pthread_mutex.c revision 1.24
1/*	$NetBSD: pthread_mutex.c,v 1.24 2006/12/24 18:39:46 ad Exp $	*/
2
3/*-
4 * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Nathan J. Williams, and by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *        This product includes software developed by the NetBSD
21 *        Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 *    contributors may be used to endorse or promote products derived
24 *    from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39#include <sys/cdefs.h>
40__RCSID("$NetBSD: pthread_mutex.c,v 1.24 2006/12/24 18:39:46 ad Exp $");
41
42#include <errno.h>
43#include <limits.h>
44#include <stdlib.h>
45#include <string.h>
46
47#include "pthread.h"
48#include "pthread_int.h"
49
50static int pthread_mutex_lock_slow(pthread_mutex_t *);
51
52__strong_alias(__libc_mutex_init,pthread_mutex_init)
53__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
54__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
55__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
56__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)
57
58__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
59__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
60__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)
61
62__strong_alias(__libc_thr_once,pthread_once)
63
64struct mutex_private {
65	int	type;
66	int	recursecount;
67};
68
69static const struct mutex_private mutex_private_default = {
70	PTHREAD_MUTEX_DEFAULT,
71	0,
72};
73
74struct mutexattr_private {
75	int	type;
76};
77
78static const struct mutexattr_private mutexattr_private_default = {
79	PTHREAD_MUTEX_DEFAULT,
80};
81
82/*
83 * If the mutex does not already have private data (i.e. was statically
84 * initialized), then give it the default.
85 */
86#define	GET_MUTEX_PRIVATE(mutex, mp)					\
87do {									\
88	if (__predict_false((mp = (mutex)->ptm_private) == NULL)) {	\
89		/* LINTED cast away const */				\
90		mp = ((mutex)->ptm_private =				\
91		    (void *)&mutex_private_default);			\
92	}								\
93} while (/*CONSTCOND*/0)
94
95int
96pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
97{
98	struct mutexattr_private *map;
99	struct mutex_private *mp;
100
101	pthread__error(EINVAL, "Invalid mutex attribute",
102	    (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC));
103
104	if (attr != NULL && (map = attr->ptma_private) != NULL &&
105	    memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) {
106		mp = malloc(sizeof(*mp));
107		if (mp == NULL)
108			return ENOMEM;
109
110		mp->type = map->type;
111		mp->recursecount = 0;
112	} else {
113		/* LINTED cast away const */
114		mp = (struct mutex_private *) &mutex_private_default;
115	}
116
117	mutex->ptm_magic = _PT_MUTEX_MAGIC;
118	mutex->ptm_owner = NULL;
119	pthread_lockinit(&mutex->ptm_lock);
120	pthread_lockinit(&mutex->ptm_interlock);
121	PTQ_INIT(&mutex->ptm_blocked);
122	mutex->ptm_private = mp;
123
124	return 0;
125}
126
127
128int
129pthread_mutex_destroy(pthread_mutex_t *mutex)
130{
131
132	pthread__error(EINVAL, "Invalid mutex",
133	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
134	pthread__error(EBUSY, "Destroying locked mutex",
135	    mutex->ptm_lock == __SIMPLELOCK_UNLOCKED);
136
137	mutex->ptm_magic = _PT_MUTEX_DEAD;
138	if (mutex->ptm_private != NULL &&
139	    mutex->ptm_private != (const void *)&mutex_private_default)
140		free(mutex->ptm_private);
141
142	return 0;
143}
144
145
146/*
147 * Note regarding memory visibility: Pthreads has rules about memory
148 * visibility and mutexes. Very roughly: Memory a thread can see when
149 * it unlocks a mutex can be seen by another thread that locks the
150 * same mutex.
151 *
152 * A memory barrier after a lock and before an unlock will provide
153 * this behavior. This code relies on pthread__simple_lock_try() to issue
154 * a barrier after obtaining a lock, and on pthread__simple_unlock() to
155 * issue a barrier before releasing a lock.
156 */
157
158int
159pthread_mutex_lock(pthread_mutex_t *mutex)
160{
161	int error;
162
163	PTHREADD_ADD(PTHREADD_MUTEX_LOCK);
164	/*
165	 * Note that if we get the lock, we don't have to deal with any
166	 * non-default lock type handling.
167	 */
168	if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) {
169		error = pthread_mutex_lock_slow(mutex);
170		if (error)
171			return error;
172	}
173
174	/* We have the lock! */
175	/*
176	 * Identifying ourselves may be slow, and this assignment is
177	 * only needed for (a) debugging identity of the owning thread
178	 * and (b) handling errorcheck and recursive mutexes. It's
179	 * better to just stash our stack pointer here and let those
180	 * slow exception cases compute the stack->thread mapping.
181	 */
182	mutex->ptm_owner = (pthread_t)pthread__sp();
183
184	return 0;
185}
186
187
188static int
189pthread_mutex_lock_slow(pthread_mutex_t *mutex)
190{
191	pthread_t self;
192	extern int pthread__started;
193
194	pthread__error(EINVAL, "Invalid mutex",
195	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
196
197	self = pthread__self();
198
199	PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW);
200	while (/*CONSTCOND*/1) {
201		if (pthread__simple_lock_try(&mutex->ptm_lock))
202			break; /* got it! */
203
204		/* Okay, didn't look free. Get the interlock... */
205		pthread_spinlock(self, &mutex->ptm_interlock);
206
207		/*
208		 * The mutex_unlock routine will get the interlock
209		 * before looking at the list of sleepers, so if the
210		 * lock is held we can safely put ourselves on the
211		 * sleep queue. If it's not held, we can try taking it
212		 * again.
213		 */
214		PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep);
215		if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) {
216			struct mutex_private *mp;
217
218			GET_MUTEX_PRIVATE(mutex, mp);
219
220			if (pthread__id(mutex->ptm_owner) == self) {
221				switch (mp->type) {
222				case PTHREAD_MUTEX_ERRORCHECK:
223					PTQ_REMOVE(&mutex->ptm_blocked, self,
224					    pt_sleep);
225					pthread_spinunlock(self,
226					    &mutex->ptm_interlock);
227					return EDEADLK;
228
229				case PTHREAD_MUTEX_RECURSIVE:
230					/*
231					 * It's safe to do this without
232					 * holding the interlock, because
233					 * we only modify it if we know we
234					 * own the mutex.
235					 */
236					PTQ_REMOVE(&mutex->ptm_blocked, self,
237					    pt_sleep);
238					pthread_spinunlock(self,
239					    &mutex->ptm_interlock);
240					if (mp->recursecount == INT_MAX)
241						return EAGAIN;
242					mp->recursecount++;
243					return 0;
244				}
245			}
246
247			if (pthread__started == 0) {
248				sigset_t ss;
249
250				/*
251				 * The spec says we must deadlock, so...
252				 */
253				pthread__assert(mp->type ==
254						PTHREAD_MUTEX_NORMAL);
255				(void) sigprocmask(SIG_SETMASK, NULL, &ss);
256				for (;;) {
257					sigsuspend(&ss);
258				}
259				/*NOTREACHED*/
260			}
261
262			/*
263			 * Locking a mutex is not a cancellation
264			 * point, so we don't need to do the
265			 * test-cancellation dance. We may get woken
266			 * up spuriously by pthread_cancel or signals,
267			 * but it's okay since we're just going to
268			 * retry.
269			 */
270#ifdef PTHREAD_SA
271			pthread_spinlock(self, &self->pt_statelock);
272			self->pt_state = PT_STATE_BLOCKED_QUEUE;
273			self->pt_sleepobj = mutex;
274			self->pt_sleepq = &mutex->ptm_blocked;
275			self->pt_sleeplock = &mutex->ptm_interlock;
276			pthread_spinunlock(self, &self->pt_statelock);
277
278			pthread__block(self, &mutex->ptm_interlock);
279			/* interlock is not held when we return */
280#else	/* PTHREAD_SA */
281			(void)pthread__park(self, &mutex->ptm_interlock,
282			    mutex, NULL, NULL, 0, 0);
283			pthread_spinunlock(self, &mutex->ptm_interlock);
284#endif	/* PTHREAD_SA */
285		} else {
286			PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep);
287			pthread_spinunlock(self, &mutex->ptm_interlock);
288		}
289		/* Go around for another try. */
290	}
291
292	return 0;
293}
294
295
296int
297pthread_mutex_trylock(pthread_mutex_t *mutex)
298{
299
300	pthread__error(EINVAL, "Invalid mutex",
301	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
302
303	PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK);
304	if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) {
305		struct mutex_private *mp;
306
307		GET_MUTEX_PRIVATE(mutex, mp);
308
309		/*
310		 * These tests can be performed without holding the
311		 * interlock because these fields are only modified
312		 * if we know we own the mutex.
313		 */
314		if ((mp->type == PTHREAD_MUTEX_RECURSIVE) &&
315		    (pthread__id(mutex->ptm_owner) == pthread__self())) {
316			if (mp->recursecount == INT_MAX)
317				return EAGAIN;
318			mp->recursecount++;
319			return 0;
320		}
321
322		return EBUSY;
323	}
324
325	/* see comment at the end of pthread_mutex_lock() */
326	mutex->ptm_owner = (pthread_t)pthread__sp();
327
328	return 0;
329}
330
331
332int
333pthread_mutex_unlock(pthread_mutex_t *mutex)
334{
335	struct mutex_private *mp;
336	pthread_t self, blocked;
337	int weown;
338
339	pthread__error(EINVAL, "Invalid mutex",
340	    mutex->ptm_magic == _PT_MUTEX_MAGIC);
341
342	PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK);
343
344	GET_MUTEX_PRIVATE(mutex, mp);
345
346	self = pthread_self();
347	/*
348	 * These tests can be performed without holding the
349	 * interlock because these fields are only modified
350	 * if we know we own the mutex.
351	 */
352	weown = (pthread__id(mutex->ptm_owner) == self);
353	switch (mp->type) {
354	case PTHREAD_MUTEX_RECURSIVE:
355		if (!weown)
356			return EPERM;
357		if (mp->recursecount != 0) {
358			mp->recursecount--;
359			return 0;
360		}
361		break;
362	case PTHREAD_MUTEX_ERRORCHECK:
363		if (!weown)
364			return EPERM;
365		/*FALLTHROUGH*/
366	default:
367		if (__predict_false(!weown)) {
368			pthread__error(EPERM, "Unlocking unlocked mutex",
369			    (mutex->ptm_owner != 0));
370			pthread__error(EPERM,
371			    "Unlocking mutex owned by another thread", weown);
372		}
373		break;
374	}
375
376	mutex->ptm_owner = NULL;
377	pthread__simple_unlock(&mutex->ptm_lock);
378	/*
379	 * Do a double-checked locking dance to see if there are any
380	 * waiters.  If we don't see any waiters, we can exit, because
381	 * we've already released the lock. If we do see waiters, they
382	 * were probably waiting on us... there's a slight chance that
383	 * they are waiting on a different thread's ownership of the
384	 * lock that happened between the unlock above and this
385	 * examination of the queue; if so, no harm is done, as the
386	 * waiter will loop and see that the mutex is still locked.
387	 */
388	pthread_spinlock(self, &mutex->ptm_interlock);
389	if ((blocked = PTQ_FIRST(&mutex->ptm_blocked)) != NULL) {
390		PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep);
391		PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK);
392#ifdef PTHREAD_SA
393		/* Give the head of the blocked queue another try. */
394		pthread__sched(self, blocked);
395		pthread_spinunlock(self, &mutex->ptm_interlock);
396#else	/* PTHREAD_SA */
397		pthread__unpark(self, &mutex->ptm_interlock, mutex, blocked);
398#endif	/* PTHREAD_SA */
399	} else
400		pthread_spinunlock(self, &mutex->ptm_interlock);
401
402	return 0;
403}
404
405int
406pthread_mutexattr_init(pthread_mutexattr_t *attr)
407{
408	struct mutexattr_private *map;
409
410	map = malloc(sizeof(*map));
411	if (map == NULL)
412		return ENOMEM;
413
414	*map = mutexattr_private_default;
415
416	attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
417	attr->ptma_private = map;
418
419	return 0;
420}
421
422
423int
424pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
425{
426
427	pthread__error(EINVAL, "Invalid mutex attribute",
428	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
429
430	attr->ptma_magic = _PT_MUTEXATTR_DEAD;
431	if (attr->ptma_private != NULL)
432		free(attr->ptma_private);
433
434	return 0;
435}
436
437
438int
439pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
440{
441	struct mutexattr_private *map;
442
443	pthread__error(EINVAL, "Invalid mutex attribute",
444	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
445
446	map = attr->ptma_private;
447
448	*typep = map->type;
449
450	return 0;
451}
452
453
454int
455pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
456{
457	struct mutexattr_private *map;
458
459	pthread__error(EINVAL, "Invalid mutex attribute",
460	    attr->ptma_magic == _PT_MUTEXATTR_MAGIC);
461
462	map = attr->ptma_private;
463
464	switch (type) {
465	case PTHREAD_MUTEX_NORMAL:
466	case PTHREAD_MUTEX_ERRORCHECK:
467	case PTHREAD_MUTEX_RECURSIVE:
468		map->type = type;
469		break;
470
471	default:
472		return EINVAL;
473	}
474
475	return 0;
476}
477
478
479static void
480once_cleanup(void *closure)
481{
482
483       pthread_mutex_unlock((pthread_mutex_t *)closure);
484}
485
486
487int
488pthread_once(pthread_once_t *once_control, void (*routine)(void))
489{
490
491	if (once_control->pto_done == 0) {
492		pthread_mutex_lock(&once_control->pto_mutex);
493		pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex);
494		if (once_control->pto_done == 0) {
495			routine();
496			once_control->pto_done = 1;
497		}
498		pthread_cleanup_pop(1);
499	}
500
501	return 0;
502}
503