1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2012-2013 Ecole Normale Superieure
4 * Copyright 2014-2015 INRIA Rocquencourt
5 * Copyright 2016      Sven Verdoolaege
6 *
7 * Use of this software is governed by the MIT license
8 *
9 * Written by Sven Verdoolaege, K.U.Leuven, Departement
10 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
11 * and Ecole Normale Superieure, 45 rue d���Ulm, 75230 Paris, France
12 * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt,
13 * B.P. 105 - 78153 Le Chesnay, France
14 */
15
16#include <isl_ctx_private.h>
17#include <isl_map_private.h>
18#include "isl_equalities.h"
19#include <isl/map.h>
20#include <isl_seq.h>
21#include "isl_tab.h"
22#include <isl_space_private.h>
23#include <isl_mat_private.h>
24#include <isl_vec_private.h>
25
26#include <bset_to_bmap.c>
27#include <bset_from_bmap.c>
28#include <set_to_map.c>
29#include <set_from_map.c>
30
31static void swap_equality(__isl_keep isl_basic_map *bmap, int a, int b)
32{
33	isl_int *t = bmap->eq[a];
34	bmap->eq[a] = bmap->eq[b];
35	bmap->eq[b] = t;
36}
37
38static void swap_inequality(__isl_keep isl_basic_map *bmap, int a, int b)
39{
40	if (a != b) {
41		isl_int *t = bmap->ineq[a];
42		bmap->ineq[a] = bmap->ineq[b];
43		bmap->ineq[b] = t;
44	}
45}
46
47__isl_give isl_basic_map *isl_basic_map_normalize_constraints(
48	__isl_take isl_basic_map *bmap)
49{
50	int i;
51	isl_int gcd;
52	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
53
54	if (total < 0)
55		return isl_basic_map_free(bmap);
56
57	isl_int_init(gcd);
58	for (i = bmap->n_eq - 1; i >= 0; --i) {
59		isl_seq_gcd(bmap->eq[i]+1, total, &gcd);
60		if (isl_int_is_zero(gcd)) {
61			if (!isl_int_is_zero(bmap->eq[i][0])) {
62				bmap = isl_basic_map_set_to_empty(bmap);
63				break;
64			}
65			if (isl_basic_map_drop_equality(bmap, i) < 0)
66				goto error;
67			continue;
68		}
69		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
70			isl_int_gcd(gcd, gcd, bmap->eq[i][0]);
71		if (isl_int_is_one(gcd))
72			continue;
73		if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) {
74			bmap = isl_basic_map_set_to_empty(bmap);
75			break;
76		}
77		isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total);
78	}
79
80	for (i = bmap->n_ineq - 1; i >= 0; --i) {
81		isl_seq_gcd(bmap->ineq[i]+1, total, &gcd);
82		if (isl_int_is_zero(gcd)) {
83			if (isl_int_is_neg(bmap->ineq[i][0])) {
84				bmap = isl_basic_map_set_to_empty(bmap);
85				break;
86			}
87			if (isl_basic_map_drop_inequality(bmap, i) < 0)
88				goto error;
89			continue;
90		}
91		if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
92			isl_int_gcd(gcd, gcd, bmap->ineq[i][0]);
93		if (isl_int_is_one(gcd))
94			continue;
95		isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd);
96		isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total);
97	}
98	isl_int_clear(gcd);
99
100	return bmap;
101error:
102	isl_int_clear(gcd);
103	isl_basic_map_free(bmap);
104	return NULL;
105}
106
107__isl_give isl_basic_set *isl_basic_set_normalize_constraints(
108	__isl_take isl_basic_set *bset)
109{
110	isl_basic_map *bmap = bset_to_bmap(bset);
111	return bset_from_bmap(isl_basic_map_normalize_constraints(bmap));
112}
113
114/* Reduce the coefficient of the variable at position "pos"
115 * in integer division "div", such that it lies in the half-open
116 * interval (1/2,1/2], extracting any excess value from this integer division.
117 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
118 * corresponds to the constant term.
119 *
120 * That is, the integer division is of the form
121 *
122 *	floor((... + (c * d + r) * x_pos + ...)/d)
123 *
124 * with -d < 2 * r <= d.
125 * Replace it by
126 *
127 *	floor((... + r * x_pos + ...)/d) + c * x_pos
128 *
129 * If 2 * ((c * d + r) % d) <= d, then c = floor((c * d + r)/d).
130 * Otherwise, c = floor((c * d + r)/d) + 1.
131 *
132 * This is the same normalization that is performed by isl_aff_floor.
133 */
134static __isl_give isl_basic_map *reduce_coefficient_in_div(
135	__isl_take isl_basic_map *bmap, int div, int pos)
136{
137	isl_int shift;
138	int add_one;
139
140	isl_int_init(shift);
141	isl_int_fdiv_r(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
142	isl_int_mul_ui(shift, shift, 2);
143	add_one = isl_int_gt(shift, bmap->div[div][0]);
144	isl_int_fdiv_q(shift, bmap->div[div][1 + pos], bmap->div[div][0]);
145	if (add_one)
146		isl_int_add_ui(shift, shift, 1);
147	isl_int_neg(shift, shift);
148	bmap = isl_basic_map_shift_div(bmap, div, pos, shift);
149	isl_int_clear(shift);
150
151	return bmap;
152}
153
154/* Does the coefficient of the variable at position "pos"
155 * in integer division "div" need to be reduced?
156 * That is, does it lie outside the half-open interval (1/2,1/2]?
157 * The coefficient c/d lies outside this interval if abs(2 * c) >= d and
158 * 2 * c != d.
159 */
160static isl_bool needs_reduction(__isl_keep isl_basic_map *bmap, int div,
161	int pos)
162{
163	isl_bool r;
164
165	if (isl_int_is_zero(bmap->div[div][1 + pos]))
166		return isl_bool_false;
167
168	isl_int_mul_ui(bmap->div[div][1 + pos], bmap->div[div][1 + pos], 2);
169	r = isl_int_abs_ge(bmap->div[div][1 + pos], bmap->div[div][0]) &&
170	    !isl_int_eq(bmap->div[div][1 + pos], bmap->div[div][0]);
171	isl_int_divexact_ui(bmap->div[div][1 + pos],
172			    bmap->div[div][1 + pos], 2);
173
174	return r;
175}
176
177/* Reduce the coefficients (including the constant term) of
178 * integer division "div", if needed.
179 * In particular, make sure all coefficients lie in
180 * the half-open interval (1/2,1/2].
181 */
182static __isl_give isl_basic_map *reduce_div_coefficients_of_div(
183	__isl_take isl_basic_map *bmap, int div)
184{
185	int i;
186	isl_size total;
187
188	total = isl_basic_map_dim(bmap, isl_dim_all);
189	if (total < 0)
190		return isl_basic_map_free(bmap);
191	for (i = 0; i < 1 + total; ++i) {
192		isl_bool reduce;
193
194		reduce = needs_reduction(bmap, div, i);
195		if (reduce < 0)
196			return isl_basic_map_free(bmap);
197		if (!reduce)
198			continue;
199		bmap = reduce_coefficient_in_div(bmap, div, i);
200		if (!bmap)
201			break;
202	}
203
204	return bmap;
205}
206
207/* Reduce the coefficients (including the constant term) of
208 * the known integer divisions, if needed
209 * In particular, make sure all coefficients lie in
210 * the half-open interval (1/2,1/2].
211 */
212static __isl_give isl_basic_map *reduce_div_coefficients(
213	__isl_take isl_basic_map *bmap)
214{
215	int i;
216
217	if (!bmap)
218		return NULL;
219	if (bmap->n_div == 0)
220		return bmap;
221
222	for (i = 0; i < bmap->n_div; ++i) {
223		if (isl_int_is_zero(bmap->div[i][0]))
224			continue;
225		bmap = reduce_div_coefficients_of_div(bmap, i);
226		if (!bmap)
227			break;
228	}
229
230	return bmap;
231}
232
233/* Remove any common factor in numerator and denominator of the div expression,
234 * not taking into account the constant term.
235 * That is, if the div is of the form
236 *
237 *	floor((a + m f(x))/(m d))
238 *
239 * then replace it by
240 *
241 *	floor((floor(a/m) + f(x))/d)
242 *
243 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
244 * and can therefore not influence the result of the floor.
245 */
246static __isl_give isl_basic_map *normalize_div_expression(
247	__isl_take isl_basic_map *bmap, int div)
248{
249	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
250	isl_ctx *ctx = bmap->ctx;
251
252	if (total < 0)
253		return isl_basic_map_free(bmap);
254	if (isl_int_is_zero(bmap->div[div][0]))
255		return bmap;
256	isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd);
257	isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]);
258	if (isl_int_is_one(ctx->normalize_gcd))
259		return bmap;
260	isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1],
261			ctx->normalize_gcd);
262	isl_int_divexact(bmap->div[div][0], bmap->div[div][0],
263			ctx->normalize_gcd);
264	isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2,
265			ctx->normalize_gcd, total);
266
267	return bmap;
268}
269
270/* Remove any common factor in numerator and denominator of a div expression,
271 * not taking into account the constant term.
272 * That is, look for any div of the form
273 *
274 *	floor((a + m f(x))/(m d))
275 *
276 * and replace it by
277 *
278 *	floor((floor(a/m) + f(x))/d)
279 *
280 * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d
281 * and can therefore not influence the result of the floor.
282 */
283static __isl_give isl_basic_map *normalize_div_expressions(
284	__isl_take isl_basic_map *bmap)
285{
286	int i;
287
288	if (!bmap)
289		return NULL;
290	if (bmap->n_div == 0)
291		return bmap;
292
293	for (i = 0; i < bmap->n_div; ++i)
294		bmap = normalize_div_expression(bmap, i);
295
296	return bmap;
297}
298
299/* Assumes divs have been ordered if keep_divs is set.
300 */
301static __isl_give isl_basic_map *eliminate_var_using_equality(
302	__isl_take isl_basic_map *bmap,
303	unsigned pos, isl_int *eq, int keep_divs, int *progress)
304{
305	isl_size total;
306	isl_size v_div;
307	int k;
308	int last_div;
309
310	total = isl_basic_map_dim(bmap, isl_dim_all);
311	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
312	if (total < 0 || v_div < 0)
313		return isl_basic_map_free(bmap);
314	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
315	for (k = 0; k < bmap->n_eq; ++k) {
316		if (bmap->eq[k] == eq)
317			continue;
318		if (isl_int_is_zero(bmap->eq[k][1+pos]))
319			continue;
320		if (progress)
321			*progress = 1;
322		isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL);
323		isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total);
324	}
325
326	for (k = 0; k < bmap->n_ineq; ++k) {
327		if (isl_int_is_zero(bmap->ineq[k][1+pos]))
328			continue;
329		if (progress)
330			*progress = 1;
331		isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL);
332		isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total);
333		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
334		ISL_F_CLR(bmap, ISL_BASIC_MAP_SORTED);
335	}
336
337	for (k = 0; k < bmap->n_div; ++k) {
338		if (isl_int_is_zero(bmap->div[k][0]))
339			continue;
340		if (isl_int_is_zero(bmap->div[k][1+1+pos]))
341			continue;
342		if (progress)
343			*progress = 1;
344		/* We need to be careful about circular definitions,
345		 * so for now we just remove the definition of div k
346		 * if the equality contains any divs.
347		 * If keep_divs is set, then the divs have been ordered
348		 * and we can keep the definition as long as the result
349		 * is still ordered.
350		 */
351		if (last_div == -1 || (keep_divs && last_div < k)) {
352			isl_seq_elim(bmap->div[k]+1, eq,
353					1+pos, 1+total, &bmap->div[k][0]);
354			bmap = normalize_div_expression(bmap, k);
355			if (!bmap)
356				return NULL;
357		} else
358			isl_seq_clr(bmap->div[k], 1 + total);
359	}
360
361	return bmap;
362}
363
364/* Assumes divs have been ordered if keep_divs is set.
365 */
366static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap,
367	isl_int *eq, unsigned div, int keep_divs)
368{
369	isl_size v_div;
370	unsigned pos;
371
372	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
373	if (v_div < 0)
374		return isl_basic_map_free(bmap);
375	pos = v_div + div;
376	bmap = eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL);
377
378	bmap = isl_basic_map_drop_div(bmap, div);
379
380	return bmap;
381}
382
383/* Check if elimination of div "div" using equality "eq" would not
384 * result in a div depending on a later div.
385 */
386static isl_bool ok_to_eliminate_div(__isl_keep isl_basic_map *bmap, isl_int *eq,
387	unsigned div)
388{
389	int k;
390	int last_div;
391	isl_size v_div;
392	unsigned pos;
393
394	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
395	if (v_div < 0)
396		return isl_bool_error;
397	pos = v_div + div;
398
399	last_div = isl_seq_last_non_zero(eq + 1 + v_div, bmap->n_div);
400	if (last_div < 0 || last_div <= div)
401		return isl_bool_true;
402
403	for (k = 0; k <= last_div; ++k) {
404		if (isl_int_is_zero(bmap->div[k][0]))
405			continue;
406		if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos]))
407			return isl_bool_false;
408	}
409
410	return isl_bool_true;
411}
412
413/* Eliminate divs based on equalities
414 */
415static __isl_give isl_basic_map *eliminate_divs_eq(
416	__isl_take isl_basic_map *bmap, int *progress)
417{
418	int d;
419	int i;
420	int modified = 0;
421	unsigned off;
422
423	bmap = isl_basic_map_order_divs(bmap);
424
425	if (!bmap)
426		return NULL;
427
428	off = isl_basic_map_offset(bmap, isl_dim_div);
429
430	for (d = bmap->n_div - 1; d >= 0 ; --d) {
431		for (i = 0; i < bmap->n_eq; ++i) {
432			isl_bool ok;
433
434			if (!isl_int_is_one(bmap->eq[i][off + d]) &&
435			    !isl_int_is_negone(bmap->eq[i][off + d]))
436				continue;
437			ok = ok_to_eliminate_div(bmap, bmap->eq[i], d);
438			if (ok < 0)
439				return isl_basic_map_free(bmap);
440			if (!ok)
441				continue;
442			modified = 1;
443			*progress = 1;
444			bmap = eliminate_div(bmap, bmap->eq[i], d, 1);
445			if (isl_basic_map_drop_equality(bmap, i) < 0)
446				return isl_basic_map_free(bmap);
447			break;
448		}
449	}
450	if (modified)
451		return eliminate_divs_eq(bmap, progress);
452	return bmap;
453}
454
455/* Eliminate divs based on inequalities
456 */
457static __isl_give isl_basic_map *eliminate_divs_ineq(
458	__isl_take isl_basic_map *bmap, int *progress)
459{
460	int d;
461	int i;
462	unsigned off;
463	struct isl_ctx *ctx;
464
465	if (!bmap)
466		return NULL;
467
468	ctx = bmap->ctx;
469	off = isl_basic_map_offset(bmap, isl_dim_div);
470
471	for (d = bmap->n_div - 1; d >= 0 ; --d) {
472		for (i = 0; i < bmap->n_eq; ++i)
473			if (!isl_int_is_zero(bmap->eq[i][off + d]))
474				break;
475		if (i < bmap->n_eq)
476			continue;
477		for (i = 0; i < bmap->n_ineq; ++i)
478			if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one))
479				break;
480		if (i < bmap->n_ineq)
481			continue;
482		*progress = 1;
483		bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1);
484		if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
485			break;
486		bmap = isl_basic_map_drop_div(bmap, d);
487		if (!bmap)
488			break;
489	}
490	return bmap;
491}
492
493/* Does the equality constraint at position "eq" in "bmap" involve
494 * any local variables in the range [first, first + n)
495 * that are not marked as having an explicit representation?
496 */
497static isl_bool bmap_eq_involves_unknown_divs(__isl_keep isl_basic_map *bmap,
498	int eq, unsigned first, unsigned n)
499{
500	unsigned o_div;
501	int i;
502
503	if (!bmap)
504		return isl_bool_error;
505
506	o_div = isl_basic_map_offset(bmap, isl_dim_div);
507	for (i = 0; i < n; ++i) {
508		isl_bool unknown;
509
510		if (isl_int_is_zero(bmap->eq[eq][o_div + first + i]))
511			continue;
512		unknown = isl_basic_map_div_is_marked_unknown(bmap, first + i);
513		if (unknown < 0)
514			return isl_bool_error;
515		if (unknown)
516			return isl_bool_true;
517	}
518
519	return isl_bool_false;
520}
521
522/* The last local variable involved in the equality constraint
523 * at position "eq" in "bmap" is the local variable at position "div".
524 * It can therefore be used to extract an explicit representation
525 * for that variable.
526 * Do so unless the local variable already has an explicit representation or
527 * the explicit representation would involve any other local variables
528 * that in turn do not have an explicit representation.
529 * An equality constraint involving local variables without an explicit
530 * representation can be used in isl_basic_map_drop_redundant_divs
531 * to separate out an independent local variable.  Introducing
532 * an explicit representation here would block this transformation,
533 * while the partial explicit representation in itself is not very useful.
534 * Set *progress if anything is changed.
535 *
536 * The equality constraint is of the form
537 *
538 *	f(x) + n e >= 0
539 *
540 * with n a positive number.  The explicit representation derived from
541 * this constraint is
542 *
543 *	floor((-f(x))/n)
544 */
545static __isl_give isl_basic_map *set_div_from_eq(__isl_take isl_basic_map *bmap,
546	int div, int eq, int *progress)
547{
548	isl_size total;
549	unsigned o_div;
550	isl_bool involves;
551
552	if (!bmap)
553		return NULL;
554
555	if (!isl_int_is_zero(bmap->div[div][0]))
556		return bmap;
557
558	involves = bmap_eq_involves_unknown_divs(bmap, eq, 0, div);
559	if (involves < 0)
560		return isl_basic_map_free(bmap);
561	if (involves)
562		return bmap;
563
564	total = isl_basic_map_dim(bmap, isl_dim_all);
565	if (total < 0)
566		return isl_basic_map_free(bmap);
567	o_div = isl_basic_map_offset(bmap, isl_dim_div);
568	isl_seq_neg(bmap->div[div] + 1, bmap->eq[eq], 1 + total);
569	isl_int_set_si(bmap->div[div][1 + o_div + div], 0);
570	isl_int_set(bmap->div[div][0], bmap->eq[eq][o_div + div]);
571	if (progress)
572		*progress = 1;
573
574	return bmap;
575}
576
577/* Perform fangcheng (Gaussian elimination) on the equality
578 * constraints of "bmap".
579 * That is, put them into row-echelon form, starting from the last column
580 * backward and use them to eliminate the corresponding coefficients
581 * from all constraints.
582 *
583 * If "progress" is not NULL, then it gets set if the elimination
584 * results in any changes.
585 * The elimination process may result in some equality constraints
586 * getting interchanged or removed.
587 * If "swap" or "drop" are not NULL, then they get called when
588 * two equality constraints get interchanged or
589 * when a number of final equality constraints get removed.
590 * As a special case, if the input turns out to be empty,
591 * then drop gets called with the number of removed equality
592 * constraints set to the total number of equality constraints.
593 * If "swap" or "drop" are not NULL, then the local variables (if any)
594 * are assumed to be in a valid order.
595 */
596__isl_give isl_basic_map *isl_basic_map_gauss5(__isl_take isl_basic_map *bmap,
597	int *progress,
598	isl_stat (*swap)(unsigned a, unsigned b, void *user),
599	isl_stat (*drop)(unsigned n, void *user), void *user)
600{
601	int k;
602	int done;
603	int last_var;
604	unsigned total_var;
605	isl_size total;
606	unsigned n_drop;
607
608	if (!swap && !drop)
609		bmap = isl_basic_map_order_divs(bmap);
610
611	total = isl_basic_map_dim(bmap, isl_dim_all);
612	if (total < 0)
613		return isl_basic_map_free(bmap);
614
615	total_var = total - bmap->n_div;
616
617	last_var = total - 1;
618	for (done = 0; done < bmap->n_eq; ++done) {
619		for (; last_var >= 0; --last_var) {
620			for (k = done; k < bmap->n_eq; ++k)
621				if (!isl_int_is_zero(bmap->eq[k][1+last_var]))
622					break;
623			if (k < bmap->n_eq)
624				break;
625		}
626		if (last_var < 0)
627			break;
628		if (k != done) {
629			swap_equality(bmap, k, done);
630			if (swap && swap(k, done, user) < 0)
631				return isl_basic_map_free(bmap);
632		}
633		if (isl_int_is_neg(bmap->eq[done][1+last_var]))
634			isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total);
635
636		bmap = eliminate_var_using_equality(bmap, last_var,
637						bmap->eq[done], 1, progress);
638
639		if (last_var >= total_var)
640			bmap = set_div_from_eq(bmap, last_var - total_var,
641						done, progress);
642		if (!bmap)
643			return NULL;
644	}
645	if (done == bmap->n_eq)
646		return bmap;
647	for (k = done; k < bmap->n_eq; ++k) {
648		if (isl_int_is_zero(bmap->eq[k][0]))
649			continue;
650		if (drop && drop(bmap->n_eq, user) < 0)
651			return isl_basic_map_free(bmap);
652		return isl_basic_map_set_to_empty(bmap);
653	}
654	n_drop = bmap->n_eq - done;
655	bmap = isl_basic_map_free_equality(bmap, n_drop);
656	if (drop && drop(n_drop, user) < 0)
657		return isl_basic_map_free(bmap);
658	return bmap;
659}
660
661__isl_give isl_basic_map *isl_basic_map_gauss(__isl_take isl_basic_map *bmap,
662	int *progress)
663{
664	return isl_basic_map_gauss5(bmap, progress, NULL, NULL, NULL);
665}
666
667__isl_give isl_basic_set *isl_basic_set_gauss(
668	__isl_take isl_basic_set *bset, int *progress)
669{
670	return bset_from_bmap(isl_basic_map_gauss(bset_to_bmap(bset),
671							progress));
672}
673
674
675static unsigned int round_up(unsigned int v)
676{
677	int old_v = v;
678
679	while (v) {
680		old_v = v;
681		v ^= v & -v;
682	}
683	return old_v << 1;
684}
685
686/* Hash table of inequalities in a basic map.
687 * "index" is an array of addresses of inequalities in the basic map, some
688 * of which are NULL.  The inequalities are hashed on the coefficients
689 * except the constant term.
690 * "size" is the number of elements in the array and is always a power of two
691 * "bits" is the number of bits need to represent an index into the array.
692 * "total" is the total dimension of the basic map.
693 */
694struct isl_constraint_index {
695	unsigned int size;
696	int bits;
697	isl_int ***index;
698	isl_size total;
699};
700
701/* Fill in the "ci" data structure for holding the inequalities of "bmap".
702 */
703static isl_stat create_constraint_index(struct isl_constraint_index *ci,
704	__isl_keep isl_basic_map *bmap)
705{
706	isl_ctx *ctx;
707
708	ci->index = NULL;
709	if (!bmap)
710		return isl_stat_error;
711	ci->total = isl_basic_map_dim(bmap, isl_dim_all);
712	if (ci->total < 0)
713		return isl_stat_error;
714	if (bmap->n_ineq == 0)
715		return isl_stat_ok;
716	ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1);
717	ci->bits = ffs(ci->size) - 1;
718	ctx = isl_basic_map_get_ctx(bmap);
719	ci->index = isl_calloc_array(ctx, isl_int **, ci->size);
720	if (!ci->index)
721		return isl_stat_error;
722
723	return isl_stat_ok;
724}
725
726/* Free the memory allocated by create_constraint_index.
727 */
728static void constraint_index_free(struct isl_constraint_index *ci)
729{
730	free(ci->index);
731}
732
733/* Return the position in ci->index that contains the address of
734 * an inequality that is equal to *ineq up to the constant term,
735 * provided this address is not identical to "ineq".
736 * If there is no such inequality, then return the position where
737 * such an inequality should be inserted.
738 */
739static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq)
740{
741	int h;
742	uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits);
743	for (h = hash; ci->index[h]; h = (h+1) % ci->size)
744		if (ineq != ci->index[h] &&
745		    isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total))
746			break;
747	return h;
748}
749
750/* Return the position in ci->index that contains the address of
751 * an inequality that is equal to the k'th inequality of "bmap"
752 * up to the constant term, provided it does not point to the very
753 * same inequality.
754 * If there is no such inequality, then return the position where
755 * such an inequality should be inserted.
756 */
757static int hash_index(struct isl_constraint_index *ci,
758	__isl_keep isl_basic_map *bmap, int k)
759{
760	return hash_index_ineq(ci, &bmap->ineq[k]);
761}
762
763static int set_hash_index(struct isl_constraint_index *ci,
764	__isl_keep isl_basic_set *bset, int k)
765{
766	return hash_index(ci, bset, k);
767}
768
769/* Fill in the "ci" data structure with the inequalities of "bset".
770 */
771static isl_stat setup_constraint_index(struct isl_constraint_index *ci,
772	__isl_keep isl_basic_set *bset)
773{
774	int k, h;
775
776	if (create_constraint_index(ci, bset) < 0)
777		return isl_stat_error;
778
779	for (k = 0; k < bset->n_ineq; ++k) {
780		h = set_hash_index(ci, bset, k);
781		ci->index[h] = &bset->ineq[k];
782	}
783
784	return isl_stat_ok;
785}
786
787/* Is the inequality ineq (obviously) redundant with respect
788 * to the constraints in "ci"?
789 *
790 * Look for an inequality in "ci" with the same coefficients and then
791 * check if the contant term of "ineq" is greater than or equal
792 * to the constant term of that inequality.  If so, "ineq" is clearly
793 * redundant.
794 *
795 * Note that hash_index_ineq ignores a stored constraint if it has
796 * the same address as the passed inequality.  It is ok to pass
797 * the address of a local variable here since it will never be
798 * the same as the address of a constraint in "ci".
799 */
800static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci,
801	isl_int *ineq)
802{
803	int h;
804
805	h = hash_index_ineq(ci, &ineq);
806	if (!ci->index[h])
807		return isl_bool_false;
808	return isl_int_ge(ineq[0], (*ci->index[h])[0]);
809}
810
811/* If we can eliminate more than one div, then we need to make
812 * sure we do it from last div to first div, in order not to
813 * change the position of the other divs that still need to
814 * be removed.
815 */
816static __isl_give isl_basic_map *remove_duplicate_divs(
817	__isl_take isl_basic_map *bmap, int *progress)
818{
819	unsigned int size;
820	int *index;
821	int *elim_for;
822	int k, l, h;
823	int bits;
824	struct isl_blk eq;
825	isl_size v_div;
826	unsigned total;
827	struct isl_ctx *ctx;
828
829	bmap = isl_basic_map_order_divs(bmap);
830	if (!bmap || bmap->n_div <= 1)
831		return bmap;
832
833	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
834	if (v_div < 0)
835		return isl_basic_map_free(bmap);
836	total = v_div + bmap->n_div;
837
838	ctx = bmap->ctx;
839	for (k = bmap->n_div - 1; k >= 0; --k)
840		if (!isl_int_is_zero(bmap->div[k][0]))
841			break;
842	if (k <= 0)
843		return bmap;
844
845	size = round_up(4 * bmap->n_div / 3 - 1);
846	if (size == 0)
847		return bmap;
848	elim_for = isl_calloc_array(ctx, int, bmap->n_div);
849	bits = ffs(size) - 1;
850	index = isl_calloc_array(ctx, int, size);
851	if (!elim_for || !index)
852		goto out;
853	eq = isl_blk_alloc(ctx, 1+total);
854	if (isl_blk_is_error(eq))
855		goto out;
856
857	isl_seq_clr(eq.data, 1+total);
858	index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1;
859	for (--k; k >= 0; --k) {
860		uint32_t hash;
861
862		if (isl_int_is_zero(bmap->div[k][0]))
863			continue;
864
865		hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits);
866		for (h = hash; index[h]; h = (h+1) % size)
867			if (isl_seq_eq(bmap->div[k],
868				       bmap->div[index[h]-1], 2+total))
869				break;
870		if (index[h]) {
871			*progress = 1;
872			l = index[h] - 1;
873			elim_for[l] = k + 1;
874		}
875		index[h] = k+1;
876	}
877	for (l = bmap->n_div - 1; l >= 0; --l) {
878		if (!elim_for[l])
879			continue;
880		k = elim_for[l] - 1;
881		isl_int_set_si(eq.data[1 + v_div + k], -1);
882		isl_int_set_si(eq.data[1 + v_div + l], 1);
883		bmap = eliminate_div(bmap, eq.data, l, 1);
884		if (!bmap)
885			break;
886		isl_int_set_si(eq.data[1 + v_div + k], 0);
887		isl_int_set_si(eq.data[1 + v_div + l], 0);
888	}
889
890	isl_blk_free(ctx, eq);
891out:
892	free(index);
893	free(elim_for);
894	return bmap;
895}
896
897static int n_pure_div_eq(__isl_keep isl_basic_map *bmap)
898{
899	int i, j;
900	isl_size v_div;
901
902	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
903	if (v_div < 0)
904		return -1;
905	for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) {
906		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
907			--j;
908		if (j < 0)
909			break;
910		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + v_div, j) != -1)
911			return 0;
912	}
913	return i;
914}
915
916/* Normalize divs that appear in equalities.
917 *
918 * In particular, we assume that bmap contains some equalities
919 * of the form
920 *
921 *	a x = m * e_i
922 *
923 * and we want to replace the set of e_i by a minimal set and
924 * such that the new e_i have a canonical representation in terms
925 * of the vector x.
926 * If any of the equalities involves more than one divs, then
927 * we currently simply bail out.
928 *
929 * Let us first additionally assume that all equalities involve
930 * a div.  The equalities then express modulo constraints on the
931 * remaining variables and we can use "parameter compression"
932 * to find a minimal set of constraints.  The result is a transformation
933 *
934 *	x = T(x') = x_0 + G x'
935 *
936 * with G a lower-triangular matrix with all elements below the diagonal
937 * non-negative and smaller than the diagonal element on the same row.
938 * We first normalize x_0 by making the same property hold in the affine
939 * T matrix.
940 * The rows i of G with a 1 on the diagonal do not impose any modulo
941 * constraint and simply express x_i = x'_i.
942 * For each of the remaining rows i, we introduce a div and a corresponding
943 * equality.  In particular
944 *
945 *	g_ii e_j = x_i - g_i(x')
946 *
947 * where each x'_k is replaced either by x_k (if g_kk = 1) or the
948 * corresponding div (if g_kk != 1).
949 *
950 * If there are any equalities not involving any div, then we
951 * first apply a variable compression on the variables x:
952 *
953 *	x = C x''	x'' = C_2 x
954 *
955 * and perform the above parameter compression on A C instead of on A.
956 * The resulting compression is then of the form
957 *
958 *	x'' = T(x') = x_0 + G x'
959 *
960 * and in constructing the new divs and the corresponding equalities,
961 * we have to replace each x'', i.e., the x'_k with (g_kk = 1),
962 * by the corresponding row from C_2.
963 */
964static __isl_give isl_basic_map *normalize_divs(__isl_take isl_basic_map *bmap,
965	int *progress)
966{
967	int i, j, k;
968	isl_size v_div;
969	int div_eq;
970	struct isl_mat *B;
971	struct isl_vec *d;
972	struct isl_mat *T = NULL;
973	struct isl_mat *C = NULL;
974	struct isl_mat *C2 = NULL;
975	isl_int v;
976	int *pos = NULL;
977	int dropped, needed;
978
979	if (!bmap)
980		return NULL;
981
982	if (bmap->n_div == 0)
983		return bmap;
984
985	if (bmap->n_eq == 0)
986		return bmap;
987
988	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS))
989		return bmap;
990
991	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
992	div_eq = n_pure_div_eq(bmap);
993	if (v_div < 0 || div_eq < 0)
994		return isl_basic_map_free(bmap);
995	if (div_eq == 0)
996		return bmap;
997
998	if (div_eq < bmap->n_eq) {
999		B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq,
1000					bmap->n_eq - div_eq, 0, 1 + v_div);
1001		C = isl_mat_variable_compression(B, &C2);
1002		if (!C || !C2)
1003			goto error;
1004		if (C->n_col == 0) {
1005			bmap = isl_basic_map_set_to_empty(bmap);
1006			isl_mat_free(C);
1007			isl_mat_free(C2);
1008			goto done;
1009		}
1010	}
1011
1012	d = isl_vec_alloc(bmap->ctx, div_eq);
1013	if (!d)
1014		goto error;
1015	for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) {
1016		while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1017			--j;
1018		isl_int_set(d->block.data[i], bmap->eq[i][1 + v_div + j]);
1019	}
1020	B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + v_div);
1021
1022	if (C) {
1023		B = isl_mat_product(B, C);
1024		C = NULL;
1025	}
1026
1027	T = isl_mat_parameter_compression(B, d);
1028	if (!T)
1029		goto error;
1030	if (T->n_col == 0) {
1031		bmap = isl_basic_map_set_to_empty(bmap);
1032		isl_mat_free(C2);
1033		isl_mat_free(T);
1034		goto done;
1035	}
1036	isl_int_init(v);
1037	for (i = 0; i < T->n_row - 1; ++i) {
1038		isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]);
1039		if (isl_int_is_zero(v))
1040			continue;
1041		isl_mat_col_submul(T, 0, v, 1 + i);
1042	}
1043	isl_int_clear(v);
1044	pos = isl_alloc_array(bmap->ctx, int, T->n_row);
1045	if (!pos)
1046		goto error;
1047	/* We have to be careful because dropping equalities may reorder them */
1048	dropped = 0;
1049	for (j = bmap->n_div - 1; j >= 0; --j) {
1050		for (i = 0; i < bmap->n_eq; ++i)
1051			if (!isl_int_is_zero(bmap->eq[i][1 + v_div + j]))
1052				break;
1053		if (i < bmap->n_eq) {
1054			bmap = isl_basic_map_drop_div(bmap, j);
1055			if (isl_basic_map_drop_equality(bmap, i) < 0)
1056				goto error;
1057			++dropped;
1058		}
1059	}
1060	pos[0] = 0;
1061	needed = 0;
1062	for (i = 1; i < T->n_row; ++i) {
1063		if (isl_int_is_one(T->row[i][i]))
1064			pos[i] = i;
1065		else
1066			needed++;
1067	}
1068	if (needed > dropped) {
1069		bmap = isl_basic_map_extend(bmap, needed, needed, 0);
1070		if (!bmap)
1071			goto error;
1072	}
1073	for (i = 1; i < T->n_row; ++i) {
1074		if (isl_int_is_one(T->row[i][i]))
1075			continue;
1076		k = isl_basic_map_alloc_div(bmap);
1077		pos[i] = 1 + v_div + k;
1078		isl_seq_clr(bmap->div[k] + 1, 1 + v_div + bmap->n_div);
1079		isl_int_set(bmap->div[k][0], T->row[i][i]);
1080		if (C2)
1081			isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + v_div);
1082		else
1083			isl_int_set_si(bmap->div[k][1 + i], 1);
1084		for (j = 0; j < i; ++j) {
1085			if (isl_int_is_zero(T->row[i][j]))
1086				continue;
1087			if (pos[j] < T->n_row && C2)
1088				isl_seq_submul(bmap->div[k] + 1, T->row[i][j],
1089						C2->row[pos[j]], 1 + v_div);
1090			else
1091				isl_int_neg(bmap->div[k][1 + pos[j]],
1092								T->row[i][j]);
1093		}
1094		j = isl_basic_map_alloc_equality(bmap);
1095		isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+v_div+bmap->n_div);
1096		isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]);
1097	}
1098	free(pos);
1099	isl_mat_free(C2);
1100	isl_mat_free(T);
1101
1102	if (progress)
1103		*progress = 1;
1104done:
1105	ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS);
1106
1107	return bmap;
1108error:
1109	free(pos);
1110	isl_mat_free(C);
1111	isl_mat_free(C2);
1112	isl_mat_free(T);
1113	isl_basic_map_free(bmap);
1114	return NULL;
1115}
1116
1117static __isl_give isl_basic_map *set_div_from_lower_bound(
1118	__isl_take isl_basic_map *bmap, int div, int ineq)
1119{
1120	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1121
1122	isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div);
1123	isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]);
1124	isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]);
1125	isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1126	isl_int_set_si(bmap->div[div][1 + total + div], 0);
1127
1128	return bmap;
1129}
1130
1131/* Check whether it is ok to define a div based on an inequality.
1132 * To avoid the introduction of circular definitions of divs, we
1133 * do not allow such a definition if the resulting expression would refer to
1134 * any other undefined divs or if any known div is defined in
1135 * terms of the unknown div.
1136 */
1137static isl_bool ok_to_set_div_from_bound(__isl_keep isl_basic_map *bmap,
1138	int div, int ineq)
1139{
1140	int j;
1141	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1142
1143	/* Not defined in terms of unknown divs */
1144	for (j = 0; j < bmap->n_div; ++j) {
1145		if (div == j)
1146			continue;
1147		if (isl_int_is_zero(bmap->ineq[ineq][total + j]))
1148			continue;
1149		if (isl_int_is_zero(bmap->div[j][0]))
1150			return isl_bool_false;
1151	}
1152
1153	/* No other div defined in terms of this one => avoid loops */
1154	for (j = 0; j < bmap->n_div; ++j) {
1155		if (div == j)
1156			continue;
1157		if (isl_int_is_zero(bmap->div[j][0]))
1158			continue;
1159		if (!isl_int_is_zero(bmap->div[j][1 + total + div]))
1160			return isl_bool_false;
1161	}
1162
1163	return isl_bool_true;
1164}
1165
1166/* Would an expression for div "div" based on inequality "ineq" of "bmap"
1167 * be a better expression than the current one?
1168 *
1169 * If we do not have any expression yet, then any expression would be better.
1170 * Otherwise we check if the last variable involved in the inequality
1171 * (disregarding the div that it would define) is in an earlier position
1172 * than the last variable involved in the current div expression.
1173 */
1174static isl_bool better_div_constraint(__isl_keep isl_basic_map *bmap,
1175	int div, int ineq)
1176{
1177	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1178	int last_div;
1179	int last_ineq;
1180
1181	if (isl_int_is_zero(bmap->div[div][0]))
1182		return isl_bool_true;
1183
1184	if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1,
1185				  bmap->n_div - (div + 1)) >= 0)
1186		return isl_bool_false;
1187
1188	last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div);
1189	last_div = isl_seq_last_non_zero(bmap->div[div] + 1,
1190					 total + bmap->n_div);
1191
1192	return last_ineq < last_div;
1193}
1194
1195/* Given two constraints "k" and "l" that are opposite to each other,
1196 * except for the constant term, check if we can use them
1197 * to obtain an expression for one of the hitherto unknown divs or
1198 * a "better" expression for a div for which we already have an expression.
1199 * "sum" is the sum of the constant terms of the constraints.
1200 * If this sum is strictly smaller than the coefficient of one
1201 * of the divs, then this pair can be used to define the div.
1202 * To avoid the introduction of circular definitions of divs, we
1203 * do not use the pair if the resulting expression would refer to
1204 * any other undefined divs or if any known div is defined in
1205 * terms of the unknown div.
1206 */
1207static __isl_give isl_basic_map *check_for_div_constraints(
1208	__isl_take isl_basic_map *bmap, int k, int l, isl_int sum,
1209	int *progress)
1210{
1211	int i;
1212	unsigned total = isl_basic_map_offset(bmap, isl_dim_div);
1213
1214	for (i = 0; i < bmap->n_div; ++i) {
1215		isl_bool set_div;
1216
1217		if (isl_int_is_zero(bmap->ineq[k][total + i]))
1218			continue;
1219		if (isl_int_abs_ge(sum, bmap->ineq[k][total + i]))
1220			continue;
1221		set_div = better_div_constraint(bmap, i, k);
1222		if (set_div >= 0 && set_div)
1223			set_div = ok_to_set_div_from_bound(bmap, i, k);
1224		if (set_div < 0)
1225			return isl_basic_map_free(bmap);
1226		if (!set_div)
1227			break;
1228		if (isl_int_is_pos(bmap->ineq[k][total + i]))
1229			bmap = set_div_from_lower_bound(bmap, i, k);
1230		else
1231			bmap = set_div_from_lower_bound(bmap, i, l);
1232		if (progress)
1233			*progress = 1;
1234		break;
1235	}
1236	return bmap;
1237}
1238
1239__isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints(
1240	__isl_take isl_basic_map *bmap, int *progress, int detect_divs)
1241{
1242	struct isl_constraint_index ci;
1243	int k, l, h;
1244	isl_size total = isl_basic_map_dim(bmap, isl_dim_all);
1245	isl_int sum;
1246
1247	if (total < 0 || bmap->n_ineq <= 1)
1248		return bmap;
1249
1250	if (create_constraint_index(&ci, bmap) < 0)
1251		return bmap;
1252
1253	h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits);
1254	ci.index[h] = &bmap->ineq[0];
1255	for (k = 1; k < bmap->n_ineq; ++k) {
1256		h = hash_index(&ci, bmap, k);
1257		if (!ci.index[h]) {
1258			ci.index[h] = &bmap->ineq[k];
1259			continue;
1260		}
1261		if (progress)
1262			*progress = 1;
1263		l = ci.index[h] - &bmap->ineq[0];
1264		if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0]))
1265			swap_inequality(bmap, k, l);
1266		isl_basic_map_drop_inequality(bmap, k);
1267		--k;
1268	}
1269	isl_int_init(sum);
1270	for (k = 0; bmap && k < bmap->n_ineq-1; ++k) {
1271		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1272		h = hash_index(&ci, bmap, k);
1273		isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total);
1274		if (!ci.index[h])
1275			continue;
1276		l = ci.index[h] - &bmap->ineq[0];
1277		isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]);
1278		if (isl_int_is_pos(sum)) {
1279			if (detect_divs)
1280				bmap = check_for_div_constraints(bmap, k, l,
1281								 sum, progress);
1282			continue;
1283		}
1284		if (isl_int_is_zero(sum)) {
1285			/* We need to break out of the loop after these
1286			 * changes since the contents of the hash
1287			 * will no longer be valid.
1288			 * Plus, we probably we want to regauss first.
1289			 */
1290			if (progress)
1291				*progress = 1;
1292			isl_basic_map_drop_inequality(bmap, l);
1293			isl_basic_map_inequality_to_equality(bmap, k);
1294		} else
1295			bmap = isl_basic_map_set_to_empty(bmap);
1296		break;
1297	}
1298	isl_int_clear(sum);
1299
1300	constraint_index_free(&ci);
1301	return bmap;
1302}
1303
1304/* Detect all pairs of inequalities that form an equality.
1305 *
1306 * isl_basic_map_remove_duplicate_constraints detects at most one such pair.
1307 * Call it repeatedly while it is making progress.
1308 */
1309__isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs(
1310	__isl_take isl_basic_map *bmap, int *progress)
1311{
1312	int duplicate;
1313
1314	do {
1315		duplicate = 0;
1316		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1317								&duplicate, 0);
1318		if (progress && duplicate)
1319			*progress = 1;
1320	} while (duplicate);
1321
1322	return bmap;
1323}
1324
1325/* Given a known integer division "div" that is not integral
1326 * (with denominator 1), eliminate it from the constraints in "bmap"
1327 * where it appears with a (positive or negative) unit coefficient.
1328 * If "progress" is not NULL, then it gets set if the elimination
1329 * results in any changes.
1330 *
1331 * That is, replace
1332 *
1333 *	floor(e/m) + f >= 0
1334 *
1335 * by
1336 *
1337 *	e + m f >= 0
1338 *
1339 * and
1340 *
1341 *	-floor(e/m) + f >= 0
1342 *
1343 * by
1344 *
1345 *	-e + m f + m - 1 >= 0
1346 *
1347 * The first conversion is valid because floor(e/m) >= -f is equivalent
1348 * to e/m >= -f because -f is an integral expression.
1349 * The second conversion follows from the fact that
1350 *
1351 *	-floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m)
1352 *
1353 *
1354 * Note that one of the div constraints may have been eliminated
1355 * due to being redundant with respect to the constraint that is
1356 * being modified by this function.  The modified constraint may
1357 * no longer imply this div constraint, so we add it back to make
1358 * sure we do not lose any information.
1359 */
1360static __isl_give isl_basic_map *eliminate_unit_div(
1361	__isl_take isl_basic_map *bmap, int div, int *progress)
1362{
1363	int j;
1364	isl_size v_div, dim;
1365	isl_ctx *ctx;
1366
1367	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1368	dim = isl_basic_map_dim(bmap, isl_dim_all);
1369	if (v_div < 0 || dim < 0)
1370		return isl_basic_map_free(bmap);
1371
1372	ctx = isl_basic_map_get_ctx(bmap);
1373
1374	for (j = 0; j < bmap->n_ineq; ++j) {
1375		int s;
1376
1377		if (!isl_int_is_one(bmap->ineq[j][1 + v_div + div]) &&
1378		    !isl_int_is_negone(bmap->ineq[j][1 + v_div + div]))
1379			continue;
1380
1381		if (progress)
1382			*progress = 1;
1383
1384		s = isl_int_sgn(bmap->ineq[j][1 + v_div + div]);
1385		isl_int_set_si(bmap->ineq[j][1 + v_div + div], 0);
1386		if (s < 0)
1387			isl_seq_combine(bmap->ineq[j],
1388				ctx->negone, bmap->div[div] + 1,
1389				bmap->div[div][0], bmap->ineq[j], 1 + dim);
1390		else
1391			isl_seq_combine(bmap->ineq[j],
1392				ctx->one, bmap->div[div] + 1,
1393				bmap->div[div][0], bmap->ineq[j], 1 + dim);
1394		if (s < 0) {
1395			isl_int_add(bmap->ineq[j][0],
1396				bmap->ineq[j][0], bmap->div[div][0]);
1397			isl_int_sub_ui(bmap->ineq[j][0],
1398				bmap->ineq[j][0], 1);
1399		}
1400
1401		bmap = isl_basic_map_extend_constraints(bmap, 0, 1);
1402		bmap = isl_basic_map_add_div_constraint(bmap, div, s);
1403		if (!bmap)
1404			return NULL;
1405	}
1406
1407	return bmap;
1408}
1409
1410/* Eliminate selected known divs from constraints where they appear with
1411 * a (positive or negative) unit coefficient.
1412 * In particular, only handle those for which "select" returns isl_bool_true.
1413 * If "progress" is not NULL, then it gets set if the elimination
1414 * results in any changes.
1415 *
1416 * We skip integral divs, i.e., those with denominator 1, as we would
1417 * risk eliminating the div from the div constraints.  We do not need
1418 * to handle those divs here anyway since the div constraints will turn
1419 * out to form an equality and this equality can then be used to eliminate
1420 * the div from all constraints.
1421 */
1422static __isl_give isl_basic_map *eliminate_selected_unit_divs(
1423	__isl_take isl_basic_map *bmap,
1424	isl_bool (*select)(__isl_keep isl_basic_map *bmap, int div),
1425	int *progress)
1426{
1427	int i;
1428
1429	if (!bmap)
1430		return NULL;
1431
1432	for (i = 0; i < bmap->n_div; ++i) {
1433		isl_bool selected;
1434
1435		if (isl_int_is_zero(bmap->div[i][0]))
1436			continue;
1437		if (isl_int_is_one(bmap->div[i][0]))
1438			continue;
1439		selected = select(bmap, i);
1440		if (selected < 0)
1441			return isl_basic_map_free(bmap);
1442		if (!selected)
1443			continue;
1444		bmap = eliminate_unit_div(bmap, i, progress);
1445		if (!bmap)
1446			return NULL;
1447	}
1448
1449	return bmap;
1450}
1451
1452/* eliminate_selected_unit_divs callback that selects every
1453 * integer division.
1454 */
1455static isl_bool is_any_div(__isl_keep isl_basic_map *bmap, int div)
1456{
1457	return isl_bool_true;
1458}
1459
1460/* Eliminate known divs from constraints where they appear with
1461 * a (positive or negative) unit coefficient.
1462 * If "progress" is not NULL, then it gets set if the elimination
1463 * results in any changes.
1464 */
1465static __isl_give isl_basic_map *eliminate_unit_divs(
1466	__isl_take isl_basic_map *bmap, int *progress)
1467{
1468	return eliminate_selected_unit_divs(bmap, &is_any_div, progress);
1469}
1470
1471/* eliminate_selected_unit_divs callback that selects
1472 * integer divisions that only appear with
1473 * a (positive or negative) unit coefficient
1474 * (outside their div constraints).
1475 */
1476static isl_bool is_pure_unit_div(__isl_keep isl_basic_map *bmap, int div)
1477{
1478	int i;
1479	isl_size v_div, n_ineq;
1480
1481	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1482	n_ineq = isl_basic_map_n_inequality(bmap);
1483	if (v_div < 0 || n_ineq < 0)
1484		return isl_bool_error;
1485
1486	for (i = 0; i < n_ineq; ++i) {
1487		isl_bool skip;
1488
1489		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div]))
1490			continue;
1491		skip = isl_basic_map_is_div_constraint(bmap,
1492							bmap->ineq[i], div);
1493		if (skip < 0)
1494			return isl_bool_error;
1495		if (skip)
1496			continue;
1497		if (!isl_int_is_one(bmap->ineq[i][1 + v_div + div]) &&
1498		    !isl_int_is_negone(bmap->ineq[i][1 + v_div + div]))
1499			return isl_bool_false;
1500	}
1501
1502	return isl_bool_true;
1503}
1504
1505/* Eliminate known divs from constraints where they appear with
1506 * a (positive or negative) unit coefficient,
1507 * but only if they do not appear in any other constraints
1508 * (other than the div constraints).
1509 */
1510__isl_give isl_basic_map *isl_basic_map_eliminate_pure_unit_divs(
1511	__isl_take isl_basic_map *bmap)
1512{
1513	return eliminate_selected_unit_divs(bmap, &is_pure_unit_div, NULL);
1514}
1515
1516__isl_give isl_basic_map *isl_basic_map_simplify(__isl_take isl_basic_map *bmap)
1517{
1518	int progress = 1;
1519	if (!bmap)
1520		return NULL;
1521	while (progress) {
1522		isl_bool empty;
1523
1524		progress = 0;
1525		empty = isl_basic_map_plain_is_empty(bmap);
1526		if (empty < 0)
1527			return isl_basic_map_free(bmap);
1528		if (empty)
1529			break;
1530		bmap = isl_basic_map_normalize_constraints(bmap);
1531		bmap = reduce_div_coefficients(bmap);
1532		bmap = normalize_div_expressions(bmap);
1533		bmap = remove_duplicate_divs(bmap, &progress);
1534		bmap = eliminate_unit_divs(bmap, &progress);
1535		bmap = eliminate_divs_eq(bmap, &progress);
1536		bmap = eliminate_divs_ineq(bmap, &progress);
1537		bmap = isl_basic_map_gauss(bmap, &progress);
1538		/* requires equalities in normal form */
1539		bmap = normalize_divs(bmap, &progress);
1540		bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1541								&progress, 1);
1542		if (bmap && progress)
1543			ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
1544	}
1545	return bmap;
1546}
1547
1548__isl_give isl_basic_set *isl_basic_set_simplify(
1549	__isl_take isl_basic_set *bset)
1550{
1551	return bset_from_bmap(isl_basic_map_simplify(bset_to_bmap(bset)));
1552}
1553
1554
1555isl_bool isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap,
1556	isl_int *constraint, unsigned div)
1557{
1558	unsigned pos;
1559
1560	if (!bmap)
1561		return isl_bool_error;
1562
1563	pos = isl_basic_map_offset(bmap, isl_dim_div) + div;
1564
1565	if (isl_int_eq(constraint[pos], bmap->div[div][0])) {
1566		int neg;
1567		isl_int_sub(bmap->div[div][1],
1568				bmap->div[div][1], bmap->div[div][0]);
1569		isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1);
1570		neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos);
1571		isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1);
1572		isl_int_add(bmap->div[div][1],
1573				bmap->div[div][1], bmap->div[div][0]);
1574		if (!neg)
1575			return isl_bool_false;
1576		if (isl_seq_first_non_zero(constraint+pos+1,
1577					    bmap->n_div-div-1) != -1)
1578			return isl_bool_false;
1579	} else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) {
1580		if (!isl_seq_eq(constraint, bmap->div[div]+1, pos))
1581			return isl_bool_false;
1582		if (isl_seq_first_non_zero(constraint+pos+1,
1583					    bmap->n_div-div-1) != -1)
1584			return isl_bool_false;
1585	} else
1586		return isl_bool_false;
1587
1588	return isl_bool_true;
1589}
1590
1591/* If the only constraints a div d=floor(f/m)
1592 * appears in are its two defining constraints
1593 *
1594 *	f - m d >=0
1595 *	-(f - (m - 1)) + m d >= 0
1596 *
1597 * then it can safely be removed.
1598 */
1599static isl_bool div_is_redundant(__isl_keep isl_basic_map *bmap, int div)
1600{
1601	int i;
1602	isl_size v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1603	unsigned pos = 1 + v_div + div;
1604
1605	if (v_div < 0)
1606		return isl_bool_error;
1607
1608	for (i = 0; i < bmap->n_eq; ++i)
1609		if (!isl_int_is_zero(bmap->eq[i][pos]))
1610			return isl_bool_false;
1611
1612	for (i = 0; i < bmap->n_ineq; ++i) {
1613		isl_bool red;
1614
1615		if (isl_int_is_zero(bmap->ineq[i][pos]))
1616			continue;
1617		red = isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div);
1618		if (red < 0 || !red)
1619			return red;
1620	}
1621
1622	for (i = 0; i < bmap->n_div; ++i) {
1623		if (isl_int_is_zero(bmap->div[i][0]))
1624			continue;
1625		if (!isl_int_is_zero(bmap->div[i][1+pos]))
1626			return isl_bool_false;
1627	}
1628
1629	return isl_bool_true;
1630}
1631
1632/*
1633 * Remove divs that don't occur in any of the constraints or other divs.
1634 * These can arise when dropping constraints from a basic map or
1635 * when the divs of a basic map have been temporarily aligned
1636 * with the divs of another basic map.
1637 */
1638static __isl_give isl_basic_map *remove_redundant_divs(
1639	__isl_take isl_basic_map *bmap)
1640{
1641	int i;
1642	isl_size v_div;
1643
1644	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1645	if (v_div < 0)
1646		return isl_basic_map_free(bmap);
1647
1648	for (i = bmap->n_div-1; i >= 0; --i) {
1649		isl_bool redundant;
1650
1651		redundant = div_is_redundant(bmap, i);
1652		if (redundant < 0)
1653			return isl_basic_map_free(bmap);
1654		if (!redundant)
1655			continue;
1656		bmap = isl_basic_map_drop_constraints_involving(bmap,
1657								v_div + i, 1);
1658		bmap = isl_basic_map_drop_div(bmap, i);
1659	}
1660	return bmap;
1661}
1662
1663/* Mark "bmap" as final, without checking for obviously redundant
1664 * integer divisions.  This function should be used when "bmap"
1665 * is known not to involve any such integer divisions.
1666 */
1667__isl_give isl_basic_map *isl_basic_map_mark_final(
1668	__isl_take isl_basic_map *bmap)
1669{
1670	if (!bmap)
1671		return NULL;
1672	ISL_F_SET(bmap, ISL_BASIC_SET_FINAL);
1673	return bmap;
1674}
1675
1676/* Mark "bmap" as final, after removing obviously redundant integer divisions.
1677 */
1678__isl_give isl_basic_map *isl_basic_map_finalize(__isl_take isl_basic_map *bmap)
1679{
1680	bmap = remove_redundant_divs(bmap);
1681	bmap = isl_basic_map_mark_final(bmap);
1682	return bmap;
1683}
1684
1685__isl_give isl_basic_set *isl_basic_set_finalize(
1686	__isl_take isl_basic_set *bset)
1687{
1688	return bset_from_bmap(isl_basic_map_finalize(bset_to_bmap(bset)));
1689}
1690
1691/* Remove definition of any div that is defined in terms of the given variable.
1692 * The div itself is not removed.  Functions such as
1693 * eliminate_divs_ineq depend on the other divs remaining in place.
1694 */
1695static __isl_give isl_basic_map *remove_dependent_vars(
1696	__isl_take isl_basic_map *bmap, int pos)
1697{
1698	int i;
1699
1700	if (!bmap)
1701		return NULL;
1702
1703	for (i = 0; i < bmap->n_div; ++i) {
1704		if (isl_int_is_zero(bmap->div[i][0]))
1705			continue;
1706		if (isl_int_is_zero(bmap->div[i][1+1+pos]))
1707			continue;
1708		bmap = isl_basic_map_mark_div_unknown(bmap, i);
1709		if (!bmap)
1710			return NULL;
1711	}
1712	return bmap;
1713}
1714
1715/* Eliminate the specified variables from the constraints using
1716 * Fourier-Motzkin.  The variables themselves are not removed.
1717 */
1718__isl_give isl_basic_map *isl_basic_map_eliminate_vars(
1719	__isl_take isl_basic_map *bmap, unsigned pos, unsigned n)
1720{
1721	int d;
1722	int i, j, k;
1723	isl_size total;
1724	int need_gauss = 0;
1725
1726	if (n == 0)
1727		return bmap;
1728	total = isl_basic_map_dim(bmap, isl_dim_all);
1729	if (total < 0)
1730		return isl_basic_map_free(bmap);
1731
1732	bmap = isl_basic_map_cow(bmap);
1733	for (d = pos + n - 1; d >= 0 && d >= pos; --d)
1734		bmap = remove_dependent_vars(bmap, d);
1735	if (!bmap)
1736		return NULL;
1737
1738	for (d = pos + n - 1;
1739	     d >= 0 && d >= total - bmap->n_div && d >= pos; --d)
1740		isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total);
1741	for (d = pos + n - 1; d >= 0 && d >= pos; --d) {
1742		int n_lower, n_upper;
1743		if (!bmap)
1744			return NULL;
1745		for (i = 0; i < bmap->n_eq; ++i) {
1746			if (isl_int_is_zero(bmap->eq[i][1+d]))
1747				continue;
1748			bmap = eliminate_var_using_equality(bmap, d,
1749							bmap->eq[i], 0, NULL);
1750			if (isl_basic_map_drop_equality(bmap, i) < 0)
1751				return isl_basic_map_free(bmap);
1752			need_gauss = 1;
1753			break;
1754		}
1755		if (i < bmap->n_eq)
1756			continue;
1757		n_lower = 0;
1758		n_upper = 0;
1759		for (i = 0; i < bmap->n_ineq; ++i) {
1760			if (isl_int_is_pos(bmap->ineq[i][1+d]))
1761				n_lower++;
1762			else if (isl_int_is_neg(bmap->ineq[i][1+d]))
1763				n_upper++;
1764		}
1765		bmap = isl_basic_map_extend_constraints(bmap,
1766				0, n_lower * n_upper);
1767		if (!bmap)
1768			goto error;
1769		for (i = bmap->n_ineq - 1; i >= 0; --i) {
1770			int last;
1771			if (isl_int_is_zero(bmap->ineq[i][1+d]))
1772				continue;
1773			last = -1;
1774			for (j = 0; j < i; ++j) {
1775				if (isl_int_is_zero(bmap->ineq[j][1+d]))
1776					continue;
1777				last = j;
1778				if (isl_int_sgn(bmap->ineq[i][1+d]) ==
1779				    isl_int_sgn(bmap->ineq[j][1+d]))
1780					continue;
1781				k = isl_basic_map_alloc_inequality(bmap);
1782				if (k < 0)
1783					goto error;
1784				isl_seq_cpy(bmap->ineq[k], bmap->ineq[i],
1785						1+total);
1786				isl_seq_elim(bmap->ineq[k], bmap->ineq[j],
1787						1+d, 1+total, NULL);
1788			}
1789			isl_basic_map_drop_inequality(bmap, i);
1790			i = last + 1;
1791		}
1792		if (n_lower > 0 && n_upper > 0) {
1793			bmap = isl_basic_map_normalize_constraints(bmap);
1794			bmap = isl_basic_map_remove_duplicate_constraints(bmap,
1795								    NULL, 0);
1796			bmap = isl_basic_map_gauss(bmap, NULL);
1797			bmap = isl_basic_map_remove_redundancies(bmap);
1798			need_gauss = 0;
1799			if (!bmap)
1800				goto error;
1801			if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
1802				break;
1803		}
1804	}
1805	if (need_gauss)
1806		bmap = isl_basic_map_gauss(bmap, NULL);
1807	return bmap;
1808error:
1809	isl_basic_map_free(bmap);
1810	return NULL;
1811}
1812
1813__isl_give isl_basic_set *isl_basic_set_eliminate_vars(
1814	__isl_take isl_basic_set *bset, unsigned pos, unsigned n)
1815{
1816	return bset_from_bmap(isl_basic_map_eliminate_vars(bset_to_bmap(bset),
1817								pos, n));
1818}
1819
1820/* Eliminate the specified n dimensions starting at first from the
1821 * constraints, without removing the dimensions from the space.
1822 * If the set is rational, the dimensions are eliminated using Fourier-Motzkin.
1823 * Otherwise, they are projected out and the original space is restored.
1824 */
1825__isl_give isl_basic_map *isl_basic_map_eliminate(
1826	__isl_take isl_basic_map *bmap,
1827	enum isl_dim_type type, unsigned first, unsigned n)
1828{
1829	isl_space *space;
1830
1831	if (!bmap)
1832		return NULL;
1833	if (n == 0)
1834		return bmap;
1835
1836	if (isl_basic_map_check_range(bmap, type, first, n) < 0)
1837		return isl_basic_map_free(bmap);
1838
1839	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) {
1840		first += isl_basic_map_offset(bmap, type) - 1;
1841		bmap = isl_basic_map_eliminate_vars(bmap, first, n);
1842		return isl_basic_map_finalize(bmap);
1843	}
1844
1845	space = isl_basic_map_get_space(bmap);
1846	bmap = isl_basic_map_project_out(bmap, type, first, n);
1847	bmap = isl_basic_map_insert_dims(bmap, type, first, n);
1848	bmap = isl_basic_map_reset_space(bmap, space);
1849	return bmap;
1850}
1851
1852__isl_give isl_basic_set *isl_basic_set_eliminate(
1853	__isl_take isl_basic_set *bset,
1854	enum isl_dim_type type, unsigned first, unsigned n)
1855{
1856	return isl_basic_map_eliminate(bset, type, first, n);
1857}
1858
1859/* Remove all constraints from "bmap" that reference any unknown local
1860 * variables (directly or indirectly).
1861 *
1862 * Dropping all constraints on a local variable will make it redundant,
1863 * so it will get removed implicitly by
1864 * isl_basic_map_drop_constraints_involving_dims.  Some other local
1865 * variables may also end up becoming redundant if they only appear
1866 * in constraints together with the unknown local variable.
1867 * Therefore, start over after calling
1868 * isl_basic_map_drop_constraints_involving_dims.
1869 */
1870__isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_unknown_divs(
1871	__isl_take isl_basic_map *bmap)
1872{
1873	isl_bool known;
1874	isl_size n_div;
1875	int i, o_div;
1876
1877	known = isl_basic_map_divs_known(bmap);
1878	if (known < 0)
1879		return isl_basic_map_free(bmap);
1880	if (known)
1881		return bmap;
1882
1883	n_div = isl_basic_map_dim(bmap, isl_dim_div);
1884	if (n_div < 0)
1885		return isl_basic_map_free(bmap);
1886	o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1;
1887
1888	for (i = 0; i < n_div; ++i) {
1889		known = isl_basic_map_div_is_known(bmap, i);
1890		if (known < 0)
1891			return isl_basic_map_free(bmap);
1892		if (known)
1893			continue;
1894		bmap = remove_dependent_vars(bmap, o_div + i);
1895		bmap = isl_basic_map_drop_constraints_involving_dims(bmap,
1896							    isl_dim_div, i, 1);
1897		n_div = isl_basic_map_dim(bmap, isl_dim_div);
1898		if (n_div < 0)
1899			return isl_basic_map_free(bmap);
1900		i = -1;
1901	}
1902
1903	return bmap;
1904}
1905
1906/* Remove all constraints from "bset" that reference any unknown local
1907 * variables (directly or indirectly).
1908 */
1909__isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_unknown_divs(
1910	__isl_take isl_basic_set *bset)
1911{
1912	isl_basic_map *bmap;
1913
1914	bmap = bset_to_bmap(bset);
1915	bmap = isl_basic_map_drop_constraints_involving_unknown_divs(bmap);
1916	return bset_from_bmap(bmap);
1917}
1918
1919/* Remove all constraints from "map" that reference any unknown local
1920 * variables (directly or indirectly).
1921 *
1922 * Since constraints may get dropped from the basic maps,
1923 * they may no longer be disjoint from each other.
1924 */
1925__isl_give isl_map *isl_map_drop_constraints_involving_unknown_divs(
1926	__isl_take isl_map *map)
1927{
1928	int i;
1929	isl_bool known;
1930
1931	known = isl_map_divs_known(map);
1932	if (known < 0)
1933		return isl_map_free(map);
1934	if (known)
1935		return map;
1936
1937	map = isl_map_cow(map);
1938	if (!map)
1939		return NULL;
1940
1941	for (i = 0; i < map->n; ++i) {
1942		map->p[i] =
1943		    isl_basic_map_drop_constraints_involving_unknown_divs(
1944								    map->p[i]);
1945		if (!map->p[i])
1946			return isl_map_free(map);
1947	}
1948
1949	if (map->n > 1)
1950		ISL_F_CLR(map, ISL_MAP_DISJOINT);
1951
1952	return map;
1953}
1954
1955/* Don't assume equalities are in order, because align_divs
1956 * may have changed the order of the divs.
1957 */
1958static void compute_elimination_index(__isl_keep isl_basic_map *bmap, int *elim,
1959	unsigned len)
1960{
1961	int d, i;
1962
1963	for (d = 0; d < len; ++d)
1964		elim[d] = -1;
1965	for (i = 0; i < bmap->n_eq; ++i) {
1966		for (d = len - 1; d >= 0; --d) {
1967			if (isl_int_is_zero(bmap->eq[i][1+d]))
1968				continue;
1969			elim[d] = i;
1970			break;
1971		}
1972	}
1973}
1974
1975static void set_compute_elimination_index(__isl_keep isl_basic_set *bset,
1976	int *elim, unsigned len)
1977{
1978	compute_elimination_index(bset_to_bmap(bset), elim, len);
1979}
1980
1981static int reduced_using_equalities(isl_int *dst, isl_int *src,
1982	__isl_keep isl_basic_map *bmap, int *elim, unsigned total)
1983{
1984	int d;
1985	int copied = 0;
1986
1987	for (d = total - 1; d >= 0; --d) {
1988		if (isl_int_is_zero(src[1+d]))
1989			continue;
1990		if (elim[d] == -1)
1991			continue;
1992		if (!copied) {
1993			isl_seq_cpy(dst, src, 1 + total);
1994			copied = 1;
1995		}
1996		isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL);
1997	}
1998	return copied;
1999}
2000
2001static int set_reduced_using_equalities(isl_int *dst, isl_int *src,
2002	__isl_keep isl_basic_set *bset, int *elim, unsigned total)
2003{
2004	return reduced_using_equalities(dst, src,
2005					bset_to_bmap(bset), elim, total);
2006}
2007
2008static __isl_give isl_basic_set *isl_basic_set_reduce_using_equalities(
2009	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2010{
2011	int i;
2012	int *elim;
2013	isl_size dim;
2014
2015	if (!bset || !context)
2016		goto error;
2017
2018	if (context->n_eq == 0) {
2019		isl_basic_set_free(context);
2020		return bset;
2021	}
2022
2023	bset = isl_basic_set_cow(bset);
2024	dim = isl_basic_set_dim(bset, isl_dim_set);
2025	if (dim < 0)
2026		goto error;
2027
2028	elim = isl_alloc_array(bset->ctx, int, dim);
2029	if (!elim)
2030		goto error;
2031	set_compute_elimination_index(context, elim, dim);
2032	for (i = 0; i < bset->n_eq; ++i)
2033		set_reduced_using_equalities(bset->eq[i], bset->eq[i],
2034							context, elim, dim);
2035	for (i = 0; i < bset->n_ineq; ++i)
2036		set_reduced_using_equalities(bset->ineq[i], bset->ineq[i],
2037							context, elim, dim);
2038	isl_basic_set_free(context);
2039	free(elim);
2040	bset = isl_basic_set_simplify(bset);
2041	bset = isl_basic_set_finalize(bset);
2042	return bset;
2043error:
2044	isl_basic_set_free(bset);
2045	isl_basic_set_free(context);
2046	return NULL;
2047}
2048
2049/* For each inequality in "ineq" that is a shifted (more relaxed)
2050 * copy of an inequality in "context", mark the corresponding entry
2051 * in "row" with -1.
2052 * If an inequality only has a non-negative constant term, then
2053 * mark it as well.
2054 */
2055static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq,
2056	__isl_keep isl_basic_set *context, int *row)
2057{
2058	struct isl_constraint_index ci;
2059	isl_size n_ineq, cols;
2060	unsigned total;
2061	int k;
2062
2063	if (!ineq || !context)
2064		return isl_stat_error;
2065	if (context->n_ineq == 0)
2066		return isl_stat_ok;
2067	if (setup_constraint_index(&ci, context) < 0)
2068		return isl_stat_error;
2069
2070	n_ineq = isl_mat_rows(ineq);
2071	cols = isl_mat_cols(ineq);
2072	if (n_ineq < 0 || cols < 0)
2073		return isl_stat_error;
2074	total = cols - 1;
2075	for (k = 0; k < n_ineq; ++k) {
2076		int l;
2077		isl_bool redundant;
2078
2079		l = isl_seq_first_non_zero(ineq->row[k] + 1, total);
2080		if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) {
2081			row[k] = -1;
2082			continue;
2083		}
2084		redundant = constraint_index_is_redundant(&ci, ineq->row[k]);
2085		if (redundant < 0)
2086			goto error;
2087		if (!redundant)
2088			continue;
2089		row[k] = -1;
2090	}
2091	constraint_index_free(&ci);
2092	return isl_stat_ok;
2093error:
2094	constraint_index_free(&ci);
2095	return isl_stat_error;
2096}
2097
2098static __isl_give isl_basic_set *remove_shifted_constraints(
2099	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *context)
2100{
2101	struct isl_constraint_index ci;
2102	int k;
2103
2104	if (!bset || !context)
2105		return bset;
2106
2107	if (context->n_ineq == 0)
2108		return bset;
2109	if (setup_constraint_index(&ci, context) < 0)
2110		return bset;
2111
2112	for (k = 0; k < bset->n_ineq; ++k) {
2113		isl_bool redundant;
2114
2115		redundant = constraint_index_is_redundant(&ci, bset->ineq[k]);
2116		if (redundant < 0)
2117			goto error;
2118		if (!redundant)
2119			continue;
2120		bset = isl_basic_set_cow(bset);
2121		if (!bset)
2122			goto error;
2123		isl_basic_set_drop_inequality(bset, k);
2124		--k;
2125	}
2126	constraint_index_free(&ci);
2127	return bset;
2128error:
2129	constraint_index_free(&ci);
2130	return bset;
2131}
2132
2133/* Remove constraints from "bmap" that are identical to constraints
2134 * in "context" or that are more relaxed (greater constant term).
2135 *
2136 * We perform the test for shifted copies on the pure constraints
2137 * in remove_shifted_constraints.
2138 */
2139static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints(
2140	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
2141{
2142	isl_basic_set *bset, *bset_context;
2143
2144	if (!bmap || !context)
2145		goto error;
2146
2147	if (bmap->n_ineq == 0 || context->n_ineq == 0) {
2148		isl_basic_map_free(context);
2149		return bmap;
2150	}
2151
2152	bmap = isl_basic_map_order_divs(bmap);
2153	context = isl_basic_map_align_divs(context, bmap);
2154	bmap = isl_basic_map_align_divs(bmap, context);
2155
2156	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
2157	bset_context = isl_basic_map_underlying_set(context);
2158	bset = remove_shifted_constraints(bset, bset_context);
2159	isl_basic_set_free(bset_context);
2160
2161	bmap = isl_basic_map_overlying_set(bset, bmap);
2162
2163	return bmap;
2164error:
2165	isl_basic_map_free(bmap);
2166	isl_basic_map_free(context);
2167	return NULL;
2168}
2169
2170/* Does the (linear part of a) constraint "c" involve any of the "len"
2171 * "relevant" dimensions?
2172 */
2173static int is_related(isl_int *c, int len, int *relevant)
2174{
2175	int i;
2176
2177	for (i = 0; i < len; ++i) {
2178		if (!relevant[i])
2179			continue;
2180		if (!isl_int_is_zero(c[i]))
2181			return 1;
2182	}
2183
2184	return 0;
2185}
2186
2187/* Drop constraints from "bmap" that do not involve any of
2188 * the dimensions marked "relevant".
2189 */
2190static __isl_give isl_basic_map *drop_unrelated_constraints(
2191	__isl_take isl_basic_map *bmap, int *relevant)
2192{
2193	int i;
2194	isl_size dim;
2195
2196	dim = isl_basic_map_dim(bmap, isl_dim_all);
2197	if (dim < 0)
2198		return isl_basic_map_free(bmap);
2199	for (i = 0; i < dim; ++i)
2200		if (!relevant[i])
2201			break;
2202	if (i >= dim)
2203		return bmap;
2204
2205	for (i = bmap->n_eq - 1; i >= 0; --i)
2206		if (!is_related(bmap->eq[i] + 1, dim, relevant)) {
2207			bmap = isl_basic_map_cow(bmap);
2208			if (isl_basic_map_drop_equality(bmap, i) < 0)
2209				return isl_basic_map_free(bmap);
2210		}
2211
2212	for (i = bmap->n_ineq - 1; i >= 0; --i)
2213		if (!is_related(bmap->ineq[i] + 1, dim, relevant)) {
2214			bmap = isl_basic_map_cow(bmap);
2215			if (isl_basic_map_drop_inequality(bmap, i) < 0)
2216				return isl_basic_map_free(bmap);
2217		}
2218
2219	return bmap;
2220}
2221
2222/* Update the groups in "group" based on the (linear part of a) constraint "c".
2223 *
2224 * In particular, for any variable involved in the constraint,
2225 * find the actual group id from before and replace the group
2226 * of the corresponding variable by the minimal group of all
2227 * the variables involved in the constraint considered so far
2228 * (if this minimum is smaller) or replace the minimum by this group
2229 * (if the minimum is larger).
2230 *
2231 * At the end, all the variables in "c" will (indirectly) point
2232 * to the minimal of the groups that they referred to originally.
2233 */
2234static void update_groups(int dim, int *group, isl_int *c)
2235{
2236	int j;
2237	int min = dim;
2238
2239	for (j = 0; j < dim; ++j) {
2240		if (isl_int_is_zero(c[j]))
2241			continue;
2242		while (group[j] >= 0 && group[group[j]] != group[j])
2243			group[j] = group[group[j]];
2244		if (group[j] == min)
2245			continue;
2246		if (group[j] < min) {
2247			if (min >= 0 && min < dim)
2248				group[min] = group[j];
2249			min = group[j];
2250		} else
2251			group[group[j]] = min;
2252	}
2253}
2254
2255/* Allocate an array of groups of variables, one for each variable
2256 * in "context", initialized to zero.
2257 */
2258static int *alloc_groups(__isl_keep isl_basic_set *context)
2259{
2260	isl_ctx *ctx;
2261	isl_size dim;
2262
2263	dim = isl_basic_set_dim(context, isl_dim_set);
2264	if (dim < 0)
2265		return NULL;
2266	ctx = isl_basic_set_get_ctx(context);
2267	return isl_calloc_array(ctx, int, dim);
2268}
2269
2270/* Drop constraints from "bmap" that only involve variables that are
2271 * not related to any of the variables marked with a "-1" in "group".
2272 *
2273 * We construct groups of variables that collect variables that
2274 * (indirectly) appear in some common constraint of "bmap".
2275 * Each group is identified by the first variable in the group,
2276 * except for the special group of variables that was already identified
2277 * in the input as -1 (or are related to those variables).
2278 * If group[i] is equal to i (or -1), then the group of i is i (or -1),
2279 * otherwise the group of i is the group of group[i].
2280 *
2281 * We first initialize groups for the remaining variables.
2282 * Then we iterate over the constraints of "bmap" and update the
2283 * group of the variables in the constraint by the smallest group.
2284 * Finally, we resolve indirect references to groups by running over
2285 * the variables.
2286 *
2287 * After computing the groups, we drop constraints that do not involve
2288 * any variables in the -1 group.
2289 */
2290__isl_give isl_basic_map *isl_basic_map_drop_unrelated_constraints(
2291	__isl_take isl_basic_map *bmap, __isl_take int *group)
2292{
2293	isl_size dim;
2294	int i;
2295	int last;
2296
2297	dim = isl_basic_map_dim(bmap, isl_dim_all);
2298	if (dim < 0)
2299		return isl_basic_map_free(bmap);
2300
2301	last = -1;
2302	for (i = 0; i < dim; ++i)
2303		if (group[i] >= 0)
2304			last = group[i] = i;
2305	if (last < 0) {
2306		free(group);
2307		return bmap;
2308	}
2309
2310	for (i = 0; i < bmap->n_eq; ++i)
2311		update_groups(dim, group, bmap->eq[i] + 1);
2312	for (i = 0; i < bmap->n_ineq; ++i)
2313		update_groups(dim, group, bmap->ineq[i] + 1);
2314
2315	for (i = 0; i < dim; ++i)
2316		if (group[i] >= 0)
2317			group[i] = group[group[i]];
2318
2319	for (i = 0; i < dim; ++i)
2320		group[i] = group[i] == -1;
2321
2322	bmap = drop_unrelated_constraints(bmap, group);
2323
2324	free(group);
2325	return bmap;
2326}
2327
2328/* Drop constraints from "context" that are irrelevant for computing
2329 * the gist of "bset".
2330 *
2331 * In particular, drop constraints in variables that are not related
2332 * to any of the variables involved in the constraints of "bset"
2333 * in the sense that there is no sequence of constraints that connects them.
2334 *
2335 * We first mark all variables that appear in "bset" as belonging
2336 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2337 */
2338static __isl_give isl_basic_set *drop_irrelevant_constraints(
2339	__isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset)
2340{
2341	int *group;
2342	isl_size dim;
2343	int i, j;
2344
2345	dim = isl_basic_set_dim(bset, isl_dim_set);
2346	if (!context || dim < 0)
2347		return isl_basic_set_free(context);
2348
2349	group = alloc_groups(context);
2350
2351	if (!group)
2352		return isl_basic_set_free(context);
2353
2354	for (i = 0; i < dim; ++i) {
2355		for (j = 0; j < bset->n_eq; ++j)
2356			if (!isl_int_is_zero(bset->eq[j][1 + i]))
2357				break;
2358		if (j < bset->n_eq) {
2359			group[i] = -1;
2360			continue;
2361		}
2362		for (j = 0; j < bset->n_ineq; ++j)
2363			if (!isl_int_is_zero(bset->ineq[j][1 + i]))
2364				break;
2365		if (j < bset->n_ineq)
2366			group[i] = -1;
2367	}
2368
2369	return isl_basic_map_drop_unrelated_constraints(context, group);
2370}
2371
2372/* Drop constraints from "context" that are irrelevant for computing
2373 * the gist of the inequalities "ineq".
2374 * Inequalities in "ineq" for which the corresponding element of row
2375 * is set to -1 have already been marked for removal and should be ignored.
2376 *
2377 * In particular, drop constraints in variables that are not related
2378 * to any of the variables involved in "ineq"
2379 * in the sense that there is no sequence of constraints that connects them.
2380 *
2381 * We first mark all variables that appear in "bset" as belonging
2382 * to a "-1" group and then continue with group_and_drop_irrelevant_constraints.
2383 */
2384static __isl_give isl_basic_set *drop_irrelevant_constraints_marked(
2385	__isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row)
2386{
2387	int *group;
2388	isl_size dim;
2389	int i, j;
2390	isl_size n;
2391
2392	dim = isl_basic_set_dim(context, isl_dim_set);
2393	n = isl_mat_rows(ineq);
2394	if (dim < 0 || n < 0)
2395		return isl_basic_set_free(context);
2396
2397	group = alloc_groups(context);
2398
2399	if (!group)
2400		return isl_basic_set_free(context);
2401
2402	for (i = 0; i < dim; ++i) {
2403		for (j = 0; j < n; ++j) {
2404			if (row[j] < 0)
2405				continue;
2406			if (!isl_int_is_zero(ineq->row[j][1 + i]))
2407				break;
2408		}
2409		if (j < n)
2410			group[i] = -1;
2411	}
2412
2413	return isl_basic_map_drop_unrelated_constraints(context, group);
2414}
2415
2416/* Do all "n" entries of "row" contain a negative value?
2417 */
2418static int all_neg(int *row, int n)
2419{
2420	int i;
2421
2422	for (i = 0; i < n; ++i)
2423		if (row[i] >= 0)
2424			return 0;
2425
2426	return 1;
2427}
2428
2429/* Update the inequalities in "bset" based on the information in "row"
2430 * and "tab".
2431 *
2432 * In particular, the array "row" contains either -1, meaning that
2433 * the corresponding inequality of "bset" is redundant, or the index
2434 * of an inequality in "tab".
2435 *
2436 * If the row entry is -1, then drop the inequality.
2437 * Otherwise, if the constraint is marked redundant in the tableau,
2438 * then drop the inequality.  Similarly, if it is marked as an equality
2439 * in the tableau, then turn the inequality into an equality and
2440 * perform Gaussian elimination.
2441 */
2442static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset,
2443	__isl_keep int *row, struct isl_tab *tab)
2444{
2445	int i;
2446	unsigned n_ineq;
2447	unsigned n_eq;
2448	int found_equality = 0;
2449
2450	if (!bset)
2451		return NULL;
2452	if (tab && tab->empty)
2453		return isl_basic_set_set_to_empty(bset);
2454
2455	n_ineq = bset->n_ineq;
2456	for (i = n_ineq - 1; i >= 0; --i) {
2457		if (row[i] < 0) {
2458			if (isl_basic_set_drop_inequality(bset, i) < 0)
2459				return isl_basic_set_free(bset);
2460			continue;
2461		}
2462		if (!tab)
2463			continue;
2464		n_eq = tab->n_eq;
2465		if (isl_tab_is_equality(tab, n_eq + row[i])) {
2466			isl_basic_map_inequality_to_equality(bset, i);
2467			found_equality = 1;
2468		} else if (isl_tab_is_redundant(tab, n_eq + row[i])) {
2469			if (isl_basic_set_drop_inequality(bset, i) < 0)
2470				return isl_basic_set_free(bset);
2471		}
2472	}
2473
2474	if (found_equality)
2475		bset = isl_basic_set_gauss(bset, NULL);
2476	bset = isl_basic_set_finalize(bset);
2477	return bset;
2478}
2479
2480/* Update the inequalities in "bset" based on the information in "row"
2481 * and "tab" and free all arguments (other than "bset").
2482 */
2483static __isl_give isl_basic_set *update_ineq_free(
2484	__isl_take isl_basic_set *bset, __isl_take isl_mat *ineq,
2485	__isl_take isl_basic_set *context, __isl_take int *row,
2486	struct isl_tab *tab)
2487{
2488	isl_mat_free(ineq);
2489	isl_basic_set_free(context);
2490
2491	bset = update_ineq(bset, row, tab);
2492
2493	free(row);
2494	isl_tab_free(tab);
2495	return bset;
2496}
2497
2498/* Remove all information from bset that is redundant in the context
2499 * of context.
2500 * "ineq" contains the (possibly transformed) inequalities of "bset",
2501 * in the same order.
2502 * The (explicit) equalities of "bset" are assumed to have been taken
2503 * into account by the transformation such that only the inequalities
2504 * are relevant.
2505 * "context" is assumed not to be empty.
2506 *
2507 * "row" keeps track of the constraint index of a "bset" inequality in "tab".
2508 * A value of -1 means that the inequality is obviously redundant and may
2509 * not even appear in  "tab".
2510 *
2511 * We first mark the inequalities of "bset"
2512 * that are obviously redundant with respect to some inequality in "context".
2513 * Then we remove those constraints from "context" that have become
2514 * irrelevant for computing the gist of "bset".
2515 * Note that this removal of constraints cannot be replaced by
2516 * a factorization because factors in "bset" may still be connected
2517 * to each other through constraints in "context".
2518 *
2519 * If there are any inequalities left, we construct a tableau for
2520 * the context and then add the inequalities of "bset".
2521 * Before adding these inequalities, we freeze all constraints such that
2522 * they won't be considered redundant in terms of the constraints of "bset".
2523 * Then we detect all redundant constraints (among the
2524 * constraints that weren't frozen), first by checking for redundancy in the
2525 * the tableau and then by checking if replacing a constraint by its negation
2526 * would lead to an empty set.  This last step is fairly expensive
2527 * and could be optimized by more reuse of the tableau.
2528 * Finally, we update bset according to the results.
2529 */
2530static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset,
2531	__isl_take isl_mat *ineq, __isl_take isl_basic_set *context)
2532{
2533	int i, r;
2534	int *row = NULL;
2535	isl_ctx *ctx;
2536	isl_basic_set *combined = NULL;
2537	struct isl_tab *tab = NULL;
2538	unsigned n_eq, context_ineq;
2539
2540	if (!bset || !ineq || !context)
2541		goto error;
2542
2543	if (bset->n_ineq == 0 || isl_basic_set_plain_is_universe(context)) {
2544		isl_basic_set_free(context);
2545		isl_mat_free(ineq);
2546		return bset;
2547	}
2548
2549	ctx = isl_basic_set_get_ctx(context);
2550	row = isl_calloc_array(ctx, int, bset->n_ineq);
2551	if (!row)
2552		goto error;
2553
2554	if (mark_shifted_constraints(ineq, context, row) < 0)
2555		goto error;
2556	if (all_neg(row, bset->n_ineq))
2557		return update_ineq_free(bset, ineq, context, row, NULL);
2558
2559	context = drop_irrelevant_constraints_marked(context, ineq, row);
2560	if (!context)
2561		goto error;
2562	if (isl_basic_set_plain_is_universe(context))
2563		return update_ineq_free(bset, ineq, context, row, NULL);
2564
2565	n_eq = context->n_eq;
2566	context_ineq = context->n_ineq;
2567	combined = isl_basic_set_cow(isl_basic_set_copy(context));
2568	combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq);
2569	tab = isl_tab_from_basic_set(combined, 0);
2570	for (i = 0; i < context_ineq; ++i)
2571		if (isl_tab_freeze_constraint(tab, n_eq + i) < 0)
2572			goto error;
2573	if (isl_tab_extend_cons(tab, bset->n_ineq) < 0)
2574		goto error;
2575	r = context_ineq;
2576	for (i = 0; i < bset->n_ineq; ++i) {
2577		if (row[i] < 0)
2578			continue;
2579		combined = isl_basic_set_add_ineq(combined, ineq->row[i]);
2580		if (isl_tab_add_ineq(tab, ineq->row[i]) < 0)
2581			goto error;
2582		row[i] = r++;
2583	}
2584	if (isl_tab_detect_implicit_equalities(tab) < 0)
2585		goto error;
2586	if (isl_tab_detect_redundant(tab) < 0)
2587		goto error;
2588	for (i = bset->n_ineq - 1; i >= 0; --i) {
2589		isl_basic_set *test;
2590		int is_empty;
2591
2592		if (row[i] < 0)
2593			continue;
2594		r = row[i];
2595		if (tab->con[n_eq + r].is_redundant)
2596			continue;
2597		test = isl_basic_set_dup(combined);
2598		test = isl_inequality_negate(test, r);
2599		test = isl_basic_set_update_from_tab(test, tab);
2600		is_empty = isl_basic_set_is_empty(test);
2601		isl_basic_set_free(test);
2602		if (is_empty < 0)
2603			goto error;
2604		if (is_empty)
2605			tab->con[n_eq + r].is_redundant = 1;
2606	}
2607	bset = update_ineq_free(bset, ineq, context, row, tab);
2608	if (bset) {
2609		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2610		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2611	}
2612
2613	isl_basic_set_free(combined);
2614	return bset;
2615error:
2616	free(row);
2617	isl_mat_free(ineq);
2618	isl_tab_free(tab);
2619	isl_basic_set_free(combined);
2620	isl_basic_set_free(context);
2621	isl_basic_set_free(bset);
2622	return NULL;
2623}
2624
2625/* Extract the inequalities of "bset" as an isl_mat.
2626 */
2627static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset)
2628{
2629	isl_size total;
2630	isl_ctx *ctx;
2631	isl_mat *ineq;
2632
2633	total = isl_basic_set_dim(bset, isl_dim_all);
2634	if (total < 0)
2635		return NULL;
2636
2637	ctx = isl_basic_set_get_ctx(bset);
2638	ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq,
2639				    0, 1 + total);
2640
2641	return ineq;
2642}
2643
2644/* Remove all information from "bset" that is redundant in the context
2645 * of "context", for the case where both "bset" and "context" are
2646 * full-dimensional.
2647 */
2648static __isl_give isl_basic_set *uset_gist_uncompressed(
2649	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context)
2650{
2651	isl_mat *ineq;
2652
2653	ineq = extract_ineq(bset);
2654	return uset_gist_full(bset, ineq, context);
2655}
2656
2657/* Replace "bset" by an empty basic set in the same space.
2658 */
2659static __isl_give isl_basic_set *replace_by_empty(
2660	__isl_take isl_basic_set *bset)
2661{
2662	isl_space *space;
2663
2664	space = isl_basic_set_get_space(bset);
2665	isl_basic_set_free(bset);
2666	return isl_basic_set_empty(space);
2667}
2668
2669/* Remove all information from "bset" that is redundant in the context
2670 * of "context", for the case where the combined equalities of
2671 * "bset" and "context" allow for a compression that can be obtained
2672 * by preapplication of "T".
2673 * If the compression of "context" is empty, meaning that "bset" and
2674 * "context" do not intersect, then return the empty set.
2675 *
2676 * "bset" itself is not transformed by "T".  Instead, the inequalities
2677 * are extracted from "bset" and those are transformed by "T".
2678 * uset_gist_full then determines which of the transformed inequalities
2679 * are redundant with respect to the transformed "context" and removes
2680 * the corresponding inequalities from "bset".
2681 *
2682 * After preapplying "T" to the inequalities, any common factor is
2683 * removed from the coefficients.  If this results in a tightening
2684 * of the constant term, then the same tightening is applied to
2685 * the corresponding untransformed inequality in "bset".
2686 * That is, if after plugging in T, a constraint f(x) >= 0 is of the form
2687 *
2688 *	g f'(x) + r >= 0
2689 *
2690 * with 0 <= r < g, then it is equivalent to
2691 *
2692 *	f'(x) >= 0
2693 *
2694 * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine
2695 * subspace compressed by T since the latter would be transformed to
2696 *
2697 *	g f'(x) >= 0
2698 */
2699static __isl_give isl_basic_set *uset_gist_compressed(
2700	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context,
2701	__isl_take isl_mat *T)
2702{
2703	isl_ctx *ctx;
2704	isl_mat *ineq;
2705	int i;
2706	isl_size n_row, n_col;
2707	isl_int rem;
2708
2709	ineq = extract_ineq(bset);
2710	ineq = isl_mat_product(ineq, isl_mat_copy(T));
2711	context = isl_basic_set_preimage(context, T);
2712
2713	if (!ineq || !context)
2714		goto error;
2715	if (isl_basic_set_plain_is_empty(context)) {
2716		isl_mat_free(ineq);
2717		isl_basic_set_free(context);
2718		return replace_by_empty(bset);
2719	}
2720
2721	ctx = isl_mat_get_ctx(ineq);
2722	n_row = isl_mat_rows(ineq);
2723	n_col = isl_mat_cols(ineq);
2724	if (n_row < 0 || n_col < 0)
2725		goto error;
2726	isl_int_init(rem);
2727	for (i = 0; i < n_row; ++i) {
2728		isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd);
2729		if (isl_int_is_zero(ctx->normalize_gcd))
2730			continue;
2731		if (isl_int_is_one(ctx->normalize_gcd))
2732			continue;
2733		isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1,
2734				    ctx->normalize_gcd, n_col - 1);
2735		isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd);
2736		isl_int_fdiv_q(ineq->row[i][0],
2737				ineq->row[i][0], ctx->normalize_gcd);
2738		if (isl_int_is_zero(rem))
2739			continue;
2740		bset = isl_basic_set_cow(bset);
2741		if (!bset)
2742			break;
2743		isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem);
2744	}
2745	isl_int_clear(rem);
2746
2747	return uset_gist_full(bset, ineq, context);
2748error:
2749	isl_mat_free(ineq);
2750	isl_basic_set_free(context);
2751	isl_basic_set_free(bset);
2752	return NULL;
2753}
2754
2755/* Project "bset" onto the variables that are involved in "template".
2756 */
2757static __isl_give isl_basic_set *project_onto_involved(
2758	__isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template)
2759{
2760	int i;
2761	isl_size n;
2762
2763	n = isl_basic_set_dim(template, isl_dim_set);
2764	if (n < 0 || !template)
2765		return isl_basic_set_free(bset);
2766
2767	for (i = 0; i < n; ++i) {
2768		isl_bool involved;
2769
2770		involved = isl_basic_set_involves_dims(template,
2771							isl_dim_set, i, 1);
2772		if (involved < 0)
2773			return isl_basic_set_free(bset);
2774		if (involved)
2775			continue;
2776		bset = isl_basic_set_eliminate_vars(bset, i, 1);
2777	}
2778
2779	return bset;
2780}
2781
2782/* Remove all information from bset that is redundant in the context
2783 * of context.  In particular, equalities that are linear combinations
2784 * of those in context are removed.  Then the inequalities that are
2785 * redundant in the context of the equalities and inequalities of
2786 * context are removed.
2787 *
2788 * First of all, we drop those constraints from "context"
2789 * that are irrelevant for computing the gist of "bset".
2790 * Alternatively, we could factorize the intersection of "context" and "bset".
2791 *
2792 * We first compute the intersection of the integer affine hulls
2793 * of "bset" and "context",
2794 * compute the gist inside this intersection and then reduce
2795 * the constraints with respect to the equalities of the context
2796 * that only involve variables already involved in the input.
2797 * If the intersection of the affine hulls turns out to be empty,
2798 * then return the empty set.
2799 *
2800 * If two constraints are mutually redundant, then uset_gist_full
2801 * will remove the second of those constraints.  We therefore first
2802 * sort the constraints so that constraints not involving existentially
2803 * quantified variables are given precedence over those that do.
2804 * We have to perform this sorting before the variable compression,
2805 * because that may effect the order of the variables.
2806 */
2807static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset,
2808	__isl_take isl_basic_set *context)
2809{
2810	isl_mat *eq;
2811	isl_mat *T;
2812	isl_basic_set *aff;
2813	isl_basic_set *aff_context;
2814	isl_size total;
2815
2816	total = isl_basic_set_dim(bset, isl_dim_all);
2817	if (total < 0 || !context)
2818		goto error;
2819
2820	context = drop_irrelevant_constraints(context, bset);
2821
2822	bset = isl_basic_set_detect_equalities(bset);
2823	aff = isl_basic_set_copy(bset);
2824	aff = isl_basic_set_plain_affine_hull(aff);
2825	context = isl_basic_set_detect_equalities(context);
2826	aff_context = isl_basic_set_copy(context);
2827	aff_context = isl_basic_set_plain_affine_hull(aff_context);
2828	aff = isl_basic_set_intersect(aff, aff_context);
2829	if (!aff)
2830		goto error;
2831	if (isl_basic_set_plain_is_empty(aff)) {
2832		isl_basic_set_free(bset);
2833		isl_basic_set_free(context);
2834		return aff;
2835	}
2836	bset = isl_basic_set_sort_constraints(bset);
2837	if (aff->n_eq == 0) {
2838		isl_basic_set_free(aff);
2839		return uset_gist_uncompressed(bset, context);
2840	}
2841	eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total);
2842	eq = isl_mat_cow(eq);
2843	T = isl_mat_variable_compression(eq, NULL);
2844	isl_basic_set_free(aff);
2845	if (T && T->n_col == 0) {
2846		isl_mat_free(T);
2847		isl_basic_set_free(context);
2848		return replace_by_empty(bset);
2849	}
2850
2851	aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context));
2852	aff_context = project_onto_involved(aff_context, bset);
2853
2854	bset = uset_gist_compressed(bset, context, T);
2855	bset = isl_basic_set_reduce_using_equalities(bset, aff_context);
2856
2857	if (bset) {
2858		ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT);
2859		ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT);
2860	}
2861
2862	return bset;
2863error:
2864	isl_basic_set_free(bset);
2865	isl_basic_set_free(context);
2866	return NULL;
2867}
2868
2869/* Return the number of equality constraints in "bmap" that involve
2870 * local variables.  This function assumes that Gaussian elimination
2871 * has been applied to the equality constraints.
2872 */
2873static int n_div_eq(__isl_keep isl_basic_map *bmap)
2874{
2875	int i;
2876	isl_size total, n_div;
2877
2878	if (!bmap)
2879		return -1;
2880
2881	if (bmap->n_eq == 0)
2882		return 0;
2883
2884	total = isl_basic_map_dim(bmap, isl_dim_all);
2885	n_div = isl_basic_map_dim(bmap, isl_dim_div);
2886	if (total < 0 || n_div < 0)
2887		return -1;
2888	total -= n_div;
2889
2890	for (i = 0; i < bmap->n_eq; ++i)
2891		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total,
2892					    n_div) == -1)
2893			return i;
2894
2895	return bmap->n_eq;
2896}
2897
2898/* Construct a basic map in "space" defined by the equality constraints in "eq".
2899 * The constraints are assumed not to involve any local variables.
2900 */
2901static __isl_give isl_basic_map *basic_map_from_equalities(
2902	__isl_take isl_space *space, __isl_take isl_mat *eq)
2903{
2904	int i, k;
2905	isl_size total;
2906	isl_basic_map *bmap = NULL;
2907
2908	total = isl_space_dim(space, isl_dim_all);
2909	if (total < 0 || !eq)
2910		goto error;
2911
2912	if (1 + total != eq->n_col)
2913		isl_die(isl_space_get_ctx(space), isl_error_internal,
2914			"unexpected number of columns", goto error);
2915
2916	bmap = isl_basic_map_alloc_space(isl_space_copy(space),
2917					    0, eq->n_row, 0);
2918	for (i = 0; i < eq->n_row; ++i) {
2919		k = isl_basic_map_alloc_equality(bmap);
2920		if (k < 0)
2921			goto error;
2922		isl_seq_cpy(bmap->eq[k], eq->row[i], eq->n_col);
2923	}
2924
2925	isl_space_free(space);
2926	isl_mat_free(eq);
2927	return bmap;
2928error:
2929	isl_space_free(space);
2930	isl_mat_free(eq);
2931	isl_basic_map_free(bmap);
2932	return NULL;
2933}
2934
2935/* Construct and return a variable compression based on the equality
2936 * constraints in "bmap1" and "bmap2" that do not involve the local variables.
2937 * "n1" is the number of (initial) equality constraints in "bmap1"
2938 * that do involve local variables.
2939 * "n2" is the number of (initial) equality constraints in "bmap2"
2940 * that do involve local variables.
2941 * "total" is the total number of other variables.
2942 * This function assumes that Gaussian elimination
2943 * has been applied to the equality constraints in both "bmap1" and "bmap2"
2944 * such that the equality constraints not involving local variables
2945 * are those that start at "n1" or "n2".
2946 *
2947 * If either of "bmap1" and "bmap2" does not have such equality constraints,
2948 * then simply compute the compression based on the equality constraints
2949 * in the other basic map.
2950 * Otherwise, combine the equality constraints from both into a new
2951 * basic map such that Gaussian elimination can be applied to this combination
2952 * and then construct a variable compression from the resulting
2953 * equality constraints.
2954 */
2955static __isl_give isl_mat *combined_variable_compression(
2956	__isl_keep isl_basic_map *bmap1, int n1,
2957	__isl_keep isl_basic_map *bmap2, int n2, int total)
2958{
2959	isl_ctx *ctx;
2960	isl_mat *E1, *E2, *V;
2961	isl_basic_map *bmap;
2962
2963	ctx = isl_basic_map_get_ctx(bmap1);
2964	if (bmap1->n_eq == n1) {
2965		E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2966					n2, bmap2->n_eq - n2, 0, 1 + total);
2967		return isl_mat_variable_compression(E2, NULL);
2968	}
2969	if (bmap2->n_eq == n2) {
2970		E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2971					n1, bmap1->n_eq - n1, 0, 1 + total);
2972		return isl_mat_variable_compression(E1, NULL);
2973	}
2974	E1 = isl_mat_sub_alloc6(ctx, bmap1->eq,
2975				n1, bmap1->n_eq - n1, 0, 1 + total);
2976	E2 = isl_mat_sub_alloc6(ctx, bmap2->eq,
2977				n2, bmap2->n_eq - n2, 0, 1 + total);
2978	E1 = isl_mat_concat(E1, E2);
2979	bmap = basic_map_from_equalities(isl_basic_map_get_space(bmap1), E1);
2980	bmap = isl_basic_map_gauss(bmap, NULL);
2981	if (!bmap)
2982		return NULL;
2983	E1 = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
2984	V = isl_mat_variable_compression(E1, NULL);
2985	isl_basic_map_free(bmap);
2986
2987	return V;
2988}
2989
2990/* Extract the stride constraints from "bmap", compressed
2991 * with respect to both the stride constraints in "context" and
2992 * the remaining equality constraints in both "bmap" and "context".
2993 * "bmap_n_eq" is the number of (initial) stride constraints in "bmap".
2994 * "context_n_eq" is the number of (initial) stride constraints in "context".
2995 *
2996 * Let x be all variables in "bmap" (and "context") other than the local
2997 * variables.  First compute a variable compression
2998 *
2999 *	x = V x'
3000 *
3001 * based on the non-stride equality constraints in "bmap" and "context".
3002 * Consider the stride constraints of "context",
3003 *
3004 *	A(x) + B(y) = 0
3005 *
3006 * with y the local variables and plug in the variable compression,
3007 * resulting in
3008 *
3009 *	A(V x') + B(y) = 0
3010 *
3011 * Use these constraints to compute a parameter compression on x'
3012 *
3013 *	x' = T x''
3014 *
3015 * Now consider the stride constraints of "bmap"
3016 *
3017 *	C(x) + D(y) = 0
3018 *
3019 * and plug in x = V*T x''.
3020 * That is, return A = [C*V*T D].
3021 */
3022static __isl_give isl_mat *extract_compressed_stride_constraints(
3023	__isl_keep isl_basic_map *bmap, int bmap_n_eq,
3024	__isl_keep isl_basic_map *context, int context_n_eq)
3025{
3026	isl_size total, n_div;
3027	isl_ctx *ctx;
3028	isl_mat *A, *B, *T, *V;
3029
3030	total = isl_basic_map_dim(context, isl_dim_all);
3031	n_div = isl_basic_map_dim(context, isl_dim_div);
3032	if (total < 0 || n_div < 0)
3033		return NULL;
3034	total -= n_div;
3035
3036	ctx = isl_basic_map_get_ctx(bmap);
3037
3038	V = combined_variable_compression(bmap, bmap_n_eq,
3039						context, context_n_eq, total);
3040
3041	A = isl_mat_sub_alloc6(ctx, context->eq, 0, context_n_eq, 0, 1 + total);
3042	B = isl_mat_sub_alloc6(ctx, context->eq,
3043				0, context_n_eq, 1 + total, n_div);
3044	A = isl_mat_product(A, isl_mat_copy(V));
3045	T = isl_mat_parameter_compression_ext(A, B);
3046	T = isl_mat_product(V, T);
3047
3048	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3049	if (n_div < 0)
3050		T = isl_mat_free(T);
3051	else
3052		T = isl_mat_diagonal(T, isl_mat_identity(ctx, n_div));
3053
3054	A = isl_mat_sub_alloc6(ctx, bmap->eq,
3055				0, bmap_n_eq, 0, 1 + total + n_div);
3056	A = isl_mat_product(A, T);
3057
3058	return A;
3059}
3060
3061/* Remove the prime factors from *g that have an exponent that
3062 * is strictly smaller than the exponent in "c".
3063 * All exponents in *g are known to be smaller than or equal
3064 * to those in "c".
3065 *
3066 * That is, if *g is equal to
3067 *
3068 *	p_1^{e_1} p_2^{e_2} ... p_n^{e_n}
3069 *
3070 * and "c" is equal to
3071 *
3072 *	p_1^{f_1} p_2^{f_2} ... p_n^{f_n}
3073 *
3074 * then update *g to
3075 *
3076 *	p_1^{e_1 * (e_1 = f_1)} p_2^{e_2 * (e_2 = f_2)} ...
3077 *		p_n^{e_n * (e_n = f_n)}
3078 *
3079 * If e_i = f_i, then c / *g does not have any p_i factors and therefore
3080 * neither does the gcd of *g and c / *g.
3081 * If e_i < f_i, then the gcd of *g and c / *g has a positive
3082 * power min(e_i, s_i) of p_i with s_i = f_i - e_i among its factors.
3083 * Dividing *g by this gcd therefore strictly reduces the exponent
3084 * of the prime factors that need to be removed, while leaving the
3085 * other prime factors untouched.
3086 * Repeating this process until gcd(*g, c / *g) = 1 therefore
3087 * removes all undesired factors, without removing any others.
3088 */
3089static void remove_incomplete_powers(isl_int *g, isl_int c)
3090{
3091	isl_int t;
3092
3093	isl_int_init(t);
3094	for (;;) {
3095		isl_int_divexact(t, c, *g);
3096		isl_int_gcd(t, t, *g);
3097		if (isl_int_is_one(t))
3098			break;
3099		isl_int_divexact(*g, *g, t);
3100	}
3101	isl_int_clear(t);
3102}
3103
3104/* Reduce the "n" stride constraints in "bmap" based on a copy "A"
3105 * of the same stride constraints in a compressed space that exploits
3106 * all equalities in the context and the other equalities in "bmap".
3107 *
3108 * If the stride constraints of "bmap" are of the form
3109 *
3110 *	C(x) + D(y) = 0
3111 *
3112 * then A is of the form
3113 *
3114 *	B(x') + D(y) = 0
3115 *
3116 * If any of these constraints involves only a single local variable y,
3117 * then the constraint appears as
3118 *
3119 *	f(x) + m y_i = 0
3120 *
3121 * in "bmap" and as
3122 *
3123 *	h(x') + m y_i = 0
3124 *
3125 * in "A".
3126 *
3127 * Let g be the gcd of m and the coefficients of h.
3128 * Then, in particular, g is a divisor of the coefficients of h and
3129 *
3130 *	f(x) = h(x')
3131 *
3132 * is known to be a multiple of g.
3133 * If some prime factor in m appears with the same exponent in g,
3134 * then it can be removed from m because f(x) is already known
3135 * to be a multiple of g and therefore in particular of this power
3136 * of the prime factors.
3137 * Prime factors that appear with a smaller exponent in g cannot
3138 * be removed from m.
3139 * Let g' be the divisor of g containing all prime factors that
3140 * appear with the same exponent in m and g, then
3141 *
3142 *	f(x) + m y_i = 0
3143 *
3144 * can be replaced by
3145 *
3146 *	f(x) + m/g' y_i' = 0
3147 *
3148 * Note that (if g' != 1) this changes the explicit representation
3149 * of y_i to that of y_i', so the integer division at position i
3150 * is marked unknown and later recomputed by a call to
3151 * isl_basic_map_gauss.
3152 */
3153static __isl_give isl_basic_map *reduce_stride_constraints(
3154	__isl_take isl_basic_map *bmap, int n, __isl_keep isl_mat *A)
3155{
3156	int i;
3157	isl_size total, n_div;
3158	int any = 0;
3159	isl_int gcd;
3160
3161	total = isl_basic_map_dim(bmap, isl_dim_all);
3162	n_div = isl_basic_map_dim(bmap, isl_dim_div);
3163	if (total < 0 || n_div < 0 || !A)
3164		return isl_basic_map_free(bmap);
3165	total -= n_div;
3166
3167	isl_int_init(gcd);
3168	for (i = 0; i < n; ++i) {
3169		int div;
3170
3171		div = isl_seq_first_non_zero(bmap->eq[i] + 1 + total, n_div);
3172		if (div < 0)
3173			isl_die(isl_basic_map_get_ctx(bmap), isl_error_internal,
3174				"equality constraints modified unexpectedly",
3175				goto error);
3176		if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total + div + 1,
3177						n_div - div - 1) != -1)
3178			continue;
3179		if (isl_mat_row_gcd(A, i, &gcd) < 0)
3180			goto error;
3181		if (isl_int_is_one(gcd))
3182			continue;
3183		remove_incomplete_powers(&gcd, bmap->eq[i][1 + total + div]);
3184		if (isl_int_is_one(gcd))
3185			continue;
3186		isl_int_divexact(bmap->eq[i][1 + total + div],
3187				bmap->eq[i][1 + total + div], gcd);
3188		bmap = isl_basic_map_mark_div_unknown(bmap, div);
3189		if (!bmap)
3190			goto error;
3191		any = 1;
3192	}
3193	isl_int_clear(gcd);
3194
3195	if (any)
3196		bmap = isl_basic_map_gauss(bmap, NULL);
3197
3198	return bmap;
3199error:
3200	isl_int_clear(gcd);
3201	isl_basic_map_free(bmap);
3202	return NULL;
3203}
3204
3205/* Simplify the stride constraints in "bmap" based on
3206 * the remaining equality constraints in "bmap" and all equality
3207 * constraints in "context".
3208 * Only do this if both "bmap" and "context" have stride constraints.
3209 *
3210 * First extract a copy of the stride constraints in "bmap" in a compressed
3211 * space exploiting all the other equality constraints and then
3212 * use this compressed copy to simplify the original stride constraints.
3213 */
3214static __isl_give isl_basic_map *gist_strides(__isl_take isl_basic_map *bmap,
3215	__isl_keep isl_basic_map *context)
3216{
3217	int bmap_n_eq, context_n_eq;
3218	isl_mat *A;
3219
3220	if (!bmap || !context)
3221		return isl_basic_map_free(bmap);
3222
3223	bmap_n_eq = n_div_eq(bmap);
3224	context_n_eq = n_div_eq(context);
3225
3226	if (bmap_n_eq < 0 || context_n_eq < 0)
3227		return isl_basic_map_free(bmap);
3228	if (bmap_n_eq == 0 || context_n_eq == 0)
3229		return bmap;
3230
3231	A = extract_compressed_stride_constraints(bmap, bmap_n_eq,
3232						    context, context_n_eq);
3233	bmap = reduce_stride_constraints(bmap, bmap_n_eq, A);
3234
3235	isl_mat_free(A);
3236
3237	return bmap;
3238}
3239
3240/* Return a basic map that has the same intersection with "context" as "bmap"
3241 * and that is as "simple" as possible.
3242 *
3243 * The core computation is performed on the pure constraints.
3244 * When we add back the meaning of the integer divisions, we need
3245 * to (re)introduce the div constraints.  If we happen to have
3246 * discovered that some of these integer divisions are equal to
3247 * some affine combination of other variables, then these div
3248 * constraints may end up getting simplified in terms of the equalities,
3249 * resulting in extra inequalities on the other variables that
3250 * may have been removed already or that may not even have been
3251 * part of the input.  We try and remove those constraints of
3252 * this form that are most obviously redundant with respect to
3253 * the context.  We also remove those div constraints that are
3254 * redundant with respect to the other constraints in the result.
3255 *
3256 * The stride constraints among the equality constraints in "bmap" are
3257 * also simplified with respecting to the other equality constraints
3258 * in "bmap" and with respect to all equality constraints in "context".
3259 */
3260__isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap,
3261	__isl_take isl_basic_map *context)
3262{
3263	isl_basic_set *bset, *eq;
3264	isl_basic_map *eq_bmap;
3265	isl_size total, n_div, n_div_bmap;
3266	unsigned extra, n_eq, n_ineq;
3267
3268	if (!bmap || !context)
3269		goto error;
3270
3271	if (isl_basic_map_plain_is_universe(bmap)) {
3272		isl_basic_map_free(context);
3273		return bmap;
3274	}
3275	if (isl_basic_map_plain_is_empty(context)) {
3276		isl_space *space = isl_basic_map_get_space(bmap);
3277		isl_basic_map_free(bmap);
3278		isl_basic_map_free(context);
3279		return isl_basic_map_universe(space);
3280	}
3281	if (isl_basic_map_plain_is_empty(bmap)) {
3282		isl_basic_map_free(context);
3283		return bmap;
3284	}
3285
3286	bmap = isl_basic_map_remove_redundancies(bmap);
3287	context = isl_basic_map_remove_redundancies(context);
3288	bmap = isl_basic_map_order_divs(bmap);
3289	context = isl_basic_map_align_divs(context, bmap);
3290
3291	n_div = isl_basic_map_dim(context, isl_dim_div);
3292	total = isl_basic_map_dim(bmap, isl_dim_all);
3293	n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div);
3294	if (n_div < 0 || total < 0 || n_div_bmap < 0)
3295		goto error;
3296	extra = n_div - n_div_bmap;
3297
3298	bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
3299	bset = isl_basic_set_add_dims(bset, isl_dim_set, extra);
3300	bset = uset_gist(bset,
3301		    isl_basic_map_underlying_set(isl_basic_map_copy(context)));
3302	bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra);
3303
3304	if (!bset || bset->n_eq == 0 || n_div == 0 ||
3305	    isl_basic_set_plain_is_empty(bset)) {
3306		isl_basic_map_free(context);
3307		return isl_basic_map_overlying_set(bset, bmap);
3308	}
3309
3310	n_eq = bset->n_eq;
3311	n_ineq = bset->n_ineq;
3312	eq = isl_basic_set_copy(bset);
3313	eq = isl_basic_set_cow(eq);
3314	eq = isl_basic_set_free_inequality(eq, n_ineq);
3315	bset = isl_basic_set_free_equality(bset, n_eq);
3316
3317	eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap));
3318	eq_bmap = gist_strides(eq_bmap, context);
3319	eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context);
3320	bmap = isl_basic_map_overlying_set(bset, bmap);
3321	bmap = isl_basic_map_intersect(bmap, eq_bmap);
3322	bmap = isl_basic_map_remove_redundancies(bmap);
3323
3324	return bmap;
3325error:
3326	isl_basic_map_free(bmap);
3327	isl_basic_map_free(context);
3328	return NULL;
3329}
3330
3331/*
3332 * Assumes context has no implicit divs.
3333 */
3334__isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map,
3335	__isl_take isl_basic_map *context)
3336{
3337	int i;
3338
3339	if (!map || !context)
3340		goto error;
3341
3342	if (isl_basic_map_plain_is_empty(context)) {
3343		isl_space *space = isl_map_get_space(map);
3344		isl_map_free(map);
3345		isl_basic_map_free(context);
3346		return isl_map_universe(space);
3347	}
3348
3349	context = isl_basic_map_remove_redundancies(context);
3350	map = isl_map_cow(map);
3351	if (isl_map_basic_map_check_equal_space(map, context) < 0)
3352		goto error;
3353	map = isl_map_compute_divs(map);
3354	if (!map)
3355		goto error;
3356	for (i = map->n - 1; i >= 0; --i) {
3357		map->p[i] = isl_basic_map_gist(map->p[i],
3358						isl_basic_map_copy(context));
3359		if (!map->p[i])
3360			goto error;
3361		if (isl_basic_map_plain_is_empty(map->p[i])) {
3362			isl_basic_map_free(map->p[i]);
3363			if (i != map->n - 1)
3364				map->p[i] = map->p[map->n - 1];
3365			map->n--;
3366		}
3367	}
3368	isl_basic_map_free(context);
3369	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3370	return map;
3371error:
3372	isl_map_free(map);
3373	isl_basic_map_free(context);
3374	return NULL;
3375}
3376
3377/* Drop all inequalities from "bmap" that also appear in "context".
3378 * "context" is assumed to have only known local variables and
3379 * the initial local variables of "bmap" are assumed to be the same
3380 * as those of "context".
3381 * The constraints of both "bmap" and "context" are assumed
3382 * to have been sorted using isl_basic_map_sort_constraints.
3383 *
3384 * Run through the inequality constraints of "bmap" and "context"
3385 * in sorted order.
3386 * If a constraint of "bmap" involves variables not in "context",
3387 * then it cannot appear in "context".
3388 * If a matching constraint is found, it is removed from "bmap".
3389 */
3390static __isl_give isl_basic_map *drop_inequalities(
3391	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3392{
3393	int i1, i2;
3394	isl_size total, bmap_total;
3395	unsigned extra;
3396
3397	total = isl_basic_map_dim(context, isl_dim_all);
3398	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3399	if (total < 0 || bmap_total < 0)
3400		return isl_basic_map_free(bmap);
3401
3402	extra = bmap_total - total;
3403
3404	i1 = bmap->n_ineq - 1;
3405	i2 = context->n_ineq - 1;
3406	while (bmap && i1 >= 0 && i2 >= 0) {
3407		int cmp;
3408
3409		if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total,
3410					    extra) != -1) {
3411			--i1;
3412			continue;
3413		}
3414		cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1],
3415							context->ineq[i2]);
3416		if (cmp < 0) {
3417			--i2;
3418			continue;
3419		}
3420		if (cmp > 0) {
3421			--i1;
3422			continue;
3423		}
3424		if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) {
3425			bmap = isl_basic_map_cow(bmap);
3426			if (isl_basic_map_drop_inequality(bmap, i1) < 0)
3427				bmap = isl_basic_map_free(bmap);
3428		}
3429		--i1;
3430		--i2;
3431	}
3432
3433	return bmap;
3434}
3435
3436/* Drop all equalities from "bmap" that also appear in "context".
3437 * "context" is assumed to have only known local variables and
3438 * the initial local variables of "bmap" are assumed to be the same
3439 * as those of "context".
3440 *
3441 * Run through the equality constraints of "bmap" and "context"
3442 * in sorted order.
3443 * If a constraint of "bmap" involves variables not in "context",
3444 * then it cannot appear in "context".
3445 * If a matching constraint is found, it is removed from "bmap".
3446 */
3447static __isl_give isl_basic_map *drop_equalities(
3448	__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context)
3449{
3450	int i1, i2;
3451	isl_size total, bmap_total;
3452	unsigned extra;
3453
3454	total = isl_basic_map_dim(context, isl_dim_all);
3455	bmap_total = isl_basic_map_dim(bmap, isl_dim_all);
3456	if (total < 0 || bmap_total < 0)
3457		return isl_basic_map_free(bmap);
3458
3459	extra = bmap_total - total;
3460
3461	i1 = bmap->n_eq - 1;
3462	i2 = context->n_eq - 1;
3463
3464	while (bmap && i1 >= 0 && i2 >= 0) {
3465		int last1, last2;
3466
3467		if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total,
3468					    extra) != -1)
3469			break;
3470		last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total);
3471		last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total);
3472		if (last1 > last2) {
3473			--i2;
3474			continue;
3475		}
3476		if (last1 < last2) {
3477			--i1;
3478			continue;
3479		}
3480		if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) {
3481			bmap = isl_basic_map_cow(bmap);
3482			if (isl_basic_map_drop_equality(bmap, i1) < 0)
3483				bmap = isl_basic_map_free(bmap);
3484		}
3485		--i1;
3486		--i2;
3487	}
3488
3489	return bmap;
3490}
3491
3492/* Remove the constraints in "context" from "bmap".
3493 * "context" is assumed to have explicit representations
3494 * for all local variables.
3495 *
3496 * First align the divs of "bmap" to those of "context" and
3497 * sort the constraints.  Then drop all constraints from "bmap"
3498 * that appear in "context".
3499 */
3500__isl_give isl_basic_map *isl_basic_map_plain_gist(
3501	__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context)
3502{
3503	isl_bool done, known;
3504
3505	done = isl_basic_map_plain_is_universe(context);
3506	if (done == isl_bool_false)
3507		done = isl_basic_map_plain_is_universe(bmap);
3508	if (done == isl_bool_false)
3509		done = isl_basic_map_plain_is_empty(context);
3510	if (done == isl_bool_false)
3511		done = isl_basic_map_plain_is_empty(bmap);
3512	if (done < 0)
3513		goto error;
3514	if (done) {
3515		isl_basic_map_free(context);
3516		return bmap;
3517	}
3518	known = isl_basic_map_divs_known(context);
3519	if (known < 0)
3520		goto error;
3521	if (!known)
3522		isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
3523			"context has unknown divs", goto error);
3524
3525	context = isl_basic_map_order_divs(context);
3526	bmap = isl_basic_map_align_divs(bmap, context);
3527	bmap = isl_basic_map_gauss(bmap, NULL);
3528	bmap = isl_basic_map_sort_constraints(bmap);
3529	context = isl_basic_map_sort_constraints(context);
3530
3531	bmap = drop_inequalities(bmap, context);
3532	bmap = drop_equalities(bmap, context);
3533
3534	isl_basic_map_free(context);
3535	bmap = isl_basic_map_finalize(bmap);
3536	return bmap;
3537error:
3538	isl_basic_map_free(bmap);
3539	isl_basic_map_free(context);
3540	return NULL;
3541}
3542
3543/* Replace "map" by the disjunct at position "pos" and free "context".
3544 */
3545static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map,
3546	int pos, __isl_take isl_basic_map *context)
3547{
3548	isl_basic_map *bmap;
3549
3550	bmap = isl_basic_map_copy(map->p[pos]);
3551	isl_map_free(map);
3552	isl_basic_map_free(context);
3553	return isl_map_from_basic_map(bmap);
3554}
3555
3556/* Remove the constraints in "context" from "map".
3557 * If any of the disjuncts in the result turns out to be the universe,
3558 * then return this universe.
3559 * "context" is assumed to have explicit representations
3560 * for all local variables.
3561 */
3562__isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map,
3563	__isl_take isl_basic_map *context)
3564{
3565	int i;
3566	isl_bool univ, known;
3567
3568	univ = isl_basic_map_plain_is_universe(context);
3569	if (univ < 0)
3570		goto error;
3571	if (univ) {
3572		isl_basic_map_free(context);
3573		return map;
3574	}
3575	known = isl_basic_map_divs_known(context);
3576	if (known < 0)
3577		goto error;
3578	if (!known)
3579		isl_die(isl_map_get_ctx(map), isl_error_invalid,
3580			"context has unknown divs", goto error);
3581
3582	map = isl_map_cow(map);
3583	if (!map)
3584		goto error;
3585	for (i = 0; i < map->n; ++i) {
3586		map->p[i] = isl_basic_map_plain_gist(map->p[i],
3587						isl_basic_map_copy(context));
3588		univ = isl_basic_map_plain_is_universe(map->p[i]);
3589		if (univ < 0)
3590			goto error;
3591		if (univ && map->n > 1)
3592			return replace_by_disjunct(map, i, context);
3593	}
3594
3595	isl_basic_map_free(context);
3596	ISL_F_CLR(map, ISL_MAP_NORMALIZED);
3597	if (map->n > 1)
3598		ISL_F_CLR(map, ISL_MAP_DISJOINT);
3599	return map;
3600error:
3601	isl_map_free(map);
3602	isl_basic_map_free(context);
3603	return NULL;
3604}
3605
3606/* Remove the constraints in "context" from "set".
3607 * If any of the disjuncts in the result turns out to be the universe,
3608 * then return this universe.
3609 * "context" is assumed to have explicit representations
3610 * for all local variables.
3611 */
3612__isl_give isl_set *isl_set_plain_gist_basic_set(__isl_take isl_set *set,
3613	__isl_take isl_basic_set *context)
3614{
3615	return set_from_map(isl_map_plain_gist_basic_map(set_to_map(set),
3616							bset_to_bmap(context)));
3617}
3618
3619/* Remove the constraints in "context" from "map".
3620 * If any of the disjuncts in the result turns out to be the universe,
3621 * then return this universe.
3622 * "context" is assumed to consist of a single disjunct and
3623 * to have explicit representations for all local variables.
3624 */
3625__isl_give isl_map *isl_map_plain_gist(__isl_take isl_map *map,
3626	__isl_take isl_map *context)
3627{
3628	isl_basic_map *hull;
3629
3630	hull = isl_map_unshifted_simple_hull(context);
3631	return isl_map_plain_gist_basic_map(map, hull);
3632}
3633
3634/* Replace "map" by a universe map in the same space and free "drop".
3635 */
3636static __isl_give isl_map *replace_by_universe(__isl_take isl_map *map,
3637	__isl_take isl_map *drop)
3638{
3639	isl_map *res;
3640
3641	res = isl_map_universe(isl_map_get_space(map));
3642	isl_map_free(map);
3643	isl_map_free(drop);
3644	return res;
3645}
3646
3647/* Return a map that has the same intersection with "context" as "map"
3648 * and that is as "simple" as possible.
3649 *
3650 * If "map" is already the universe, then we cannot make it any simpler.
3651 * Similarly, if "context" is the universe, then we cannot exploit it
3652 * to simplify "map"
3653 * If "map" and "context" are identical to each other, then we can
3654 * return the corresponding universe.
3655 *
3656 * If either "map" or "context" consists of multiple disjuncts,
3657 * then check if "context" happens to be a subset of "map",
3658 * in which case all constraints can be removed.
3659 * In case of multiple disjuncts, the standard procedure
3660 * may not be able to detect that all constraints can be removed.
3661 *
3662 * If none of these cases apply, we have to work a bit harder.
3663 * During this computation, we make use of a single disjunct context,
3664 * so if the original context consists of more than one disjunct
3665 * then we need to approximate the context by a single disjunct set.
3666 * Simply taking the simple hull may drop constraints that are
3667 * only implicitly available in each disjunct.  We therefore also
3668 * look for constraints among those defining "map" that are valid
3669 * for the context.  These can then be used to simplify away
3670 * the corresponding constraints in "map".
3671 */
3672__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,
3673	__isl_take isl_map *context)
3674{
3675	int equal;
3676	int is_universe;
3677	isl_size n_disjunct_map, n_disjunct_context;
3678	isl_bool subset;
3679	isl_basic_map *hull;
3680
3681	is_universe = isl_map_plain_is_universe(map);
3682	if (is_universe >= 0 && !is_universe)
3683		is_universe = isl_map_plain_is_universe(context);
3684	if (is_universe < 0)
3685		goto error;
3686	if (is_universe) {
3687		isl_map_free(context);
3688		return map;
3689	}
3690
3691	isl_map_align_params_bin(&map, &context);
3692	equal = isl_map_plain_is_equal(map, context);
3693	if (equal < 0)
3694		goto error;
3695	if (equal)
3696		return replace_by_universe(map, context);
3697
3698	n_disjunct_map = isl_map_n_basic_map(map);
3699	n_disjunct_context = isl_map_n_basic_map(context);
3700	if (n_disjunct_map < 0 || n_disjunct_context < 0)
3701		goto error;
3702	if (n_disjunct_map != 1 || n_disjunct_context != 1) {
3703		subset = isl_map_is_subset(context, map);
3704		if (subset < 0)
3705			goto error;
3706		if (subset)
3707			return replace_by_universe(map, context);
3708	}
3709
3710	context = isl_map_compute_divs(context);
3711	if (!context)
3712		goto error;
3713	if (n_disjunct_context == 1) {
3714		hull = isl_map_simple_hull(context);
3715	} else {
3716		isl_ctx *ctx;
3717		isl_map_list *list;
3718
3719		ctx = isl_map_get_ctx(map);
3720		list = isl_map_list_alloc(ctx, 2);
3721		list = isl_map_list_add(list, isl_map_copy(context));
3722		list = isl_map_list_add(list, isl_map_copy(map));
3723		hull = isl_map_unshifted_simple_hull_from_map_list(context,
3724								    list);
3725	}
3726	return isl_map_gist_basic_map(map, hull);
3727error:
3728	isl_map_free(map);
3729	isl_map_free(context);
3730	return NULL;
3731}
3732
3733__isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset,
3734	__isl_take isl_basic_set *context)
3735{
3736	return bset_from_bmap(isl_basic_map_gist(bset_to_bmap(bset),
3737						bset_to_bmap(context)));
3738}
3739
3740__isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set,
3741	__isl_take isl_basic_set *context)
3742{
3743	return set_from_map(isl_map_gist_basic_map(set_to_map(set),
3744					bset_to_bmap(context)));
3745}
3746
3747__isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set,
3748	__isl_take isl_basic_set *context)
3749{
3750	isl_space *space = isl_set_get_space(set);
3751	isl_basic_set *dom_context = isl_basic_set_universe(space);
3752	dom_context = isl_basic_set_intersect_params(dom_context, context);
3753	return isl_set_gist_basic_set(set, dom_context);
3754}
3755
3756__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,
3757	__isl_take isl_set *context)
3758{
3759	return set_from_map(isl_map_gist(set_to_map(set), set_to_map(context)));
3760}
3761
3762/* Compute the gist of "bmap" with respect to the constraints "context"
3763 * on the domain.
3764 */
3765__isl_give isl_basic_map *isl_basic_map_gist_domain(
3766	__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context)
3767{
3768	isl_space *space = isl_basic_map_get_space(bmap);
3769	isl_basic_map *bmap_context = isl_basic_map_universe(space);
3770
3771	bmap_context = isl_basic_map_intersect_domain(bmap_context, context);
3772	return isl_basic_map_gist(bmap, bmap_context);
3773}
3774
3775__isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map,
3776	__isl_take isl_set *context)
3777{
3778	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3779	map_context = isl_map_intersect_domain(map_context, context);
3780	return isl_map_gist(map, map_context);
3781}
3782
3783__isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map,
3784	__isl_take isl_set *context)
3785{
3786	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3787	map_context = isl_map_intersect_range(map_context, context);
3788	return isl_map_gist(map, map_context);
3789}
3790
3791__isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map,
3792	__isl_take isl_set *context)
3793{
3794	isl_map *map_context = isl_map_universe(isl_map_get_space(map));
3795	map_context = isl_map_intersect_params(map_context, context);
3796	return isl_map_gist(map, map_context);
3797}
3798
3799__isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set,
3800	__isl_take isl_set *context)
3801{
3802	return isl_map_gist_params(set, context);
3803}
3804
3805/* Quick check to see if two basic maps are disjoint.
3806 * In particular, we reduce the equalities and inequalities of
3807 * one basic map in the context of the equalities of the other
3808 * basic map and check if we get a contradiction.
3809 */
3810isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1,
3811	__isl_keep isl_basic_map *bmap2)
3812{
3813	struct isl_vec *v = NULL;
3814	int *elim = NULL;
3815	isl_size total;
3816	int i;
3817
3818	if (isl_basic_map_check_equal_space(bmap1, bmap2) < 0)
3819		return isl_bool_error;
3820	if (bmap1->n_div || bmap2->n_div)
3821		return isl_bool_false;
3822	if (!bmap1->n_eq && !bmap2->n_eq)
3823		return isl_bool_false;
3824
3825	total = isl_space_dim(bmap1->dim, isl_dim_all);
3826	if (total < 0)
3827		return isl_bool_error;
3828	if (total == 0)
3829		return isl_bool_false;
3830	v = isl_vec_alloc(bmap1->ctx, 1 + total);
3831	if (!v)
3832		goto error;
3833	elim = isl_alloc_array(bmap1->ctx, int, total);
3834	if (!elim)
3835		goto error;
3836	compute_elimination_index(bmap1, elim, total);
3837	for (i = 0; i < bmap2->n_eq; ++i) {
3838		int reduced;
3839		reduced = reduced_using_equalities(v->block.data, bmap2->eq[i],
3840							bmap1, elim, total);
3841		if (reduced && !isl_int_is_zero(v->block.data[0]) &&
3842		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3843			goto disjoint;
3844	}
3845	for (i = 0; i < bmap2->n_ineq; ++i) {
3846		int reduced;
3847		reduced = reduced_using_equalities(v->block.data,
3848					bmap2->ineq[i], bmap1, elim, total);
3849		if (reduced && isl_int_is_neg(v->block.data[0]) &&
3850		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3851			goto disjoint;
3852	}
3853	compute_elimination_index(bmap2, elim, total);
3854	for (i = 0; i < bmap1->n_ineq; ++i) {
3855		int reduced;
3856		reduced = reduced_using_equalities(v->block.data,
3857					bmap1->ineq[i], bmap2, elim, total);
3858		if (reduced && isl_int_is_neg(v->block.data[0]) &&
3859		    isl_seq_first_non_zero(v->block.data + 1, total) == -1)
3860			goto disjoint;
3861	}
3862	isl_vec_free(v);
3863	free(elim);
3864	return isl_bool_false;
3865disjoint:
3866	isl_vec_free(v);
3867	free(elim);
3868	return isl_bool_true;
3869error:
3870	isl_vec_free(v);
3871	free(elim);
3872	return isl_bool_error;
3873}
3874
3875int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1,
3876	__isl_keep isl_basic_set *bset2)
3877{
3878	return isl_basic_map_plain_is_disjoint(bset_to_bmap(bset1),
3879					      bset_to_bmap(bset2));
3880}
3881
3882/* Does "test" hold for all pairs of basic maps in "map1" and "map2"?
3883 */
3884static isl_bool all_pairs(__isl_keep isl_map *map1, __isl_keep isl_map *map2,
3885	isl_bool (*test)(__isl_keep isl_basic_map *bmap1,
3886		__isl_keep isl_basic_map *bmap2))
3887{
3888	int i, j;
3889
3890	if (!map1 || !map2)
3891		return isl_bool_error;
3892
3893	for (i = 0; i < map1->n; ++i) {
3894		for (j = 0; j < map2->n; ++j) {
3895			isl_bool d = test(map1->p[i], map2->p[j]);
3896			if (d != isl_bool_true)
3897				return d;
3898		}
3899	}
3900
3901	return isl_bool_true;
3902}
3903
3904/* Are "map1" and "map2" obviously disjoint, based on information
3905 * that can be derived without looking at the individual basic maps?
3906 *
3907 * In particular, if one of them is empty or if they live in different spaces
3908 * (ignoring parameters), then they are clearly disjoint.
3909 */
3910static isl_bool isl_map_plain_is_disjoint_global(__isl_keep isl_map *map1,
3911	__isl_keep isl_map *map2)
3912{
3913	isl_bool disjoint;
3914	isl_bool match;
3915
3916	if (!map1 || !map2)
3917		return isl_bool_error;
3918
3919	disjoint = isl_map_plain_is_empty(map1);
3920	if (disjoint < 0 || disjoint)
3921		return disjoint;
3922
3923	disjoint = isl_map_plain_is_empty(map2);
3924	if (disjoint < 0 || disjoint)
3925		return disjoint;
3926
3927	match = isl_map_tuple_is_equal(map1, isl_dim_in, map2, isl_dim_in);
3928	if (match < 0 || !match)
3929		return match < 0 ? isl_bool_error : isl_bool_true;
3930
3931	match = isl_map_tuple_is_equal(map1, isl_dim_out, map2, isl_dim_out);
3932	if (match < 0 || !match)
3933		return match < 0 ? isl_bool_error : isl_bool_true;
3934
3935	return isl_bool_false;
3936}
3937
3938/* Are "map1" and "map2" obviously disjoint?
3939 *
3940 * If one of them is empty or if they live in different spaces (ignoring
3941 * parameters), then they are clearly disjoint.
3942 * This is checked by isl_map_plain_is_disjoint_global.
3943 *
3944 * If they have different parameters, then we skip any further tests.
3945 *
3946 * If they are obviously equal, but not obviously empty, then we will
3947 * not be able to detect if they are disjoint.
3948 *
3949 * Otherwise we check if each basic map in "map1" is obviously disjoint
3950 * from each basic map in "map2".
3951 */
3952isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1,
3953	__isl_keep isl_map *map2)
3954{
3955	isl_bool disjoint;
3956	isl_bool intersect;
3957	isl_bool match;
3958
3959	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
3960	if (disjoint < 0 || disjoint)
3961		return disjoint;
3962
3963	match = isl_map_has_equal_params(map1, map2);
3964	if (match < 0 || !match)
3965		return match < 0 ? isl_bool_error : isl_bool_false;
3966
3967	intersect = isl_map_plain_is_equal(map1, map2);
3968	if (intersect < 0 || intersect)
3969		return intersect < 0 ? isl_bool_error : isl_bool_false;
3970
3971	return all_pairs(map1, map2, &isl_basic_map_plain_is_disjoint);
3972}
3973
3974/* Are "map1" and "map2" disjoint?
3975 * The parameters are assumed to have been aligned.
3976 *
3977 * In particular, check whether all pairs of basic maps are disjoint.
3978 */
3979static isl_bool isl_map_is_disjoint_aligned(__isl_keep isl_map *map1,
3980	__isl_keep isl_map *map2)
3981{
3982	return all_pairs(map1, map2, &isl_basic_map_is_disjoint);
3983}
3984
3985/* Are "map1" and "map2" disjoint?
3986 *
3987 * They are disjoint if they are "obviously disjoint" or if one of them
3988 * is empty.  Otherwise, they are not disjoint if one of them is universal.
3989 * If the two inputs are (obviously) equal and not empty, then they are
3990 * not disjoint.
3991 * If none of these cases apply, then check if all pairs of basic maps
3992 * are disjoint after aligning the parameters.
3993 */
3994isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2)
3995{
3996	isl_bool disjoint;
3997	isl_bool intersect;
3998
3999	disjoint = isl_map_plain_is_disjoint_global(map1, map2);
4000	if (disjoint < 0 || disjoint)
4001		return disjoint;
4002
4003	disjoint = isl_map_is_empty(map1);
4004	if (disjoint < 0 || disjoint)
4005		return disjoint;
4006
4007	disjoint = isl_map_is_empty(map2);
4008	if (disjoint < 0 || disjoint)
4009		return disjoint;
4010
4011	intersect = isl_map_plain_is_universe(map1);
4012	if (intersect < 0 || intersect)
4013		return isl_bool_not(intersect);
4014
4015	intersect = isl_map_plain_is_universe(map2);
4016	if (intersect < 0 || intersect)
4017		return isl_bool_not(intersect);
4018
4019	intersect = isl_map_plain_is_equal(map1, map2);
4020	if (intersect < 0 || intersect)
4021		return isl_bool_not(intersect);
4022
4023	return isl_map_align_params_map_map_and_test(map1, map2,
4024						&isl_map_is_disjoint_aligned);
4025}
4026
4027/* Are "bmap1" and "bmap2" disjoint?
4028 *
4029 * They are disjoint if they are "obviously disjoint" or if one of them
4030 * is empty.  Otherwise, they are not disjoint if one of them is universal.
4031 * If none of these cases apply, we compute the intersection and see if
4032 * the result is empty.
4033 */
4034isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1,
4035	__isl_keep isl_basic_map *bmap2)
4036{
4037	isl_bool disjoint;
4038	isl_bool intersect;
4039	isl_basic_map *test;
4040
4041	disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2);
4042	if (disjoint < 0 || disjoint)
4043		return disjoint;
4044
4045	disjoint = isl_basic_map_is_empty(bmap1);
4046	if (disjoint < 0 || disjoint)
4047		return disjoint;
4048
4049	disjoint = isl_basic_map_is_empty(bmap2);
4050	if (disjoint < 0 || disjoint)
4051		return disjoint;
4052
4053	intersect = isl_basic_map_plain_is_universe(bmap1);
4054	if (intersect < 0 || intersect)
4055		return isl_bool_not(intersect);
4056
4057	intersect = isl_basic_map_plain_is_universe(bmap2);
4058	if (intersect < 0 || intersect)
4059		return isl_bool_not(intersect);
4060
4061	test = isl_basic_map_intersect(isl_basic_map_copy(bmap1),
4062		isl_basic_map_copy(bmap2));
4063	disjoint = isl_basic_map_is_empty(test);
4064	isl_basic_map_free(test);
4065
4066	return disjoint;
4067}
4068
4069/* Are "bset1" and "bset2" disjoint?
4070 */
4071isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1,
4072	__isl_keep isl_basic_set *bset2)
4073{
4074	return isl_basic_map_is_disjoint(bset1, bset2);
4075}
4076
4077isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1,
4078	__isl_keep isl_set *set2)
4079{
4080	return isl_map_plain_is_disjoint(set_to_map(set1), set_to_map(set2));
4081}
4082
4083/* Are "set1" and "set2" disjoint?
4084 */
4085isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2)
4086{
4087	return isl_map_is_disjoint(set1, set2);
4088}
4089
4090/* Is "v" equal to 0, 1 or -1?
4091 */
4092static int is_zero_or_one(isl_int v)
4093{
4094	return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v);
4095}
4096
4097/* Are the "n" coefficients starting at "first" of inequality constraints
4098 * "i" and "j" of "bmap" opposite to each other?
4099 */
4100static int is_opposite_part(__isl_keep isl_basic_map *bmap, int i, int j,
4101	int first, int n)
4102{
4103	return isl_seq_is_neg(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4104}
4105
4106/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4107 * apart from the constant term?
4108 */
4109static isl_bool is_opposite(__isl_keep isl_basic_map *bmap, int i, int j)
4110{
4111	isl_size total;
4112
4113	total = isl_basic_map_dim(bmap, isl_dim_all);
4114	if (total < 0)
4115		return isl_bool_error;
4116	return is_opposite_part(bmap, i, j, 1, total);
4117}
4118
4119/* Check if we can combine a given div with lower bound l and upper
4120 * bound u with some other div and if so return that other div.
4121 * Otherwise, return a position beyond the integer divisions.
4122 * Return -1 on error.
4123 *
4124 * We first check that
4125 *	- the bounds are opposites of each other (except for the constant
4126 *	  term)
4127 *	- the bounds do not reference any other div
4128 *	- no div is defined in terms of this div
4129 *
4130 * Let m be the size of the range allowed on the div by the bounds.
4131 * That is, the bounds are of the form
4132 *
4133 *	e <= a <= e + m - 1
4134 *
4135 * with e some expression in the other variables.
4136 * We look for another div b such that no third div is defined in terms
4137 * of this second div b and such that in any constraint that contains
4138 * a (except for the given lower and upper bound), also contains b
4139 * with a coefficient that is m times that of b.
4140 * That is, all constraints (except for the lower and upper bound)
4141 * are of the form
4142 *
4143 *	e + f (a + m b) >= 0
4144 *
4145 * Furthermore, in the constraints that only contain b, the coefficient
4146 * of b should be equal to 1 or -1.
4147 * If so, we return b so that "a + m b" can be replaced by
4148 * a single div "c = a + m b".
4149 */
4150static int div_find_coalesce(__isl_keep isl_basic_map *bmap, int *pairs,
4151	unsigned div, unsigned l, unsigned u)
4152{
4153	int i, j;
4154	unsigned n_div;
4155	isl_size v_div;
4156	int coalesce;
4157	isl_bool opp;
4158
4159	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4160	if (n_div <= 1)
4161		return n_div;
4162	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4163	if (v_div < 0)
4164		return -1;
4165	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div, div) != -1)
4166		return n_div;
4167	if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + v_div + div + 1,
4168				   n_div - div - 1) != -1)
4169		return n_div;
4170	opp = is_opposite(bmap, l, u);
4171	if (opp < 0 || !opp)
4172		return opp < 0 ? -1 : n_div;
4173
4174	for (i = 0; i < n_div; ++i) {
4175		if (isl_int_is_zero(bmap->div[i][0]))
4176			continue;
4177		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4178			return n_div;
4179	}
4180
4181	isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4182	if (isl_int_is_neg(bmap->ineq[l][0])) {
4183		isl_int_sub(bmap->ineq[l][0],
4184			    bmap->ineq[l][0], bmap->ineq[u][0]);
4185		bmap = isl_basic_map_copy(bmap);
4186		bmap = isl_basic_map_set_to_empty(bmap);
4187		isl_basic_map_free(bmap);
4188		return n_div;
4189	}
4190	isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4191	coalesce = n_div;
4192	for (i = 0; i < n_div; ++i) {
4193		if (i == div)
4194			continue;
4195		if (!pairs[i])
4196			continue;
4197		for (j = 0; j < n_div; ++j) {
4198			if (isl_int_is_zero(bmap->div[j][0]))
4199				continue;
4200			if (!isl_int_is_zero(bmap->div[j][1 + 1 + v_div + i]))
4201				break;
4202		}
4203		if (j < n_div)
4204			continue;
4205		for (j = 0; j < bmap->n_ineq; ++j) {
4206			int valid;
4207			if (j == l || j == u)
4208				continue;
4209			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + div])) {
4210				if (is_zero_or_one(bmap->ineq[j][1 + v_div + i]))
4211					continue;
4212				break;
4213			}
4214			if (isl_int_is_zero(bmap->ineq[j][1 + v_div + i]))
4215				break;
4216			isl_int_mul(bmap->ineq[j][1 + v_div + div],
4217				    bmap->ineq[j][1 + v_div + div],
4218				    bmap->ineq[l][0]);
4219			valid = isl_int_eq(bmap->ineq[j][1 + v_div + div],
4220					   bmap->ineq[j][1 + v_div + i]);
4221			isl_int_divexact(bmap->ineq[j][1 + v_div + div],
4222					 bmap->ineq[j][1 + v_div + div],
4223					 bmap->ineq[l][0]);
4224			if (!valid)
4225				break;
4226		}
4227		if (j < bmap->n_ineq)
4228			continue;
4229		coalesce = i;
4230		break;
4231	}
4232	isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1);
4233	isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]);
4234	return coalesce;
4235}
4236
4237/* Internal data structure used during the construction and/or evaluation of
4238 * an inequality that ensures that a pair of bounds always allows
4239 * for an integer value.
4240 *
4241 * "tab" is the tableau in which the inequality is evaluated.  It may
4242 * be NULL until it is actually needed.
4243 * "v" contains the inequality coefficients.
4244 * "g", "fl" and "fu" are temporary scalars used during the construction and
4245 * evaluation.
4246 */
4247struct test_ineq_data {
4248	struct isl_tab *tab;
4249	isl_vec *v;
4250	isl_int g;
4251	isl_int fl;
4252	isl_int fu;
4253};
4254
4255/* Free all the memory allocated by the fields of "data".
4256 */
4257static void test_ineq_data_clear(struct test_ineq_data *data)
4258{
4259	isl_tab_free(data->tab);
4260	isl_vec_free(data->v);
4261	isl_int_clear(data->g);
4262	isl_int_clear(data->fl);
4263	isl_int_clear(data->fu);
4264}
4265
4266/* Is the inequality stored in data->v satisfied by "bmap"?
4267 * That is, does it only attain non-negative values?
4268 * data->tab is a tableau corresponding to "bmap".
4269 */
4270static isl_bool test_ineq_is_satisfied(__isl_keep isl_basic_map *bmap,
4271	struct test_ineq_data *data)
4272{
4273	isl_ctx *ctx;
4274	enum isl_lp_result res;
4275
4276	ctx = isl_basic_map_get_ctx(bmap);
4277	if (!data->tab)
4278		data->tab = isl_tab_from_basic_map(bmap, 0);
4279	res = isl_tab_min(data->tab, data->v->el, ctx->one, &data->g, NULL, 0);
4280	if (res == isl_lp_error)
4281		return isl_bool_error;
4282	return res == isl_lp_ok && isl_int_is_nonneg(data->g);
4283}
4284
4285/* Given a lower and an upper bound on div i, do they always allow
4286 * for an integer value of the given div?
4287 * Determine this property by constructing an inequality
4288 * such that the property is guaranteed when the inequality is nonnegative.
4289 * The lower bound is inequality l, while the upper bound is inequality u.
4290 * The constructed inequality is stored in data->v.
4291 *
4292 * Let the upper bound be
4293 *
4294 *	-n_u a + e_u >= 0
4295 *
4296 * and the lower bound
4297 *
4298 *	n_l a + e_l >= 0
4299 *
4300 * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l).
4301 * We have
4302 *
4303 *	- f_u e_l <= f_u f_l g a <= f_l e_u
4304 *
4305 * Since all variables are integer valued, this is equivalent to
4306 *
4307 *	- f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1)
4308 *
4309 * If this interval is at least f_u f_l g, then it contains at least
4310 * one integer value for a.
4311 * That is, the test constraint is
4312 *
4313 *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g
4314 *
4315 * or
4316 *
4317 *	f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 - f_u f_l g >= 0
4318 *
4319 * If the coefficients of f_l e_u + f_u e_l have a common divisor g',
4320 * then the constraint can be scaled down by a factor g',
4321 * with the constant term replaced by
4322 * floor((f_l e_{u,0} + f_u e_{l,0} + f_l - 1 + f_u - 1 + 1 - f_u f_l g)/g').
4323 * Note that the result of applying Fourier-Motzkin to this pair
4324 * of constraints is
4325 *
4326 *	f_l e_u + f_u e_l >= 0
4327 *
4328 * If the constant term of the scaled down version of this constraint,
4329 * i.e., floor((f_l e_{u,0} + f_u e_{l,0})/g') is equal to the constant
4330 * term of the scaled down test constraint, then the test constraint
4331 * is known to hold and no explicit evaluation is required.
4332 * This is essentially the Omega test.
4333 *
4334 * If the test constraint consists of only a constant term, then
4335 * it is sufficient to look at the sign of this constant term.
4336 */
4337static isl_bool int_between_bounds(__isl_keep isl_basic_map *bmap, int i,
4338	int l, int u, struct test_ineq_data *data)
4339{
4340	unsigned offset;
4341	isl_size n_div;
4342
4343	offset = isl_basic_map_offset(bmap, isl_dim_div);
4344	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4345	if (n_div < 0)
4346		return isl_bool_error;
4347
4348	isl_int_gcd(data->g,
4349		    bmap->ineq[l][offset + i], bmap->ineq[u][offset + i]);
4350	isl_int_divexact(data->fl, bmap->ineq[l][offset + i], data->g);
4351	isl_int_divexact(data->fu, bmap->ineq[u][offset + i], data->g);
4352	isl_int_neg(data->fu, data->fu);
4353	isl_seq_combine(data->v->el, data->fl, bmap->ineq[u],
4354			data->fu, bmap->ineq[l], offset + n_div);
4355	isl_int_mul(data->g, data->g, data->fl);
4356	isl_int_mul(data->g, data->g, data->fu);
4357	isl_int_sub(data->g, data->g, data->fl);
4358	isl_int_sub(data->g, data->g, data->fu);
4359	isl_int_add_ui(data->g, data->g, 1);
4360	isl_int_sub(data->fl, data->v->el[0], data->g);
4361
4362	isl_seq_gcd(data->v->el + 1, offset - 1 + n_div, &data->g);
4363	if (isl_int_is_zero(data->g))
4364		return isl_int_is_nonneg(data->fl);
4365	if (isl_int_is_one(data->g)) {
4366		isl_int_set(data->v->el[0], data->fl);
4367		return test_ineq_is_satisfied(bmap, data);
4368	}
4369	isl_int_fdiv_q(data->fl, data->fl, data->g);
4370	isl_int_fdiv_q(data->v->el[0], data->v->el[0], data->g);
4371	if (isl_int_eq(data->fl, data->v->el[0]))
4372		return isl_bool_true;
4373	isl_int_set(data->v->el[0], data->fl);
4374	isl_seq_scale_down(data->v->el + 1, data->v->el + 1, data->g,
4375			    offset - 1 + n_div);
4376
4377	return test_ineq_is_satisfied(bmap, data);
4378}
4379
4380/* Remove more kinds of divs that are not strictly needed.
4381 * In particular, if all pairs of lower and upper bounds on a div
4382 * are such that they allow at least one integer value of the div,
4383 * then we can eliminate the div using Fourier-Motzkin without
4384 * introducing any spurious solutions.
4385 *
4386 * If at least one of the two constraints has a unit coefficient for the div,
4387 * then the presence of such a value is guaranteed so there is no need to check.
4388 * In particular, the value attained by the bound with unit coefficient
4389 * can serve as this intermediate value.
4390 */
4391static __isl_give isl_basic_map *drop_more_redundant_divs(
4392	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int n)
4393{
4394	isl_ctx *ctx;
4395	struct test_ineq_data data = { NULL, NULL };
4396	unsigned off;
4397	isl_size n_div;
4398	int remove = -1;
4399
4400	isl_int_init(data.g);
4401	isl_int_init(data.fl);
4402	isl_int_init(data.fu);
4403
4404	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4405	if (n_div < 0)
4406		goto error;
4407
4408	ctx = isl_basic_map_get_ctx(bmap);
4409	off = isl_basic_map_offset(bmap, isl_dim_div);
4410	data.v = isl_vec_alloc(ctx, off + n_div);
4411	if (!data.v)
4412		goto error;
4413
4414	while (n > 0) {
4415		int i, l, u;
4416		int best = -1;
4417		isl_bool has_int;
4418
4419		for (i = 0; i < n_div; ++i) {
4420			if (!pairs[i])
4421				continue;
4422			if (best >= 0 && pairs[best] <= pairs[i])
4423				continue;
4424			best = i;
4425		}
4426
4427		i = best;
4428		for (l = 0; l < bmap->n_ineq; ++l) {
4429			if (!isl_int_is_pos(bmap->ineq[l][off + i]))
4430				continue;
4431			if (isl_int_is_one(bmap->ineq[l][off + i]))
4432				continue;
4433			for (u = 0; u < bmap->n_ineq; ++u) {
4434				if (!isl_int_is_neg(bmap->ineq[u][off + i]))
4435					continue;
4436				if (isl_int_is_negone(bmap->ineq[u][off + i]))
4437					continue;
4438				has_int = int_between_bounds(bmap, i, l, u,
4439								&data);
4440				if (has_int < 0)
4441					goto error;
4442				if (data.tab && data.tab->empty)
4443					break;
4444				if (!has_int)
4445					break;
4446			}
4447			if (u < bmap->n_ineq)
4448				break;
4449		}
4450		if (data.tab && data.tab->empty) {
4451			bmap = isl_basic_map_set_to_empty(bmap);
4452			break;
4453		}
4454		if (l == bmap->n_ineq) {
4455			remove = i;
4456			break;
4457		}
4458		pairs[i] = 0;
4459		--n;
4460	}
4461
4462	test_ineq_data_clear(&data);
4463
4464	free(pairs);
4465
4466	if (remove < 0)
4467		return bmap;
4468
4469	bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1);
4470	return isl_basic_map_drop_redundant_divs(bmap);
4471error:
4472	free(pairs);
4473	isl_basic_map_free(bmap);
4474	test_ineq_data_clear(&data);
4475	return NULL;
4476}
4477
4478/* Given a pair of divs div1 and div2 such that, except for the lower bound l
4479 * and the upper bound u, div1 always occurs together with div2 in the form
4480 * (div1 + m div2), where m is the constant range on the variable div1
4481 * allowed by l and u, replace the pair div1 and div2 by a single
4482 * div that is equal to div1 + m div2.
4483 *
4484 * The new div will appear in the location that contains div2.
4485 * We need to modify all constraints that contain
4486 * div2 = (div - div1) / m
4487 * The coefficient of div2 is known to be equal to 1 or -1.
4488 * (If a constraint does not contain div2, it will also not contain div1.)
4489 * If the constraint also contains div1, then we know they appear
4490 * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div,
4491 * i.e., the coefficient of div is f.
4492 *
4493 * Otherwise, we first need to introduce div1 into the constraint.
4494 * Let l be
4495 *
4496 *	div1 + f >=0
4497 *
4498 * and u
4499 *
4500 *	-div1 + f' >= 0
4501 *
4502 * A lower bound on div2
4503 *
4504 *	div2 + t >= 0
4505 *
4506 * can be replaced by
4507 *
4508 *	m div2 + div1 + m t + f >= 0
4509 *
4510 * An upper bound
4511 *
4512 *	-div2 + t >= 0
4513 *
4514 * can be replaced by
4515 *
4516 *	-(m div2 + div1) + m t + f' >= 0
4517 *
4518 * These constraint are those that we would obtain from eliminating
4519 * div1 using Fourier-Motzkin.
4520 *
4521 * After all constraints have been modified, we drop the lower and upper
4522 * bound and then drop div1.
4523 * Since the new div is only placed in the same location that used
4524 * to store div2, but otherwise has a different meaning, any possible
4525 * explicit representation of the original div2 is removed.
4526 */
4527static __isl_give isl_basic_map *coalesce_divs(__isl_take isl_basic_map *bmap,
4528	unsigned div1, unsigned div2, unsigned l, unsigned u)
4529{
4530	isl_ctx *ctx;
4531	isl_int m;
4532	isl_size v_div;
4533	unsigned total;
4534	int i;
4535
4536	ctx = isl_basic_map_get_ctx(bmap);
4537
4538	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4539	if (v_div < 0)
4540		return isl_basic_map_free(bmap);
4541	total = 1 + v_div + bmap->n_div;
4542
4543	isl_int_init(m);
4544	isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]);
4545	isl_int_add_ui(m, m, 1);
4546
4547	for (i = 0; i < bmap->n_ineq; ++i) {
4548		if (i == l || i == u)
4549			continue;
4550		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div2]))
4551			continue;
4552		if (isl_int_is_zero(bmap->ineq[i][1 + v_div + div1])) {
4553			if (isl_int_is_pos(bmap->ineq[i][1 + v_div + div2]))
4554				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4555						ctx->one, bmap->ineq[l], total);
4556			else
4557				isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i],
4558						ctx->one, bmap->ineq[u], total);
4559		}
4560		isl_int_set(bmap->ineq[i][1 + v_div + div2],
4561			    bmap->ineq[i][1 + v_div + div1]);
4562		isl_int_set_si(bmap->ineq[i][1 + v_div + div1], 0);
4563	}
4564
4565	isl_int_clear(m);
4566	if (l > u) {
4567		isl_basic_map_drop_inequality(bmap, l);
4568		isl_basic_map_drop_inequality(bmap, u);
4569	} else {
4570		isl_basic_map_drop_inequality(bmap, u);
4571		isl_basic_map_drop_inequality(bmap, l);
4572	}
4573	bmap = isl_basic_map_mark_div_unknown(bmap, div2);
4574	bmap = isl_basic_map_drop_div(bmap, div1);
4575	return bmap;
4576}
4577
4578/* First check if we can coalesce any pair of divs and
4579 * then continue with dropping more redundant divs.
4580 *
4581 * We loop over all pairs of lower and upper bounds on a div
4582 * with coefficient 1 and -1, respectively, check if there
4583 * is any other div "c" with which we can coalesce the div
4584 * and if so, perform the coalescing.
4585 */
4586static __isl_give isl_basic_map *coalesce_or_drop_more_redundant_divs(
4587	__isl_take isl_basic_map *bmap, int *pairs, int n)
4588{
4589	int i, l, u;
4590	isl_size v_div;
4591	isl_size n_div;
4592
4593	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4594	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4595	if (v_div < 0 || n_div < 0)
4596		return isl_basic_map_free(bmap);
4597
4598	for (i = 0; i < n_div; ++i) {
4599		if (!pairs[i])
4600			continue;
4601		for (l = 0; l < bmap->n_ineq; ++l) {
4602			if (!isl_int_is_one(bmap->ineq[l][1 + v_div + i]))
4603				continue;
4604			for (u = 0; u < bmap->n_ineq; ++u) {
4605				int c;
4606
4607				if (!isl_int_is_negone(bmap->ineq[u][1+v_div+i]))
4608					continue;
4609				c = div_find_coalesce(bmap, pairs, i, l, u);
4610				if (c < 0)
4611					goto error;
4612				if (c >= n_div)
4613					continue;
4614				free(pairs);
4615				bmap = coalesce_divs(bmap, i, c, l, u);
4616				return isl_basic_map_drop_redundant_divs(bmap);
4617			}
4618		}
4619	}
4620
4621	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) {
4622		free(pairs);
4623		return bmap;
4624	}
4625
4626	return drop_more_redundant_divs(bmap, pairs, n);
4627error:
4628	free(pairs);
4629	isl_basic_map_free(bmap);
4630	return NULL;
4631}
4632
4633/* Are the "n" coefficients starting at "first" of inequality constraints
4634 * "i" and "j" of "bmap" equal to each other?
4635 */
4636static int is_parallel_part(__isl_keep isl_basic_map *bmap, int i, int j,
4637	int first, int n)
4638{
4639	return isl_seq_eq(bmap->ineq[i] + first, bmap->ineq[j] + first, n);
4640}
4641
4642/* Are inequality constraints "i" and "j" of "bmap" equal to each other,
4643 * apart from the constant term and the coefficient at position "pos"?
4644 */
4645static isl_bool is_parallel_except(__isl_keep isl_basic_map *bmap, int i, int j,
4646	int pos)
4647{
4648	isl_size total;
4649
4650	total = isl_basic_map_dim(bmap, isl_dim_all);
4651	if (total < 0)
4652		return isl_bool_error;
4653	return is_parallel_part(bmap, i, j, 1, pos - 1) &&
4654		is_parallel_part(bmap, i, j, pos + 1, total - pos);
4655}
4656
4657/* Are inequality constraints "i" and "j" of "bmap" opposite to each other,
4658 * apart from the constant term and the coefficient at position "pos"?
4659 */
4660static isl_bool is_opposite_except(__isl_keep isl_basic_map *bmap, int i, int j,
4661	int pos)
4662{
4663	isl_size total;
4664
4665	total = isl_basic_map_dim(bmap, isl_dim_all);
4666	if (total < 0)
4667		return isl_bool_error;
4668	return is_opposite_part(bmap, i, j, 1, pos - 1) &&
4669		is_opposite_part(bmap, i, j, pos + 1, total - pos);
4670}
4671
4672/* Restart isl_basic_map_drop_redundant_divs after "bmap" has
4673 * been modified, simplying it if "simplify" is set.
4674 * Free the temporary data structure "pairs" that was associated
4675 * to the old version of "bmap".
4676 */
4677static __isl_give isl_basic_map *drop_redundant_divs_again(
4678	__isl_take isl_basic_map *bmap, __isl_take int *pairs, int simplify)
4679{
4680	if (simplify)
4681		bmap = isl_basic_map_simplify(bmap);
4682	free(pairs);
4683	return isl_basic_map_drop_redundant_divs(bmap);
4684}
4685
4686/* Is "div" the single unknown existentially quantified variable
4687 * in inequality constraint "ineq" of "bmap"?
4688 * "div" is known to have a non-zero coefficient in "ineq".
4689 */
4690static isl_bool single_unknown(__isl_keep isl_basic_map *bmap, int ineq,
4691	int div)
4692{
4693	int i;
4694	isl_size n_div;
4695	unsigned o_div;
4696	isl_bool known;
4697
4698	known = isl_basic_map_div_is_known(bmap, div);
4699	if (known < 0 || known)
4700		return isl_bool_not(known);
4701	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4702	if (n_div < 0)
4703		return isl_bool_error;
4704	if (n_div == 1)
4705		return isl_bool_true;
4706	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4707	for (i = 0; i < n_div; ++i) {
4708		isl_bool known;
4709
4710		if (i == div)
4711			continue;
4712		if (isl_int_is_zero(bmap->ineq[ineq][o_div + i]))
4713			continue;
4714		known = isl_basic_map_div_is_known(bmap, i);
4715		if (known < 0 || !known)
4716			return known;
4717	}
4718
4719	return isl_bool_true;
4720}
4721
4722/* Does integer division "div" have coefficient 1 in inequality constraint
4723 * "ineq" of "map"?
4724 */
4725static isl_bool has_coef_one(__isl_keep isl_basic_map *bmap, int div, int ineq)
4726{
4727	unsigned o_div;
4728
4729	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4730	if (isl_int_is_one(bmap->ineq[ineq][o_div + div]))
4731		return isl_bool_true;
4732
4733	return isl_bool_false;
4734}
4735
4736/* Turn inequality constraint "ineq" of "bmap" into an equality and
4737 * then try and drop redundant divs again,
4738 * freeing the temporary data structure "pairs" that was associated
4739 * to the old version of "bmap".
4740 */
4741static __isl_give isl_basic_map *set_eq_and_try_again(
4742	__isl_take isl_basic_map *bmap, int ineq, __isl_take int *pairs)
4743{
4744	bmap = isl_basic_map_cow(bmap);
4745	isl_basic_map_inequality_to_equality(bmap, ineq);
4746	return drop_redundant_divs_again(bmap, pairs, 1);
4747}
4748
4749/* Drop the integer division at position "div", along with the two
4750 * inequality constraints "ineq1" and "ineq2" in which it appears
4751 * from "bmap" and then try and drop redundant divs again,
4752 * freeing the temporary data structure "pairs" that was associated
4753 * to the old version of "bmap".
4754 */
4755static __isl_give isl_basic_map *drop_div_and_try_again(
4756	__isl_take isl_basic_map *bmap, int div, int ineq1, int ineq2,
4757	__isl_take int *pairs)
4758{
4759	if (ineq1 > ineq2) {
4760		isl_basic_map_drop_inequality(bmap, ineq1);
4761		isl_basic_map_drop_inequality(bmap, ineq2);
4762	} else {
4763		isl_basic_map_drop_inequality(bmap, ineq2);
4764		isl_basic_map_drop_inequality(bmap, ineq1);
4765	}
4766	bmap = isl_basic_map_drop_div(bmap, div);
4767	return drop_redundant_divs_again(bmap, pairs, 0);
4768}
4769
4770/* Given two inequality constraints
4771 *
4772 *	f(x) + n d + c >= 0,		(ineq)
4773 *
4774 * with d the variable at position "pos", and
4775 *
4776 *	f(x) + c0 >= 0,			(lower)
4777 *
4778 * compute the maximal value of the lower bound ceil((-f(x) - c)/n)
4779 * determined by the first constraint.
4780 * That is, store
4781 *
4782 *	ceil((c0 - c)/n)
4783 *
4784 * in *l.
4785 */
4786static void lower_bound_from_parallel(__isl_keep isl_basic_map *bmap,
4787	int ineq, int lower, int pos, isl_int *l)
4788{
4789	isl_int_neg(*l, bmap->ineq[ineq][0]);
4790	isl_int_add(*l, *l, bmap->ineq[lower][0]);
4791	isl_int_cdiv_q(*l, *l, bmap->ineq[ineq][pos]);
4792}
4793
4794/* Given two inequality constraints
4795 *
4796 *	f(x) + n d + c >= 0,		(ineq)
4797 *
4798 * with d the variable at position "pos", and
4799 *
4800 *	-f(x) - c0 >= 0,		(upper)
4801 *
4802 * compute the minimal value of the lower bound ceil((-f(x) - c)/n)
4803 * determined by the first constraint.
4804 * That is, store
4805 *
4806 *	ceil((-c1 - c)/n)
4807 *
4808 * in *u.
4809 */
4810static void lower_bound_from_opposite(__isl_keep isl_basic_map *bmap,
4811	int ineq, int upper, int pos, isl_int *u)
4812{
4813	isl_int_neg(*u, bmap->ineq[ineq][0]);
4814	isl_int_sub(*u, *u, bmap->ineq[upper][0]);
4815	isl_int_cdiv_q(*u, *u, bmap->ineq[ineq][pos]);
4816}
4817
4818/* Given a lower bound constraint "ineq" on "div" in "bmap",
4819 * does the corresponding lower bound have a fixed value in "bmap"?
4820 *
4821 * In particular, "ineq" is of the form
4822 *
4823 *	f(x) + n d + c >= 0
4824 *
4825 * with n > 0, c the constant term and
4826 * d the existentially quantified variable "div".
4827 * That is, the lower bound is
4828 *
4829 *	ceil((-f(x) - c)/n)
4830 *
4831 * Look for a pair of constraints
4832 *
4833 *	f(x) + c0 >= 0
4834 *	-f(x) + c1 >= 0
4835 *
4836 * i.e., -c1 <= -f(x) <= c0, that fix ceil((-f(x) - c)/n) to a constant value.
4837 * That is, check that
4838 *
4839 *	ceil((-c1 - c)/n) = ceil((c0 - c)/n)
4840 *
4841 * If so, return the index of inequality f(x) + c0 >= 0.
4842 * Otherwise, return bmap->n_ineq.
4843 * Return -1 on error.
4844 */
4845static int lower_bound_is_cst(__isl_keep isl_basic_map *bmap, int div, int ineq)
4846{
4847	int i;
4848	int lower = -1, upper = -1;
4849	unsigned o_div;
4850	isl_int l, u;
4851	int equal;
4852
4853	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4854	for (i = 0; i < bmap->n_ineq && (lower < 0 || upper < 0); ++i) {
4855		isl_bool par, opp;
4856
4857		if (i == ineq)
4858			continue;
4859		if (!isl_int_is_zero(bmap->ineq[i][o_div + div]))
4860			continue;
4861		par = isl_bool_false;
4862		if (lower < 0)
4863			par = is_parallel_except(bmap, ineq, i, o_div + div);
4864		if (par < 0)
4865			return -1;
4866		if (par) {
4867			lower = i;
4868			continue;
4869		}
4870		opp = isl_bool_false;
4871		if (upper < 0)
4872			opp = is_opposite_except(bmap, ineq, i, o_div + div);
4873		if (opp < 0)
4874			return -1;
4875		if (opp)
4876			upper = i;
4877	}
4878
4879	if (lower < 0 || upper < 0)
4880		return bmap->n_ineq;
4881
4882	isl_int_init(l);
4883	isl_int_init(u);
4884
4885	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &l);
4886	lower_bound_from_opposite(bmap, ineq, upper, o_div + div, &u);
4887
4888	equal = isl_int_eq(l, u);
4889
4890	isl_int_clear(l);
4891	isl_int_clear(u);
4892
4893	return equal ? lower : bmap->n_ineq;
4894}
4895
4896/* Given a lower bound constraint "ineq" on the existentially quantified
4897 * variable "div", such that the corresponding lower bound has
4898 * a fixed value in "bmap", assign this fixed value to the variable and
4899 * then try and drop redundant divs again,
4900 * freeing the temporary data structure "pairs" that was associated
4901 * to the old version of "bmap".
4902 * "lower" determines the constant value for the lower bound.
4903 *
4904 * In particular, "ineq" is of the form
4905 *
4906 *	f(x) + n d + c >= 0,
4907 *
4908 * while "lower" is of the form
4909 *
4910 *	f(x) + c0 >= 0
4911 *
4912 * The lower bound is ceil((-f(x) - c)/n) and its constant value
4913 * is ceil((c0 - c)/n).
4914 */
4915static __isl_give isl_basic_map *fix_cst_lower(__isl_take isl_basic_map *bmap,
4916	int div, int ineq, int lower, int *pairs)
4917{
4918	isl_int c;
4919	unsigned o_div;
4920
4921	isl_int_init(c);
4922
4923	o_div = isl_basic_map_offset(bmap, isl_dim_div);
4924	lower_bound_from_parallel(bmap, ineq, lower, o_div + div, &c);
4925	bmap = isl_basic_map_fix(bmap, isl_dim_div, div, c);
4926	free(pairs);
4927
4928	isl_int_clear(c);
4929
4930	return isl_basic_map_drop_redundant_divs(bmap);
4931}
4932
4933/* Do any of the integer divisions of "bmap" involve integer division "div"?
4934 *
4935 * The integer division "div" could only ever appear in any later
4936 * integer division (with an explicit representation).
4937 */
4938static isl_bool any_div_involves_div(__isl_keep isl_basic_map *bmap, int div)
4939{
4940	int i;
4941	isl_size v_div, n_div;
4942
4943	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
4944	n_div = isl_basic_map_dim(bmap, isl_dim_div);
4945	if (v_div < 0 || n_div < 0)
4946		return isl_bool_error;
4947
4948	for (i = div + 1; i < n_div; ++i) {
4949		isl_bool unknown;
4950
4951		unknown = isl_basic_map_div_is_marked_unknown(bmap, i);
4952		if (unknown < 0)
4953			return isl_bool_error;
4954		if (unknown)
4955			continue;
4956		if (!isl_int_is_zero(bmap->div[i][1 + 1 + v_div + div]))
4957			return isl_bool_true;
4958	}
4959
4960	return isl_bool_false;
4961}
4962
4963/* Remove divs that are not strictly needed based on the inequality
4964 * constraints.
4965 * In particular, if a div only occurs positively (or negatively)
4966 * in constraints, then it can simply be dropped.
4967 * Also, if a div occurs in only two constraints and if moreover
4968 * those two constraints are opposite to each other, except for the constant
4969 * term and if the sum of the constant terms is such that for any value
4970 * of the other values, there is always at least one integer value of the
4971 * div, i.e., if one plus this sum is greater than or equal to
4972 * the (absolute value) of the coefficient of the div in the constraints,
4973 * then we can also simply drop the div.
4974 *
4975 * If an existentially quantified variable does not have an explicit
4976 * representation, appears in only a single lower bound that does not
4977 * involve any other such existentially quantified variables and appears
4978 * in this lower bound with coefficient 1,
4979 * then fix the variable to the value of the lower bound.  That is,
4980 * turn the inequality into an equality.
4981 * If for any value of the other variables, there is any value
4982 * for the existentially quantified variable satisfying the constraints,
4983 * then this lower bound also satisfies the constraints.
4984 * It is therefore safe to pick this lower bound.
4985 *
4986 * The same reasoning holds even if the coefficient is not one.
4987 * However, fixing the variable to the value of the lower bound may
4988 * in general introduce an extra integer division, in which case
4989 * it may be better to pick another value.
4990 * If this integer division has a known constant value, then plugging
4991 * in this constant value removes the existentially quantified variable
4992 * completely.  In particular, if the lower bound is of the form
4993 * ceil((-f(x) - c)/n) and there are two constraints, f(x) + c0 >= 0 and
4994 * -f(x) + c1 >= 0 such that ceil((-c1 - c)/n) = ceil((c0 - c)/n),
4995 * then the existentially quantified variable can be assigned this
4996 * shared value.
4997 *
4998 * We skip divs that appear in equalities or in the definition of other divs.
4999 * Divs that appear in the definition of other divs usually occur in at least
5000 * 4 constraints, but the constraints may have been simplified.
5001 *
5002 * If any divs are left after these simple checks then we move on
5003 * to more complicated cases in drop_more_redundant_divs.
5004 */
5005static __isl_give isl_basic_map *isl_basic_map_drop_redundant_divs_ineq(
5006	__isl_take isl_basic_map *bmap)
5007{
5008	int i, j;
5009	isl_size off;
5010	int *pairs = NULL;
5011	int n = 0;
5012	isl_size n_ineq;
5013
5014	if (!bmap)
5015		goto error;
5016	if (bmap->n_div == 0)
5017		return bmap;
5018
5019	off = isl_basic_map_var_offset(bmap, isl_dim_div);
5020	if (off < 0)
5021		return isl_basic_map_free(bmap);
5022	pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div);
5023	if (!pairs)
5024		goto error;
5025
5026	n_ineq = isl_basic_map_n_inequality(bmap);
5027	if (n_ineq < 0)
5028		goto error;
5029	for (i = 0; i < bmap->n_div; ++i) {
5030		int pos, neg;
5031		int last_pos, last_neg;
5032		int redundant;
5033		int defined;
5034		isl_bool involves, opp, set_div;
5035
5036		defined = !isl_int_is_zero(bmap->div[i][0]);
5037		involves = any_div_involves_div(bmap, i);
5038		if (involves < 0)
5039			goto error;
5040		if (involves)
5041			continue;
5042		for (j = 0; j < bmap->n_eq; ++j)
5043			if (!isl_int_is_zero(bmap->eq[j][1 + off + i]))
5044				break;
5045		if (j < bmap->n_eq)
5046			continue;
5047		++n;
5048		pos = neg = 0;
5049		for (j = 0; j < bmap->n_ineq; ++j) {
5050			if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) {
5051				last_pos = j;
5052				++pos;
5053			}
5054			if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) {
5055				last_neg = j;
5056				++neg;
5057			}
5058		}
5059		pairs[i] = pos * neg;
5060		if (pairs[i] == 0) {
5061			for (j = bmap->n_ineq - 1; j >= 0; --j)
5062				if (!isl_int_is_zero(bmap->ineq[j][1+off+i]))
5063					isl_basic_map_drop_inequality(bmap, j);
5064			bmap = isl_basic_map_drop_div(bmap, i);
5065			return drop_redundant_divs_again(bmap, pairs, 0);
5066		}
5067		if (pairs[i] != 1)
5068			opp = isl_bool_false;
5069		else
5070			opp = is_opposite(bmap, last_pos, last_neg);
5071		if (opp < 0)
5072			goto error;
5073		if (!opp) {
5074			int lower;
5075			isl_bool single, one;
5076
5077			if (pos != 1)
5078				continue;
5079			single = single_unknown(bmap, last_pos, i);
5080			if (single < 0)
5081				goto error;
5082			if (!single)
5083				continue;
5084			one = has_coef_one(bmap, i, last_pos);
5085			if (one < 0)
5086				goto error;
5087			if (one)
5088				return set_eq_and_try_again(bmap, last_pos,
5089							    pairs);
5090			lower = lower_bound_is_cst(bmap, i, last_pos);
5091			if (lower < 0)
5092				goto error;
5093			if (lower < n_ineq)
5094				return fix_cst_lower(bmap, i, last_pos, lower,
5095						pairs);
5096			continue;
5097		}
5098
5099		isl_int_add(bmap->ineq[last_pos][0],
5100			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5101		isl_int_add_ui(bmap->ineq[last_pos][0],
5102			       bmap->ineq[last_pos][0], 1);
5103		redundant = isl_int_ge(bmap->ineq[last_pos][0],
5104				bmap->ineq[last_pos][1+off+i]);
5105		isl_int_sub_ui(bmap->ineq[last_pos][0],
5106			       bmap->ineq[last_pos][0], 1);
5107		isl_int_sub(bmap->ineq[last_pos][0],
5108			    bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]);
5109		if (redundant)
5110			return drop_div_and_try_again(bmap, i,
5111						    last_pos, last_neg, pairs);
5112		if (defined)
5113			set_div = isl_bool_false;
5114		else
5115			set_div = ok_to_set_div_from_bound(bmap, i, last_pos);
5116		if (set_div < 0)
5117			return isl_basic_map_free(bmap);
5118		if (set_div) {
5119			bmap = set_div_from_lower_bound(bmap, i, last_pos);
5120			return drop_redundant_divs_again(bmap, pairs, 1);
5121		}
5122		pairs[i] = 0;
5123		--n;
5124	}
5125
5126	if (n > 0)
5127		return coalesce_or_drop_more_redundant_divs(bmap, pairs, n);
5128
5129	free(pairs);
5130	return bmap;
5131error:
5132	free(pairs);
5133	isl_basic_map_free(bmap);
5134	return NULL;
5135}
5136
5137/* Consider the coefficients at "c" as a row vector and replace
5138 * them with their product with "T".  "T" is assumed to be a square matrix.
5139 */
5140static isl_stat preimage(isl_int *c, __isl_keep isl_mat *T)
5141{
5142	isl_size n;
5143	isl_ctx *ctx;
5144	isl_vec *v;
5145
5146	n = isl_mat_rows(T);
5147	if (n < 0)
5148		return isl_stat_error;
5149	if (isl_seq_first_non_zero(c, n) == -1)
5150		return isl_stat_ok;
5151	ctx = isl_mat_get_ctx(T);
5152	v = isl_vec_alloc(ctx, n);
5153	if (!v)
5154		return isl_stat_error;
5155	isl_seq_swp_or_cpy(v->el, c, n);
5156	v = isl_vec_mat_product(v, isl_mat_copy(T));
5157	if (!v)
5158		return isl_stat_error;
5159	isl_seq_swp_or_cpy(c, v->el, n);
5160	isl_vec_free(v);
5161
5162	return isl_stat_ok;
5163}
5164
5165/* Plug in T for the variables in "bmap" starting at "pos".
5166 * T is a linear unimodular matrix, i.e., without constant term.
5167 */
5168static __isl_give isl_basic_map *isl_basic_map_preimage_vars(
5169	__isl_take isl_basic_map *bmap, unsigned pos, __isl_take isl_mat *T)
5170{
5171	int i;
5172	isl_size n_row, n_col;
5173
5174	bmap = isl_basic_map_cow(bmap);
5175	n_row = isl_mat_rows(T);
5176	n_col = isl_mat_cols(T);
5177	if (!bmap || n_row < 0 || n_col < 0)
5178		goto error;
5179
5180	if (n_col != n_row)
5181		isl_die(isl_mat_get_ctx(T), isl_error_invalid,
5182			"expecting square matrix", goto error);
5183
5184	if (isl_basic_map_check_range(bmap, isl_dim_all, pos, n_col) < 0)
5185		goto error;
5186
5187	for (i = 0; i < bmap->n_eq; ++i)
5188		if (preimage(bmap->eq[i] + 1 + pos, T) < 0)
5189			goto error;
5190	for (i = 0; i < bmap->n_ineq; ++i)
5191		if (preimage(bmap->ineq[i] + 1 + pos, T) < 0)
5192			goto error;
5193	for (i = 0; i < bmap->n_div; ++i) {
5194		if (isl_basic_map_div_is_marked_unknown(bmap, i))
5195			continue;
5196		if (preimage(bmap->div[i] + 1 + 1 + pos, T) < 0)
5197			goto error;
5198	}
5199
5200	isl_mat_free(T);
5201	return bmap;
5202error:
5203	isl_basic_map_free(bmap);
5204	isl_mat_free(T);
5205	return NULL;
5206}
5207
5208/* Remove divs that are not strictly needed.
5209 *
5210 * First look for an equality constraint involving two or more
5211 * existentially quantified variables without an explicit
5212 * representation.  Replace the combination that appears
5213 * in the equality constraint by a single existentially quantified
5214 * variable such that the equality can be used to derive
5215 * an explicit representation for the variable.
5216 * If there are no more such equality constraints, then continue
5217 * with isl_basic_map_drop_redundant_divs_ineq.
5218 *
5219 * In particular, if the equality constraint is of the form
5220 *
5221 *	f(x) + \sum_i c_i a_i = 0
5222 *
5223 * with a_i existentially quantified variable without explicit
5224 * representation, then apply a transformation on the existentially
5225 * quantified variables to turn the constraint into
5226 *
5227 *	f(x) + g a_1' = 0
5228 *
5229 * with g the gcd of the c_i.
5230 * In order to easily identify which existentially quantified variables
5231 * have a complete explicit representation, i.e., without being defined
5232 * in terms of other existentially quantified variables without
5233 * an explicit representation, the existentially quantified variables
5234 * are first sorted.
5235 *
5236 * The variable transformation is computed by extending the row
5237 * [c_1/g ... c_n/g] to a unimodular matrix, obtaining the transformation
5238 *
5239 *	[a_1']   [c_1/g ... c_n/g]   [ a_1 ]
5240 *	[a_2']                       [ a_2 ]
5241 *	 ...   =         U             ....
5242 *	[a_n']            	     [ a_n ]
5243 *
5244 * with [c_1/g ... c_n/g] representing the first row of U.
5245 * The inverse of U is then plugged into the original constraints.
5246 * The call to isl_basic_map_simplify makes sure the explicit
5247 * representation for a_1' is extracted from the equality constraint.
5248 */
5249__isl_give isl_basic_map *isl_basic_map_drop_redundant_divs(
5250	__isl_take isl_basic_map *bmap)
5251{
5252	int first;
5253	int i;
5254	unsigned o_div;
5255	isl_size n_div;
5256	int l;
5257	isl_ctx *ctx;
5258	isl_mat *T;
5259
5260	if (!bmap)
5261		return NULL;
5262	if (isl_basic_map_divs_known(bmap))
5263		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5264	if (bmap->n_eq == 0)
5265		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5266	bmap = isl_basic_map_sort_divs(bmap);
5267	if (!bmap)
5268		return NULL;
5269
5270	first = isl_basic_map_first_unknown_div(bmap);
5271	if (first < 0)
5272		return isl_basic_map_free(bmap);
5273
5274	o_div = isl_basic_map_offset(bmap, isl_dim_div);
5275	n_div = isl_basic_map_dim(bmap, isl_dim_div);
5276	if (n_div < 0)
5277		return isl_basic_map_free(bmap);
5278
5279	for (i = 0; i < bmap->n_eq; ++i) {
5280		l = isl_seq_first_non_zero(bmap->eq[i] + o_div + first,
5281					    n_div - (first));
5282		if (l < 0)
5283			continue;
5284		l += first;
5285		if (isl_seq_first_non_zero(bmap->eq[i] + o_div + l + 1,
5286					    n_div - (l + 1)) == -1)
5287			continue;
5288		break;
5289	}
5290	if (i >= bmap->n_eq)
5291		return isl_basic_map_drop_redundant_divs_ineq(bmap);
5292
5293	ctx = isl_basic_map_get_ctx(bmap);
5294	T = isl_mat_alloc(ctx, n_div - l, n_div - l);
5295	if (!T)
5296		return isl_basic_map_free(bmap);
5297	isl_seq_cpy(T->row[0], bmap->eq[i] + o_div + l, n_div - l);
5298	T = isl_mat_normalize_row(T, 0);
5299	T = isl_mat_unimodular_complete(T, 1);
5300	T = isl_mat_right_inverse(T);
5301
5302	for (i = l; i < n_div; ++i)
5303		bmap = isl_basic_map_mark_div_unknown(bmap, i);
5304	bmap = isl_basic_map_preimage_vars(bmap, o_div - 1 + l, T);
5305	bmap = isl_basic_map_simplify(bmap);
5306
5307	return isl_basic_map_drop_redundant_divs(bmap);
5308}
5309
5310/* Does "bmap" satisfy any equality that involves more than 2 variables
5311 * and/or has coefficients different from -1 and 1?
5312 */
5313static isl_bool has_multiple_var_equality(__isl_keep isl_basic_map *bmap)
5314{
5315	int i;
5316	isl_size total;
5317
5318	total = isl_basic_map_dim(bmap, isl_dim_all);
5319	if (total < 0)
5320		return isl_bool_error;
5321
5322	for (i = 0; i < bmap->n_eq; ++i) {
5323		int j, k;
5324
5325		j = isl_seq_first_non_zero(bmap->eq[i] + 1, total);
5326		if (j < 0)
5327			continue;
5328		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5329		    !isl_int_is_negone(bmap->eq[i][1 + j]))
5330			return isl_bool_true;
5331
5332		j += 1;
5333		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5334		if (k < 0)
5335			continue;
5336		j += k;
5337		if (!isl_int_is_one(bmap->eq[i][1 + j]) &&
5338		    !isl_int_is_negone(bmap->eq[i][1 + j]))
5339			return isl_bool_true;
5340
5341		j += 1;
5342		k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j);
5343		if (k >= 0)
5344			return isl_bool_true;
5345	}
5346
5347	return isl_bool_false;
5348}
5349
5350/* Remove any common factor g from the constraint coefficients in "v".
5351 * The constant term is stored in the first position and is replaced
5352 * by floor(c/g).  If any common factor is removed and if this results
5353 * in a tightening of the constraint, then set *tightened.
5354 */
5355static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v,
5356	int *tightened)
5357{
5358	isl_ctx *ctx;
5359
5360	if (!v)
5361		return NULL;
5362	ctx = isl_vec_get_ctx(v);
5363	isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd);
5364	if (isl_int_is_zero(ctx->normalize_gcd))
5365		return v;
5366	if (isl_int_is_one(ctx->normalize_gcd))
5367		return v;
5368	v = isl_vec_cow(v);
5369	if (!v)
5370		return NULL;
5371	if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd))
5372		*tightened = 1;
5373	isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd);
5374	isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd,
5375				v->size - 1);
5376	return v;
5377}
5378
5379/* If "bmap" is an integer set that satisfies any equality involving
5380 * more than 2 variables and/or has coefficients different from -1 and 1,
5381 * then use variable compression to reduce the coefficients by removing
5382 * any (hidden) common factor.
5383 * In particular, apply the variable compression to each constraint,
5384 * factor out any common factor in the non-constant coefficients and
5385 * then apply the inverse of the compression.
5386 * At the end, we mark the basic map as having reduced constants.
5387 * If this flag is still set on the next invocation of this function,
5388 * then we skip the computation.
5389 *
5390 * Removing a common factor may result in a tightening of some of
5391 * the constraints.  If this happens, then we may end up with two
5392 * opposite inequalities that can be replaced by an equality.
5393 * We therefore call isl_basic_map_detect_inequality_pairs,
5394 * which checks for such pairs of inequalities as well as eliminate_divs_eq
5395 * and isl_basic_map_gauss if such a pair was found.
5396 *
5397 * Tightening may also result in some other constraints becoming
5398 * (rationally) redundant with respect to the tightened constraint
5399 * (in combination with other constraints).  The basic map may
5400 * therefore no longer be assumed to have no redundant constraints.
5401 *
5402 * Note that this function may leave the result in an inconsistent state.
5403 * In particular, the constraints may not be gaussed.
5404 * Unfortunately, isl_map_coalesce actually depends on this inconsistent state
5405 * for some of the test cases to pass successfully.
5406 * Any potential modification of the representation is therefore only
5407 * performed on a single copy of the basic map.
5408 */
5409__isl_give isl_basic_map *isl_basic_map_reduce_coefficients(
5410	__isl_take isl_basic_map *bmap)
5411{
5412	isl_size total;
5413	isl_bool multi;
5414	isl_ctx *ctx;
5415	isl_vec *v;
5416	isl_mat *eq, *T, *T2;
5417	int i;
5418	int tightened;
5419
5420	if (!bmap)
5421		return NULL;
5422	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS))
5423		return bmap;
5424	if (isl_basic_map_is_rational(bmap))
5425		return bmap;
5426	if (bmap->n_eq == 0)
5427		return bmap;
5428	multi = has_multiple_var_equality(bmap);
5429	if (multi < 0)
5430		return isl_basic_map_free(bmap);
5431	if (!multi)
5432		return bmap;
5433
5434	total = isl_basic_map_dim(bmap, isl_dim_all);
5435	if (total < 0)
5436		return isl_basic_map_free(bmap);
5437	ctx = isl_basic_map_get_ctx(bmap);
5438	v = isl_vec_alloc(ctx, 1 + total);
5439	if (!v)
5440		return isl_basic_map_free(bmap);
5441
5442	eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total);
5443	T = isl_mat_variable_compression(eq, &T2);
5444	if (!T || !T2)
5445		goto error;
5446	if (T->n_col == 0) {
5447		isl_mat_free(T);
5448		isl_mat_free(T2);
5449		isl_vec_free(v);
5450		return isl_basic_map_set_to_empty(bmap);
5451	}
5452
5453	bmap = isl_basic_map_cow(bmap);
5454	if (!bmap)
5455		goto error;
5456
5457	tightened = 0;
5458	for (i = 0; i < bmap->n_ineq; ++i) {
5459		isl_seq_cpy(v->el, bmap->ineq[i], 1 + total);
5460		v = isl_vec_mat_product(v, isl_mat_copy(T));
5461		v = normalize_constraint(v, &tightened);
5462		v = isl_vec_mat_product(v, isl_mat_copy(T2));
5463		if (!v)
5464			goto error;
5465		isl_seq_cpy(bmap->ineq[i], v->el, 1 + total);
5466	}
5467
5468	isl_mat_free(T);
5469	isl_mat_free(T2);
5470	isl_vec_free(v);
5471
5472	ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS);
5473
5474	if (tightened) {
5475		int progress = 0;
5476
5477		ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT);
5478		bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress);
5479		if (progress) {
5480			bmap = eliminate_divs_eq(bmap, &progress);
5481			bmap = isl_basic_map_gauss(bmap, NULL);
5482		}
5483	}
5484
5485	return bmap;
5486error:
5487	isl_mat_free(T);
5488	isl_mat_free(T2);
5489	isl_vec_free(v);
5490	return isl_basic_map_free(bmap);
5491}
5492
5493/* Shift the integer division at position "div" of "bmap"
5494 * by "shift" times the variable at position "pos".
5495 * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0
5496 * corresponds to the constant term.
5497 *
5498 * That is, if the integer division has the form
5499 *
5500 *	floor(f(x)/d)
5501 *
5502 * then replace it by
5503 *
5504 *	floor((f(x) + shift * d * x_pos)/d) - shift * x_pos
5505 */
5506__isl_give isl_basic_map *isl_basic_map_shift_div(
5507	__isl_take isl_basic_map *bmap, int div, int pos, isl_int shift)
5508{
5509	int i;
5510	isl_size total, n_div;
5511
5512	if (isl_int_is_zero(shift))
5513		return bmap;
5514	total = isl_basic_map_dim(bmap, isl_dim_all);
5515	n_div = isl_basic_map_dim(bmap, isl_dim_div);
5516	total -= n_div;
5517	if (total < 0 || n_div < 0)
5518		return isl_basic_map_free(bmap);
5519
5520	isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]);
5521
5522	for (i = 0; i < bmap->n_eq; ++i) {
5523		if (isl_int_is_zero(bmap->eq[i][1 + total + div]))
5524			continue;
5525		isl_int_submul(bmap->eq[i][pos],
5526				shift, bmap->eq[i][1 + total + div]);
5527	}
5528	for (i = 0; i < bmap->n_ineq; ++i) {
5529		if (isl_int_is_zero(bmap->ineq[i][1 + total + div]))
5530			continue;
5531		isl_int_submul(bmap->ineq[i][pos],
5532				shift, bmap->ineq[i][1 + total + div]);
5533	}
5534	for (i = 0; i < bmap->n_div; ++i) {
5535		if (isl_int_is_zero(bmap->div[i][0]))
5536			continue;
5537		if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div]))
5538			continue;
5539		isl_int_submul(bmap->div[i][1 + pos],
5540				shift, bmap->div[i][1 + 1 + total + div]);
5541	}
5542
5543	return bmap;
5544}
5545