1/*
2 * Copyright 2008-2009 Katholieke Universiteit Leuven
3 * Copyright 2010      INRIA Saclay
4 * Copyright 2012      Ecole Normale Superieure
5 *
6 * Use of this software is governed by the MIT license
7 *
8 * Written by Sven Verdoolaege, K.U.Leuven, Departement
9 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
11 * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
12 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
13 */
14
15#include <isl_ctx_private.h>
16#include <isl_map_private.h>
17#include <isl_seq.h>
18#include <isl/set.h>
19#include <isl/lp.h>
20#include <isl/map.h>
21#include "isl_equalities.h"
22#include "isl_sample.h"
23#include "isl_tab.h"
24#include <isl_mat_private.h>
25#include <isl_vec_private.h>
26
27#include <bset_to_bmap.c>
28#include <bset_from_bmap.c>
29#include <set_to_map.c>
30#include <set_from_map.c>
31
32__isl_give isl_basic_map *isl_basic_map_implicit_equalities(
33	__isl_take isl_basic_map *bmap)
34{
35	struct isl_tab *tab;
36
37	if (!bmap)
38		return bmap;
39
40	bmap = isl_basic_map_gauss(bmap, NULL);
41	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
42		return bmap;
43	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
44		return bmap;
45	if (bmap->n_ineq <= 1)
46		return bmap;
47
48	tab = isl_tab_from_basic_map(bmap, 0);
49	if (isl_tab_detect_implicit_equalities(tab) < 0)
50		goto error;
51	bmap = isl_basic_map_update_from_tab(bmap, tab);
52	isl_tab_free(tab);
53	bmap = isl_basic_map_gauss(bmap, NULL);
54	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
55	return bmap;
56error:
57	isl_tab_free(tab);
58	isl_basic_map_free(bmap);
59	return NULL;
60}
61
62__isl_give isl_basic_set *isl_basic_set_implicit_equalities(
63	__isl_take isl_basic_set *bset)
64{
65	return bset_from_bmap(
66		isl_basic_map_implicit_equalities(bset_to_bmap(bset)));
67}
68
69/* Make eq[row][col] of both bmaps equal so we can add the row
70 * add the column to the common matrix.
71 * Note that because of the echelon form, the columns of row row
72 * after column col are zero.
73 */
74static void set_common_multiple(
75	struct isl_basic_set *bset1, struct isl_basic_set *bset2,
76	unsigned row, unsigned col)
77{
78	isl_int m, c;
79
80	if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
81		return;
82
83	isl_int_init(c);
84	isl_int_init(m);
85	isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
86	isl_int_divexact(c, m, bset1->eq[row][col]);
87	isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
88	isl_int_divexact(c, m, bset2->eq[row][col]);
89	isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
90	isl_int_clear(c);
91	isl_int_clear(m);
92}
93
94/* Delete a given equality, moving all the following equalities one up.
95 */
96static void delete_row(__isl_keep isl_basic_set *bset, unsigned row)
97{
98	isl_int *t;
99	int r;
100
101	t = bset->eq[row];
102	bset->n_eq--;
103	for (r = row; r < bset->n_eq; ++r)
104		bset->eq[r] = bset->eq[r+1];
105	bset->eq[bset->n_eq] = t;
106}
107
108/* Make first row entries in column col of bset1 identical to
109 * those of bset2, using the fact that entry bset1->eq[row][col]=a
110 * is non-zero.  Initially, these elements of bset1 are all zero.
111 * For each row i < row, we set
112 *		A[i] = a * A[i] + B[i][col] * A[row]
113 *		B[i] = a * B[i]
114 * so that
115 *		A[i][col] = B[i][col] = a * old(B[i][col])
116 */
117static isl_stat construct_column(
118	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
119	unsigned row, unsigned col)
120{
121	int r;
122	isl_int a;
123	isl_int b;
124	isl_size total;
125
126	total = isl_basic_set_dim(bset1, isl_dim_set);
127	if (total < 0)
128		return isl_stat_error;
129
130	isl_int_init(a);
131	isl_int_init(b);
132	for (r = 0; r < row; ++r) {
133		if (isl_int_is_zero(bset2->eq[r][col]))
134			continue;
135		isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
136		isl_int_divexact(a, bset1->eq[row][col], b);
137		isl_int_divexact(b, bset2->eq[r][col], b);
138		isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
139					      b, bset1->eq[row], 1 + total);
140		isl_seq_scale(bset2->eq[r], bset2->eq[r], a, 1 + total);
141	}
142	isl_int_clear(a);
143	isl_int_clear(b);
144	delete_row(bset1, row);
145
146	return isl_stat_ok;
147}
148
149/* Make first row entries in column col of bset1 identical to
150 * those of bset2, using only these entries of the two matrices.
151 * Let t be the last row with different entries.
152 * For each row i < t, we set
153 *	A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
154 *	B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
155 * so that
156 *	A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
157 */
158static isl_bool transform_column(
159	__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2,
160	unsigned row, unsigned col)
161{
162	int i, t;
163	isl_int a, b, g;
164	isl_size total;
165
166	for (t = row-1; t >= 0; --t)
167		if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
168			break;
169	if (t < 0)
170		return isl_bool_false;
171
172	total = isl_basic_set_dim(bset1, isl_dim_set);
173	if (total < 0)
174		return isl_bool_error;
175	isl_int_init(a);
176	isl_int_init(b);
177	isl_int_init(g);
178	isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
179	for (i = 0; i < t; ++i) {
180		isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
181		isl_int_gcd(g, a, b);
182		isl_int_divexact(a, a, g);
183		isl_int_divexact(g, b, g);
184		isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
185				1 + total);
186		isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187				1 + total);
188	}
189	isl_int_clear(a);
190	isl_int_clear(b);
191	isl_int_clear(g);
192	delete_row(bset1, t);
193	delete_row(bset2, t);
194	return isl_bool_true;
195}
196
197/* The implementation is based on Section 5.2 of Michael Karr,
198 * "Affine Relationships Among Variables of a Program",
199 * except that the echelon form we use starts from the last column
200 * and that we are dealing with integer coefficients.
201 */
202static __isl_give isl_basic_set *affine_hull(
203	__isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2)
204{
205	isl_size dim;
206	unsigned total;
207	int col;
208	int row;
209
210	dim = isl_basic_set_dim(bset1, isl_dim_set);
211	if (dim < 0 || !bset2)
212		goto error;
213
214	total = 1 + dim;
215
216	row = 0;
217	for (col = total-1; col >= 0; --col) {
218		int is_zero1 = row >= bset1->n_eq ||
219			isl_int_is_zero(bset1->eq[row][col]);
220		int is_zero2 = row >= bset2->n_eq ||
221			isl_int_is_zero(bset2->eq[row][col]);
222		if (!is_zero1 && !is_zero2) {
223			set_common_multiple(bset1, bset2, row, col);
224			++row;
225		} else if (!is_zero1 && is_zero2) {
226			if (construct_column(bset1, bset2, row, col) < 0)
227				goto error;
228		} else if (is_zero1 && !is_zero2) {
229			if (construct_column(bset2, bset1, row, col) < 0)
230				goto error;
231		} else {
232			isl_bool transform;
233
234			transform = transform_column(bset1, bset2, row, col);
235			if (transform < 0)
236				goto error;
237			if (transform)
238				--row;
239		}
240	}
241	isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
242	isl_basic_set_free(bset2);
243	bset1 = isl_basic_set_normalize_constraints(bset1);
244	return bset1;
245error:
246	isl_basic_set_free(bset1);
247	isl_basic_set_free(bset2);
248	return NULL;
249}
250
251/* Find an integer point in the set represented by "tab"
252 * that lies outside of the equality "eq" e(x) = 0.
253 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
254 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
255 * The point, if found, is returned.
256 * If no point can be found, a zero-length vector is returned.
257 *
258 * Before solving an ILP problem, we first check if simply
259 * adding the normal of the constraint to one of the known
260 * integer points in the basic set represented by "tab"
261 * yields another point inside the basic set.
262 *
263 * The caller of this function ensures that the tableau is bounded or
264 * that tab->basis and tab->n_unbounded have been set appropriately.
265 */
266static __isl_give isl_vec *outside_point(struct isl_tab *tab, isl_int *eq,
267	int up)
268{
269	struct isl_ctx *ctx;
270	struct isl_vec *sample = NULL;
271	struct isl_tab_undo *snap;
272	unsigned dim;
273
274	if (!tab)
275		return NULL;
276	ctx = tab->mat->ctx;
277
278	dim = tab->n_var;
279	sample = isl_vec_alloc(ctx, 1 + dim);
280	if (!sample)
281		return NULL;
282	isl_int_set_si(sample->el[0], 1);
283	isl_seq_combine(sample->el + 1,
284		ctx->one, tab->bmap->sample->el + 1,
285		up ? ctx->one : ctx->negone, eq + 1, dim);
286	if (isl_basic_map_contains(tab->bmap, sample))
287		return sample;
288	isl_vec_free(sample);
289	sample = NULL;
290
291	snap = isl_tab_snap(tab);
292
293	if (!up)
294		isl_seq_neg(eq, eq, 1 + dim);
295	isl_int_sub_ui(eq[0], eq[0], 1);
296
297	if (isl_tab_extend_cons(tab, 1) < 0)
298		goto error;
299	if (isl_tab_add_ineq(tab, eq) < 0)
300		goto error;
301
302	sample = isl_tab_sample(tab);
303
304	isl_int_add_ui(eq[0], eq[0], 1);
305	if (!up)
306		isl_seq_neg(eq, eq, 1 + dim);
307
308	if (sample && isl_tab_rollback(tab, snap) < 0)
309		goto error;
310
311	return sample;
312error:
313	isl_vec_free(sample);
314	return NULL;
315}
316
317__isl_give isl_basic_set *isl_basic_set_recession_cone(
318	__isl_take isl_basic_set *bset)
319{
320	int i;
321	isl_bool empty;
322
323	empty = isl_basic_set_plain_is_empty(bset);
324	if (empty < 0)
325		return isl_basic_set_free(bset);
326	if (empty)
327		return bset;
328
329	bset = isl_basic_set_cow(bset);
330	if (isl_basic_set_check_no_locals(bset) < 0)
331		return isl_basic_set_free(bset);
332
333	for (i = 0; i < bset->n_eq; ++i)
334		isl_int_set_si(bset->eq[i][0], 0);
335
336	for (i = 0; i < bset->n_ineq; ++i)
337		isl_int_set_si(bset->ineq[i][0], 0);
338
339	ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
340	return isl_basic_set_implicit_equalities(bset);
341}
342
343/* Move "sample" to a point that is one up (or down) from the original
344 * point in dimension "pos".
345 */
346static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
347{
348	if (up)
349		isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
350	else
351		isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
352}
353
354/* Check if any points that are adjacent to "sample" also belong to "bset".
355 * If so, add them to "hull" and return the updated hull.
356 *
357 * Before checking whether and adjacent point belongs to "bset", we first
358 * check whether it already belongs to "hull" as this test is typically
359 * much cheaper.
360 */
361static __isl_give isl_basic_set *add_adjacent_points(
362	__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
363	__isl_keep isl_basic_set *bset)
364{
365	int i, up;
366	isl_size dim;
367
368	dim = isl_basic_set_dim(hull, isl_dim_set);
369	if (!sample || dim < 0)
370		goto error;
371
372	for (i = 0; i < dim; ++i) {
373		for (up = 0; up <= 1; ++up) {
374			int contains;
375			isl_basic_set *point;
376
377			adjacent_point(sample, i, up);
378			contains = isl_basic_set_contains(hull, sample);
379			if (contains < 0)
380				goto error;
381			if (contains) {
382				adjacent_point(sample, i, !up);
383				continue;
384			}
385			contains = isl_basic_set_contains(bset, sample);
386			if (contains < 0)
387				goto error;
388			if (contains) {
389				point = isl_basic_set_from_vec(
390							isl_vec_copy(sample));
391				hull = affine_hull(hull, point);
392			}
393			adjacent_point(sample, i, !up);
394			if (contains)
395				break;
396		}
397	}
398
399	isl_vec_free(sample);
400
401	return hull;
402error:
403	isl_vec_free(sample);
404	isl_basic_set_free(hull);
405	return NULL;
406}
407
408/* Extend an initial (under-)approximation of the affine hull of basic
409 * set represented by the tableau "tab"
410 * by looking for points that do not satisfy one of the equalities
411 * in the current approximation and adding them to that approximation
412 * until no such points can be found any more.
413 *
414 * The caller of this function ensures that "tab" is bounded or
415 * that tab->basis and tab->n_unbounded have been set appropriately.
416 *
417 * "bset" may be either NULL or the basic set represented by "tab".
418 * If "bset" is not NULL, we check for any point we find if any
419 * of its adjacent points also belong to "bset".
420 */
421static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
422	__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
423{
424	int i, j;
425	unsigned dim;
426
427	if (!tab || !hull)
428		goto error;
429
430	dim = tab->n_var;
431
432	if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
433		goto error;
434
435	for (i = 0; i < dim; ++i) {
436		struct isl_vec *sample;
437		struct isl_basic_set *point;
438		for (j = 0; j < hull->n_eq; ++j) {
439			sample = outside_point(tab, hull->eq[j], 1);
440			if (!sample)
441				goto error;
442			if (sample->size > 0)
443				break;
444			isl_vec_free(sample);
445			sample = outside_point(tab, hull->eq[j], 0);
446			if (!sample)
447				goto error;
448			if (sample->size > 0)
449				break;
450			isl_vec_free(sample);
451
452			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
453				goto error;
454		}
455		if (j == hull->n_eq)
456			break;
457		if (tab->samples &&
458		    isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
459			hull = isl_basic_set_free(hull);
460		if (bset)
461			hull = add_adjacent_points(hull, isl_vec_copy(sample),
462						    bset);
463		point = isl_basic_set_from_vec(sample);
464		hull = affine_hull(hull, point);
465		if (!hull)
466			return NULL;
467	}
468
469	return hull;
470error:
471	isl_basic_set_free(hull);
472	return NULL;
473}
474
475/* Construct an initial underapproximation of the hull of "bset"
476 * from "sample" and any of its adjacent points that also belong to "bset".
477 */
478static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
479	__isl_take isl_vec *sample)
480{
481	isl_basic_set *hull;
482
483	hull = isl_basic_set_from_vec(isl_vec_copy(sample));
484	hull = add_adjacent_points(hull, sample, bset);
485
486	return hull;
487}
488
489/* Look for all equalities satisfied by the integer points in bset,
490 * which is assumed to be bounded.
491 *
492 * The equalities are obtained by successively looking for
493 * a point that is affinely independent of the points found so far.
494 * In particular, for each equality satisfied by the points so far,
495 * we check if there is any point on a hyperplane parallel to the
496 * corresponding hyperplane shifted by at least one (in either direction).
497 */
498static __isl_give isl_basic_set *uset_affine_hull_bounded(
499	__isl_take isl_basic_set *bset)
500{
501	struct isl_vec *sample = NULL;
502	struct isl_basic_set *hull;
503	struct isl_tab *tab = NULL;
504	isl_size dim;
505
506	if (isl_basic_set_plain_is_empty(bset))
507		return bset;
508
509	dim = isl_basic_set_dim(bset, isl_dim_set);
510	if (dim < 0)
511		return isl_basic_set_free(bset);
512
513	if (bset->sample && bset->sample->size == 1 + dim) {
514		int contains = isl_basic_set_contains(bset, bset->sample);
515		if (contains < 0)
516			goto error;
517		if (contains) {
518			if (dim == 0)
519				return bset;
520			sample = isl_vec_copy(bset->sample);
521		} else {
522			isl_vec_free(bset->sample);
523			bset->sample = NULL;
524		}
525	}
526
527	tab = isl_tab_from_basic_set(bset, 1);
528	if (!tab)
529		goto error;
530	if (tab->empty) {
531		isl_tab_free(tab);
532		isl_vec_free(sample);
533		return isl_basic_set_set_to_empty(bset);
534	}
535
536	if (!sample) {
537		struct isl_tab_undo *snap;
538		snap = isl_tab_snap(tab);
539		sample = isl_tab_sample(tab);
540		if (isl_tab_rollback(tab, snap) < 0)
541			goto error;
542		isl_vec_free(tab->bmap->sample);
543		tab->bmap->sample = isl_vec_copy(sample);
544	}
545
546	if (!sample)
547		goto error;
548	if (sample->size == 0) {
549		isl_tab_free(tab);
550		isl_vec_free(sample);
551		return isl_basic_set_set_to_empty(bset);
552	}
553
554	hull = initialize_hull(bset, sample);
555
556	hull = extend_affine_hull(tab, hull, bset);
557	isl_basic_set_free(bset);
558	isl_tab_free(tab);
559
560	return hull;
561error:
562	isl_vec_free(sample);
563	isl_tab_free(tab);
564	isl_basic_set_free(bset);
565	return NULL;
566}
567
568/* Given an unbounded tableau and an integer point satisfying the tableau,
569 * construct an initial affine hull containing the recession cone
570 * shifted to the given point.
571 *
572 * The unbounded directions are taken from the last rows of the basis,
573 * which is assumed to have been initialized appropriately.
574 */
575static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
576	__isl_take isl_vec *vec)
577{
578	int i;
579	int k;
580	struct isl_basic_set *bset = NULL;
581	struct isl_ctx *ctx;
582	isl_size dim;
583
584	if (!vec || !tab)
585		return NULL;
586	ctx = vec->ctx;
587	isl_assert(ctx, vec->size != 0, goto error);
588
589	bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
590	dim = isl_basic_set_dim(bset, isl_dim_set);
591	if (dim < 0)
592		goto error;
593	dim -= tab->n_unbounded;
594	for (i = 0; i < dim; ++i) {
595		k = isl_basic_set_alloc_equality(bset);
596		if (k < 0)
597			goto error;
598		isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
599			    vec->size - 1);
600		isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
601				      vec->size - 1, &bset->eq[k][0]);
602		isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
603	}
604	bset->sample = vec;
605	bset = isl_basic_set_gauss(bset, NULL);
606
607	return bset;
608error:
609	isl_basic_set_free(bset);
610	isl_vec_free(vec);
611	return NULL;
612}
613
614/* Given a tableau of a set and a tableau of the corresponding
615 * recession cone, detect and add all equalities to the tableau.
616 * If the tableau is bounded, then we can simply keep the
617 * tableau in its state after the return from extend_affine_hull.
618 * However, if the tableau is unbounded, then
619 * isl_tab_set_initial_basis_with_cone will add some additional
620 * constraints to the tableau that have to be removed again.
621 * In this case, we therefore rollback to the state before
622 * any constraints were added and then add the equalities back in.
623 */
624struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
625	struct isl_tab *tab_cone)
626{
627	int j;
628	struct isl_vec *sample;
629	struct isl_basic_set *hull = NULL;
630	struct isl_tab_undo *snap;
631
632	if (!tab || !tab_cone)
633		goto error;
634
635	snap = isl_tab_snap(tab);
636
637	isl_mat_free(tab->basis);
638	tab->basis = NULL;
639
640	isl_assert(tab->mat->ctx, tab->bmap, goto error);
641	isl_assert(tab->mat->ctx, tab->samples, goto error);
642	isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
643	isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
644
645	if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
646		goto error;
647
648	sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
649	if (!sample)
650		goto error;
651
652	isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
653
654	isl_vec_free(tab->bmap->sample);
655	tab->bmap->sample = isl_vec_copy(sample);
656
657	if (tab->n_unbounded == 0)
658		hull = isl_basic_set_from_vec(isl_vec_copy(sample));
659	else
660		hull = initial_hull(tab, isl_vec_copy(sample));
661
662	for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
663		isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
664		hull = affine_hull(hull,
665				isl_basic_set_from_vec(isl_vec_copy(sample)));
666	}
667
668	isl_vec_free(sample);
669
670	hull = extend_affine_hull(tab, hull, NULL);
671	if (!hull)
672		goto error;
673
674	if (tab->n_unbounded == 0) {
675		isl_basic_set_free(hull);
676		return tab;
677	}
678
679	if (isl_tab_rollback(tab, snap) < 0)
680		goto error;
681
682	if (hull->n_eq > tab->n_zero) {
683		for (j = 0; j < hull->n_eq; ++j) {
684			isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
685			if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
686				goto error;
687		}
688	}
689
690	isl_basic_set_free(hull);
691
692	return tab;
693error:
694	isl_basic_set_free(hull);
695	isl_tab_free(tab);
696	return NULL;
697}
698
699/* Compute the affine hull of "bset", where "cone" is the recession cone
700 * of "bset".
701 *
702 * We first compute a unimodular transformation that puts the unbounded
703 * directions in the last dimensions.  In particular, we take a transformation
704 * that maps all equalities to equalities (in HNF) on the first dimensions.
705 * Let x be the original dimensions and y the transformed, with y_1 bounded
706 * and y_2 unbounded.
707 *
708 *	       [ y_1 ]			[ y_1 ]   [ Q_1 ]
709 *	x = U  [ y_2 ]			[ y_2 ] = [ Q_2 ] x
710 *
711 * Let's call the input basic set S.  We compute S' = preimage(S, U)
712 * and drop the final dimensions including any constraints involving them.
713 * This results in set S''.
714 * Then we compute the affine hull A'' of S''.
715 * Let F y_1 >= g be the constraint system of A''.  In the transformed
716 * space the y_2 are unbounded, so we can add them back without any constraints,
717 * resulting in
718 *
719 *		        [ y_1 ]
720 *		[ F 0 ] [ y_2 ] >= g
721 * or
722 *		        [ Q_1 ]
723 *		[ F 0 ] [ Q_2 ] x >= g
724 * or
725 *		F Q_1 x >= g
726 *
727 * The affine hull in the original space is then obtained as
728 * A = preimage(A'', Q_1).
729 */
730static __isl_give isl_basic_set *affine_hull_with_cone(
731	__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
732{
733	isl_size total;
734	unsigned cone_dim;
735	struct isl_basic_set *hull;
736	struct isl_mat *M, *U, *Q;
737
738	total = isl_basic_set_dim(cone, isl_dim_all);
739	if (!bset || total < 0)
740		goto error;
741
742	cone_dim = total - cone->n_eq;
743
744	M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
745	M = isl_mat_left_hermite(M, 0, &U, &Q);
746	if (!M)
747		goto error;
748	isl_mat_free(M);
749
750	U = isl_mat_lin_to_aff(U);
751	bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
752
753	bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
754							cone_dim);
755	bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
756
757	Q = isl_mat_lin_to_aff(Q);
758	Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
759
760	if (bset && bset->sample && bset->sample->size == 1 + total)
761		bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
762
763	hull = uset_affine_hull_bounded(bset);
764
765	if (!hull) {
766		isl_mat_free(Q);
767		isl_mat_free(U);
768	} else {
769		struct isl_vec *sample = isl_vec_copy(hull->sample);
770		U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
771		if (sample && sample->size > 0)
772			sample = isl_mat_vec_product(U, sample);
773		else
774			isl_mat_free(U);
775		hull = isl_basic_set_preimage(hull, Q);
776		if (hull) {
777			isl_vec_free(hull->sample);
778			hull->sample = sample;
779		} else
780			isl_vec_free(sample);
781	}
782
783	isl_basic_set_free(cone);
784
785	return hull;
786error:
787	isl_basic_set_free(bset);
788	isl_basic_set_free(cone);
789	return NULL;
790}
791
792/* Look for all equalities satisfied by the integer points in bset,
793 * which is assumed not to have any explicit equalities.
794 *
795 * The equalities are obtained by successively looking for
796 * a point that is affinely independent of the points found so far.
797 * In particular, for each equality satisfied by the points so far,
798 * we check if there is any point on a hyperplane parallel to the
799 * corresponding hyperplane shifted by at least one (in either direction).
800 *
801 * Before looking for any outside points, we first compute the recession
802 * cone.  The directions of this recession cone will always be part
803 * of the affine hull, so there is no need for looking for any points
804 * in these directions.
805 * In particular, if the recession cone is full-dimensional, then
806 * the affine hull is simply the whole universe.
807 */
808static __isl_give isl_basic_set *uset_affine_hull(
809	__isl_take isl_basic_set *bset)
810{
811	struct isl_basic_set *cone;
812	isl_size total;
813
814	if (isl_basic_set_plain_is_empty(bset))
815		return bset;
816
817	cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
818	if (!cone)
819		goto error;
820	if (cone->n_eq == 0) {
821		isl_space *space;
822		space = isl_basic_set_get_space(bset);
823		isl_basic_set_free(cone);
824		isl_basic_set_free(bset);
825		return isl_basic_set_universe(space);
826	}
827
828	total = isl_basic_set_dim(cone, isl_dim_all);
829	if (total < 0)
830		bset = isl_basic_set_free(bset);
831	if (cone->n_eq < total)
832		return affine_hull_with_cone(bset, cone);
833
834	isl_basic_set_free(cone);
835	return uset_affine_hull_bounded(bset);
836error:
837	isl_basic_set_free(bset);
838	return NULL;
839}
840
841/* Look for all equalities satisfied by the integer points in bmap
842 * that are independent of the equalities already explicitly available
843 * in bmap.
844 *
845 * We first remove all equalities already explicitly available,
846 * then look for additional equalities in the reduced space
847 * and then transform the result to the original space.
848 * The original equalities are _not_ added to this set.  This is
849 * the responsibility of the calling function.
850 * The resulting basic set has all meaning about the dimensions removed.
851 * In particular, dimensions that correspond to existential variables
852 * in bmap and that are found to be fixed are not removed.
853 */
854static __isl_give isl_basic_set *equalities_in_underlying_set(
855	__isl_take isl_basic_map *bmap)
856{
857	struct isl_mat *T1 = NULL;
858	struct isl_mat *T2 = NULL;
859	struct isl_basic_set *bset = NULL;
860	struct isl_basic_set *hull = NULL;
861
862	bset = isl_basic_map_underlying_set(bmap);
863	if (!bset)
864		return NULL;
865	if (bset->n_eq)
866		bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
867	if (!bset)
868		goto error;
869
870	hull = uset_affine_hull(bset);
871	if (!T2)
872		return hull;
873
874	if (!hull) {
875		isl_mat_free(T1);
876		isl_mat_free(T2);
877	} else {
878		struct isl_vec *sample = isl_vec_copy(hull->sample);
879		if (sample && sample->size > 0)
880			sample = isl_mat_vec_product(T1, sample);
881		else
882			isl_mat_free(T1);
883		hull = isl_basic_set_preimage(hull, T2);
884		if (hull) {
885			isl_vec_free(hull->sample);
886			hull->sample = sample;
887		} else
888			isl_vec_free(sample);
889	}
890
891	return hull;
892error:
893	isl_mat_free(T1);
894	isl_mat_free(T2);
895	isl_basic_set_free(bset);
896	isl_basic_set_free(hull);
897	return NULL;
898}
899
900/* Detect and make explicit all equalities satisfied by the (integer)
901 * points in bmap.
902 */
903__isl_give isl_basic_map *isl_basic_map_detect_equalities(
904	__isl_take isl_basic_map *bmap)
905{
906	int i, j;
907	isl_size total;
908	struct isl_basic_set *hull = NULL;
909
910	if (!bmap)
911		return NULL;
912	if (bmap->n_ineq == 0)
913		return bmap;
914	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
915		return bmap;
916	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
917		return bmap;
918	if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
919		return isl_basic_map_implicit_equalities(bmap);
920
921	hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
922	if (!hull)
923		goto error;
924	if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
925		isl_basic_set_free(hull);
926		return isl_basic_map_set_to_empty(bmap);
927	}
928	bmap = isl_basic_map_extend(bmap, 0, hull->n_eq, 0);
929	total = isl_basic_set_dim(hull, isl_dim_all);
930	if (total < 0)
931		goto error;
932	for (i = 0; i < hull->n_eq; ++i) {
933		j = isl_basic_map_alloc_equality(bmap);
934		if (j < 0)
935			goto error;
936		isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + total);
937	}
938	isl_vec_free(bmap->sample);
939	bmap->sample = isl_vec_copy(hull->sample);
940	isl_basic_set_free(hull);
941	ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
942	bmap = isl_basic_map_simplify(bmap);
943	return isl_basic_map_finalize(bmap);
944error:
945	isl_basic_set_free(hull);
946	isl_basic_map_free(bmap);
947	return NULL;
948}
949
950__isl_give isl_basic_set *isl_basic_set_detect_equalities(
951						__isl_take isl_basic_set *bset)
952{
953	return bset_from_bmap(
954		isl_basic_map_detect_equalities(bset_to_bmap(bset)));
955}
956
957__isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
958{
959	return isl_map_inline_foreach_basic_map(map,
960					    &isl_basic_map_detect_equalities);
961}
962
963__isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
964{
965	return set_from_map(isl_map_detect_equalities(set_to_map(set)));
966}
967
968/* Return the superset of "bmap" described by the equalities
969 * satisfied by "bmap" that are already known.
970 */
971__isl_give isl_basic_map *isl_basic_map_plain_affine_hull(
972	__isl_take isl_basic_map *bmap)
973{
974	bmap = isl_basic_map_cow(bmap);
975	if (bmap)
976		isl_basic_map_free_inequality(bmap, bmap->n_ineq);
977	bmap = isl_basic_map_finalize(bmap);
978	return bmap;
979}
980
981/* Return the superset of "bset" described by the equalities
982 * satisfied by "bset" that are already known.
983 */
984__isl_give isl_basic_set *isl_basic_set_plain_affine_hull(
985	__isl_take isl_basic_set *bset)
986{
987	return isl_basic_map_plain_affine_hull(bset);
988}
989
990/* After computing the rational affine hull (by detecting the implicit
991 * equalities), we compute the additional equalities satisfied by
992 * the integer points (if any) and add the original equalities back in.
993 */
994__isl_give isl_basic_map *isl_basic_map_affine_hull(
995	__isl_take isl_basic_map *bmap)
996{
997	bmap = isl_basic_map_detect_equalities(bmap);
998	bmap = isl_basic_map_plain_affine_hull(bmap);
999	return bmap;
1000}
1001
1002__isl_give isl_basic_set *isl_basic_set_affine_hull(
1003	__isl_take isl_basic_set *bset)
1004{
1005	return bset_from_bmap(isl_basic_map_affine_hull(bset_to_bmap(bset)));
1006}
1007
1008/* Given a rational affine matrix "M", add stride constraints to "bmap"
1009 * that ensure that
1010 *
1011 *		M(x)
1012 *
1013 * is an integer vector.  The variables x include all the variables
1014 * of "bmap" except the unknown divs.
1015 *
1016 * If d is the common denominator of M, then we need to impose that
1017 *
1018 *		d M(x) = 0 	mod d
1019 *
1020 * or
1021 *
1022 *		exists alpha : d M(x) = d alpha
1023 *
1024 * This function is similar to add_strides in isl_morph.c
1025 */
1026static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap,
1027	__isl_keep isl_mat *M, int n_known)
1028{
1029	int i, div, k;
1030	isl_int gcd;
1031
1032	if (isl_int_is_one(M->row[0][0]))
1033		return bmap;
1034
1035	bmap = isl_basic_map_extend(bmap, M->n_row - 1, M->n_row - 1, 0);
1036
1037	isl_int_init(gcd);
1038	for (i = 1; i < M->n_row; ++i) {
1039		isl_seq_gcd(M->row[i], M->n_col, &gcd);
1040		if (isl_int_is_divisible_by(gcd, M->row[0][0]))
1041			continue;
1042		div = isl_basic_map_alloc_div(bmap);
1043		if (div < 0)
1044			goto error;
1045		isl_int_set_si(bmap->div[div][0], 0);
1046		k = isl_basic_map_alloc_equality(bmap);
1047		if (k < 0)
1048			goto error;
1049		isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col);
1050		isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known);
1051		isl_int_set(bmap->eq[k][M->n_col - n_known + div],
1052			    M->row[0][0]);
1053	}
1054	isl_int_clear(gcd);
1055
1056	return bmap;
1057error:
1058	isl_int_clear(gcd);
1059	isl_basic_map_free(bmap);
1060	return NULL;
1061}
1062
1063/* If there are any equalities that involve (multiple) unknown divs,
1064 * then extract the stride information encoded by those equalities
1065 * and make it explicitly available in "bmap".
1066 *
1067 * We first sort the divs so that the unknown divs appear last and
1068 * then we count how many equalities involve these divs.
1069 *
1070 * Let these equalities be of the form
1071 *
1072 *		A(x) + B y = 0
1073 *
1074 * where y represents the unknown divs and x the remaining variables.
1075 * Let [H 0] be the Hermite Normal Form of B, i.e.,
1076 *
1077 *		B = [H 0] Q
1078 *
1079 * Then x is a solution of the equalities iff
1080 *
1081 *		H^-1 A(x) (= - [I 0] Q y)
1082 *
1083 * is an integer vector.  Let d be the common denominator of H^-1.
1084 * We impose
1085 *
1086 *		d H^-1 A(x) = d alpha
1087 *
1088 * in add_strides, with alpha fresh existentially quantified variables.
1089 */
1090static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit(
1091	__isl_take isl_basic_map *bmap)
1092{
1093	isl_bool known;
1094	int n_known;
1095	int n, n_col;
1096	isl_size v_div;
1097	isl_ctx *ctx;
1098	isl_mat *A, *B, *M;
1099
1100	known = isl_basic_map_divs_known(bmap);
1101	if (known < 0)
1102		return isl_basic_map_free(bmap);
1103	if (known)
1104		return bmap;
1105	bmap = isl_basic_map_sort_divs(bmap);
1106	bmap = isl_basic_map_gauss(bmap, NULL);
1107	if (!bmap)
1108		return NULL;
1109
1110	for (n_known = 0; n_known < bmap->n_div; ++n_known)
1111		if (isl_int_is_zero(bmap->div[n_known][0]))
1112			break;
1113	v_div = isl_basic_map_var_offset(bmap, isl_dim_div);
1114	if (v_div < 0)
1115		return isl_basic_map_free(bmap);
1116	for (n = 0; n < bmap->n_eq; ++n)
1117		if (isl_seq_first_non_zero(bmap->eq[n] + 1 + v_div + n_known,
1118					    bmap->n_div - n_known) == -1)
1119			break;
1120	if (n == 0)
1121		return bmap;
1122	ctx = isl_basic_map_get_ctx(bmap);
1123	B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + v_div + n_known);
1124	n_col = bmap->n_div - n_known;
1125	A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + v_div + n_known, n_col);
1126	A = isl_mat_left_hermite(A, 0, NULL, NULL);
1127	A = isl_mat_drop_cols(A, n, n_col - n);
1128	A = isl_mat_lin_to_aff(A);
1129	A = isl_mat_right_inverse(A);
1130	B = isl_mat_insert_zero_rows(B, 0, 1);
1131	B = isl_mat_set_element_si(B, 0, 0, 1);
1132	M = isl_mat_product(A, B);
1133	if (!M)
1134		return isl_basic_map_free(bmap);
1135	bmap = add_strides(bmap, M, n_known);
1136	bmap = isl_basic_map_gauss(bmap, NULL);
1137	isl_mat_free(M);
1138
1139	return bmap;
1140}
1141
1142/* Compute the affine hull of each basic map in "map" separately
1143 * and make all stride information explicit so that we can remove
1144 * all unknown divs without losing this information.
1145 * The result is also guaranteed to be gaussed.
1146 *
1147 * In simple cases where a div is determined by an equality,
1148 * calling isl_basic_map_gauss is enough to make the stride information
1149 * explicit, as it will derive an explicit representation for the div
1150 * from the equality.  If, however, the stride information
1151 * is encoded through multiple unknown divs then we need to make
1152 * some extra effort in isl_basic_map_make_strides_explicit.
1153 */
1154static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map)
1155{
1156	int i;
1157
1158	map = isl_map_cow(map);
1159	if (!map)
1160		return NULL;
1161
1162	for (i = 0; i < map->n; ++i) {
1163		map->p[i] = isl_basic_map_affine_hull(map->p[i]);
1164		map->p[i] = isl_basic_map_gauss(map->p[i], NULL);
1165		map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]);
1166		if (!map->p[i])
1167			return isl_map_free(map);
1168	}
1169
1170	return map;
1171}
1172
1173static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set)
1174{
1175	return isl_map_local_affine_hull(set);
1176}
1177
1178/* Return an empty basic map living in the same space as "map".
1179 */
1180static __isl_give isl_basic_map *replace_map_by_empty_basic_map(
1181	__isl_take isl_map *map)
1182{
1183	isl_space *space;
1184
1185	space = isl_map_get_space(map);
1186	isl_map_free(map);
1187	return isl_basic_map_empty(space);
1188}
1189
1190/* Compute the affine hull of "map".
1191 *
1192 * We first compute the affine hull of each basic map separately.
1193 * Then we align the divs and recompute the affine hulls of the basic
1194 * maps since some of them may now have extra divs.
1195 * In order to avoid performing parametric integer programming to
1196 * compute explicit expressions for the divs, possible leading to
1197 * an explosion in the number of basic maps, we first drop all unknown
1198 * divs before aligning the divs.  Note that isl_map_local_affine_hull tries
1199 * to make sure that all stride information is explicitly available
1200 * in terms of known divs.  This involves calling isl_basic_set_gauss,
1201 * which is also needed because affine_hull assumes its input has been gaussed,
1202 * while isl_map_affine_hull may be called on input that has not been gaussed,
1203 * in particular from initial_facet_constraint.
1204 * Similarly, align_divs may reorder some divs so that we need to
1205 * gauss the result again.
1206 * Finally, we combine the individual affine hulls into a single
1207 * affine hull.
1208 */
1209__isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map)
1210{
1211	struct isl_basic_map *model = NULL;
1212	struct isl_basic_map *hull = NULL;
1213	struct isl_set *set;
1214	isl_basic_set *bset;
1215
1216	map = isl_map_detect_equalities(map);
1217	map = isl_map_local_affine_hull(map);
1218	map = isl_map_remove_empty_parts(map);
1219	map = isl_map_remove_unknown_divs(map);
1220	map = isl_map_align_divs_internal(map);
1221
1222	if (!map)
1223		return NULL;
1224
1225	if (map->n == 0)
1226		return replace_map_by_empty_basic_map(map);
1227
1228	model = isl_basic_map_copy(map->p[0]);
1229	set = isl_map_underlying_set(map);
1230	set = isl_set_cow(set);
1231	set = isl_set_local_affine_hull(set);
1232	if (!set)
1233		goto error;
1234
1235	while (set->n > 1)
1236		set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1237
1238	bset = isl_basic_set_copy(set->p[0]);
1239	hull = isl_basic_map_overlying_set(bset, model);
1240	isl_set_free(set);
1241	hull = isl_basic_map_simplify(hull);
1242	return isl_basic_map_finalize(hull);
1243error:
1244	isl_basic_map_free(model);
1245	isl_set_free(set);
1246	return NULL;
1247}
1248
1249__isl_give isl_basic_set *isl_set_affine_hull(__isl_take isl_set *set)
1250{
1251	return bset_from_bmap(isl_map_affine_hull(set_to_map(set)));
1252}
1253