)) {
758				pv = SLIST_NEXT(pv, pv_list);
759				continue;
760			}
761			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
762				/*
763				 * See if we can extend the current pv to emcompass the
764				 * hole, and if so do it and retry the concatenation.
765				 */
766				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
767				    && cur_pv.pv_cache == PTE_CACHE) {
768					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
769					continue;
770				}
771
772				/*
773				 * We couldn't so emit the current chunk and then
774				 */
775				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
776				    "(PA %#lx, prot %d, cache %d)\n",
777				    __func__,
778				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
779				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
780				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
781				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
782
783				/*
784				 * set the current chunk to the hole and try again.
785				 */
786				cur_pv.pv_pa += cur_pv.pv_size;
787				cur_pv.pv_va += cur_pv.pv_size;
788				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
789				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
790				cur_pv.pv_cache = PTE_CACHE;
791				continue;
792			}
793		}
794
795		/*
796		 * The new pv didn't concatenate so emit the current one
797		 * and use the new pv as the current pv.
798		 */
799		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
800		    "(PA %#lx, prot %d, cache %d)\n",
801		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
802		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
803		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
804		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
805		cur_pv = *pv;
806		pv = SLIST_NEXT(pv, pv_list);
807	}
808
809	/*
810	 * If we are mapping all of memory, let's map the rest of memory.
811	 */
812	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
813		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
814		    && cur_pv.pv_cache == PTE_CACHE) {
815			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
816		} else {
817			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
818			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
819			    kernel_vm_base);
820			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
821			    "(PA %#lx, prot %d, cache %d)\n",
822			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
823			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
824			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
825			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
826			cur_pv.pv_pa += cur_pv.pv_size;
827			cur_pv.pv_va += cur_pv.pv_size;
828			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
829			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
830			cur_pv.pv_cache = PTE_CACHE;
831		}
832	}
833
834	/*
835	 * The amount we can direct map is limited by the start of the
836	 * virtual part of the kernel address space.  Don't overrun
837	 * into it.
838	 */
839	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
840		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
841	}
842
843	/*
844	 * Now we map the final chunk.
845	 */
846	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
847	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
848	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
849	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
850	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
851
852	/*
853	 * Now we map the stuff that isn't directly after the kernel
854	 */
855	if (map_vectors_p) {
856		/* Map the vector page. */
857		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
858		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
859	}
860
861	/* Map the Mini-Data cache clean area. */
862#if ARM_MMU_XSCALE == 1
863#if (ARM_NMMUS > 1)
864	if (xscale_use_minidata)
865#endif
866		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
867		    minidataclean.pv_pa);
868#endif
869
870	/*
871	 * Map integrated peripherals at same address in first level page
872	 * table so that we can continue to use console.
873	 */
874	if (devmap)
875		pmap_devmap_bootstrap(l1pt_va, devmap);
876
877	/* Tell the user about where all the bits and pieces live. */
878	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
879	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
880
881#ifdef VERBOSE_INIT_ARM
882	static const char mem_fmt[] =
883	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
884	static const char mem_fmt_nov[] =
885	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
886#endif
887
888#if 0
889	// XXX Doesn't make sense if kernel not at bottom of RAM
890	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
891	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
892	    (int)physmem);
893#endif
894	VPRINTF(mem_fmt, "text section",
895	       text.pv_pa, text.pv_pa + text.pv_size - 1,
896	       text.pv_va, text.pv_va + text.pv_size - 1,
897	       (int)(text.pv_size / PAGE_SIZE));
898	VPRINTF(mem_fmt, "data section",
899	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
900	       (vaddr_t)__data_start, (vaddr_t)_edata,
901	       (int)((round_page((vaddr_t)_edata)
902		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
903	VPRINTF(mem_fmt, "bss section",
904	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
905	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
906	       (int)((round_page((vaddr_t)__bss_end__)
907		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
908	VPRINTF(mem_fmt, "L1 page directory",
909	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
910	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
911	    L1_TABLE_SIZE / PAGE_SIZE);
912	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
913	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
914	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
915	    ABT_STACK_SIZE);
916	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
917	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
918	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
919	    FIQ_STACK_SIZE);
920	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
921	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
922	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
923	    IRQ_STACK_SIZE);
924	VPRINTF(mem_fmt, "UND stack (CPU 0)",
925	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
926	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
927	    UND_STACK_SIZE);
928	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
929	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
930	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
931	    UPAGES);
932	VPRINTF(mem_fmt, "SVC stack",
933	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
934	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
935	    UPAGES);
936	VPRINTF(mem_fmt, "Message Buffer",
937	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
938	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
939	    (int)msgbuf_pgs);
940	if (map_vectors_p) {
941		VPRINTF(mem_fmt, "Exception Vectors",
942		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
943		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
944		    1);
945	}
946	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
947		pv = &bmi->bmi_freeblocks[i];
948
949		VPRINTF(mem_fmt_nov, "Free Memory",
950		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
951		    pv->pv_size / PAGE_SIZE);
952	}
953	/*
954	 * Now we have the real page tables in place so we can switch to them.
955	 * Once this is done we will be running with the REAL kernel page
956	 * tables.
957	 */
958
959	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
960#ifdef _ARM_ARCH_6
961	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
962	    armreg_ttbr1_read(), armreg_ttbcr_read(),
963	    armreg_contextidr_read());
964#endif
965	VPRINTF("\n");
966
967	/* Switch tables */
968	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
969
970	cpu_ttb = l1pt_pa;
971
972	cpu_domains(DOMAIN_DEFAULT);
973
974	cpu_idcache_wbinv_all();
975
976#ifdef __HAVE_GENERIC_START
977
978	/*
979	 * Turn on caches and set SCTLR/ACTLR
980	 */
981	cpu_setup(boot_args);
982#endif
983
984	VPRINTF(" ttb");
985
986#ifdef ARM_MMU_EXTENDED
987	/*
988	 * TTBCR should have been initialized by the MD start code.
989	 */
990	KASSERT((armreg_contextidr_read() & 0xff) == 0);
991	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
992	/*
993	 * Disable lookups via TTBR0 until there is an activated pmap.
994	 */
995	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
996	cpu_setttb(l1pt_pa, KERNEL_PID);
997	arm_isb();
998#else
999	cpu_setttb(l1pt_pa, true);
1000#endif
1001
1002	cpu_tlb_flushID();
1003
1004#ifdef ARM_MMU_EXTENDED
1005	VPRINTF("\nsctlr=%#x actlr=%#x\n",
1006	    armreg_sctlr_read(), armreg_auxctl_read());
1007#else
1008	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
1009#endif
1010
1011#ifdef MULTIPROCESSOR
1012#ifndef __HAVE_GENERIC_START
1013	/*
1014	 * Kick the secondaries to load the TTB.  After which they'll go
1015	 * back to sleep to wait for the final kick so they will hatch.
1016	 */
1017	VPRINTF(" hatchlings");
1018	cpu_boot_secondary_processors();
1019#endif
1020#endif
1021
1022	VPRINTF(" OK\n");
1023}
1024