arm32_kvminit.c revision 1.35
1/*	$NetBSD: arm32_kvminit.c,v 1.35 2015/06/01 19:16:44 matt Exp $	*/
2
3/*
4 * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 *    promote products derived from this software without specific prior
17 *    written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgement:
46 *	This product includes software developed for the NetBSD Project by
47 *	Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 *    or promote products derived from this software without specific prior
50 *    written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 *    notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 *    notice, this list of conditions and the following disclaimer in the
75 *    documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 *    must display the following acknowledgement:
78 *	This product includes software developed by Mark Brinicombe
79 *	for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 *    endorse or promote products derived from this software without specific
82 *    prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 *    notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 *    notice, this list of conditions and the following disclaimer in the
106 *    documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 *    must display the following acknowledgement:
109 *	This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124#include "opt_multiprocessor.h"
125
126#include <sys/cdefs.h>
127__KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.35 2015/06/01 19:16:44 matt Exp $");
128
129#include <sys/param.h>
130#include <sys/device.h>
131#include <sys/kernel.h>
132#include <sys/reboot.h>
133#include <sys/bus.h>
134
135#include <dev/cons.h>
136
137#include <uvm/uvm_extern.h>
138
139#include <arm/locore.h>
140#include <arm/db_machdep.h>
141#include <arm/undefined.h>
142#include <arm/bootconfig.h>
143#include <arm/arm32/machdep.h>
144
145struct bootmem_info bootmem_info;
146
147extern void *msgbufaddr;
148paddr_t msgbufphys;
149paddr_t physical_start;
150paddr_t physical_end;
151
152extern char etext[];
153extern char __data_start[], _edata[];
154extern char __bss_start[], __bss_end__[];
155extern char _end[];
156
157/* Page tables for mapping kernel VM */
158#define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
159
160/*
161 * Macros to translate between physical and virtual for a subset of the
162 * kernel address space.  *Not* for general use.
163 */
164#if defined(KERNEL_BASE_VOFFSET)
165#define KERN_VTOPHYS(bmi, va) \
166	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
167#define KERN_PHYSTOV(bmi, pa) \
168	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
169#else
170#define KERN_VTOPHYS(bmi, va) \
171	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
172#define KERN_PHYSTOV(bmi, pa) \
173	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
174#endif
175
176void
177arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
178{
179	struct bootmem_info * const bmi = &bootmem_info;
180	pv_addr_t *pv = bmi->bmi_freeblocks;
181
182#ifdef VERBOSE_INIT_ARM
183	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
184	    __func__, memstart, memsize, kernelstart);
185#endif
186
187	physical_start = bmi->bmi_start = memstart;
188	physical_end = bmi->bmi_end = memstart + memsize;
189#ifndef ARM_HAS_LPAE
190	if (physical_end == 0) {
191		physical_end = -PAGE_SIZE;
192		memsize -= PAGE_SIZE;
193		bmi->bmi_end -= PAGE_SIZE;
194#ifdef VERBOSE_INIT_ARM
195		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
196		    __func__);
197#endif
198	}
199#endif
200	physmem = memsize / PAGE_SIZE;
201
202	/*
203	 * Let's record where the kernel lives.
204	 */
205	bmi->bmi_kernelstart = kernelstart;
206	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
207
208#ifdef VERBOSE_INIT_ARM
209	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
210#endif
211
212	/*
213	 * Now the rest of the free memory must be after the kernel.
214	 */
215	pv->pv_pa = bmi->bmi_kernelend;
216	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
217	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
218	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
219#ifdef VERBOSE_INIT_ARM
220	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
221	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
222	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
223#endif
224	pv++;
225
226	/*
227	 * Add a free block for any memory before the kernel.
228	 */
229	if (bmi->bmi_start < bmi->bmi_kernelstart) {
230		pv->pv_pa = bmi->bmi_start;
231		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
232		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
233		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
234#ifdef VERBOSE_INIT_ARM
235		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
236		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
237		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
238#endif
239		pv++;
240	}
241
242	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
243
244	SLIST_INIT(&bmi->bmi_freechunks);
245	SLIST_INIT(&bmi->bmi_chunks);
246}
247
248static bool
249concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
250{
251	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
252	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
253	    && acc_pv->pv_prot == pv->pv_prot
254	    && acc_pv->pv_cache == pv->pv_cache) {
255#ifdef VERBOSE_INIT_ARMX
256		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
258		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
259#endif
260		acc_pv->pv_size += pv->pv_size;
261		return true;
262	}
263
264	return false;
265}
266
267static void
268add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
269{
270	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
271	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
272		pv_addr_t * const pv0 = (*pvp);
273		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
274		if (concat_pvaddr(pv0, pv)) {
275#ifdef VERBOSE_INIT_ARM
276			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
277			    __func__, "appending", pv,
278			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
279			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
280#endif
281			pv = SLIST_NEXT(pv0, pv_list);
282			if (pv != NULL && concat_pvaddr(pv0, pv)) {
283#ifdef VERBOSE_INIT_ARM
284				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
285				    __func__, "merging", pv,
286				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
287				    pv0->pv_pa,
288				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
289#endif
290				SLIST_REMOVE_AFTER(pv0, pv_list);
291				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
292			}
293			return;
294		}
295		KASSERT(pv->pv_va != (*pvp)->pv_va);
296		pvp = &SLIST_NEXT(*pvp, pv_list);
297	}
298	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
299	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
300	KASSERT(new_pv != NULL);
301	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
302	*new_pv = *pv;
303	SLIST_NEXT(new_pv, pv_list) = *pvp;
304	(*pvp) = new_pv;
305#ifdef VERBOSE_INIT_ARM
306	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
307	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
308	    new_pv->pv_size / PAGE_SIZE);
309	if (SLIST_NEXT(new_pv, pv_list))
310		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
311	else
312		printf("at tail\n");
313#endif
314}
315
316static void
317valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
318	int prot, int cache, bool zero_p)
319{
320	size_t nbytes = npages * PAGE_SIZE;
321	pv_addr_t *free_pv = bmi->bmi_freeblocks;
322	size_t free_idx = 0;
323	static bool l1pt_found;
324
325	KASSERT(npages > 0);
326
327	/*
328	 * If we haven't allocated the kernel L1 page table and we are aligned
329	 * at a L1 table boundary, alloc the memory for it.
330	 */
331	if (!l1pt_found
332	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
333	    && free_pv->pv_size >= L1_TABLE_SIZE) {
334		l1pt_found = true;
335		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
336		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
337		add_pages(bmi, &kernel_l1pt);
338	}
339
340	while (nbytes > free_pv->pv_size) {
341		free_pv++;
342		free_idx++;
343		if (free_idx == bmi->bmi_nfreeblocks) {
344			panic("%s: could not allocate %zu bytes",
345			    __func__, nbytes);
346		}
347	}
348
349	/*
350	 * As we allocate the memory, make sure that we don't walk over
351	 * our current first level translation table.
352	 */
353	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
354
355	pv->pv_pa = free_pv->pv_pa;
356	pv->pv_va = free_pv->pv_va;
357	pv->pv_size = nbytes;
358	pv->pv_prot = prot;
359	pv->pv_cache = cache;
360
361	/*
362	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
363	 * just use PTE_CACHE.
364	 */
365	if (cache == PTE_PAGETABLE
366	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
367	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
368	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
369		pv->pv_cache = PTE_CACHE;
370
371	free_pv->pv_pa += nbytes;
372	free_pv->pv_va += nbytes;
373	free_pv->pv_size -= nbytes;
374	if (free_pv->pv_size == 0) {
375		--bmi->bmi_nfreeblocks;
376		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
377			free_pv[0] = free_pv[1];
378		}
379	}
380
381	bmi->bmi_freepages -= npages;
382
383	if (zero_p)
384		memset((void *)pv->pv_va, 0, nbytes);
385}
386
387void
388arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
389	const struct pmap_devmap *devmap, bool mapallmem_p)
390{
391	struct bootmem_info * const bmi = &bootmem_info;
392#ifdef MULTIPROCESSOR
393	const size_t cpu_num = arm_cpu_max;
394#else
395	const size_t cpu_num = 1;
396#endif
397#ifdef ARM_HAS_VBAR
398	const bool map_vectors_p = false;
399#elif defined(CPU_ARMV7) || defined(CPU_ARM11)
400	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
401	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
402#else
403	const bool map_vectors_p = true;
404#endif
405
406#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
407	KASSERT(mapallmem_p);
408#ifdef ARM_MMU_EXTENDED
409	/*
410	 * The direct map VA space ends at the start of the kernel VM space.
411	 */
412	pmap_directlimit = kernel_vm_base;
413#else
414	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
415#endif /* ARM_MMU_EXTENDED */
416#endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
417
418	/*
419	 * Calculate the number of L2 pages needed for mapping the
420	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
421	 * and 1 for IO
422	 */
423	size_t kernel_size = bmi->bmi_kernelend;
424	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
425	kernel_size += L1_TABLE_SIZE_REAL;
426	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
427	if (map_vectors_p) {
428		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
429	}
430	if (iovbase) {
431		kernel_size += PAGE_SIZE;	/* L2PT for IO */
432	}
433	kernel_size +=
434	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
435	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
436	kernel_size += round_page(MSGBUFSIZE);
437	kernel_size += 0x10000;	/* slop */
438	if (!mapallmem_p) {
439		kernel_size += PAGE_SIZE
440		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
441	}
442	kernel_size = round_page(kernel_size);
443
444	/*
445	 * Now we know how many L2 pages it will take.  If we've mapped
446	 * all of memory, then it won't take any.
447	 */
448	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
449	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
450
451#ifdef VERBOSE_INIT_ARM
452	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
453	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
454#endif
455
456	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
457	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
458	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
459	pv_addr_t msgbuf;
460	pv_addr_t text;
461	pv_addr_t data;
462	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
463#if ARM_MMU_XSCALE == 1
464	pv_addr_t minidataclean;
465#endif
466
467	/*
468	 * We need to allocate some fixed page tables to get the kernel going.
469	 *
470	 * We are going to allocate our bootstrap pages from the beginning of
471	 * the free space that we just calculated.  We allocate one page
472	 * directory and a number of page tables and store the physical
473	 * addresses in the bmi_l2pts array in bootmem_info.
474	 *
475	 * The kernel page directory must be on a 16K boundary.  The page
476	 * tables must be on 4K boundaries.  What we do is allocate the
477	 * page directory on the first 16K boundary that we encounter, and
478	 * the page tables on 4K boundaries otherwise.  Since we allocate
479	 * at least 3 L2 page tables, we are guaranteed to encounter at
480	 * least one 16K aligned region.
481	 */
482
483#ifdef VERBOSE_INIT_ARM
484	printf("%s: allocating page tables for", __func__);
485#endif
486	for (size_t i = 0; i < __arraycount(chunks); i++) {
487		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
488	}
489
490	kernel_l1pt.pv_pa = 0;
491	kernel_l1pt.pv_va = 0;
492
493	/*
494	 * Allocate the L2 pages, but if we get to a page that is aligned for
495	 * an L1 page table, we will allocate the pages for it first and then
496	 * allocate the L2 page.
497	 */
498
499	if (map_vectors_p) {
500		/*
501		 * First allocate L2 page for the vectors.
502		 */
503#ifdef VERBOSE_INIT_ARM
504		printf(" vector");
505#endif
506		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
507		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
508		add_pages(bmi, &bmi->bmi_vector_l2pt);
509	}
510
511	/*
512	 * Now allocate L2 pages for the kernel
513	 */
514#ifdef VERBOSE_INIT_ARM
515	printf(" kernel");
516#endif
517	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
518	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
519	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
520		valloc_pages(bmi, &kernel_l2pt[idx], 1,
521		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
522		add_pages(bmi, &kernel_l2pt[idx]);
523	}
524
525	/*
526	 * Now allocate L2 pages for the initial kernel VA space.
527	 */
528#ifdef VERBOSE_INIT_ARM
529	printf(" vm");
530#endif
531	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
532		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
533		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
534		add_pages(bmi, &vmdata_l2pt[idx]);
535	}
536
537	/*
538	 * If someone wanted a L2 page for I/O, allocate it now.
539	 */
540	if (iovbase) {
541#ifdef VERBOSE_INIT_ARM
542		printf(" io");
543#endif
544		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
545		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
546		add_pages(bmi, &bmi->bmi_io_l2pt);
547	}
548
549#ifdef VERBOSE_INIT_ARM
550	printf("%s: allocating stacks\n", __func__);
551#endif
552
553	/* Allocate stacks for all modes and CPUs */
554	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
555	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
556	add_pages(bmi, &abtstack);
557	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
558	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
559	add_pages(bmi, &fiqstack);
560	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
561	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
562	add_pages(bmi, &irqstack);
563	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
564	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
565	add_pages(bmi, &undstack);
566	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
567	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
568	add_pages(bmi, &idlestack);
569	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
570	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
571	add_pages(bmi, &kernelstack);
572
573	/* Allocate the message buffer from the end of memory. */
574	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
575	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
576	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
577	add_pages(bmi, &msgbuf);
578	msgbufphys = msgbuf.pv_pa;
579	msgbufaddr = (void *)msgbuf.pv_va;
580
581	if (map_vectors_p) {
582		/*
583		 * Allocate a page for the system vector page.
584		 * This page will just contain the system vectors and can be
585		 * shared by all processes.
586		 */
587		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
588		    PTE_CACHE, true);
589	}
590	systempage.pv_va = vectors;
591
592	/*
593	 * If the caller needed a few extra pages for some reason, allocate
594	 * them now.
595	 */
596#if ARM_MMU_XSCALE == 1
597#if (ARM_NMMUS > 1)
598	if (xscale_use_minidata)
599#endif
600		valloc_pages(bmi, &minidataclean, 1,
601		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
602#endif
603
604	/*
605	 * Ok we have allocated physical pages for the primary kernel
606	 * page tables and stacks.  Let's just confirm that.
607	 */
608	if (kernel_l1pt.pv_va == 0
609	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
610		panic("%s: Failed to allocate or align the kernel "
611		    "page directory", __func__);
612
613
614#ifdef VERBOSE_INIT_ARM
615	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
616#endif
617
618	/*
619	 * Now we start construction of the L1 page table
620	 * We start by mapping the L2 page tables into the L1.
621	 * This means that we can replace L1 mappings later on if necessary
622	 */
623	vaddr_t l1pt_va = kernel_l1pt.pv_va;
624	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
625
626	if (map_vectors_p) {
627		/* Map the L2 pages tables in the L1 page table */
628		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
629		    &bmi->bmi_vector_l2pt);
630#ifdef VERBOSE_INIT_ARM
631		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
632		    "for VA %#lx\n (vectors)",
633		    __func__, bmi->bmi_vector_l2pt.pv_va,
634		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
635#endif
636	}
637
638	const vaddr_t kernel_base =
639	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
640	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
641		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
642		    &kernel_l2pt[idx]);
643#ifdef VERBOSE_INIT_ARM
644		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
645		    __func__, kernel_l2pt[idx].pv_va,
646		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
647#endif
648	}
649
650	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
651		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
652		    &vmdata_l2pt[idx]);
653#ifdef VERBOSE_INIT_ARM
654		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
655		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
656		    kernel_vm_base + idx * L2_S_SEGSIZE);
657#endif
658	}
659	if (iovbase) {
660		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
661#ifdef VERBOSE_INIT_ARM
662		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
663		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
664		    iovbase & -L2_S_SEGSIZE);
665#endif
666	}
667
668	/* update the top of the kernel VM */
669	pmap_curmaxkvaddr =
670	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
671
672#ifdef VERBOSE_INIT_ARM
673	printf("Mapping kernel\n");
674#endif
675
676	extern char etext[], _end[];
677	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
678	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
679
680	textsize = (textsize + PGOFSET) & ~PGOFSET;
681
682	/* start at offset of kernel in RAM */
683
684	text.pv_pa = bmi->bmi_kernelstart;
685	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
686	text.pv_size = textsize;
687	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
688	text.pv_cache = PTE_CACHE;
689
690#ifdef VERBOSE_INIT_ARM
691	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
692	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
693#endif
694
695	add_pages(bmi, &text);
696
697	data.pv_pa = text.pv_pa + textsize;
698	data.pv_va = text.pv_va + textsize;
699	data.pv_size = totalsize - textsize;
700	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
701	data.pv_cache = PTE_CACHE;
702
703#ifdef VERBOSE_INIT_ARM
704	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
705	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
706#endif
707
708	add_pages(bmi, &data);
709
710#ifdef VERBOSE_INIT_ARM
711	printf("Listing Chunks\n");
712
713	pv_addr_t *lpv;
714	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
715		printf("%s: pv %p: chunk VA %#lx..%#lx "
716		    "(PA %#lx, prot %d, cache %d)\n",
717		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
718		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
719	}
720	printf("\nMapping Chunks\n");
721#endif
722
723	pv_addr_t cur_pv;
724	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
725	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
726		cur_pv = *pv;
727		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
728		pv = SLIST_NEXT(pv, pv_list);
729	} else {
730		cur_pv.pv_va = KERNEL_BASE;
731		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
732		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
733		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
734		cur_pv.pv_cache = PTE_CACHE;
735	}
736	while (pv != NULL) {
737		if (mapallmem_p) {
738			if (concat_pvaddr(&cur_pv, pv)) {
739				pv = SLIST_NEXT(pv, pv_list);
740				continue;
741			}
742			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
743				/*
744				 * See if we can extend the current pv to emcompass the
745				 * hole, and if so do it and retry the concatenation.
746				 */
747				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
748				    && cur_pv.pv_cache == PTE_CACHE) {
749					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
750					continue;
751				}
752
753				/*
754				 * We couldn't so emit the current chunk and then
755				 */
756#ifdef VERBOSE_INIT_ARM
757				printf("%s: mapping chunk VA %#lx..%#lx "
758				    "(PA %#lx, prot %d, cache %d)\n",
759				    __func__,
760				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
761				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
762#endif
763				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
764				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
765
766				/*
767				 * set the current chunk to the hole and try again.
768				 */
769				cur_pv.pv_pa += cur_pv.pv_size;
770				cur_pv.pv_va += cur_pv.pv_size;
771				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
772				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
773				cur_pv.pv_cache = PTE_CACHE;
774				continue;
775			}
776		}
777
778		/*
779		 * The new pv didn't concatenate so emit the current one
780		 * and use the new pv as the current pv.
781		 */
782#ifdef VERBOSE_INIT_ARM
783		printf("%s: mapping chunk VA %#lx..%#lx "
784		    "(PA %#lx, prot %d, cache %d)\n",
785		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
786		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
787#endif
788		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
789		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
790		cur_pv = *pv;
791		pv = SLIST_NEXT(pv, pv_list);
792	}
793
794	/*
795	 * If we are mapping all of memory, let's map the rest of memory.
796	 */
797	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
798		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
799		    && cur_pv.pv_cache == PTE_CACHE) {
800			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
801		} else {
802			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
803			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
804			    kernel_vm_base);
805#ifdef VERBOSE_INIT_ARM
806			printf("%s: mapping chunk VA %#lx..%#lx "
807			    "(PA %#lx, prot %d, cache %d)\n",
808			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
809			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
810#endif
811			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
812			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
813			cur_pv.pv_pa += cur_pv.pv_size;
814			cur_pv.pv_va += cur_pv.pv_size;
815			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
816			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
817			cur_pv.pv_cache = PTE_CACHE;
818		}
819	}
820
821	// The amount we can direct is limited by the start of the
822	// virtual part of the kernel address space.  Don't overrun
823	// into it.
824	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
825		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
826	}
827
828	/*
829	 * Now we map the final chunk.
830	 */
831#ifdef VERBOSE_INIT_ARM
832	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
833	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
834	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
835#endif
836	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
837	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
838
839	/*
840	 * Now we map the stuff that isn't directly after the kernel
841	 */
842	if (map_vectors_p) {
843		/* Map the vector page. */
844		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
845		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
846	}
847
848	/* Map the Mini-Data cache clean area. */
849#if ARM_MMU_XSCALE == 1
850#if (ARM_NMMUS > 1)
851	if (xscale_use_minidata)
852#endif
853		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
854		    minidataclean.pv_pa);
855#endif
856
857	/*
858	 * Map integrated peripherals at same address in first level page
859	 * table so that we can continue to use console.
860	 */
861	if (devmap)
862		pmap_devmap_bootstrap(l1pt_va, devmap);
863
864#ifdef VERBOSE_INIT_ARM
865	/* Tell the user about where all the bits and pieces live. */
866	printf("%22s       Physical              Virtual        Num\n", " ");
867	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
868
869	static const char mem_fmt[] =
870	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
871	static const char mem_fmt_nov[] =
872	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
873
874	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
875	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
876	    physmem);
877	printf(mem_fmt, "text section",
878	       text.pv_pa, text.pv_pa + text.pv_size - 1,
879	       text.pv_va, text.pv_va + text.pv_size - 1,
880	       (int)(text.pv_size / PAGE_SIZE));
881	printf(mem_fmt, "data section",
882	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
883	       (vaddr_t)__data_start, (vaddr_t)_edata,
884	       (int)((round_page((vaddr_t)_edata)
885		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
886	printf(mem_fmt, "bss section",
887	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
888	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
889	       (int)((round_page((vaddr_t)__bss_end__)
890		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
891	printf(mem_fmt, "L1 page directory",
892	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
893	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
894	    L1_TABLE_SIZE / PAGE_SIZE);
895	printf(mem_fmt, "ABT stack (CPU 0)",
896	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
897	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
898	    ABT_STACK_SIZE);
899	printf(mem_fmt, "FIQ stack (CPU 0)",
900	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
901	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
902	    FIQ_STACK_SIZE);
903	printf(mem_fmt, "IRQ stack (CPU 0)",
904	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
905	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
906	    IRQ_STACK_SIZE);
907	printf(mem_fmt, "UND stack (CPU 0)",
908	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
909	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
910	    UND_STACK_SIZE);
911	printf(mem_fmt, "IDLE stack (CPU 0)",
912	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
913	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
914	    UPAGES);
915	printf(mem_fmt, "SVC stack",
916	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
917	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
918	    UPAGES);
919	printf(mem_fmt, "Message Buffer",
920	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
921	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
922	    (int)msgbuf_pgs);
923	if (map_vectors_p) {
924		printf(mem_fmt, "Exception Vectors",
925		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
926		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
927		    1);
928	}
929	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
930		pv = &bmi->bmi_freeblocks[i];
931
932		printf(mem_fmt_nov, "Free Memory",
933		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
934		    pv->pv_size / PAGE_SIZE);
935	}
936#endif
937	/*
938	 * Now we have the real page tables in place so we can switch to them.
939	 * Once this is done we will be running with the REAL kernel page
940	 * tables.
941	 */
942
943#if defined(VERBOSE_INIT_ARM)
944	printf("TTBR0=%#x", armreg_ttbr_read());
945#ifdef _ARM_ARCH_6
946	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
947	    armreg_ttbr1_read(), armreg_ttbcr_read(),
948	    armreg_contextidr_read());
949#endif
950	printf("\n");
951#endif
952
953	/* Switch tables */
954#ifdef VERBOSE_INIT_ARM
955	printf("switching to new L1 page table @%#lx...", l1pt_pa);
956#endif
957
958#ifdef ARM_MMU_EXTENDED
959	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
960	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
961#else
962	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
963#endif
964	cpu_idcache_wbinv_all();
965#ifdef VERBOSE_INIT_ARM
966	printf(" ttb");
967#endif
968#ifdef ARM_MMU_EXTENDED
969	/*
970	 * TTBCR should have been initialized by the MD start code.
971	 */
972	KASSERT((armreg_contextidr_read() & 0xff) == 0);
973	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
974	/*
975	 * Disable lookups via TTBR0 until there is an activated pmap.
976	 */
977	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
978	cpu_setttb(l1pt_pa, KERNEL_PID);
979	arm_isb();
980#else
981	cpu_setttb(l1pt_pa, true);
982	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
983#endif
984	cpu_tlb_flushID();
985
986#ifdef VERBOSE_INIT_ARM
987#ifdef ARM_MMU_EXTENDED
988	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
989	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
990#else
991	printf(" (TTBR0=%#x)", armreg_ttbr_read());
992#endif
993#endif
994
995#ifdef MULTIPROCESSOR
996	/*
997	 * Kick the secondaries to load the TTB.  After which they'll go
998	 * back to sleep to wait for the final kick so they will hatch.
999	 */
1000#ifdef VERBOSE_INIT_ARM
1001	printf(" hatchlings");
1002#endif
1003	cpu_boot_secondary_processors();
1004#endif
1005
1006#ifdef VERBOSE_INIT_ARM
1007	printf(" OK\n");
1008#endif
1009}
1010