1/*
2 * Copyright 2010      INRIA Saclay
3 *
4 * Use of this software is governed by the MIT license
5 *
6 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8 * 91893 Orsay, France
9 */
10
11#include <isl_ctx_private.h>
12#include <isl_map_private.h>
13#include <isl/map.h>
14#include <isl_seq.h>
15#include <isl_space_private.h>
16#include <isl_lp_private.h>
17#include <isl/union_map.h>
18#include <isl_mat_private.h>
19#include <isl_vec_private.h>
20#include <isl_options_private.h>
21#include <isl_tarjan.h>
22
23isl_bool isl_map_is_transitively_closed(__isl_keep isl_map *map)
24{
25	isl_map *map2;
26	isl_bool closed;
27
28	map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map));
29	closed = isl_map_is_subset(map2, map);
30	isl_map_free(map2);
31
32	return closed;
33}
34
35isl_bool isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap)
36{
37	isl_union_map *umap2;
38	isl_bool closed;
39
40	umap2 = isl_union_map_apply_range(isl_union_map_copy(umap),
41					  isl_union_map_copy(umap));
42	closed = isl_union_map_is_subset(umap2, umap);
43	isl_union_map_free(umap2);
44
45	return closed;
46}
47
48/* Given a map that represents a path with the length of the path
49 * encoded as the difference between the last output coordindate
50 * and the last input coordinate, set this length to either
51 * exactly "length" (if "exactly" is set) or at least "length"
52 * (if "exactly" is not set).
53 */
54static __isl_give isl_map *set_path_length(__isl_take isl_map *map,
55	int exactly, int length)
56{
57	isl_space *space;
58	struct isl_basic_map *bmap;
59	isl_size d;
60	isl_size nparam;
61	isl_size total;
62	int k;
63	isl_int *c;
64
65	if (!map)
66		return NULL;
67
68	space = isl_map_get_space(map);
69	d = isl_space_dim(space, isl_dim_in);
70	nparam = isl_space_dim(space, isl_dim_param);
71	total = isl_space_dim(space, isl_dim_all);
72	if (d < 0 || nparam < 0 || total < 0)
73		space = isl_space_free(space);
74	bmap = isl_basic_map_alloc_space(space, 0, 1, 1);
75	if (exactly) {
76		k = isl_basic_map_alloc_equality(bmap);
77		if (k < 0)
78			goto error;
79		c = bmap->eq[k];
80	} else {
81		k = isl_basic_map_alloc_inequality(bmap);
82		if (k < 0)
83			goto error;
84		c = bmap->ineq[k];
85	}
86	isl_seq_clr(c, 1 + total);
87	isl_int_set_si(c[0], -length);
88	isl_int_set_si(c[1 + nparam + d - 1], -1);
89	isl_int_set_si(c[1 + nparam + d + d - 1], 1);
90
91	bmap = isl_basic_map_finalize(bmap);
92	map = isl_map_intersect(map, isl_map_from_basic_map(bmap));
93
94	return map;
95error:
96	isl_basic_map_free(bmap);
97	isl_map_free(map);
98	return NULL;
99}
100
101/* Check whether the overapproximation of the power of "map" is exactly
102 * the power of "map".  Let R be "map" and A_k the overapproximation.
103 * The approximation is exact if
104 *
105 *	A_1 = R
106 *	A_k = A_{k-1} \circ R			k >= 2
107 *
108 * Since A_k is known to be an overapproximation, we only need to check
109 *
110 *	A_1 \subset R
111 *	A_k \subset A_{k-1} \circ R		k >= 2
112 *
113 * In practice, "app" has an extra input and output coordinate
114 * to encode the length of the path.  So, we first need to add
115 * this coordinate to "map" and set the length of the path to
116 * one.
117 */
118static isl_bool check_power_exactness(__isl_take isl_map *map,
119	__isl_take isl_map *app)
120{
121	isl_bool exact;
122	isl_map *app_1;
123	isl_map *app_2;
124
125	map = isl_map_add_dims(map, isl_dim_in, 1);
126	map = isl_map_add_dims(map, isl_dim_out, 1);
127	map = set_path_length(map, 1, 1);
128
129	app_1 = set_path_length(isl_map_copy(app), 1, 1);
130
131	exact = isl_map_is_subset(app_1, map);
132	isl_map_free(app_1);
133
134	if (!exact || exact < 0) {
135		isl_map_free(app);
136		isl_map_free(map);
137		return exact;
138	}
139
140	app_1 = set_path_length(isl_map_copy(app), 0, 1);
141	app_2 = set_path_length(app, 0, 2);
142	app_1 = isl_map_apply_range(map, app_1);
143
144	exact = isl_map_is_subset(app_2, app_1);
145
146	isl_map_free(app_1);
147	isl_map_free(app_2);
148
149	return exact;
150}
151
152/* Check whether the overapproximation of the power of "map" is exactly
153 * the power of "map", possibly after projecting out the power (if "project"
154 * is set).
155 *
156 * If "project" is set and if "steps" can only result in acyclic paths,
157 * then we check
158 *
159 *	A = R \cup (A \circ R)
160 *
161 * where A is the overapproximation with the power projected out, i.e.,
162 * an overapproximation of the transitive closure.
163 * More specifically, since A is known to be an overapproximation, we check
164 *
165 *	A \subset R \cup (A \circ R)
166 *
167 * Otherwise, we check if the power is exact.
168 *
169 * Note that "app" has an extra input and output coordinate to encode
170 * the length of the part.  If we are only interested in the transitive
171 * closure, then we can simply project out these coordinates first.
172 */
173static isl_bool check_exactness(__isl_take isl_map *map,
174	__isl_take isl_map *app, int project)
175{
176	isl_map *test;
177	isl_bool exact;
178	isl_size d;
179
180	if (!project)
181		return check_power_exactness(map, app);
182
183	d = isl_map_dim(map, isl_dim_in);
184	if (d < 0)
185		app = isl_map_free(app);
186	app = set_path_length(app, 0, 1);
187	app = isl_map_project_out(app, isl_dim_in, d, 1);
188	app = isl_map_project_out(app, isl_dim_out, d, 1);
189
190	app = isl_map_reset_space(app, isl_map_get_space(map));
191
192	test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app));
193	test = isl_map_union(test, isl_map_copy(map));
194
195	exact = isl_map_is_subset(app, test);
196
197	isl_map_free(app);
198	isl_map_free(test);
199
200	isl_map_free(map);
201
202	return exact;
203}
204
205/*
206 * The transitive closure implementation is based on the paper
207 * "Computing the Transitive Closure of a Union of Affine Integer
208 * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and
209 * Albert Cohen.
210 */
211
212/* Given a set of n offsets v_i (the rows of "steps"), construct a relation
213 * of the given dimension specification (Z^{n+1} -> Z^{n+1})
214 * that maps an element x to any element that can be reached
215 * by taking a non-negative number of steps along any of
216 * the extended offsets v'_i = [v_i 1].
217 * That is, construct
218 *
219 * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i }
220 *
221 * For any element in this relation, the number of steps taken
222 * is equal to the difference in the final coordinates.
223 */
224static __isl_give isl_map *path_along_steps(__isl_take isl_space *space,
225	__isl_keep isl_mat *steps)
226{
227	int i, j, k;
228	struct isl_basic_map *path = NULL;
229	isl_size d;
230	unsigned n;
231	isl_size nparam;
232	isl_size total;
233
234	d = isl_space_dim(space, isl_dim_in);
235	nparam = isl_space_dim(space, isl_dim_param);
236	if (d < 0 || nparam < 0 || !steps)
237		goto error;
238
239	n = steps->n_row;
240
241	path = isl_basic_map_alloc_space(isl_space_copy(space), n, d, n);
242
243	for (i = 0; i < n; ++i) {
244		k = isl_basic_map_alloc_div(path);
245		if (k < 0)
246			goto error;
247		isl_assert(steps->ctx, i == k, goto error);
248		isl_int_set_si(path->div[k][0], 0);
249	}
250
251	total = isl_basic_map_dim(path, isl_dim_all);
252	if (total < 0)
253		goto error;
254	for (i = 0; i < d; ++i) {
255		k = isl_basic_map_alloc_equality(path);
256		if (k < 0)
257			goto error;
258		isl_seq_clr(path->eq[k], 1 + total);
259		isl_int_set_si(path->eq[k][1 + nparam + i], 1);
260		isl_int_set_si(path->eq[k][1 + nparam + d + i], -1);
261		if (i == d - 1)
262			for (j = 0; j < n; ++j)
263				isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1);
264		else
265			for (j = 0; j < n; ++j)
266				isl_int_set(path->eq[k][1 + nparam + 2 * d + j],
267					    steps->row[j][i]);
268	}
269
270	for (i = 0; i < n; ++i) {
271		k = isl_basic_map_alloc_inequality(path);
272		if (k < 0)
273			goto error;
274		isl_seq_clr(path->ineq[k], 1 + total);
275		isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1);
276	}
277
278	isl_space_free(space);
279
280	path = isl_basic_map_simplify(path);
281	path = isl_basic_map_finalize(path);
282	return isl_map_from_basic_map(path);
283error:
284	isl_space_free(space);
285	isl_basic_map_free(path);
286	return NULL;
287}
288
289#define IMPURE		0
290#define PURE_PARAM	1
291#define PURE_VAR	2
292#define MIXED		3
293
294/* Check whether the parametric constant term of constraint c is never
295 * positive in "bset".
296 */
297static isl_bool parametric_constant_never_positive(
298	__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity)
299{
300	isl_size d;
301	isl_size n_div;
302	isl_size nparam;
303	isl_size total;
304	int i;
305	int k;
306	isl_bool empty;
307
308	n_div = isl_basic_set_dim(bset, isl_dim_div);
309	d = isl_basic_set_dim(bset, isl_dim_set);
310	nparam = isl_basic_set_dim(bset, isl_dim_param);
311	total = isl_basic_set_dim(bset, isl_dim_all);
312	if (n_div < 0 || d < 0 || nparam < 0 || total < 0)
313		return isl_bool_error;
314
315	bset = isl_basic_set_copy(bset);
316	bset = isl_basic_set_cow(bset);
317	bset = isl_basic_set_extend_constraints(bset, 0, 1);
318	k = isl_basic_set_alloc_inequality(bset);
319	if (k < 0)
320		goto error;
321	isl_seq_clr(bset->ineq[k], 1 + total);
322	isl_seq_cpy(bset->ineq[k], c, 1 + nparam);
323	for (i = 0; i < n_div; ++i) {
324		if (div_purity[i] != PURE_PARAM)
325			continue;
326		isl_int_set(bset->ineq[k][1 + nparam + d + i],
327			    c[1 + nparam + d + i]);
328	}
329	isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
330	empty = isl_basic_set_is_empty(bset);
331	isl_basic_set_free(bset);
332
333	return empty;
334error:
335	isl_basic_set_free(bset);
336	return isl_bool_error;
337}
338
339/* Return PURE_PARAM if only the coefficients of the parameters are non-zero.
340 * Return PURE_VAR if only the coefficients of the set variables are non-zero.
341 * Return MIXED if only the coefficients of the parameters and the set
342 * 	variables are non-zero and if moreover the parametric constant
343 * 	can never attain positive values.
344 * Return IMPURE otherwise.
345 */
346static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity,
347	int eq)
348{
349	isl_size d;
350	isl_size n_div;
351	isl_size nparam;
352	isl_bool empty;
353	int i;
354	int p = 0, v = 0;
355
356	n_div = isl_basic_set_dim(bset, isl_dim_div);
357	d = isl_basic_set_dim(bset, isl_dim_set);
358	nparam = isl_basic_set_dim(bset, isl_dim_param);
359	if (n_div < 0 || d < 0 || nparam < 0)
360		return -1;
361
362	for (i = 0; i < n_div; ++i) {
363		if (isl_int_is_zero(c[1 + nparam + d + i]))
364			continue;
365		switch (div_purity[i]) {
366		case PURE_PARAM: p = 1; break;
367		case PURE_VAR: v = 1; break;
368		default: return IMPURE;
369		}
370	}
371	if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1)
372		return PURE_VAR;
373	if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1)
374		return PURE_PARAM;
375
376	empty = parametric_constant_never_positive(bset, c, div_purity);
377	if (eq && empty >= 0 && !empty) {
378		isl_seq_neg(c, c, 1 + nparam + d + n_div);
379		empty = parametric_constant_never_positive(bset, c, div_purity);
380	}
381
382	return empty < 0 ? -1 : empty ? MIXED : IMPURE;
383}
384
385/* Return an array of integers indicating the type of each div in bset.
386 * If the div is (recursively) defined in terms of only the parameters,
387 * then the type is PURE_PARAM.
388 * If the div is (recursively) defined in terms of only the set variables,
389 * then the type is PURE_VAR.
390 * Otherwise, the type is IMPURE.
391 */
392static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset)
393{
394	int i, j;
395	int *div_purity;
396	isl_size d;
397	isl_size n_div;
398	isl_size nparam;
399
400	n_div = isl_basic_set_dim(bset, isl_dim_div);
401	d = isl_basic_set_dim(bset, isl_dim_set);
402	nparam = isl_basic_set_dim(bset, isl_dim_param);
403	if (n_div < 0 || d < 0 || nparam < 0)
404		return NULL;
405
406	div_purity = isl_alloc_array(bset->ctx, int, n_div);
407	if (n_div && !div_purity)
408		return NULL;
409
410	for (i = 0; i < bset->n_div; ++i) {
411		int p = 0, v = 0;
412		if (isl_int_is_zero(bset->div[i][0])) {
413			div_purity[i] = IMPURE;
414			continue;
415		}
416		if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1)
417			p = 1;
418		if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1)
419			v = 1;
420		for (j = 0; j < i; ++j) {
421			if (isl_int_is_zero(bset->div[i][2 + nparam + d + j]))
422				continue;
423			switch (div_purity[j]) {
424			case PURE_PARAM: p = 1; break;
425			case PURE_VAR: v = 1; break;
426			default: p = v = 1; break;
427			}
428		}
429		div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM;
430	}
431
432	return div_purity;
433}
434
435/* Given a path with the as yet unconstrained length at div position "pos",
436 * check if setting the length to zero results in only the identity
437 * mapping.
438 */
439static isl_bool empty_path_is_identity(__isl_keep isl_basic_map *path,
440	unsigned pos)
441{
442	isl_basic_map *test = NULL;
443	isl_basic_map *id = NULL;
444	isl_bool is_id;
445
446	test = isl_basic_map_copy(path);
447	test = isl_basic_map_fix_si(test, isl_dim_div, pos, 0);
448	id = isl_basic_map_identity(isl_basic_map_get_space(path));
449	is_id = isl_basic_map_is_equal(test, id);
450	isl_basic_map_free(test);
451	isl_basic_map_free(id);
452	return is_id;
453}
454
455/* If any of the constraints is found to be impure then this function
456 * sets *impurity to 1.
457 *
458 * If impurity is NULL then we are dealing with a non-parametric set
459 * and so the constraints are obviously PURE_VAR.
460 */
461static __isl_give isl_basic_map *add_delta_constraints(
462	__isl_take isl_basic_map *path,
463	__isl_keep isl_basic_set *delta, unsigned off, unsigned nparam,
464	unsigned d, int *div_purity, int eq, int *impurity)
465{
466	int i, k;
467	int n = eq ? delta->n_eq : delta->n_ineq;
468	isl_int **delta_c = eq ? delta->eq : delta->ineq;
469	isl_size n_div, total;
470
471	n_div = isl_basic_set_dim(delta, isl_dim_div);
472	total = isl_basic_map_dim(path, isl_dim_all);
473	if (n_div < 0 || total < 0)
474		return isl_basic_map_free(path);
475
476	for (i = 0; i < n; ++i) {
477		isl_int *path_c;
478		int p = PURE_VAR;
479		if (impurity)
480			p = purity(delta, delta_c[i], div_purity, eq);
481		if (p < 0)
482			goto error;
483		if (p != PURE_VAR && p != PURE_PARAM && !*impurity)
484			*impurity = 1;
485		if (p == IMPURE)
486			continue;
487		if (eq && p != MIXED) {
488			k = isl_basic_map_alloc_equality(path);
489			if (k < 0)
490				goto error;
491			path_c = path->eq[k];
492		} else {
493			k = isl_basic_map_alloc_inequality(path);
494			if (k < 0)
495				goto error;
496			path_c = path->ineq[k];
497		}
498		isl_seq_clr(path_c, 1 + total);
499		if (p == PURE_VAR) {
500			isl_seq_cpy(path_c + off,
501				    delta_c[i] + 1 + nparam, d);
502			isl_int_set(path_c[off + d], delta_c[i][0]);
503		} else if (p == PURE_PARAM) {
504			isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
505		} else {
506			isl_seq_cpy(path_c + off,
507				    delta_c[i] + 1 + nparam, d);
508			isl_seq_cpy(path_c, delta_c[i], 1 + nparam);
509		}
510		isl_seq_cpy(path_c + off - n_div,
511			    delta_c[i] + 1 + nparam + d, n_div);
512	}
513
514	return path;
515error:
516	isl_basic_map_free(path);
517	return NULL;
518}
519
520/* Given a set of offsets "delta", construct a relation of the
521 * given dimension specification (Z^{n+1} -> Z^{n+1}) that
522 * is an overapproximation of the relations that
523 * maps an element x to any element that can be reached
524 * by taking a non-negative number of steps along any of
525 * the elements in "delta".
526 * That is, construct an approximation of
527 *
528 *	{ [x] -> [y] : exists f \in \delta, k \in Z :
529 *					y = x + k [f, 1] and k >= 0 }
530 *
531 * For any element in this relation, the number of steps taken
532 * is equal to the difference in the final coordinates.
533 *
534 * In particular, let delta be defined as
535 *
536 *	\delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and
537 *				C x + C'p + c >= 0 and
538 *				D x + D'p + d >= 0 }
539 *
540 * where the constraints C x + C'p + c >= 0 are such that the parametric
541 * constant term of each constraint j, "C_j x + C'_j p + c_j",
542 * can never attain positive values, then the relation is constructed as
543 *
544 *	{ [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
545 *			A f + k a >= 0 and B p + b >= 0 and
546 *			C f + C'p + c >= 0 and k >= 1 }
547 *	union { [x] -> [x] }
548 *
549 * If the zero-length paths happen to correspond exactly to the identity
550 * mapping, then we return
551 *
552 *	{ [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and
553 *			A f + k a >= 0 and B p + b >= 0 and
554 *			C f + C'p + c >= 0 and k >= 0 }
555 *
556 * instead.
557 *
558 * Existentially quantified variables in \delta are handled by
559 * classifying them as independent of the parameters, purely
560 * parameter dependent and others.  Constraints containing
561 * any of the other existentially quantified variables are removed.
562 * This is safe, but leads to an additional overapproximation.
563 *
564 * If there are any impure constraints, then we also eliminate
565 * the parameters from \delta, resulting in a set
566 *
567 *	\delta' = { [x] : E x + e >= 0 }
568 *
569 * and add the constraints
570 *
571 *			E f + k e >= 0
572 *
573 * to the constructed relation.
574 */
575static __isl_give isl_map *path_along_delta(__isl_take isl_space *space,
576	__isl_take isl_basic_set *delta)
577{
578	isl_basic_map *path = NULL;
579	isl_size d;
580	isl_size n_div;
581	isl_size nparam;
582	isl_size total;
583	unsigned off;
584	int i, k;
585	isl_bool is_id;
586	int *div_purity = NULL;
587	int impurity = 0;
588
589	n_div = isl_basic_set_dim(delta, isl_dim_div);
590	d = isl_basic_set_dim(delta, isl_dim_set);
591	nparam = isl_basic_set_dim(delta, isl_dim_param);
592	if (n_div < 0 || d < 0 || nparam < 0)
593		goto error;
594	path = isl_basic_map_alloc_space(isl_space_copy(space), n_div + d + 1,
595			d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1);
596	off = 1 + nparam + 2 * (d + 1) + n_div;
597
598	for (i = 0; i < n_div + d + 1; ++i) {
599		k = isl_basic_map_alloc_div(path);
600		if (k < 0)
601			goto error;
602		isl_int_set_si(path->div[k][0], 0);
603	}
604
605	total = isl_basic_map_dim(path, isl_dim_all);
606	if (total < 0)
607		goto error;
608	for (i = 0; i < d + 1; ++i) {
609		k = isl_basic_map_alloc_equality(path);
610		if (k < 0)
611			goto error;
612		isl_seq_clr(path->eq[k], 1 + total);
613		isl_int_set_si(path->eq[k][1 + nparam + i], 1);
614		isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1);
615		isl_int_set_si(path->eq[k][off + i], 1);
616	}
617
618	div_purity = get_div_purity(delta);
619	if (n_div && !div_purity)
620		goto error;
621
622	path = add_delta_constraints(path, delta, off, nparam, d,
623				     div_purity, 1, &impurity);
624	path = add_delta_constraints(path, delta, off, nparam, d,
625				     div_purity, 0, &impurity);
626	if (impurity) {
627		isl_space *space = isl_basic_set_get_space(delta);
628		delta = isl_basic_set_project_out(delta,
629						  isl_dim_param, 0, nparam);
630		delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam);
631		delta = isl_basic_set_reset_space(delta, space);
632		if (!delta)
633			goto error;
634		path = isl_basic_map_extend_constraints(path, delta->n_eq,
635							delta->n_ineq + 1);
636		path = add_delta_constraints(path, delta, off, nparam, d,
637					     NULL, 1, NULL);
638		path = add_delta_constraints(path, delta, off, nparam, d,
639					     NULL, 0, NULL);
640		path = isl_basic_map_gauss(path, NULL);
641	}
642
643	is_id = empty_path_is_identity(path, n_div + d);
644	if (is_id < 0)
645		goto error;
646
647	k = isl_basic_map_alloc_inequality(path);
648	if (k < 0)
649		goto error;
650	isl_seq_clr(path->ineq[k], 1 + total);
651	if (!is_id)
652		isl_int_set_si(path->ineq[k][0], -1);
653	isl_int_set_si(path->ineq[k][off + d], 1);
654
655	free(div_purity);
656	isl_basic_set_free(delta);
657	path = isl_basic_map_finalize(path);
658	if (is_id) {
659		isl_space_free(space);
660		return isl_map_from_basic_map(path);
661	}
662	return isl_basic_map_union(path, isl_basic_map_identity(space));
663error:
664	free(div_purity);
665	isl_space_free(space);
666	isl_basic_set_free(delta);
667	isl_basic_map_free(path);
668	return NULL;
669}
670
671/* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param",
672 * construct a map that equates the parameter to the difference
673 * in the final coordinates and imposes that this difference is positive.
674 * That is, construct
675 *
676 *	{ [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 }
677 */
678static __isl_give isl_map *equate_parameter_to_length(
679	__isl_take isl_space *space, unsigned param)
680{
681	struct isl_basic_map *bmap;
682	isl_size d;
683	isl_size nparam;
684	isl_size total;
685	int k;
686
687	d = isl_space_dim(space, isl_dim_in);
688	nparam = isl_space_dim(space, isl_dim_param);
689	total = isl_space_dim(space, isl_dim_all);
690	if (d < 0 || nparam < 0 || total < 0)
691		space = isl_space_free(space);
692	bmap = isl_basic_map_alloc_space(space, 0, 1, 1);
693	k = isl_basic_map_alloc_equality(bmap);
694	if (k < 0)
695		goto error;
696	isl_seq_clr(bmap->eq[k], 1 + total);
697	isl_int_set_si(bmap->eq[k][1 + param], -1);
698	isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1);
699	isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1);
700
701	k = isl_basic_map_alloc_inequality(bmap);
702	if (k < 0)
703		goto error;
704	isl_seq_clr(bmap->ineq[k], 1 + total);
705	isl_int_set_si(bmap->ineq[k][1 + param], 1);
706	isl_int_set_si(bmap->ineq[k][0], -1);
707
708	bmap = isl_basic_map_finalize(bmap);
709	return isl_map_from_basic_map(bmap);
710error:
711	isl_basic_map_free(bmap);
712	return NULL;
713}
714
715/* Check whether "path" is acyclic, where the last coordinates of domain
716 * and range of path encode the number of steps taken.
717 * That is, check whether
718 *
719 *	{ d | d = y - x and (x,y) in path }
720 *
721 * does not contain any element with positive last coordinate (positive length)
722 * and zero remaining coordinates (cycle).
723 */
724static isl_bool is_acyclic(__isl_take isl_map *path)
725{
726	int i;
727	isl_bool acyclic;
728	isl_size dim;
729	struct isl_set *delta;
730
731	delta = isl_map_deltas(path);
732	dim = isl_set_dim(delta, isl_dim_set);
733	if (dim < 0)
734		delta = isl_set_free(delta);
735	for (i = 0; i < dim; ++i) {
736		if (i == dim -1)
737			delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1);
738		else
739			delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
740	}
741
742	acyclic = isl_set_is_empty(delta);
743	isl_set_free(delta);
744
745	return acyclic;
746}
747
748/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
749 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
750 * construct a map that is an overapproximation of the map
751 * that takes an element from the space D \times Z to another
752 * element from the same space, such that the first n coordinates of the
753 * difference between them is a sum of differences between images
754 * and pre-images in one of the R_i and such that the last coordinate
755 * is equal to the number of steps taken.
756 * That is, let
757 *
758 *	\Delta_i = { y - x | (x, y) in R_i }
759 *
760 * then the constructed map is an overapproximation of
761 *
762 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
763 *				d = (\sum_i k_i \delta_i, \sum_i k_i) }
764 *
765 * The elements of the singleton \Delta_i's are collected as the
766 * rows of the steps matrix.  For all these \Delta_i's together,
767 * a single path is constructed.
768 * For each of the other \Delta_i's, we compute an overapproximation
769 * of the paths along elements of \Delta_i.
770 * Since each of these paths performs an addition, composition is
771 * symmetric and we can simply compose all resulting paths in any order.
772 */
773static __isl_give isl_map *construct_extended_path(__isl_take isl_space *space,
774	__isl_keep isl_map *map, int *project)
775{
776	struct isl_mat *steps = NULL;
777	struct isl_map *path = NULL;
778	isl_size d;
779	int i, j, n;
780
781	d = isl_map_dim(map, isl_dim_in);
782	if (d < 0)
783		goto error;
784
785	path = isl_map_identity(isl_space_copy(space));
786
787	steps = isl_mat_alloc(map->ctx, map->n, d);
788	if (!steps)
789		goto error;
790
791	n = 0;
792	for (i = 0; i < map->n; ++i) {
793		struct isl_basic_set *delta;
794
795		delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i]));
796
797		for (j = 0; j < d; ++j) {
798			isl_bool fixed;
799
800			fixed = isl_basic_set_plain_dim_is_fixed(delta, j,
801							    &steps->row[n][j]);
802			if (fixed < 0) {
803				isl_basic_set_free(delta);
804				goto error;
805			}
806			if (!fixed)
807				break;
808		}
809
810
811		if (j < d) {
812			path = isl_map_apply_range(path,
813				path_along_delta(isl_space_copy(space), delta));
814			path = isl_map_coalesce(path);
815		} else {
816			isl_basic_set_free(delta);
817			++n;
818		}
819	}
820
821	if (n > 0) {
822		steps->n_row = n;
823		path = isl_map_apply_range(path,
824				path_along_steps(isl_space_copy(space), steps));
825	}
826
827	if (project && *project) {
828		*project = is_acyclic(isl_map_copy(path));
829		if (*project < 0)
830			goto error;
831	}
832
833	isl_space_free(space);
834	isl_mat_free(steps);
835	return path;
836error:
837	isl_space_free(space);
838	isl_mat_free(steps);
839	isl_map_free(path);
840	return NULL;
841}
842
843static isl_bool isl_set_overlaps(__isl_keep isl_set *set1,
844	__isl_keep isl_set *set2)
845{
846	return isl_bool_not(isl_set_is_disjoint(set1, set2));
847}
848
849/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
850 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
851 * construct a map that is an overapproximation of the map
852 * that takes an element from the dom R \times Z to an
853 * element from ran R \times Z, such that the first n coordinates of the
854 * difference between them is a sum of differences between images
855 * and pre-images in one of the R_i and such that the last coordinate
856 * is equal to the number of steps taken.
857 * That is, let
858 *
859 *	\Delta_i = { y - x | (x, y) in R_i }
860 *
861 * then the constructed map is an overapproximation of
862 *
863 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
864 *				d = (\sum_i k_i \delta_i, \sum_i k_i) and
865 *				x in dom R and x + d in ran R and
866 *				\sum_i k_i >= 1 }
867 */
868static __isl_give isl_map *construct_component(__isl_take isl_space *space,
869	__isl_keep isl_map *map, isl_bool *exact, int project)
870{
871	struct isl_set *domain = NULL;
872	struct isl_set *range = NULL;
873	struct isl_map *app = NULL;
874	struct isl_map *path = NULL;
875	isl_bool overlaps;
876	int check;
877
878	domain = isl_map_domain(isl_map_copy(map));
879	domain = isl_set_coalesce(domain);
880	range = isl_map_range(isl_map_copy(map));
881	range = isl_set_coalesce(range);
882	overlaps = isl_set_overlaps(domain, range);
883	if (overlaps < 0 || !overlaps) {
884		isl_set_free(domain);
885		isl_set_free(range);
886		isl_space_free(space);
887
888		if (overlaps < 0)
889			map = NULL;
890		map = isl_map_copy(map);
891		map = isl_map_add_dims(map, isl_dim_in, 1);
892		map = isl_map_add_dims(map, isl_dim_out, 1);
893		map = set_path_length(map, 1, 1);
894		return map;
895	}
896	app = isl_map_from_domain_and_range(domain, range);
897	app = isl_map_add_dims(app, isl_dim_in, 1);
898	app = isl_map_add_dims(app, isl_dim_out, 1);
899
900	check = exact && *exact == isl_bool_true;
901	path = construct_extended_path(isl_space_copy(space), map,
902					check ? &project : NULL);
903	app = isl_map_intersect(app, path);
904
905	if (check &&
906	    (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app),
907				      project)) < 0)
908		goto error;
909
910	isl_space_free(space);
911	app = set_path_length(app, 0, 1);
912	return app;
913error:
914	isl_space_free(space);
915	isl_map_free(app);
916	return NULL;
917}
918
919/* Call construct_component and, if "project" is set, project out
920 * the final coordinates.
921 */
922static __isl_give isl_map *construct_projected_component(
923	__isl_take isl_space *space,
924	__isl_keep isl_map *map, isl_bool *exact, int project)
925{
926	isl_map *app;
927	unsigned d;
928
929	if (!space)
930		return NULL;
931	d = isl_space_dim(space, isl_dim_in);
932
933	app = construct_component(space, map, exact, project);
934	if (project) {
935		app = isl_map_project_out(app, isl_dim_in, d - 1, 1);
936		app = isl_map_project_out(app, isl_dim_out, d - 1, 1);
937	}
938	return app;
939}
940
941/* Compute an extended version, i.e., with path lengths, of
942 * an overapproximation of the transitive closure of "bmap"
943 * with path lengths greater than or equal to zero and with
944 * domain and range equal to "dom".
945 */
946static __isl_give isl_map *q_closure(__isl_take isl_space *space,
947	__isl_take isl_set *dom, __isl_keep isl_basic_map *bmap,
948	isl_bool *exact)
949{
950	int project = 1;
951	isl_map *path;
952	isl_map *map;
953	isl_map *app;
954
955	dom = isl_set_add_dims(dom, isl_dim_set, 1);
956	app = isl_map_from_domain_and_range(dom, isl_set_copy(dom));
957	map = isl_map_from_basic_map(isl_basic_map_copy(bmap));
958	path = construct_extended_path(space, map, &project);
959	app = isl_map_intersect(app, path);
960
961	if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0)
962		goto error;
963
964	return app;
965error:
966	isl_map_free(app);
967	return NULL;
968}
969
970/* Check whether qc has any elements of length at least one
971 * with domain and/or range outside of dom and ran.
972 */
973static isl_bool has_spurious_elements(__isl_keep isl_map *qc,
974	__isl_keep isl_set *dom, __isl_keep isl_set *ran)
975{
976	isl_set *s;
977	isl_bool subset;
978	isl_size d;
979
980	d = isl_map_dim(qc, isl_dim_in);
981	if (d < 0 || !dom || !ran)
982		return isl_bool_error;
983
984	qc = isl_map_copy(qc);
985	qc = set_path_length(qc, 0, 1);
986	qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1);
987	qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1);
988
989	s = isl_map_domain(isl_map_copy(qc));
990	subset = isl_set_is_subset(s, dom);
991	isl_set_free(s);
992	if (subset < 0)
993		goto error;
994	if (!subset) {
995		isl_map_free(qc);
996		return isl_bool_true;
997	}
998
999	s = isl_map_range(qc);
1000	subset = isl_set_is_subset(s, ran);
1001	isl_set_free(s);
1002
1003	return isl_bool_not(subset);
1004error:
1005	isl_map_free(qc);
1006	return isl_bool_error;
1007}
1008
1009#define LEFT	2
1010#define RIGHT	1
1011
1012/* For each basic map in "map", except i, check whether it combines
1013 * with the transitive closure that is reflexive on C combines
1014 * to the left and to the right.
1015 *
1016 * In particular, if
1017 *
1018 *	dom map_j \subseteq C
1019 *
1020 * then right[j] is set to 1.  Otherwise, if
1021 *
1022 *	ran map_i \cap dom map_j = \emptyset
1023 *
1024 * then right[j] is set to 0.  Otherwise, composing to the right
1025 * is impossible.
1026 *
1027 * Similar, for composing to the left, we have if
1028 *
1029 *	ran map_j \subseteq C
1030 *
1031 * then left[j] is set to 1.  Otherwise, if
1032 *
1033 *	dom map_i \cap ran map_j = \emptyset
1034 *
1035 * then left[j] is set to 0.  Otherwise, composing to the left
1036 * is impossible.
1037 *
1038 * The return value is or'd with LEFT if composing to the left
1039 * is possible and with RIGHT if composing to the right is possible.
1040 */
1041static int composability(__isl_keep isl_set *C, int i,
1042	isl_set **dom, isl_set **ran, int *left, int *right,
1043	__isl_keep isl_map *map)
1044{
1045	int j;
1046	int ok;
1047
1048	ok = LEFT | RIGHT;
1049	for (j = 0; j < map->n && ok; ++j) {
1050		isl_bool overlaps, subset;
1051		if (j == i)
1052			continue;
1053
1054		if (ok & RIGHT) {
1055			if (!dom[j])
1056				dom[j] = isl_set_from_basic_set(
1057					isl_basic_map_domain(
1058						isl_basic_map_copy(map->p[j])));
1059			if (!dom[j])
1060				return -1;
1061			overlaps = isl_set_overlaps(ran[i], dom[j]);
1062			if (overlaps < 0)
1063				return -1;
1064			if (!overlaps)
1065				right[j] = 0;
1066			else {
1067				subset = isl_set_is_subset(dom[j], C);
1068				if (subset < 0)
1069					return -1;
1070				if (subset)
1071					right[j] = 1;
1072				else
1073					ok &= ~RIGHT;
1074			}
1075		}
1076
1077		if (ok & LEFT) {
1078			if (!ran[j])
1079				ran[j] = isl_set_from_basic_set(
1080					isl_basic_map_range(
1081						isl_basic_map_copy(map->p[j])));
1082			if (!ran[j])
1083				return -1;
1084			overlaps = isl_set_overlaps(dom[i], ran[j]);
1085			if (overlaps < 0)
1086				return -1;
1087			if (!overlaps)
1088				left[j] = 0;
1089			else {
1090				subset = isl_set_is_subset(ran[j], C);
1091				if (subset < 0)
1092					return -1;
1093				if (subset)
1094					left[j] = 1;
1095				else
1096					ok &= ~LEFT;
1097			}
1098		}
1099	}
1100
1101	return ok;
1102}
1103
1104static __isl_give isl_map *anonymize(__isl_take isl_map *map)
1105{
1106	map = isl_map_reset(map, isl_dim_in);
1107	map = isl_map_reset(map, isl_dim_out);
1108	return map;
1109}
1110
1111/* Return a map that is a union of the basic maps in "map", except i,
1112 * composed to left and right with qc based on the entries of "left"
1113 * and "right".
1114 */
1115static __isl_give isl_map *compose(__isl_keep isl_map *map, int i,
1116	__isl_take isl_map *qc, int *left, int *right)
1117{
1118	int j;
1119	isl_map *comp;
1120
1121	comp = isl_map_empty(isl_map_get_space(map));
1122	for (j = 0; j < map->n; ++j) {
1123		isl_map *map_j;
1124
1125		if (j == i)
1126			continue;
1127
1128		map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j]));
1129		map_j = anonymize(map_j);
1130		if (left && left[j])
1131			map_j = isl_map_apply_range(map_j, isl_map_copy(qc));
1132		if (right && right[j])
1133			map_j = isl_map_apply_range(isl_map_copy(qc), map_j);
1134		comp = isl_map_union(comp, map_j);
1135	}
1136
1137	comp = isl_map_compute_divs(comp);
1138	comp = isl_map_coalesce(comp);
1139
1140	isl_map_free(qc);
1141
1142	return comp;
1143}
1144
1145/* Compute the transitive closure of "map" incrementally by
1146 * computing
1147 *
1148 *	map_i^+ \cup qc^+
1149 *
1150 * or
1151 *
1152 *	map_i^+ \cup ((id \cup map_i^) \circ qc^+)
1153 *
1154 * or
1155 *
1156 *	map_i^+ \cup (qc^+ \circ (id \cup map_i^))
1157 *
1158 * depending on whether left or right are NULL.
1159 */
1160static __isl_give isl_map *compute_incremental(
1161	__isl_take isl_space *space, __isl_keep isl_map *map,
1162	int i, __isl_take isl_map *qc, int *left, int *right, isl_bool *exact)
1163{
1164	isl_map *map_i;
1165	isl_map *tc;
1166	isl_map *rtc = NULL;
1167
1168	if (!map)
1169		goto error;
1170	isl_assert(map->ctx, left || right, goto error);
1171
1172	map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
1173	tc = construct_projected_component(isl_space_copy(space), map_i,
1174						exact, 1);
1175	isl_map_free(map_i);
1176
1177	if (*exact)
1178		qc = isl_map_transitive_closure(qc, exact);
1179
1180	if (!*exact) {
1181		isl_space_free(space);
1182		isl_map_free(tc);
1183		isl_map_free(qc);
1184		return isl_map_universe(isl_map_get_space(map));
1185	}
1186
1187	if (!left || !right)
1188		rtc = isl_map_union(isl_map_copy(tc),
1189				    isl_map_identity(isl_map_get_space(tc)));
1190	if (!right)
1191		qc = isl_map_apply_range(rtc, qc);
1192	if (!left)
1193		qc = isl_map_apply_range(qc, rtc);
1194	qc = isl_map_union(tc, qc);
1195
1196	isl_space_free(space);
1197
1198	return qc;
1199error:
1200	isl_space_free(space);
1201	isl_map_free(qc);
1202	return NULL;
1203}
1204
1205/* Given a map "map", try to find a basic map such that
1206 * map^+ can be computed as
1207 *
1208 * map^+ = map_i^+ \cup
1209 *    \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1210 *
1211 * with C the simple hull of the domain and range of the input map.
1212 * map_i^ \cup Id_C is computed by allowing the path lengths to be zero
1213 * and by intersecting domain and range with C.
1214 * Of course, we need to check that this is actually equal to map_i^ \cup Id_C.
1215 * Also, we only use the incremental computation if all the transitive
1216 * closures are exact and if the number of basic maps in the union,
1217 * after computing the integer divisions, is smaller than the number
1218 * of basic maps in the input map.
1219 */
1220static isl_bool incremental_on_entire_domain(__isl_keep isl_space *space,
1221	__isl_keep isl_map *map,
1222	isl_set **dom, isl_set **ran, int *left, int *right,
1223	__isl_give isl_map **res)
1224{
1225	int i;
1226	isl_set *C;
1227	isl_size d;
1228
1229	*res = NULL;
1230
1231	d = isl_map_dim(map, isl_dim_in);
1232	if (d < 0)
1233		return isl_bool_error;
1234
1235	C = isl_set_union(isl_map_domain(isl_map_copy(map)),
1236			  isl_map_range(isl_map_copy(map)));
1237	C = isl_set_from_basic_set(isl_set_simple_hull(C));
1238	if (!C)
1239		return isl_bool_error;
1240	if (C->n != 1) {
1241		isl_set_free(C);
1242		return isl_bool_false;
1243	}
1244
1245	for (i = 0; i < map->n; ++i) {
1246		isl_map *qc;
1247		isl_bool exact_i;
1248		isl_bool spurious;
1249		int j;
1250		dom[i] = isl_set_from_basic_set(isl_basic_map_domain(
1251					isl_basic_map_copy(map->p[i])));
1252		ran[i] = isl_set_from_basic_set(isl_basic_map_range(
1253					isl_basic_map_copy(map->p[i])));
1254		qc = q_closure(isl_space_copy(space), isl_set_copy(C),
1255				map->p[i], &exact_i);
1256		if (!qc)
1257			goto error;
1258		if (!exact_i) {
1259			isl_map_free(qc);
1260			continue;
1261		}
1262		spurious = has_spurious_elements(qc, dom[i], ran[i]);
1263		if (spurious) {
1264			isl_map_free(qc);
1265			if (spurious < 0)
1266				goto error;
1267			continue;
1268		}
1269		qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1270		qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1271		qc = isl_map_compute_divs(qc);
1272		for (j = 0; j < map->n; ++j)
1273			left[j] = right[j] = 1;
1274		qc = compose(map, i, qc, left, right);
1275		if (!qc)
1276			goto error;
1277		if (qc->n >= map->n) {
1278			isl_map_free(qc);
1279			continue;
1280		}
1281		*res = compute_incremental(isl_space_copy(space), map, i, qc,
1282				left, right, &exact_i);
1283		if (!*res)
1284			goto error;
1285		if (exact_i)
1286			break;
1287		isl_map_free(*res);
1288		*res = NULL;
1289	}
1290
1291	isl_set_free(C);
1292
1293	return isl_bool_ok(*res != NULL);
1294error:
1295	isl_set_free(C);
1296	return isl_bool_error;
1297}
1298
1299/* Try and compute the transitive closure of "map" as
1300 *
1301 * map^+ = map_i^+ \cup
1302 *    \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+
1303 *
1304 * with C either the simple hull of the domain and range of the entire
1305 * map or the simple hull of domain and range of map_i.
1306 */
1307static __isl_give isl_map *incremental_closure(__isl_take isl_space *space,
1308	__isl_keep isl_map *map, isl_bool *exact, int project)
1309{
1310	int i;
1311	isl_set **dom = NULL;
1312	isl_set **ran = NULL;
1313	int *left = NULL;
1314	int *right = NULL;
1315	isl_set *C;
1316	isl_size d;
1317	isl_map *res = NULL;
1318
1319	if (!project)
1320		return construct_projected_component(space, map, exact,
1321							project);
1322
1323	if (!map)
1324		goto error;
1325	if (map->n <= 1)
1326		return construct_projected_component(space, map, exact,
1327							project);
1328
1329	d = isl_map_dim(map, isl_dim_in);
1330	if (d < 0)
1331		goto error;
1332
1333	dom = isl_calloc_array(map->ctx, isl_set *, map->n);
1334	ran = isl_calloc_array(map->ctx, isl_set *, map->n);
1335	left = isl_calloc_array(map->ctx, int, map->n);
1336	right = isl_calloc_array(map->ctx, int, map->n);
1337	if (!ran || !dom || !left || !right)
1338		goto error;
1339
1340	if (incremental_on_entire_domain(space, map, dom, ran, left, right,
1341					&res) < 0)
1342		goto error;
1343
1344	for (i = 0; !res && i < map->n; ++i) {
1345		isl_map *qc;
1346		int comp;
1347		isl_bool exact_i, spurious;
1348		if (!dom[i])
1349			dom[i] = isl_set_from_basic_set(
1350					isl_basic_map_domain(
1351						isl_basic_map_copy(map->p[i])));
1352		if (!dom[i])
1353			goto error;
1354		if (!ran[i])
1355			ran[i] = isl_set_from_basic_set(
1356					isl_basic_map_range(
1357						isl_basic_map_copy(map->p[i])));
1358		if (!ran[i])
1359			goto error;
1360		C = isl_set_union(isl_set_copy(dom[i]),
1361				      isl_set_copy(ran[i]));
1362		C = isl_set_from_basic_set(isl_set_simple_hull(C));
1363		if (!C)
1364			goto error;
1365		if (C->n != 1) {
1366			isl_set_free(C);
1367			continue;
1368		}
1369		comp = composability(C, i, dom, ran, left, right, map);
1370		if (!comp || comp < 0) {
1371			isl_set_free(C);
1372			if (comp < 0)
1373				goto error;
1374			continue;
1375		}
1376		qc = q_closure(isl_space_copy(space), C, map->p[i], &exact_i);
1377		if (!qc)
1378			goto error;
1379		if (!exact_i) {
1380			isl_map_free(qc);
1381			continue;
1382		}
1383		spurious = has_spurious_elements(qc, dom[i], ran[i]);
1384		if (spurious) {
1385			isl_map_free(qc);
1386			if (spurious < 0)
1387				goto error;
1388			continue;
1389		}
1390		qc = isl_map_project_out(qc, isl_dim_in, d, 1);
1391		qc = isl_map_project_out(qc, isl_dim_out, d, 1);
1392		qc = isl_map_compute_divs(qc);
1393		qc = compose(map, i, qc, (comp & LEFT) ? left : NULL,
1394				(comp & RIGHT) ? right : NULL);
1395		if (!qc)
1396			goto error;
1397		if (qc->n >= map->n) {
1398			isl_map_free(qc);
1399			continue;
1400		}
1401		res = compute_incremental(isl_space_copy(space), map, i, qc,
1402				(comp & LEFT) ? left : NULL,
1403				(comp & RIGHT) ? right : NULL, &exact_i);
1404		if (!res)
1405			goto error;
1406		if (exact_i)
1407			break;
1408		isl_map_free(res);
1409		res = NULL;
1410	}
1411
1412	for (i = 0; i < map->n; ++i) {
1413		isl_set_free(dom[i]);
1414		isl_set_free(ran[i]);
1415	}
1416	free(dom);
1417	free(ran);
1418	free(left);
1419	free(right);
1420
1421	if (res) {
1422		isl_space_free(space);
1423		return res;
1424	}
1425
1426	return construct_projected_component(space, map, exact, project);
1427error:
1428	if (dom)
1429		for (i = 0; i < map->n; ++i)
1430			isl_set_free(dom[i]);
1431	free(dom);
1432	if (ran)
1433		for (i = 0; i < map->n; ++i)
1434			isl_set_free(ran[i]);
1435	free(ran);
1436	free(left);
1437	free(right);
1438	isl_space_free(space);
1439	return NULL;
1440}
1441
1442/* Given an array of sets "set", add "dom" at position "pos"
1443 * and search for elements at earlier positions that overlap with "dom".
1444 * If any can be found, then merge all of them, together with "dom", into
1445 * a single set and assign the union to the first in the array,
1446 * which becomes the new group leader for all groups involved in the merge.
1447 * During the search, we only consider group leaders, i.e., those with
1448 * group[i] = i, as the other sets have already been combined
1449 * with one of the group leaders.
1450 */
1451static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos)
1452{
1453	int i;
1454
1455	group[pos] = pos;
1456	set[pos] = isl_set_copy(dom);
1457
1458	for (i = pos - 1; i >= 0; --i) {
1459		isl_bool o;
1460
1461		if (group[i] != i)
1462			continue;
1463
1464		o = isl_set_overlaps(set[i], dom);
1465		if (o < 0)
1466			goto error;
1467		if (!o)
1468			continue;
1469
1470		set[i] = isl_set_union(set[i], set[group[pos]]);
1471		set[group[pos]] = NULL;
1472		if (!set[i])
1473			goto error;
1474		group[group[pos]] = i;
1475		group[pos] = i;
1476	}
1477
1478	isl_set_free(dom);
1479	return 0;
1480error:
1481	isl_set_free(dom);
1482	return -1;
1483}
1484
1485/* Construct a map [x] -> [x+1], with parameters prescribed by "space".
1486 */
1487static __isl_give isl_map *increment(__isl_take isl_space *space)
1488{
1489	int k;
1490	isl_basic_map *bmap;
1491	isl_size total;
1492
1493	space = isl_space_set_from_params(space);
1494	space = isl_space_add_dims(space, isl_dim_set, 1);
1495	space = isl_space_map_from_set(space);
1496	bmap = isl_basic_map_alloc_space(space, 0, 1, 0);
1497	total = isl_basic_map_dim(bmap, isl_dim_all);
1498	k = isl_basic_map_alloc_equality(bmap);
1499	if (total < 0 || k < 0)
1500		goto error;
1501	isl_seq_clr(bmap->eq[k], 1 + total);
1502	isl_int_set_si(bmap->eq[k][0], 1);
1503	isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1);
1504	isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1);
1505	return isl_map_from_basic_map(bmap);
1506error:
1507	isl_basic_map_free(bmap);
1508	return NULL;
1509}
1510
1511/* Replace each entry in the n by n grid of maps by the cross product
1512 * with the relation { [i] -> [i + 1] }.
1513 */
1514static isl_stat add_length(__isl_keep isl_map *map, isl_map ***grid, int n)
1515{
1516	int i, j;
1517	isl_space *space;
1518	isl_map *step;
1519
1520	space = isl_space_params(isl_map_get_space(map));
1521	step = increment(space);
1522
1523	if (!step)
1524		return isl_stat_error;
1525
1526	for (i = 0; i < n; ++i)
1527		for (j = 0; j < n; ++j)
1528			grid[i][j] = isl_map_product(grid[i][j],
1529						     isl_map_copy(step));
1530
1531	isl_map_free(step);
1532
1533	return isl_stat_ok;
1534}
1535
1536/* The core of the Floyd-Warshall algorithm.
1537 * Updates the given n x x matrix of relations in place.
1538 *
1539 * The algorithm iterates over all vertices.  In each step, the whole
1540 * matrix is updated to include all paths that go to the current vertex,
1541 * possibly stay there a while (including passing through earlier vertices)
1542 * and then come back.  At the start of each iteration, the diagonal
1543 * element corresponding to the current vertex is replaced by its
1544 * transitive closure to account for all indirect paths that stay
1545 * in the current vertex.
1546 */
1547static void floyd_warshall_iterate(isl_map ***grid, int n, isl_bool *exact)
1548{
1549	int r, p, q;
1550
1551	for (r = 0; r < n; ++r) {
1552		isl_bool r_exact;
1553		int check = exact && *exact == isl_bool_true;
1554		grid[r][r] = isl_map_transitive_closure(grid[r][r],
1555				check ? &r_exact : NULL);
1556		if (check && !r_exact)
1557			*exact = isl_bool_false;
1558
1559		for (p = 0; p < n; ++p)
1560			for (q = 0; q < n; ++q) {
1561				isl_map *loop;
1562				if (p == r && q == r)
1563					continue;
1564				loop = isl_map_apply_range(
1565						isl_map_copy(grid[p][r]),
1566						isl_map_copy(grid[r][q]));
1567				grid[p][q] = isl_map_union(grid[p][q], loop);
1568				loop = isl_map_apply_range(
1569						isl_map_copy(grid[p][r]),
1570					isl_map_apply_range(
1571						isl_map_copy(grid[r][r]),
1572						isl_map_copy(grid[r][q])));
1573				grid[p][q] = isl_map_union(grid[p][q], loop);
1574				grid[p][q] = isl_map_coalesce(grid[p][q]);
1575			}
1576	}
1577}
1578
1579/* Given a partition of the domains and ranges of the basic maps in "map",
1580 * apply the Floyd-Warshall algorithm with the elements in the partition
1581 * as vertices.
1582 *
1583 * In particular, there are "n" elements in the partition and "group" is
1584 * an array of length 2 * map->n with entries in [0,n-1].
1585 *
1586 * We first construct a matrix of relations based on the partition information,
1587 * apply Floyd-Warshall on this matrix of relations and then take the
1588 * union of all entries in the matrix as the final result.
1589 *
1590 * If we are actually computing the power instead of the transitive closure,
1591 * i.e., when "project" is not set, then the result should have the
1592 * path lengths encoded as the difference between an extra pair of
1593 * coordinates.  We therefore apply the nested transitive closures
1594 * to relations that include these lengths.  In particular, we replace
1595 * the input relation by the cross product with the unit length relation
1596 * { [i] -> [i + 1] }.
1597 */
1598static __isl_give isl_map *floyd_warshall_with_groups(
1599	__isl_take isl_space *space, __isl_keep isl_map *map,
1600	isl_bool *exact, int project, int *group, int n)
1601{
1602	int i, j, k;
1603	isl_map ***grid = NULL;
1604	isl_map *app;
1605
1606	if (!map)
1607		goto error;
1608
1609	if (n == 1) {
1610		free(group);
1611		return incremental_closure(space, map, exact, project);
1612	}
1613
1614	grid = isl_calloc_array(map->ctx, isl_map **, n);
1615	if (!grid)
1616		goto error;
1617	for (i = 0; i < n; ++i) {
1618		grid[i] = isl_calloc_array(map->ctx, isl_map *, n);
1619		if (!grid[i])
1620			goto error;
1621		for (j = 0; j < n; ++j)
1622			grid[i][j] = isl_map_empty(isl_map_get_space(map));
1623	}
1624
1625	for (k = 0; k < map->n; ++k) {
1626		i = group[2 * k];
1627		j = group[2 * k + 1];
1628		grid[i][j] = isl_map_union(grid[i][j],
1629				isl_map_from_basic_map(
1630					isl_basic_map_copy(map->p[k])));
1631	}
1632
1633	if (!project && add_length(map, grid, n) < 0)
1634		goto error;
1635
1636	floyd_warshall_iterate(grid, n, exact);
1637
1638	app = isl_map_empty(isl_map_get_space(grid[0][0]));
1639
1640	for (i = 0; i < n; ++i) {
1641		for (j = 0; j < n; ++j)
1642			app = isl_map_union(app, grid[i][j]);
1643		free(grid[i]);
1644	}
1645	free(grid);
1646
1647	free(group);
1648	isl_space_free(space);
1649
1650	return app;
1651error:
1652	if (grid)
1653		for (i = 0; i < n; ++i) {
1654			if (!grid[i])
1655				continue;
1656			for (j = 0; j < n; ++j)
1657				isl_map_free(grid[i][j]);
1658			free(grid[i]);
1659		}
1660	free(grid);
1661	free(group);
1662	isl_space_free(space);
1663	return NULL;
1664}
1665
1666/* Partition the domains and ranges of the n basic relations in list
1667 * into disjoint cells.
1668 *
1669 * To find the partition, we simply consider all of the domains
1670 * and ranges in turn and combine those that overlap.
1671 * "set" contains the partition elements and "group" indicates
1672 * to which partition element a given domain or range belongs.
1673 * The domain of basic map i corresponds to element 2 * i in these arrays,
1674 * while the domain corresponds to element 2 * i + 1.
1675 * During the construction group[k] is either equal to k,
1676 * in which case set[k] contains the union of all the domains and
1677 * ranges in the corresponding group, or is equal to some l < k,
1678 * with l another domain or range in the same group.
1679 */
1680static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n,
1681	isl_set ***set, int *n_group)
1682{
1683	int i;
1684	int *group = NULL;
1685	int g;
1686
1687	*set = isl_calloc_array(ctx, isl_set *, 2 * n);
1688	group = isl_alloc_array(ctx, int, 2 * n);
1689
1690	if (!*set || !group)
1691		goto error;
1692
1693	for (i = 0; i < n; ++i) {
1694		isl_set *dom;
1695		dom = isl_set_from_basic_set(isl_basic_map_domain(
1696				isl_basic_map_copy(list[i])));
1697		if (merge(*set, group, dom, 2 * i) < 0)
1698			goto error;
1699		dom = isl_set_from_basic_set(isl_basic_map_range(
1700				isl_basic_map_copy(list[i])));
1701		if (merge(*set, group, dom, 2 * i + 1) < 0)
1702			goto error;
1703	}
1704
1705	g = 0;
1706	for (i = 0; i < 2 * n; ++i)
1707		if (group[i] == i) {
1708			if (g != i) {
1709				(*set)[g] = (*set)[i];
1710				(*set)[i] = NULL;
1711			}
1712			group[i] = g++;
1713		} else
1714			group[i] = group[group[i]];
1715
1716	*n_group = g;
1717
1718	return group;
1719error:
1720	if (*set) {
1721		for (i = 0; i < 2 * n; ++i)
1722			isl_set_free((*set)[i]);
1723		free(*set);
1724		*set = NULL;
1725	}
1726	free(group);
1727	return NULL;
1728}
1729
1730/* Check if the domains and ranges of the basic maps in "map" can
1731 * be partitioned, and if so, apply Floyd-Warshall on the elements
1732 * of the partition.  Note that we also apply this algorithm
1733 * if we want to compute the power, i.e., when "project" is not set.
1734 * However, the results are unlikely to be exact since the recursive
1735 * calls inside the Floyd-Warshall algorithm typically result in
1736 * non-linear path lengths quite quickly.
1737 */
1738static __isl_give isl_map *floyd_warshall(__isl_take isl_space *space,
1739	__isl_keep isl_map *map, isl_bool *exact, int project)
1740{
1741	int i;
1742	isl_set **set = NULL;
1743	int *group = NULL;
1744	int n;
1745
1746	if (!map)
1747		goto error;
1748	if (map->n <= 1)
1749		return incremental_closure(space, map, exact, project);
1750
1751	group = setup_groups(map->ctx, map->p, map->n, &set, &n);
1752	if (!group)
1753		goto error;
1754
1755	for (i = 0; i < 2 * map->n; ++i)
1756		isl_set_free(set[i]);
1757
1758	free(set);
1759
1760	return floyd_warshall_with_groups(space, map, exact, project, group, n);
1761error:
1762	isl_space_free(space);
1763	return NULL;
1764}
1765
1766/* Structure for representing the nodes of the graph of which
1767 * strongly connected components are being computed.
1768 *
1769 * list contains the actual nodes
1770 * check_closed is set if we may have used the fact that
1771 * a pair of basic maps can be interchanged
1772 */
1773struct isl_tc_follows_data {
1774	isl_basic_map **list;
1775	int check_closed;
1776};
1777
1778/* Check whether in the computation of the transitive closure
1779 * "list[i]" (R_1) should follow (or be part of the same component as)
1780 * "list[j]" (R_2).
1781 *
1782 * That is check whether
1783 *
1784 *	R_1 \circ R_2
1785 *
1786 * is a subset of
1787 *
1788 *	R_2 \circ R_1
1789 *
1790 * If so, then there is no reason for R_1 to immediately follow R_2
1791 * in any path.
1792 *
1793 * *check_closed is set if the subset relation holds while
1794 * R_1 \circ R_2 is not empty.
1795 */
1796static isl_bool basic_map_follows(int i, int j, void *user)
1797{
1798	struct isl_tc_follows_data *data = user;
1799	struct isl_map *map12 = NULL;
1800	struct isl_map *map21 = NULL;
1801	isl_bool applies, subset;
1802
1803	applies = isl_basic_map_applies_range(data->list[j], data->list[i]);
1804	if (applies < 0)
1805		return isl_bool_error;
1806	if (!applies)
1807		return isl_bool_false;
1808
1809	map21 = isl_map_from_basic_map(
1810			isl_basic_map_apply_range(
1811				isl_basic_map_copy(data->list[j]),
1812				isl_basic_map_copy(data->list[i])));
1813	subset = isl_map_is_empty(map21);
1814	if (subset < 0)
1815		goto error;
1816	if (subset) {
1817		isl_map_free(map21);
1818		return isl_bool_false;
1819	}
1820
1821	if (!isl_basic_map_is_transformation(data->list[i]) ||
1822	    !isl_basic_map_is_transformation(data->list[j])) {
1823		isl_map_free(map21);
1824		return isl_bool_true;
1825	}
1826
1827	map12 = isl_map_from_basic_map(
1828			isl_basic_map_apply_range(
1829				isl_basic_map_copy(data->list[i]),
1830				isl_basic_map_copy(data->list[j])));
1831
1832	subset = isl_map_is_subset(map21, map12);
1833
1834	isl_map_free(map12);
1835	isl_map_free(map21);
1836
1837	if (subset)
1838		data->check_closed = 1;
1839
1840	return isl_bool_not(subset);
1841error:
1842	isl_map_free(map21);
1843	return isl_bool_error;
1844}
1845
1846/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D
1847 * and a dimension specification (Z^{n+1} -> Z^{n+1}),
1848 * construct a map that is an overapproximation of the map
1849 * that takes an element from the dom R \times Z to an
1850 * element from ran R \times Z, such that the first n coordinates of the
1851 * difference between them is a sum of differences between images
1852 * and pre-images in one of the R_i and such that the last coordinate
1853 * is equal to the number of steps taken.
1854 * If "project" is set, then these final coordinates are not included,
1855 * i.e., a relation of type Z^n -> Z^n is returned.
1856 * That is, let
1857 *
1858 *	\Delta_i = { y - x | (x, y) in R_i }
1859 *
1860 * then the constructed map is an overapproximation of
1861 *
1862 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1863 *				d = (\sum_i k_i \delta_i, \sum_i k_i) and
1864 *				x in dom R and x + d in ran R }
1865 *
1866 * or
1867 *
1868 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1869 *				d = (\sum_i k_i \delta_i) and
1870 *				x in dom R and x + d in ran R }
1871 *
1872 * if "project" is set.
1873 *
1874 * We first split the map into strongly connected components, perform
1875 * the above on each component and then join the results in the correct
1876 * order, at each join also taking in the union of both arguments
1877 * to allow for paths that do not go through one of the two arguments.
1878 */
1879static __isl_give isl_map *construct_power_components(
1880	__isl_take isl_space *space, __isl_keep isl_map *map, isl_bool *exact,
1881	int project)
1882{
1883	int i, n, c;
1884	struct isl_map *path = NULL;
1885	struct isl_tc_follows_data data;
1886	struct isl_tarjan_graph *g = NULL;
1887	isl_bool *orig_exact;
1888	isl_bool local_exact;
1889
1890	if (!map)
1891		goto error;
1892	if (map->n <= 1)
1893		return floyd_warshall(space, map, exact, project);
1894
1895	data.list = map->p;
1896	data.check_closed = 0;
1897	g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data);
1898	if (!g)
1899		goto error;
1900
1901	orig_exact = exact;
1902	if (data.check_closed && !exact)
1903		exact = &local_exact;
1904
1905	c = 0;
1906	i = 0;
1907	n = map->n;
1908	if (project)
1909		path = isl_map_empty(isl_map_get_space(map));
1910	else
1911		path = isl_map_empty(isl_space_copy(space));
1912	path = anonymize(path);
1913	while (n) {
1914		struct isl_map *comp;
1915		isl_map *path_comp, *path_comb;
1916		comp = isl_map_alloc_space(isl_map_get_space(map), n, 0);
1917		while (g->order[i] != -1) {
1918			comp = isl_map_add_basic_map(comp,
1919				    isl_basic_map_copy(map->p[g->order[i]]));
1920			--n;
1921			++i;
1922		}
1923		path_comp = floyd_warshall(isl_space_copy(space),
1924						comp, exact, project);
1925		path_comp = anonymize(path_comp);
1926		path_comb = isl_map_apply_range(isl_map_copy(path),
1927						isl_map_copy(path_comp));
1928		path = isl_map_union(path, path_comp);
1929		path = isl_map_union(path, path_comb);
1930		isl_map_free(comp);
1931		++i;
1932		++c;
1933	}
1934
1935	if (c > 1 && data.check_closed && !*exact) {
1936		isl_bool closed;
1937
1938		closed = isl_map_is_transitively_closed(path);
1939		if (closed < 0)
1940			goto error;
1941		if (!closed) {
1942			isl_tarjan_graph_free(g);
1943			isl_map_free(path);
1944			return floyd_warshall(space, map, orig_exact, project);
1945		}
1946	}
1947
1948	isl_tarjan_graph_free(g);
1949	isl_space_free(space);
1950
1951	return path;
1952error:
1953	isl_tarjan_graph_free(g);
1954	isl_space_free(space);
1955	isl_map_free(path);
1956	return NULL;
1957}
1958
1959/* Given a union of basic maps R = \cup_i R_i \subseteq D \times D,
1960 * construct a map that is an overapproximation of the map
1961 * that takes an element from the space D to another
1962 * element from the same space, such that the difference between
1963 * them is a strictly positive sum of differences between images
1964 * and pre-images in one of the R_i.
1965 * The number of differences in the sum is equated to parameter "param".
1966 * That is, let
1967 *
1968 *	\Delta_i = { y - x | (x, y) in R_i }
1969 *
1970 * then the constructed map is an overapproximation of
1971 *
1972 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1973 *				d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 }
1974 * or
1975 *
1976 *	{ (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i :
1977 *				d = \sum_i k_i \delta_i and \sum_i k_i > 0 }
1978 *
1979 * if "project" is set.
1980 *
1981 * If "project" is not set, then
1982 * we construct an extended mapping with an extra coordinate
1983 * that indicates the number of steps taken.  In particular,
1984 * the difference in the last coordinate is equal to the number
1985 * of steps taken to move from a domain element to the corresponding
1986 * image element(s).
1987 */
1988static __isl_give isl_map *construct_power(__isl_keep isl_map *map,
1989	isl_bool *exact, int project)
1990{
1991	struct isl_map *app = NULL;
1992	isl_space *space = NULL;
1993
1994	if (!map)
1995		return NULL;
1996
1997	space = isl_map_get_space(map);
1998
1999	space = isl_space_add_dims(space, isl_dim_in, 1);
2000	space = isl_space_add_dims(space, isl_dim_out, 1);
2001
2002	app = construct_power_components(isl_space_copy(space), map,
2003					exact, project);
2004
2005	isl_space_free(space);
2006
2007	return app;
2008}
2009
2010/* Compute the positive powers of "map", or an overapproximation.
2011 * If the result is exact, then *exact is set to 1.
2012 *
2013 * If project is set, then we are actually interested in the transitive
2014 * closure, so we can use a more relaxed exactness check.
2015 * The lengths of the paths are also projected out instead of being
2016 * encoded as the difference between an extra pair of final coordinates.
2017 */
2018static __isl_give isl_map *map_power(__isl_take isl_map *map,
2019	isl_bool *exact, int project)
2020{
2021	struct isl_map *app = NULL;
2022
2023	if (exact)
2024		*exact = isl_bool_true;
2025
2026	if (isl_map_check_transformation(map) < 0)
2027		return isl_map_free(map);
2028
2029	app = construct_power(map, exact, project);
2030
2031	isl_map_free(map);
2032	return app;
2033}
2034
2035/* Compute the positive powers of "map", or an overapproximation.
2036 * The result maps the exponent to a nested copy of the corresponding power.
2037 * If the result is exact, then *exact is set to 1.
2038 * map_power constructs an extended relation with the path lengths
2039 * encoded as the difference between the final coordinates.
2040 * In the final step, this difference is equated to an extra parameter
2041 * and made positive.  The extra coordinates are subsequently projected out
2042 * and the parameter is turned into the domain of the result.
2043 */
2044__isl_give isl_map *isl_map_power(__isl_take isl_map *map, isl_bool *exact)
2045{
2046	isl_space *target_space;
2047	isl_space *space;
2048	isl_map *diff;
2049	isl_size d;
2050	isl_size param;
2051
2052	d = isl_map_dim(map, isl_dim_in);
2053	param = isl_map_dim(map, isl_dim_param);
2054	if (d < 0 || param < 0)
2055		return isl_map_free(map);
2056
2057	map = isl_map_compute_divs(map);
2058	map = isl_map_coalesce(map);
2059
2060	if (isl_map_plain_is_empty(map)) {
2061		map = isl_map_from_range(isl_map_wrap(map));
2062		map = isl_map_add_dims(map, isl_dim_in, 1);
2063		map = isl_map_set_dim_name(map, isl_dim_in, 0, "k");
2064		return map;
2065	}
2066
2067	target_space = isl_map_get_space(map);
2068	target_space = isl_space_from_range(isl_space_wrap(target_space));
2069	target_space = isl_space_add_dims(target_space, isl_dim_in, 1);
2070	target_space = isl_space_set_dim_name(target_space, isl_dim_in, 0, "k");
2071
2072	map = map_power(map, exact, 0);
2073
2074	map = isl_map_add_dims(map, isl_dim_param, 1);
2075	space = isl_map_get_space(map);
2076	diff = equate_parameter_to_length(space, param);
2077	map = isl_map_intersect(map, diff);
2078	map = isl_map_project_out(map, isl_dim_in, d, 1);
2079	map = isl_map_project_out(map, isl_dim_out, d, 1);
2080	map = isl_map_from_range(isl_map_wrap(map));
2081	map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1);
2082
2083	map = isl_map_reset_space(map, target_space);
2084
2085	return map;
2086}
2087
2088/* Compute a relation that maps each element in the range of the input
2089 * relation to the lengths of all paths composed of edges in the input
2090 * relation that end up in the given range element.
2091 * The result may be an overapproximation, in which case *exact is set to 0.
2092 * The resulting relation is very similar to the power relation.
2093 * The difference are that the domain has been projected out, the
2094 * range has become the domain and the exponent is the range instead
2095 * of a parameter.
2096 */
2097__isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map,
2098	isl_bool *exact)
2099{
2100	isl_space *space;
2101	isl_map *diff;
2102	isl_size d;
2103	isl_size param;
2104
2105	d = isl_map_dim(map, isl_dim_in);
2106	param = isl_map_dim(map, isl_dim_param);
2107	if (d < 0 || param < 0)
2108		return isl_map_free(map);
2109
2110	map = isl_map_compute_divs(map);
2111	map = isl_map_coalesce(map);
2112
2113	if (isl_map_plain_is_empty(map)) {
2114		if (exact)
2115			*exact = isl_bool_true;
2116		map = isl_map_project_out(map, isl_dim_out, 0, d);
2117		map = isl_map_add_dims(map, isl_dim_out, 1);
2118		return map;
2119	}
2120
2121	map = map_power(map, exact, 0);
2122
2123	map = isl_map_add_dims(map, isl_dim_param, 1);
2124	space = isl_map_get_space(map);
2125	diff = equate_parameter_to_length(space, param);
2126	map = isl_map_intersect(map, diff);
2127	map = isl_map_project_out(map, isl_dim_in, 0, d + 1);
2128	map = isl_map_project_out(map, isl_dim_out, d, 1);
2129	map = isl_map_reverse(map);
2130	map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1);
2131
2132	return map;
2133}
2134
2135/* Given a map, compute the smallest superset of this map that is of the form
2136 *
2137 *	{ i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2138 *
2139 * (where p ranges over the (non-parametric) dimensions),
2140 * compute the transitive closure of this map, i.e.,
2141 *
2142 *	{ i -> j : exists k > 0:
2143 *		k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2144 *
2145 * and intersect domain and range of this transitive closure with
2146 * the given domain and range.
2147 *
2148 * If with_id is set, then try to include as much of the identity mapping
2149 * as possible, by computing
2150 *
2151 *	{ i -> j : exists k >= 0:
2152 *		k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2153 *
2154 * instead (i.e., allow k = 0).
2155 *
2156 * In practice, we compute the difference set
2157 *
2158 *	delta  = { j - i | i -> j in map },
2159 *
2160 * look for stride constraint on the individual dimensions and compute
2161 * (constant) lower and upper bounds for each individual dimension,
2162 * adding a constraint for each bound not equal to infinity.
2163 */
2164static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map,
2165	__isl_take isl_set *dom, __isl_take isl_set *ran, int with_id)
2166{
2167	int i;
2168	int k;
2169	unsigned d;
2170	unsigned nparam;
2171	unsigned total;
2172	isl_space *space;
2173	isl_set *delta;
2174	isl_map *app = NULL;
2175	isl_basic_set *aff = NULL;
2176	isl_basic_map *bmap = NULL;
2177	isl_vec *obj = NULL;
2178	isl_int opt;
2179
2180	isl_int_init(opt);
2181
2182	delta = isl_map_deltas(isl_map_copy(map));
2183
2184	aff = isl_set_affine_hull(isl_set_copy(delta));
2185	if (!aff)
2186		goto error;
2187	space = isl_map_get_space(map);
2188	d = isl_space_dim(space, isl_dim_in);
2189	nparam = isl_space_dim(space, isl_dim_param);
2190	total = isl_space_dim(space, isl_dim_all);
2191	bmap = isl_basic_map_alloc_space(space,
2192					aff->n_div + 1, aff->n_div, 2 * d + 1);
2193	for (i = 0; i < aff->n_div + 1; ++i) {
2194		k = isl_basic_map_alloc_div(bmap);
2195		if (k < 0)
2196			goto error;
2197		isl_int_set_si(bmap->div[k][0], 0);
2198	}
2199	for (i = 0; i < aff->n_eq; ++i) {
2200		if (!isl_basic_set_eq_is_stride(aff, i))
2201			continue;
2202		k = isl_basic_map_alloc_equality(bmap);
2203		if (k < 0)
2204			goto error;
2205		isl_seq_clr(bmap->eq[k], 1 + nparam);
2206		isl_seq_cpy(bmap->eq[k] + 1 + nparam + d,
2207				aff->eq[i] + 1 + nparam, d);
2208		isl_seq_neg(bmap->eq[k] + 1 + nparam,
2209				aff->eq[i] + 1 + nparam, d);
2210		isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d,
2211				aff->eq[i] + 1 + nparam + d, aff->n_div);
2212		isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0);
2213	}
2214	obj = isl_vec_alloc(map->ctx, 1 + nparam + d);
2215	if (!obj)
2216		goto error;
2217	isl_seq_clr(obj->el, 1 + nparam + d);
2218	for (i = 0; i < d; ++ i) {
2219		enum isl_lp_result res;
2220
2221		isl_int_set_si(obj->el[1 + nparam + i], 1);
2222
2223		res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt,
2224					NULL, NULL);
2225		if (res == isl_lp_error)
2226			goto error;
2227		if (res == isl_lp_ok) {
2228			k = isl_basic_map_alloc_inequality(bmap);
2229			if (k < 0)
2230				goto error;
2231			isl_seq_clr(bmap->ineq[k],
2232					1 + nparam + 2 * d + bmap->n_div);
2233			isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1);
2234			isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1);
2235			isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2236		}
2237
2238		res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt,
2239					NULL, NULL);
2240		if (res == isl_lp_error)
2241			goto error;
2242		if (res == isl_lp_ok) {
2243			k = isl_basic_map_alloc_inequality(bmap);
2244			if (k < 0)
2245				goto error;
2246			isl_seq_clr(bmap->ineq[k],
2247					1 + nparam + 2 * d + bmap->n_div);
2248			isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1);
2249			isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1);
2250			isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt);
2251		}
2252
2253		isl_int_set_si(obj->el[1 + nparam + i], 0);
2254	}
2255	k = isl_basic_map_alloc_inequality(bmap);
2256	if (k < 0)
2257		goto error;
2258	isl_seq_clr(bmap->ineq[k],
2259			1 + nparam + 2 * d + bmap->n_div);
2260	if (!with_id)
2261		isl_int_set_si(bmap->ineq[k][0], -1);
2262	isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1);
2263
2264	app = isl_map_from_domain_and_range(dom, ran);
2265
2266	isl_vec_free(obj);
2267	isl_basic_set_free(aff);
2268	isl_map_free(map);
2269	bmap = isl_basic_map_finalize(bmap);
2270	isl_set_free(delta);
2271	isl_int_clear(opt);
2272
2273	map = isl_map_from_basic_map(bmap);
2274	map = isl_map_intersect(map, app);
2275
2276	return map;
2277error:
2278	isl_vec_free(obj);
2279	isl_basic_map_free(bmap);
2280	isl_basic_set_free(aff);
2281	isl_set_free(dom);
2282	isl_set_free(ran);
2283	isl_map_free(map);
2284	isl_set_free(delta);
2285	isl_int_clear(opt);
2286	return NULL;
2287}
2288
2289/* Given a map, compute the smallest superset of this map that is of the form
2290 *
2291 *	{ i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2292 *
2293 * (where p ranges over the (non-parametric) dimensions),
2294 * compute the transitive closure of this map, i.e.,
2295 *
2296 *	{ i -> j : exists k > 0:
2297 *		k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2298 *
2299 * and intersect domain and range of this transitive closure with
2300 * domain and range of the original map.
2301 */
2302static __isl_give isl_map *box_closure(__isl_take isl_map *map)
2303{
2304	isl_set *domain;
2305	isl_set *range;
2306
2307	domain = isl_map_domain(isl_map_copy(map));
2308	domain = isl_set_coalesce(domain);
2309	range = isl_map_range(isl_map_copy(map));
2310	range = isl_set_coalesce(range);
2311
2312	return box_closure_on_domain(map, domain, range, 0);
2313}
2314
2315/* Given a map, compute the smallest superset of this map that is of the form
2316 *
2317 *	{ i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p }
2318 *
2319 * (where p ranges over the (non-parametric) dimensions),
2320 * compute the transitive and partially reflexive closure of this map, i.e.,
2321 *
2322 *	{ i -> j : exists k >= 0:
2323 *		k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p }
2324 *
2325 * and intersect domain and range of this transitive closure with
2326 * the given domain.
2327 */
2328static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map,
2329	__isl_take isl_set *dom)
2330{
2331	return box_closure_on_domain(map, dom, isl_set_copy(dom), 1);
2332}
2333
2334/* Check whether app is the transitive closure of map.
2335 * In particular, check that app is acyclic and, if so,
2336 * check that
2337 *
2338 *	app \subset (map \cup (map \circ app))
2339 */
2340static isl_bool check_exactness_omega(__isl_keep isl_map *map,
2341	__isl_keep isl_map *app)
2342{
2343	isl_set *delta;
2344	int i;
2345	isl_bool is_empty, is_exact;
2346	isl_size d;
2347	isl_map *test;
2348
2349	delta = isl_map_deltas(isl_map_copy(app));
2350	d = isl_set_dim(delta, isl_dim_set);
2351	if (d < 0)
2352		delta = isl_set_free(delta);
2353	for (i = 0; i < d; ++i)
2354		delta = isl_set_fix_si(delta, isl_dim_set, i, 0);
2355	is_empty = isl_set_is_empty(delta);
2356	isl_set_free(delta);
2357	if (is_empty < 0 || !is_empty)
2358		return is_empty;
2359
2360	test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map));
2361	test = isl_map_union(test, isl_map_copy(map));
2362	is_exact = isl_map_is_subset(app, test);
2363	isl_map_free(test);
2364
2365	return is_exact;
2366}
2367
2368/* Check if basic map M_i can be combined with all the other
2369 * basic maps such that
2370 *
2371 *	(\cup_j M_j)^+
2372 *
2373 * can be computed as
2374 *
2375 *	M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2376 *
2377 * In particular, check if we can compute a compact representation
2378 * of
2379 *
2380 *		M_i^* \circ M_j \circ M_i^*
2381 *
2382 * for each j != i.
2383 * Let M_i^? be an extension of M_i^+ that allows paths
2384 * of length zero, i.e., the result of box_closure(., 1).
2385 * The criterion, as proposed by Kelly et al., is that
2386 * id = M_i^? - M_i^+ can be represented as a basic map
2387 * and that
2388 *
2389 *	id \circ M_j \circ id = M_j
2390 *
2391 * for each j != i.
2392 *
2393 * If this function returns 1, then tc and qc are set to
2394 * M_i^+ and M_i^?, respectively.
2395 */
2396static int can_be_split_off(__isl_keep isl_map *map, int i,
2397	__isl_give isl_map **tc, __isl_give isl_map **qc)
2398{
2399	isl_map *map_i, *id = NULL;
2400	int j = -1;
2401	isl_set *C;
2402
2403	*tc = NULL;
2404	*qc = NULL;
2405
2406	C = isl_set_union(isl_map_domain(isl_map_copy(map)),
2407			  isl_map_range(isl_map_copy(map)));
2408	C = isl_set_from_basic_set(isl_set_simple_hull(C));
2409	if (!C)
2410		goto error;
2411
2412	map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i]));
2413	*tc = box_closure(isl_map_copy(map_i));
2414	*qc = box_closure_with_identity(map_i, C);
2415	id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc));
2416
2417	if (!id || !*qc)
2418		goto error;
2419	if (id->n != 1 || (*qc)->n != 1)
2420		goto done;
2421
2422	for (j = 0; j < map->n; ++j) {
2423		isl_map *map_j, *test;
2424		int is_ok;
2425
2426		if (i == j)
2427			continue;
2428		map_j = isl_map_from_basic_map(
2429					isl_basic_map_copy(map->p[j]));
2430		test = isl_map_apply_range(isl_map_copy(id),
2431						isl_map_copy(map_j));
2432		test = isl_map_apply_range(test, isl_map_copy(id));
2433		is_ok = isl_map_is_equal(test, map_j);
2434		isl_map_free(map_j);
2435		isl_map_free(test);
2436		if (is_ok < 0)
2437			goto error;
2438		if (!is_ok)
2439			break;
2440	}
2441
2442done:
2443	isl_map_free(id);
2444	if (j == map->n)
2445		return 1;
2446
2447	isl_map_free(*qc);
2448	isl_map_free(*tc);
2449	*qc = NULL;
2450	*tc = NULL;
2451
2452	return 0;
2453error:
2454	isl_map_free(id);
2455	isl_map_free(*qc);
2456	isl_map_free(*tc);
2457	*qc = NULL;
2458	*tc = NULL;
2459	return -1;
2460}
2461
2462static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map,
2463	isl_bool *exact)
2464{
2465	isl_map *app;
2466
2467	app = box_closure(isl_map_copy(map));
2468	if (exact) {
2469		isl_bool is_exact = check_exactness_omega(map, app);
2470
2471		if (is_exact < 0)
2472			app = isl_map_free(app);
2473		else
2474			*exact = is_exact;
2475	}
2476
2477	isl_map_free(map);
2478	return app;
2479}
2480
2481/* Compute an overapproximation of the transitive closure of "map"
2482 * using a variation of the algorithm from
2483 * "Transitive Closure of Infinite Graphs and its Applications"
2484 * by Kelly et al.
2485 *
2486 * We first check whether we can can split of any basic map M_i and
2487 * compute
2488 *
2489 *	(\cup_j M_j)^+
2490 *
2491 * as
2492 *
2493 *	M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+
2494 *
2495 * using a recursive call on the remaining map.
2496 *
2497 * If not, we simply call box_closure on the whole map.
2498 */
2499static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map,
2500	isl_bool *exact)
2501{
2502	int i, j;
2503	isl_bool exact_i;
2504	isl_map *app;
2505
2506	if (!map)
2507		return NULL;
2508	if (map->n == 1)
2509		return box_closure_with_check(map, exact);
2510
2511	for (i = 0; i < map->n; ++i) {
2512		int ok;
2513		isl_map *qc, *tc;
2514		ok = can_be_split_off(map, i, &tc, &qc);
2515		if (ok < 0)
2516			goto error;
2517		if (!ok)
2518			continue;
2519
2520		app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0);
2521
2522		for (j = 0; j < map->n; ++j) {
2523			if (j == i)
2524				continue;
2525			app = isl_map_add_basic_map(app,
2526						isl_basic_map_copy(map->p[j]));
2527		}
2528
2529		app = isl_map_apply_range(isl_map_copy(qc), app);
2530		app = isl_map_apply_range(app, qc);
2531
2532		app = isl_map_union(tc, transitive_closure_omega(app, NULL));
2533		exact_i = check_exactness_omega(map, app);
2534		if (exact_i == isl_bool_true) {
2535			if (exact)
2536				*exact = exact_i;
2537			isl_map_free(map);
2538			return app;
2539		}
2540		isl_map_free(app);
2541		if (exact_i < 0)
2542			goto error;
2543	}
2544
2545	return box_closure_with_check(map, exact);
2546error:
2547	isl_map_free(map);
2548	return NULL;
2549}
2550
2551/* Compute the transitive closure  of "map", or an overapproximation.
2552 * If the result is exact, then *exact is set to 1.
2553 * Simply use map_power to compute the powers of map, but tell
2554 * it to project out the lengths of the paths instead of equating
2555 * the length to a parameter.
2556 */
2557__isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map,
2558	isl_bool *exact)
2559{
2560	isl_space *target_dim;
2561	isl_bool closed;
2562
2563	if (!map)
2564		goto error;
2565
2566	if (map->ctx->opt->closure == ISL_CLOSURE_BOX)
2567		return transitive_closure_omega(map, exact);
2568
2569	map = isl_map_compute_divs(map);
2570	map = isl_map_coalesce(map);
2571	closed = isl_map_is_transitively_closed(map);
2572	if (closed < 0)
2573		goto error;
2574	if (closed) {
2575		if (exact)
2576			*exact = isl_bool_true;
2577		return map;
2578	}
2579
2580	target_dim = isl_map_get_space(map);
2581	map = map_power(map, exact, 1);
2582	map = isl_map_reset_space(map, target_dim);
2583
2584	return map;
2585error:
2586	isl_map_free(map);
2587	return NULL;
2588}
2589
2590static isl_stat inc_count(__isl_take isl_map *map, void *user)
2591{
2592	int *n = user;
2593
2594	*n += map->n;
2595
2596	isl_map_free(map);
2597
2598	return isl_stat_ok;
2599}
2600
2601static isl_stat collect_basic_map(__isl_take isl_map *map, void *user)
2602{
2603	int i;
2604	isl_basic_map ***next = user;
2605
2606	for (i = 0; i < map->n; ++i) {
2607		**next = isl_basic_map_copy(map->p[i]);
2608		if (!**next)
2609			goto error;
2610		(*next)++;
2611	}
2612
2613	isl_map_free(map);
2614	return isl_stat_ok;
2615error:
2616	isl_map_free(map);
2617	return isl_stat_error;
2618}
2619
2620/* Perform Floyd-Warshall on the given list of basic relations.
2621 * The basic relations may live in different dimensions,
2622 * but basic relations that get assigned to the diagonal of the
2623 * grid have domains and ranges of the same dimension and so
2624 * the standard algorithm can be used because the nested transitive
2625 * closures are only applied to diagonal elements and because all
2626 * compositions are performed on relations with compatible domains and ranges.
2627 */
2628static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx,
2629	__isl_keep isl_basic_map **list, int n, isl_bool *exact)
2630{
2631	int i, j, k;
2632	int n_group;
2633	int *group = NULL;
2634	isl_set **set = NULL;
2635	isl_map ***grid = NULL;
2636	isl_union_map *app;
2637
2638	group = setup_groups(ctx, list, n, &set, &n_group);
2639	if (!group)
2640		goto error;
2641
2642	grid = isl_calloc_array(ctx, isl_map **, n_group);
2643	if (!grid)
2644		goto error;
2645	for (i = 0; i < n_group; ++i) {
2646		grid[i] = isl_calloc_array(ctx, isl_map *, n_group);
2647		if (!grid[i])
2648			goto error;
2649		for (j = 0; j < n_group; ++j) {
2650			isl_space *space1, *space2, *space;
2651			space1 = isl_space_reverse(isl_set_get_space(set[i]));
2652			space2 = isl_set_get_space(set[j]);
2653			space = isl_space_join(space1, space2);
2654			grid[i][j] = isl_map_empty(space);
2655		}
2656	}
2657
2658	for (k = 0; k < n; ++k) {
2659		i = group[2 * k];
2660		j = group[2 * k + 1];
2661		grid[i][j] = isl_map_union(grid[i][j],
2662				isl_map_from_basic_map(
2663					isl_basic_map_copy(list[k])));
2664	}
2665
2666	floyd_warshall_iterate(grid, n_group, exact);
2667
2668	app = isl_union_map_empty(isl_map_get_space(grid[0][0]));
2669
2670	for (i = 0; i < n_group; ++i) {
2671		for (j = 0; j < n_group; ++j)
2672			app = isl_union_map_add_map(app, grid[i][j]);
2673		free(grid[i]);
2674	}
2675	free(grid);
2676
2677	for (i = 0; i < 2 * n; ++i)
2678		isl_set_free(set[i]);
2679	free(set);
2680
2681	free(group);
2682	return app;
2683error:
2684	if (grid)
2685		for (i = 0; i < n_group; ++i) {
2686			if (!grid[i])
2687				continue;
2688			for (j = 0; j < n_group; ++j)
2689				isl_map_free(grid[i][j]);
2690			free(grid[i]);
2691		}
2692	free(grid);
2693	if (set) {
2694		for (i = 0; i < 2 * n; ++i)
2695			isl_set_free(set[i]);
2696		free(set);
2697	}
2698	free(group);
2699	return NULL;
2700}
2701
2702/* Perform Floyd-Warshall on the given union relation.
2703 * The implementation is very similar to that for non-unions.
2704 * The main difference is that it is applied unconditionally.
2705 * We first extract a list of basic maps from the union map
2706 * and then perform the algorithm on this list.
2707 */
2708static __isl_give isl_union_map *union_floyd_warshall(
2709	__isl_take isl_union_map *umap, isl_bool *exact)
2710{
2711	int i, n;
2712	isl_ctx *ctx;
2713	isl_basic_map **list = NULL;
2714	isl_basic_map **next;
2715	isl_union_map *res;
2716
2717	n = 0;
2718	if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2719		goto error;
2720
2721	ctx = isl_union_map_get_ctx(umap);
2722	list = isl_calloc_array(ctx, isl_basic_map *, n);
2723	if (!list)
2724		goto error;
2725
2726	next = list;
2727	if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2728		goto error;
2729
2730	res = union_floyd_warshall_on_list(ctx, list, n, exact);
2731
2732	if (list) {
2733		for (i = 0; i < n; ++i)
2734			isl_basic_map_free(list[i]);
2735		free(list);
2736	}
2737
2738	isl_union_map_free(umap);
2739	return res;
2740error:
2741	if (list) {
2742		for (i = 0; i < n; ++i)
2743			isl_basic_map_free(list[i]);
2744		free(list);
2745	}
2746	isl_union_map_free(umap);
2747	return NULL;
2748}
2749
2750/* Decompose the give union relation into strongly connected components.
2751 * The implementation is essentially the same as that of
2752 * construct_power_components with the major difference that all
2753 * operations are performed on union maps.
2754 */
2755static __isl_give isl_union_map *union_components(
2756	__isl_take isl_union_map *umap, isl_bool *exact)
2757{
2758	int i;
2759	int n;
2760	isl_ctx *ctx;
2761	isl_basic_map **list = NULL;
2762	isl_basic_map **next;
2763	isl_union_map *path = NULL;
2764	struct isl_tc_follows_data data;
2765	struct isl_tarjan_graph *g = NULL;
2766	int c, l;
2767	int recheck = 0;
2768
2769	n = 0;
2770	if (isl_union_map_foreach_map(umap, inc_count, &n) < 0)
2771		goto error;
2772
2773	if (n == 0)
2774		return umap;
2775	if (n <= 1)
2776		return union_floyd_warshall(umap, exact);
2777
2778	ctx = isl_union_map_get_ctx(umap);
2779	list = isl_calloc_array(ctx, isl_basic_map *, n);
2780	if (!list)
2781		goto error;
2782
2783	next = list;
2784	if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0)
2785		goto error;
2786
2787	data.list = list;
2788	data.check_closed = 0;
2789	g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data);
2790	if (!g)
2791		goto error;
2792
2793	c = 0;
2794	i = 0;
2795	l = n;
2796	path = isl_union_map_empty(isl_union_map_get_space(umap));
2797	while (l) {
2798		isl_union_map *comp;
2799		isl_union_map *path_comp, *path_comb;
2800		comp = isl_union_map_empty(isl_union_map_get_space(umap));
2801		while (g->order[i] != -1) {
2802			comp = isl_union_map_add_map(comp,
2803				    isl_map_from_basic_map(
2804					isl_basic_map_copy(list[g->order[i]])));
2805			--l;
2806			++i;
2807		}
2808		path_comp = union_floyd_warshall(comp, exact);
2809		path_comb = isl_union_map_apply_range(isl_union_map_copy(path),
2810						isl_union_map_copy(path_comp));
2811		path = isl_union_map_union(path, path_comp);
2812		path = isl_union_map_union(path, path_comb);
2813		++i;
2814		++c;
2815	}
2816
2817	if (c > 1 && data.check_closed && !*exact) {
2818		isl_bool closed;
2819
2820		closed = isl_union_map_is_transitively_closed(path);
2821		if (closed < 0)
2822			goto error;
2823		recheck = !closed;
2824	}
2825
2826	isl_tarjan_graph_free(g);
2827
2828	for (i = 0; i < n; ++i)
2829		isl_basic_map_free(list[i]);
2830	free(list);
2831
2832	if (recheck) {
2833		isl_union_map_free(path);
2834		return union_floyd_warshall(umap, exact);
2835	}
2836
2837	isl_union_map_free(umap);
2838
2839	return path;
2840error:
2841	isl_tarjan_graph_free(g);
2842	if (list) {
2843		for (i = 0; i < n; ++i)
2844			isl_basic_map_free(list[i]);
2845		free(list);
2846	}
2847	isl_union_map_free(umap);
2848	isl_union_map_free(path);
2849	return NULL;
2850}
2851
2852/* Compute the transitive closure  of "umap", or an overapproximation.
2853 * If the result is exact, then *exact is set to 1.
2854 */
2855__isl_give isl_union_map *isl_union_map_transitive_closure(
2856	__isl_take isl_union_map *umap, isl_bool *exact)
2857{
2858	isl_bool closed;
2859
2860	if (!umap)
2861		return NULL;
2862
2863	if (exact)
2864		*exact = isl_bool_true;
2865
2866	umap = isl_union_map_compute_divs(umap);
2867	umap = isl_union_map_coalesce(umap);
2868	closed = isl_union_map_is_transitively_closed(umap);
2869	if (closed < 0)
2870		goto error;
2871	if (closed)
2872		return umap;
2873	umap = union_components(umap, exact);
2874	return umap;
2875error:
2876	isl_union_map_free(umap);
2877	return NULL;
2878}
2879
2880struct isl_union_power {
2881	isl_union_map *pow;
2882	isl_bool *exact;
2883};
2884
2885static isl_stat power(__isl_take isl_map *map, void *user)
2886{
2887	struct isl_union_power *up = user;
2888
2889	map = isl_map_power(map, up->exact);
2890	up->pow = isl_union_map_from_map(map);
2891
2892	return isl_stat_error;
2893}
2894
2895/* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "space".
2896 */
2897static __isl_give isl_union_map *deltas_map(__isl_take isl_space *space)
2898{
2899	isl_basic_map *bmap;
2900
2901	space = isl_space_add_dims(space, isl_dim_in, 1);
2902	space = isl_space_add_dims(space, isl_dim_out, 1);
2903	bmap = isl_basic_map_universe(space);
2904	bmap = isl_basic_map_deltas_map(bmap);
2905
2906	return isl_union_map_from_map(isl_map_from_basic_map(bmap));
2907}
2908
2909/* Compute the positive powers of "map", or an overapproximation.
2910 * The result maps the exponent to a nested copy of the corresponding power.
2911 * If the result is exact, then *exact is set to 1.
2912 */
2913__isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap,
2914	isl_bool *exact)
2915{
2916	isl_size n;
2917	isl_union_map *inc;
2918	isl_union_map *dm;
2919
2920	n = isl_union_map_n_map(umap);
2921	if (n < 0)
2922		return isl_union_map_free(umap);
2923	if (n == 0)
2924		return umap;
2925	if (n == 1) {
2926		struct isl_union_power up = { NULL, exact };
2927		isl_union_map_foreach_map(umap, &power, &up);
2928		isl_union_map_free(umap);
2929		return up.pow;
2930	}
2931	inc = isl_union_map_from_map(increment(isl_union_map_get_space(umap)));
2932	umap = isl_union_map_product(inc, umap);
2933	umap = isl_union_map_transitive_closure(umap, exact);
2934	umap = isl_union_map_zip(umap);
2935	dm = deltas_map(isl_union_map_get_space(umap));
2936	umap = isl_union_map_apply_domain(umap, dm);
2937
2938	return umap;
2939}
2940
2941#undef TYPE
2942#define TYPE isl_map
2943#include "isl_power_templ.c"
2944
2945#undef TYPE
2946#define TYPE isl_union_map
2947#include "isl_power_templ.c"
2948