/* $NetBSD: pthread_mutex.c,v 1.24 2006/12/24 18:39:46 ad Exp $ */ /*- * Copyright (c) 2001, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nathan J. Williams, and by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __RCSID("$NetBSD: pthread_mutex.c,v 1.24 2006/12/24 18:39:46 ad Exp $"); #include #include #include #include #include "pthread.h" #include "pthread_int.h" static int pthread_mutex_lock_slow(pthread_mutex_t *); __strong_alias(__libc_mutex_init,pthread_mutex_init) __strong_alias(__libc_mutex_lock,pthread_mutex_lock) __strong_alias(__libc_mutex_trylock,pthread_mutex_trylock) __strong_alias(__libc_mutex_unlock,pthread_mutex_unlock) __strong_alias(__libc_mutex_destroy,pthread_mutex_destroy) __strong_alias(__libc_mutexattr_init,pthread_mutexattr_init) __strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy) __strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype) __strong_alias(__libc_thr_once,pthread_once) struct mutex_private { int type; int recursecount; }; static const struct mutex_private mutex_private_default = { PTHREAD_MUTEX_DEFAULT, 0, }; struct mutexattr_private { int type; }; static const struct mutexattr_private mutexattr_private_default = { PTHREAD_MUTEX_DEFAULT, }; /* * If the mutex does not already have private data (i.e. was statically * initialized), then give it the default. */ #define GET_MUTEX_PRIVATE(mutex, mp) \ do { \ if (__predict_false((mp = (mutex)->ptm_private) == NULL)) { \ /* LINTED cast away const */ \ mp = ((mutex)->ptm_private = \ (void *)&mutex_private_default); \ } \ } while (/*CONSTCOND*/0) int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr) { struct mutexattr_private *map; struct mutex_private *mp; pthread__error(EINVAL, "Invalid mutex attribute", (attr == NULL) || (attr->ptma_magic == _PT_MUTEXATTR_MAGIC)); if (attr != NULL && (map = attr->ptma_private) != NULL && memcmp(map, &mutexattr_private_default, sizeof(*map)) != 0) { mp = malloc(sizeof(*mp)); if (mp == NULL) return ENOMEM; mp->type = map->type; mp->recursecount = 0; } else { /* LINTED cast away const */ mp = (struct mutex_private *) &mutex_private_default; } mutex->ptm_magic = _PT_MUTEX_MAGIC; mutex->ptm_owner = NULL; pthread_lockinit(&mutex->ptm_lock); pthread_lockinit(&mutex->ptm_interlock); PTQ_INIT(&mutex->ptm_blocked); mutex->ptm_private = mp; return 0; } int pthread_mutex_destroy(pthread_mutex_t *mutex) { pthread__error(EINVAL, "Invalid mutex", mutex->ptm_magic == _PT_MUTEX_MAGIC); pthread__error(EBUSY, "Destroying locked mutex", mutex->ptm_lock == __SIMPLELOCK_UNLOCKED); mutex->ptm_magic = _PT_MUTEX_DEAD; if (mutex->ptm_private != NULL && mutex->ptm_private != (const void *)&mutex_private_default) free(mutex->ptm_private); return 0; } /* * Note regarding memory visibility: Pthreads has rules about memory * visibility and mutexes. Very roughly: Memory a thread can see when * it unlocks a mutex can be seen by another thread that locks the * same mutex. * * A memory barrier after a lock and before an unlock will provide * this behavior. This code relies on pthread__simple_lock_try() to issue * a barrier after obtaining a lock, and on pthread__simple_unlock() to * issue a barrier before releasing a lock. */ int pthread_mutex_lock(pthread_mutex_t *mutex) { int error; PTHREADD_ADD(PTHREADD_MUTEX_LOCK); /* * Note that if we get the lock, we don't have to deal with any * non-default lock type handling. */ if (__predict_false(pthread__simple_lock_try(&mutex->ptm_lock) == 0)) { error = pthread_mutex_lock_slow(mutex); if (error) return error; } /* We have the lock! */ /* * Identifying ourselves may be slow, and this assignment is * only needed for (a) debugging identity of the owning thread * and (b) handling errorcheck and recursive mutexes. It's * better to just stash our stack pointer here and let those * slow exception cases compute the stack->thread mapping. */ mutex->ptm_owner = (pthread_t)pthread__sp(); return 0; } static int pthread_mutex_lock_slow(pthread_mutex_t *mutex) { pthread_t self; extern int pthread__started; pthread__error(EINVAL, "Invalid mutex", mutex->ptm_magic == _PT_MUTEX_MAGIC); self = pthread__self(); PTHREADD_ADD(PTHREADD_MUTEX_LOCK_SLOW); while (/*CONSTCOND*/1) { if (pthread__simple_lock_try(&mutex->ptm_lock)) break; /* got it! */ /* Okay, didn't look free. Get the interlock... */ pthread_spinlock(self, &mutex->ptm_interlock); /* * The mutex_unlock routine will get the interlock * before looking at the list of sleepers, so if the * lock is held we can safely put ourselves on the * sleep queue. If it's not held, we can try taking it * again. */ PTQ_INSERT_HEAD(&mutex->ptm_blocked, self, pt_sleep); if (mutex->ptm_lock == __SIMPLELOCK_LOCKED) { struct mutex_private *mp; GET_MUTEX_PRIVATE(mutex, mp); if (pthread__id(mutex->ptm_owner) == self) { switch (mp->type) { case PTHREAD_MUTEX_ERRORCHECK: PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); pthread_spinunlock(self, &mutex->ptm_interlock); return EDEADLK; case PTHREAD_MUTEX_RECURSIVE: /* * It's safe to do this without * holding the interlock, because * we only modify it if we know we * own the mutex. */ PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); pthread_spinunlock(self, &mutex->ptm_interlock); if (mp->recursecount == INT_MAX) return EAGAIN; mp->recursecount++; return 0; } } if (pthread__started == 0) { sigset_t ss; /* * The spec says we must deadlock, so... */ pthread__assert(mp->type == PTHREAD_MUTEX_NORMAL); (void) sigprocmask(SIG_SETMASK, NULL, &ss); for (;;) { sigsuspend(&ss); } /*NOTREACHED*/ } /* * Locking a mutex is not a cancellation * point, so we don't need to do the * test-cancellation dance. We may get woken * up spuriously by pthread_cancel or signals, * but it's okay since we're just going to * retry. */ #ifdef PTHREAD_SA pthread_spinlock(self, &self->pt_statelock); self->pt_state = PT_STATE_BLOCKED_QUEUE; self->pt_sleepobj = mutex; self->pt_sleepq = &mutex->ptm_blocked; self->pt_sleeplock = &mutex->ptm_interlock; pthread_spinunlock(self, &self->pt_statelock); pthread__block(self, &mutex->ptm_interlock); /* interlock is not held when we return */ #else /* PTHREAD_SA */ (void)pthread__park(self, &mutex->ptm_interlock, mutex, NULL, NULL, 0, 0); pthread_spinunlock(self, &mutex->ptm_interlock); #endif /* PTHREAD_SA */ } else { PTQ_REMOVE(&mutex->ptm_blocked, self, pt_sleep); pthread_spinunlock(self, &mutex->ptm_interlock); } /* Go around for another try. */ } return 0; } int pthread_mutex_trylock(pthread_mutex_t *mutex) { pthread__error(EINVAL, "Invalid mutex", mutex->ptm_magic == _PT_MUTEX_MAGIC); PTHREADD_ADD(PTHREADD_MUTEX_TRYLOCK); if (pthread__simple_lock_try(&mutex->ptm_lock) == 0) { struct mutex_private *mp; GET_MUTEX_PRIVATE(mutex, mp); /* * These tests can be performed without holding the * interlock because these fields are only modified * if we know we own the mutex. */ if ((mp->type == PTHREAD_MUTEX_RECURSIVE) && (pthread__id(mutex->ptm_owner) == pthread__self())) { if (mp->recursecount == INT_MAX) return EAGAIN; mp->recursecount++; return 0; } return EBUSY; } /* see comment at the end of pthread_mutex_lock() */ mutex->ptm_owner = (pthread_t)pthread__sp(); return 0; } int pthread_mutex_unlock(pthread_mutex_t *mutex) { struct mutex_private *mp; pthread_t self, blocked; int weown; pthread__error(EINVAL, "Invalid mutex", mutex->ptm_magic == _PT_MUTEX_MAGIC); PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK); GET_MUTEX_PRIVATE(mutex, mp); self = pthread_self(); /* * These tests can be performed without holding the * interlock because these fields are only modified * if we know we own the mutex. */ weown = (pthread__id(mutex->ptm_owner) == self); switch (mp->type) { case PTHREAD_MUTEX_RECURSIVE: if (!weown) return EPERM; if (mp->recursecount != 0) { mp->recursecount--; return 0; } break; case PTHREAD_MUTEX_ERRORCHECK: if (!weown) return EPERM; /*FALLTHROUGH*/ default: if (__predict_false(!weown)) { pthread__error(EPERM, "Unlocking unlocked mutex", (mutex->ptm_owner != 0)); pthread__error(EPERM, "Unlocking mutex owned by another thread", weown); } break; } mutex->ptm_owner = NULL; pthread__simple_unlock(&mutex->ptm_lock); /* * Do a double-checked locking dance to see if there are any * waiters. If we don't see any waiters, we can exit, because * we've already released the lock. If we do see waiters, they * were probably waiting on us... there's a slight chance that * they are waiting on a different thread's ownership of the * lock that happened between the unlock above and this * examination of the queue; if so, no harm is done, as the * waiter will loop and see that the mutex is still locked. */ pthread_spinlock(self, &mutex->ptm_interlock); if ((blocked = PTQ_FIRST(&mutex->ptm_blocked)) != NULL) { PTQ_REMOVE(&mutex->ptm_blocked, blocked, pt_sleep); PTHREADD_ADD(PTHREADD_MUTEX_UNLOCK_UNBLOCK); #ifdef PTHREAD_SA /* Give the head of the blocked queue another try. */ pthread__sched(self, blocked); pthread_spinunlock(self, &mutex->ptm_interlock); #else /* PTHREAD_SA */ pthread__unpark(self, &mutex->ptm_interlock, mutex, blocked); #endif /* PTHREAD_SA */ } else pthread_spinunlock(self, &mutex->ptm_interlock); return 0; } int pthread_mutexattr_init(pthread_mutexattr_t *attr) { struct mutexattr_private *map; map = malloc(sizeof(*map)); if (map == NULL) return ENOMEM; *map = mutexattr_private_default; attr->ptma_magic = _PT_MUTEXATTR_MAGIC; attr->ptma_private = map; return 0; } int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) { pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); attr->ptma_magic = _PT_MUTEXATTR_DEAD; if (attr->ptma_private != NULL) free(attr->ptma_private); return 0; } int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep) { struct mutexattr_private *map; pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); map = attr->ptma_private; *typep = map->type; return 0; } int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) { struct mutexattr_private *map; pthread__error(EINVAL, "Invalid mutex attribute", attr->ptma_magic == _PT_MUTEXATTR_MAGIC); map = attr->ptma_private; switch (type) { case PTHREAD_MUTEX_NORMAL: case PTHREAD_MUTEX_ERRORCHECK: case PTHREAD_MUTEX_RECURSIVE: map->type = type; break; default: return EINVAL; } return 0; } static void once_cleanup(void *closure) { pthread_mutex_unlock((pthread_mutex_t *)closure); } int pthread_once(pthread_once_t *once_control, void (*routine)(void)) { if (once_control->pto_done == 0) { pthread_mutex_lock(&once_control->pto_mutex); pthread_cleanup_push(&once_cleanup, &once_control->pto_mutex); if (once_control->pto_done == 0) { routine(); once_control->pto_done = 1; } pthread_cleanup_pop(1); } return 0; }