1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://tools.ietf.org/html/rfc1951
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) Id */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 *  Function prototypes.
65 */
66typedef enum {
67    need_more,      /* block not completed, need more input or more output */
68    block_done,     /* block flush performed */
69    finish_started, /* finish started, need only more output at next deflate */
70    finish_done     /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local int deflateStateCheck      OF((z_streamp strm));
77local void slide_hash     OF((deflate_state *s));
78local void fill_window    OF((deflate_state *s));
79local block_state deflate_stored OF((deflate_state *s, int flush));
80local block_state deflate_fast   OF((deflate_state *s, int flush));
81#ifndef FASTEST
82local block_state deflate_slow   OF((deflate_state *s, int flush));
83#endif
84local block_state deflate_rle    OF((deflate_state *s, int flush));
85local block_state deflate_huff   OF((deflate_state *s, int flush));
86local void lm_init        OF((deflate_state *s));
87local void putShortMSB    OF((deflate_state *s, uInt b));
88local void flush_pending  OF((z_streamp strm));
89local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
90#ifdef ASMV
91#  pragma message("Assembler code may have bugs -- use at your own risk")
92      void match_init OF((void)); /* asm code initialization */
93      uInt longest_match  OF((deflate_state *s, IPos cur_match));
94#else
95local uInt longest_match  OF((deflate_state *s, IPos cur_match));
96#endif
97
98#ifdef ZLIB_DEBUG
99local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                            int length));
101#endif
102
103/* ===========================================================================
104 * Local data
105 */
106
107#define NIL 0
108/* Tail of hash chains */
109
110#ifndef TOO_FAR
111#  define TOO_FAR 4096
112#endif
113/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115/* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120typedef struct config_s {
121   ush good_length; /* reduce lazy search above this match length */
122   ush max_lazy;    /* do not perform lazy search above this match length */
123   ush nice_length; /* quit search above this match length */
124   ush max_chain;
125   compress_func func;
126} config;
127
128#ifdef FASTEST
129local const config configuration_table[2] = {
130/*      good lazy nice chain */
131/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
132/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
133#else
134local const config configuration_table[10] = {
135/*      good lazy nice chain */
136/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
138/* 2 */ {4,    5, 16,    8, deflate_fast},
139/* 3 */ {4,    6, 32,   32, deflate_fast},
140
141/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
142/* 5 */ {8,   16, 32,   32, deflate_slow},
143/* 6 */ {8,   16, 128, 128, deflate_slow},
144/* 7 */ {8,   32, 128, 256, deflate_slow},
145/* 8 */ {32, 128, 258, 1024, deflate_slow},
146/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147#endif
148
149/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157/* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
160 *    characters, so that a running hash key can be computed from the previous
161 *    key instead of complete recalculation each time.
162 */
163#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166/* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN  assertion: all calls to INSERT_STRING are made with consecutive input
173 *    characters and the first MIN_MATCH bytes of str are valid (except for
174 *    the last MIN_MATCH-1 bytes of the input file).
175 */
176#ifdef FASTEST
177#define INSERT_STRING(s, str, match_head) \
178   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179    match_head = s->head[s->ins_h], \
180    s->head[s->ins_h] = (Pos)(str))
181#else
182#define INSERT_STRING(s, str, match_head) \
183   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185    s->head[s->ins_h] = (Pos)(str))
186#endif
187
188/* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192#define CLEAR_HASH(s) \
193    do { \
194        s->head[s->hash_size-1] = NIL; \
195        zmemzero((Bytef *)s->head, \
196                 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197    } while (0)
198
199/* ===========================================================================
200 * Slide the hash table when sliding the window down (could be avoided with 32
201 * bit values at the expense of memory usage). We slide even when level == 0 to
202 * keep the hash table consistent if we switch back to level > 0 later.
203 */
204local void slide_hash(s)
205    deflate_state *s;
206{
207    unsigned n, m;
208    Posf *p;
209    uInt wsize = s->w_size;
210
211    n = s->hash_size;
212    p = &s->head[n];
213    do {
214        m = *--p;
215        *p = (Pos)(m >= wsize ? m - wsize : NIL);
216    } while (--n);
217    n = wsize;
218#ifndef FASTEST
219    p = &s->prev[n];
220    do {
221        m = *--p;
222        *p = (Pos)(m >= wsize ? m - wsize : NIL);
223        /* If n is not on any hash chain, prev[n] is garbage but
224         * its value will never be used.
225         */
226    } while (--n);
227#endif
228}
229
230/* ========================================================================= */
231int ZEXPORT deflateInit_(strm, level, version, stream_size)
232    z_streamp strm;
233    int level;
234    const char *version;
235    int stream_size;
236{
237    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238                         Z_DEFAULT_STRATEGY, version, stream_size);
239    /* To do: ignore strm->next_in if we use it as window */
240}
241
242/* ========================================================================= */
243int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244                  version, stream_size)
245    z_streamp strm;
246    int  level;
247    int  method;
248    int  windowBits;
249    int  memLevel;
250    int  strategy;
251    const char *version;
252    int stream_size;
253{
254    deflate_state *s;
255    int wrap = 1;
256    static const char my_version[] = ZLIB_VERSION;
257
258    if (version == Z_NULL || version[0] != my_version[0] ||
259        stream_size != sizeof(z_stream)) {
260        return Z_VERSION_ERROR;
261    }
262    if (strm == Z_NULL) return Z_STREAM_ERROR;
263
264    strm->msg = Z_NULL;
265    if (strm->zalloc == (alloc_func)0) {
266#ifdef Z_SOLO
267        return Z_STREAM_ERROR;
268#else
269        strm->zalloc = zcalloc;
270        strm->opaque = (voidpf)0;
271#endif
272    }
273    if (strm->zfree == (free_func)0)
274#ifdef Z_SOLO
275        return Z_STREAM_ERROR;
276#else
277        strm->zfree = zcfree;
278#endif
279
280#ifdef FASTEST
281    if (level != 0) level = 1;
282#else
283    if (level == Z_DEFAULT_COMPRESSION) level = 6;
284#endif
285
286    if (windowBits < 0) { /* suppress zlib wrapper */
287        wrap = 0;
288        windowBits = -windowBits;
289    }
290#ifdef GZIP
291    else if (windowBits > 15) {
292        wrap = 2;       /* write gzip wrapper instead */
293        windowBits -= 16;
294    }
295#endif
296    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
297        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
298        strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
299        return Z_STREAM_ERROR;
300    }
301    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
302    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
303    if (s == Z_NULL) return Z_MEM_ERROR;
304    strm->state = (struct internal_state FAR *)s;
305    s->strm = strm;
306    s->status = INIT_STATE;     /* to pass state test in deflateReset() */
307
308    s->wrap = wrap;
309    s->gzhead = Z_NULL;
310    s->w_bits = (uInt)windowBits;
311    s->w_size = 1 << s->w_bits;
312    s->w_mask = s->w_size - 1;
313
314    s->hash_bits = (uInt)memLevel + 7;
315    s->hash_size = 1 << s->hash_bits;
316    s->hash_mask = s->hash_size - 1;
317    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
318
319    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
320    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
321    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
322
323    s->high_water = 0;      /* nothing written to s->window yet */
324
325    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
326
327    /* We overlay pending_buf and sym_buf. This works since the average size
328     * for length/distance pairs over any compressed block is assured to be 31
329     * bits or less.
330     *
331     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
332     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
333     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
334     * possible fixed-codes length/distance pair is then 31 bits total.
335     *
336     * sym_buf starts one-fourth of the way into pending_buf. So there are
337     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
338     * in sym_buf is three bytes -- two for the distance and one for the
339     * literal/length. As each symbol is consumed, the pointer to the next
340     * sym_buf value to read moves forward three bytes. From that symbol, up to
341     * 31 bits are written to pending_buf. The closest the written pending_buf
342     * bits gets to the next sym_buf symbol to read is just before the last
343     * code is written. At that time, 31*(n-2) bits have been written, just
344     * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
345     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
346     * symbols are written.) The closest the writing gets to what is unread is
347     * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
348     * can range from 128 to 32768.
349     *
350     * Therefore, at a minimum, there are 142 bits of space between what is
351     * written and what is read in the overlain buffers, so the symbols cannot
352     * be overwritten by the compressed data. That space is actually 139 bits,
353     * due to the three-bit fixed-code block header.
354     *
355     * That covers the case where either Z_FIXED is specified, forcing fixed
356     * codes, or when the use of fixed codes is chosen, because that choice
357     * results in a smaller compressed block than dynamic codes. That latter
358     * condition then assures that the above analysis also covers all dynamic
359     * blocks. A dynamic-code block will only be chosen to be emitted if it has
360     * fewer bits than a fixed-code block would for the same set of symbols.
361     * Therefore its average symbol length is assured to be less than 31. So
362     * the compressed data for a dynamic block also cannot overwrite the
363     * symbols from which it is being constructed.
364     */
365
366    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
367    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
368
369    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
370        s->pending_buf == Z_NULL) {
371        s->status = FINISH_STATE;
372        strm->msg = ERR_MSG(Z_MEM_ERROR);
373        deflateEnd (strm);
374        return Z_MEM_ERROR;
375    }
376    s->sym_buf = s->pending_buf + s->lit_bufsize;
377    s->sym_end = (s->lit_bufsize - 1) * 3;
378    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
379     * on 16 bit machines and because stored blocks are restricted to
380     * 64K-1 bytes.
381     */
382
383    s->level = level;
384    s->strategy = strategy;
385    s->method = (Byte)method;
386
387    return deflateReset(strm);
388}
389
390/* =========================================================================
391 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
392 */
393local int deflateStateCheck (strm)
394    z_streamp strm;
395{
396    deflate_state *s;
397    if (strm == Z_NULL ||
398        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
399        return 1;
400    s = strm->state;
401    if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
402#ifdef GZIP
403                                           s->status != GZIP_STATE &&
404#endif
405                                           s->status != EXTRA_STATE &&
406                                           s->status != NAME_STATE &&
407                                           s->status != COMMENT_STATE &&
408                                           s->status != HCRC_STATE &&
409                                           s->status != BUSY_STATE &&
410                                           s->status != FINISH_STATE))
411        return 1;
412    return 0;
413}
414
415/* ========================================================================= */
416int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
417    z_streamp strm;
418    const Bytef *dictionary;
419    uInt  dictLength;
420{
421    deflate_state *s;
422    uInt str, n;
423    int wrap;
424    unsigned avail;
425    z_const unsigned char *next;
426
427    if (deflateStateCheck(strm) || dictionary == Z_NULL)
428        return Z_STREAM_ERROR;
429    s = strm->state;
430    wrap = s->wrap;
431    if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
432        return Z_STREAM_ERROR;
433
434    /* when using zlib wrappers, compute Adler-32 for provided dictionary */
435    if (wrap == 1)
436        strm->adler = adler32(strm->adler, dictionary, dictLength);
437    s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
438
439    /* if dictionary would fill window, just replace the history */
440    if (dictLength >= s->w_size) {
441        if (wrap == 0) {            /* already empty otherwise */
442            CLEAR_HASH(s);
443            s->strstart = 0;
444            s->block_start = 0L;
445            s->insert = 0;
446        }
447        dictionary += dictLength - s->w_size;  /* use the tail */
448        dictLength = s->w_size;
449    }
450
451    /* insert dictionary into window and hash */
452    avail = strm->avail_in;
453    next = strm->next_in;
454    strm->avail_in = dictLength;
455    strm->next_in = (z_const Bytef *)dictionary;
456    fill_window(s);
457    while (s->lookahead >= MIN_MATCH) {
458        str = s->strstart;
459        n = s->lookahead - (MIN_MATCH-1);
460        do {
461            UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
462#ifndef FASTEST
463            s->prev[str & s->w_mask] = s->head[s->ins_h];
464#endif
465            s->head[s->ins_h] = (Pos)str;
466            str++;
467        } while (--n);
468        s->strstart = str;
469        s->lookahead = MIN_MATCH-1;
470        fill_window(s);
471    }
472    s->strstart += s->lookahead;
473    s->block_start = (long)s->strstart;
474    s->insert = s->lookahead;
475    s->lookahead = 0;
476    s->match_length = s->prev_length = MIN_MATCH-1;
477    s->match_available = 0;
478    strm->next_in = next;
479    strm->avail_in = avail;
480    s->wrap = wrap;
481    return Z_OK;
482}
483
484/* ========================================================================= */
485int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
486    z_streamp strm;
487    Bytef *dictionary;
488    uInt  *dictLength;
489{
490    deflate_state *s;
491    uInt len;
492
493    if (deflateStateCheck(strm))
494        return Z_STREAM_ERROR;
495    s = strm->state;
496    len = s->strstart + s->lookahead;
497    if (len > s->w_size)
498        len = s->w_size;
499    if (dictionary != Z_NULL && len)
500        zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
501    if (dictLength != Z_NULL)
502        *dictLength = len;
503    return Z_OK;
504}
505
506/* ========================================================================= */
507int ZEXPORT deflateResetKeep (strm)
508    z_streamp strm;
509{
510    deflate_state *s;
511
512    if (deflateStateCheck(strm)) {
513        return Z_STREAM_ERROR;
514    }
515
516    strm->total_in = strm->total_out = 0;
517    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
518    strm->data_type = Z_UNKNOWN;
519
520    s = (deflate_state *)strm->state;
521    s->pending = 0;
522    s->pending_out = s->pending_buf;
523
524    if (s->wrap < 0) {
525        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
526    }
527    s->status =
528#ifdef GZIP
529        s->wrap == 2 ? GZIP_STATE :
530#endif
531        INIT_STATE;
532    strm->adler =
533#ifdef GZIP
534        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
535#endif
536        adler32(0L, Z_NULL, 0);
537    s->last_flush = -2;
538
539    _tr_init(s);
540
541    return Z_OK;
542}
543
544/* ========================================================================= */
545int ZEXPORT deflateReset (strm)
546    z_streamp strm;
547{
548    int ret;
549
550    ret = deflateResetKeep(strm);
551    if (ret == Z_OK)
552        lm_init(strm->state);
553    return ret;
554}
555
556/* ========================================================================= */
557int ZEXPORT deflateSetHeader (strm, head)
558    z_streamp strm;
559    gz_headerp head;
560{
561    if (deflateStateCheck(strm) || strm->state->wrap != 2)
562        return Z_STREAM_ERROR;
563    strm->state->gzhead = head;
564    return Z_OK;
565}
566
567/* ========================================================================= */
568int ZEXPORT deflatePending (strm, pending, bits)
569    unsigned *pending;
570    int *bits;
571    z_streamp strm;
572{
573    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
574    if (pending != Z_NULL)
575        *pending = strm->state->pending;
576    if (bits != Z_NULL)
577        *bits = strm->state->bi_valid;
578    return Z_OK;
579}
580
581/* ========================================================================= */
582int ZEXPORT deflatePrime (strm, bits, value)
583    z_streamp strm;
584    int bits;
585    int value;
586{
587    deflate_state *s;
588    int put;
589
590    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
591    s = strm->state;
592    if (bits < 0 || bits > 16 ||
593        s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
594        return Z_BUF_ERROR;
595    do {
596        put = Buf_size - s->bi_valid;
597        if (put > bits)
598            put = bits;
599        s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
600        s->bi_valid += put;
601        _tr_flush_bits(s);
602        value >>= put;
603        bits -= put;
604    } while (bits);
605    return Z_OK;
606}
607
608/* ========================================================================= */
609int ZEXPORT deflateParams(strm, level, strategy)
610    z_streamp strm;
611    int level;
612    int strategy;
613{
614    deflate_state *s;
615    compress_func func;
616
617    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
618    s = strm->state;
619
620#ifdef FASTEST
621    if (level != 0) level = 1;
622#else
623    if (level == Z_DEFAULT_COMPRESSION) level = 6;
624#endif
625    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
626        return Z_STREAM_ERROR;
627    }
628    func = configuration_table[s->level].func;
629
630    if ((strategy != s->strategy || func != configuration_table[level].func) &&
631        s->last_flush != -2) {
632        /* Flush the last buffer: */
633        int err = deflate(strm, Z_BLOCK);
634        if (err == Z_STREAM_ERROR)
635            return err;
636        if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
637            return Z_BUF_ERROR;
638    }
639    if (s->level != level) {
640        if (s->level == 0 && s->matches != 0) {
641            if (s->matches == 1)
642                slide_hash(s);
643            else
644                CLEAR_HASH(s);
645            s->matches = 0;
646        }
647        s->level = level;
648        s->max_lazy_match   = configuration_table[level].max_lazy;
649        s->good_match       = configuration_table[level].good_length;
650        s->nice_match       = configuration_table[level].nice_length;
651        s->max_chain_length = configuration_table[level].max_chain;
652    }
653    s->strategy = strategy;
654    return Z_OK;
655}
656
657/* ========================================================================= */
658int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
659    z_streamp strm;
660    int good_length;
661    int max_lazy;
662    int nice_length;
663    int max_chain;
664{
665    deflate_state *s;
666
667    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
668    s = strm->state;
669    s->good_match = (uInt)good_length;
670    s->max_lazy_match = (uInt)max_lazy;
671    s->nice_match = nice_length;
672    s->max_chain_length = (uInt)max_chain;
673    return Z_OK;
674}
675
676/* =========================================================================
677 * For the default windowBits of 15 and memLevel of 8, this function returns
678 * a close to exact, as well as small, upper bound on the compressed size.
679 * They are coded as constants here for a reason--if the #define's are
680 * changed, then this function needs to be changed as well.  The return
681 * value for 15 and 8 only works for those exact settings.
682 *
683 * For any setting other than those defaults for windowBits and memLevel,
684 * the value returned is a conservative worst case for the maximum expansion
685 * resulting from using fixed blocks instead of stored blocks, which deflate
686 * can emit on compressed data for some combinations of the parameters.
687 *
688 * This function could be more sophisticated to provide closer upper bounds for
689 * every combination of windowBits and memLevel.  But even the conservative
690 * upper bound of about 14% expansion does not seem onerous for output buffer
691 * allocation.
692 */
693uLong ZEXPORT deflateBound(strm, sourceLen)
694    z_streamp strm;
695    uLong sourceLen;
696{
697    deflate_state *s;
698    uLong complen, wraplen;
699
700    /* conservative upper bound for compressed data */
701    complen = sourceLen +
702              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
703
704    /* if can't get parameters, return conservative bound plus zlib wrapper */
705    if (deflateStateCheck(strm))
706        return complen + 6;
707
708    /* compute wrapper length */
709    s = strm->state;
710    switch (s->wrap) {
711    case 0:                                 /* raw deflate */
712        wraplen = 0;
713        break;
714    case 1:                                 /* zlib wrapper */
715        wraplen = 6 + (s->strstart ? 4 : 0);
716        break;
717#ifdef GZIP
718    case 2:                                 /* gzip wrapper */
719        wraplen = 18;
720        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
721            Bytef *str;
722            if (s->gzhead->extra != Z_NULL)
723                wraplen += 2 + s->gzhead->extra_len;
724            str = s->gzhead->name;
725            if (str != Z_NULL)
726                do {
727                    wraplen++;
728                } while (*str++);
729            str = s->gzhead->comment;
730            if (str != Z_NULL)
731                do {
732                    wraplen++;
733                } while (*str++);
734            if (s->gzhead->hcrc)
735                wraplen += 2;
736        }
737        break;
738#endif
739    default:                                /* for compiler happiness */
740        wraplen = 6;
741    }
742
743    /* if not default parameters, return conservative bound */
744    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
745        return complen + wraplen;
746
747    /* default settings: return tight bound for that case */
748    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
749           (sourceLen >> 25) + 13 - 6 + wraplen;
750}
751
752/* =========================================================================
753 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
754 * IN assertion: the stream state is correct and there is enough room in
755 * pending_buf.
756 */
757local void putShortMSB (s, b)
758    deflate_state *s;
759    uInt b;
760{
761    put_byte(s, (Byte)(b >> 8));
762    put_byte(s, (Byte)(b & 0xff));
763}
764
765/* =========================================================================
766 * Flush as much pending output as possible. All deflate() output, except for
767 * some deflate_stored() output, goes through this function so some
768 * applications may wish to modify it to avoid allocating a large
769 * strm->next_out buffer and copying into it. (See also read_buf()).
770 */
771local void flush_pending(strm)
772    z_streamp strm;
773{
774    unsigned len;
775    deflate_state *s = strm->state;
776
777    _tr_flush_bits(s);
778    len = s->pending;
779    if (len > strm->avail_out) len = strm->avail_out;
780    if (len == 0) return;
781
782    zmemcpy(strm->next_out, s->pending_out, len);
783    strm->next_out  += len;
784    s->pending_out  += len;
785    strm->total_out += len;
786    strm->avail_out -= len;
787    s->pending      -= len;
788    if (s->pending == 0) {
789        s->pending_out = s->pending_buf;
790    }
791}
792
793/* ===========================================================================
794 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
795 */
796#define HCRC_UPDATE(beg) \
797    do { \
798        if (s->gzhead->hcrc && s->pending > (beg)) \
799            strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
800                                s->pending - (beg)); \
801    } while (0)
802
803/* ========================================================================= */
804int ZEXPORT deflate (strm, flush)
805    z_streamp strm;
806    int flush;
807{
808    int old_flush; /* value of flush param for previous deflate call */
809    deflate_state *s;
810
811    if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
812        return Z_STREAM_ERROR;
813    }
814    s = strm->state;
815
816    if (strm->next_out == Z_NULL ||
817        (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
818        (s->status == FINISH_STATE && flush != Z_FINISH)) {
819        ERR_RETURN(strm, Z_STREAM_ERROR);
820    }
821    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
822
823    old_flush = s->last_flush;
824    s->last_flush = flush;
825
826    /* Flush as much pending output as possible */
827    if (s->pending != 0) {
828        flush_pending(strm);
829        if (strm->avail_out == 0) {
830            /* Since avail_out is 0, deflate will be called again with
831             * more output space, but possibly with both pending and
832             * avail_in equal to zero. There won't be anything to do,
833             * but this is not an error situation so make sure we
834             * return OK instead of BUF_ERROR at next call of deflate:
835             */
836            s->last_flush = -1;
837            return Z_OK;
838        }
839
840    /* Make sure there is something to do and avoid duplicate consecutive
841     * flushes. For repeated and useless calls with Z_FINISH, we keep
842     * returning Z_STREAM_END instead of Z_BUF_ERROR.
843     */
844    } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
845               flush != Z_FINISH) {
846        ERR_RETURN(strm, Z_BUF_ERROR);
847    }
848
849    /* User must not provide more input after the first FINISH: */
850    if (s->status == FINISH_STATE && strm->avail_in != 0) {
851        ERR_RETURN(strm, Z_BUF_ERROR);
852    }
853
854    /* Write the header */
855    if (s->status == INIT_STATE && s->wrap == 0)
856        s->status = BUSY_STATE;
857    if (s->status == INIT_STATE) {
858        /* zlib header */
859        uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
860        uInt level_flags;
861
862        if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
863            level_flags = 0;
864        else if (s->level < 6)
865            level_flags = 1;
866        else if (s->level == 6)
867            level_flags = 2;
868        else
869            level_flags = 3;
870        header |= (level_flags << 6);
871        if (s->strstart != 0) header |= PRESET_DICT;
872        header += 31 - (header % 31);
873
874        putShortMSB(s, header);
875
876        /* Save the adler32 of the preset dictionary: */
877        if (s->strstart != 0) {
878            putShortMSB(s, (uInt)(strm->adler >> 16));
879            putShortMSB(s, (uInt)(strm->adler & 0xffff));
880        }
881        strm->adler = adler32(0L, Z_NULL, 0);
882        s->status = BUSY_STATE;
883
884        /* Compression must start with an empty pending buffer */
885        flush_pending(strm);
886        if (s->pending != 0) {
887            s->last_flush = -1;
888            return Z_OK;
889        }
890    }
891#ifdef GZIP
892    if (s->status == GZIP_STATE) {
893        /* gzip header */
894        strm->adler = crc32(0L, Z_NULL, 0);
895        put_byte(s, 31);
896        put_byte(s, 139);
897        put_byte(s, 8);
898        if (s->gzhead == Z_NULL) {
899            put_byte(s, 0);
900            put_byte(s, 0);
901            put_byte(s, 0);
902            put_byte(s, 0);
903            put_byte(s, 0);
904            put_byte(s, s->level == 9 ? 2 :
905                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
906                      4 : 0));
907            put_byte(s, OS_CODE);
908            s->status = BUSY_STATE;
909
910            /* Compression must start with an empty pending buffer */
911            flush_pending(strm);
912            if (s->pending != 0) {
913                s->last_flush = -1;
914                return Z_OK;
915            }
916        }
917        else {
918            put_byte(s, (s->gzhead->text ? 1 : 0) +
919                     (s->gzhead->hcrc ? 2 : 0) +
920                     (s->gzhead->extra == Z_NULL ? 0 : 4) +
921                     (s->gzhead->name == Z_NULL ? 0 : 8) +
922                     (s->gzhead->comment == Z_NULL ? 0 : 16)
923                     );
924            put_byte(s, (Byte)(s->gzhead->time & 0xff));
925            put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
926            put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
927            put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
928            put_byte(s, s->level == 9 ? 2 :
929                     (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
930                      4 : 0));
931            put_byte(s, s->gzhead->os & 0xff);
932            if (s->gzhead->extra != Z_NULL) {
933                put_byte(s, s->gzhead->extra_len & 0xff);
934                put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
935            }
936            if (s->gzhead->hcrc)
937                strm->adler = crc32(strm->adler, s->pending_buf,
938                                    s->pending);
939            s->gzindex = 0;
940            s->status = EXTRA_STATE;
941        }
942    }
943    if (s->status == EXTRA_STATE) {
944        if (s->gzhead->extra != Z_NULL) {
945            ulg beg = s->pending;   /* start of bytes to update crc */
946            uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
947            while (s->pending + left > s->pending_buf_size) {
948                uInt copy = s->pending_buf_size - s->pending;
949                zmemcpy(s->pending_buf + s->pending,
950                        s->gzhead->extra + s->gzindex, copy);
951                s->pending = s->pending_buf_size;
952                HCRC_UPDATE(beg);
953                s->gzindex += copy;
954                flush_pending(strm);
955                if (s->pending != 0) {
956                    s->last_flush = -1;
957                    return Z_OK;
958                }
959                beg = 0;
960                left -= copy;
961            }
962            zmemcpy(s->pending_buf + s->pending,
963                    s->gzhead->extra + s->gzindex, left);
964            s->pending += left;
965            HCRC_UPDATE(beg);
966            s->gzindex = 0;
967        }
968        s->status = NAME_STATE;
969    }
970    if (s->status == NAME_STATE) {
971        if (s->gzhead->name != Z_NULL) {
972            ulg beg = s->pending;   /* start of bytes to update crc */
973            int val;
974            do {
975                if (s->pending == s->pending_buf_size) {
976                    HCRC_UPDATE(beg);
977                    flush_pending(strm);
978                    if (s->pending != 0) {
979                        s->last_flush = -1;
980                        return Z_OK;
981                    }
982                    beg = 0;
983                }
984                val = s->gzhead->name[s->gzindex++];
985                put_byte(s, val);
986            } while (val != 0);
987            HCRC_UPDATE(beg);
988            s->gzindex = 0;
989        }
990        s->status = COMMENT_STATE;
991    }
992    if (s->status == COMMENT_STATE) {
993        if (s->gzhead->comment != Z_NULL) {
994            ulg beg = s->pending;   /* start of bytes to update crc */
995            int val;
996            do {
997                if (s->pending == s->pending_buf_size) {
998                    HCRC_UPDATE(beg);
999                    flush_pending(strm);
1000                    if (s->pending != 0) {
1001                        s->last_flush = -1;
1002                        return Z_OK;
1003                    }
1004                    beg = 0;
1005                }
1006                val = s->gzhead->comment[s->gzindex++];
1007                put_byte(s, val);
1008            } while (val != 0);
1009            HCRC_UPDATE(beg);
1010        }
1011        s->status = HCRC_STATE;
1012    }
1013    if (s->status == HCRC_STATE) {
1014        if (s->gzhead->hcrc) {
1015            if (s->pending + 2 > s->pending_buf_size) {
1016                flush_pending(strm);
1017                if (s->pending != 0) {
1018                    s->last_flush = -1;
1019                    return Z_OK;
1020                }
1021            }
1022            put_byte(s, (Byte)(strm->adler & 0xff));
1023            put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1024            strm->adler = crc32(0L, Z_NULL, 0);
1025        }
1026        s->status = BUSY_STATE;
1027
1028        /* Compression must start with an empty pending buffer */
1029        flush_pending(strm);
1030        if (s->pending != 0) {
1031            s->last_flush = -1;
1032            return Z_OK;
1033        }
1034    }
1035#endif
1036
1037    /* Start a new block or continue the current one.
1038     */
1039    if (strm->avail_in != 0 || s->lookahead != 0 ||
1040        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1041        block_state bstate;
1042
1043        bstate = s->level == 0 ? deflate_stored(s, flush) :
1044                 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1045                 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1046                 (*(configuration_table[s->level].func))(s, flush);
1047
1048        if (bstate == finish_started || bstate == finish_done) {
1049            s->status = FINISH_STATE;
1050        }
1051        if (bstate == need_more || bstate == finish_started) {
1052            if (strm->avail_out == 0) {
1053                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1054            }
1055            return Z_OK;
1056            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1057             * of deflate should use the same flush parameter to make sure
1058             * that the flush is complete. So we don't have to output an
1059             * empty block here, this will be done at next call. This also
1060             * ensures that for a very small output buffer, we emit at most
1061             * one empty block.
1062             */
1063        }
1064        if (bstate == block_done) {
1065            if (flush == Z_PARTIAL_FLUSH) {
1066                _tr_align(s);
1067            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1068                _tr_stored_block(s, (char*)0, 0L, 0);
1069                /* For a full flush, this empty block will be recognized
1070                 * as a special marker by inflate_sync().
1071                 */
1072                if (flush == Z_FULL_FLUSH) {
1073                    CLEAR_HASH(s);             /* forget history */
1074                    if (s->lookahead == 0) {
1075                        s->strstart = 0;
1076                        s->block_start = 0L;
1077                        s->insert = 0;
1078                    }
1079                }
1080            }
1081            flush_pending(strm);
1082            if (strm->avail_out == 0) {
1083              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1084              return Z_OK;
1085            }
1086        }
1087    }
1088
1089    if (flush != Z_FINISH) return Z_OK;
1090    if (s->wrap <= 0) return Z_STREAM_END;
1091
1092    /* Write the trailer */
1093#ifdef GZIP
1094    if (s->wrap == 2) {
1095        put_byte(s, (Byte)(strm->adler & 0xff));
1096        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1097        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1098        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1099        put_byte(s, (Byte)(strm->total_in & 0xff));
1100        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1101        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1102        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1103    }
1104    else
1105#endif
1106    {
1107        putShortMSB(s, (uInt)(strm->adler >> 16));
1108        putShortMSB(s, (uInt)(strm->adler & 0xffff));
1109    }
1110    flush_pending(strm);
1111    /* If avail_out is zero, the application will call deflate again
1112     * to flush the rest.
1113     */
1114    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1115    return s->pending != 0 ? Z_OK : Z_STREAM_END;
1116}
1117
1118/* ========================================================================= */
1119int ZEXPORT deflateEnd (strm)
1120    z_streamp strm;
1121{
1122    int status;
1123
1124    if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1125
1126    status = strm->state->status;
1127
1128    /* Deallocate in reverse order of allocations: */
1129    TRY_FREE(strm, strm->state->pending_buf);
1130    TRY_FREE(strm, strm->state->head);
1131    TRY_FREE(strm, strm->state->prev);
1132    TRY_FREE(strm, strm->state->window);
1133
1134    ZFREE(strm, strm->state);
1135    strm->state = Z_NULL;
1136
1137    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1138}
1139
1140/* =========================================================================
1141 * Copy the source state to the destination state.
1142 * To simplify the source, this is not supported for 16-bit MSDOS (which
1143 * doesn't have enough memory anyway to duplicate compression states).
1144 */
1145int ZEXPORT deflateCopy (dest, source)
1146    z_streamp dest;
1147    z_streamp source;
1148{
1149#ifdef MAXSEG_64K
1150    return Z_STREAM_ERROR;
1151#else
1152    deflate_state *ds;
1153    deflate_state *ss;
1154
1155
1156    if (deflateStateCheck(source) || dest == Z_NULL) {
1157        return Z_STREAM_ERROR;
1158    }
1159
1160    ss = source->state;
1161
1162    zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1163
1164    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1165    if (ds == Z_NULL) return Z_MEM_ERROR;
1166    dest->state = (struct internal_state FAR *) ds;
1167    zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1168    ds->strm = dest;
1169
1170    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1171    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1172    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1173    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1174
1175    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1176        ds->pending_buf == Z_NULL) {
1177        deflateEnd (dest);
1178        return Z_MEM_ERROR;
1179    }
1180    /* following zmemcpy do not work for 16-bit MSDOS */
1181    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1182    zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1183    zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1184    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1185
1186    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1187    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1188
1189    ds->l_desc.dyn_tree = ds->dyn_ltree;
1190    ds->d_desc.dyn_tree = ds->dyn_dtree;
1191    ds->bl_desc.dyn_tree = ds->bl_tree;
1192
1193    return Z_OK;
1194#endif /* MAXSEG_64K */
1195}
1196
1197/* ===========================================================================
1198 * Read a new buffer from the current input stream, update the adler32
1199 * and total number of bytes read.  All deflate() input goes through
1200 * this function so some applications may wish to modify it to avoid
1201 * allocating a large strm->next_in buffer and copying from it.
1202 * (See also flush_pending()).
1203 */
1204local unsigned read_buf(strm, buf, size)
1205    z_streamp strm;
1206    Bytef *buf;
1207    unsigned size;
1208{
1209    unsigned len = strm->avail_in;
1210
1211    if (len > size) len = size;
1212    if (len == 0) return 0;
1213
1214    strm->avail_in  -= len;
1215
1216    zmemcpy(buf, strm->next_in, len);
1217    if (strm->state->wrap == 1) {
1218        strm->adler = adler32(strm->adler, buf, len);
1219    }
1220#ifdef GZIP
1221    else if (strm->state->wrap == 2) {
1222        strm->adler = crc32(strm->adler, buf, len);
1223    }
1224#endif
1225    strm->next_in  += len;
1226    strm->total_in += len;
1227
1228    return len;
1229}
1230
1231/* ===========================================================================
1232 * Initialize the "longest match" routines for a new zlib stream
1233 */
1234local void lm_init (s)
1235    deflate_state *s;
1236{
1237    s->window_size = (ulg)2L*s->w_size;
1238
1239    CLEAR_HASH(s);
1240
1241    /* Set the default configuration parameters:
1242     */
1243    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1244    s->good_match       = configuration_table[s->level].good_length;
1245    s->nice_match       = configuration_table[s->level].nice_length;
1246    s->max_chain_length = configuration_table[s->level].max_chain;
1247
1248    s->strstart = 0;
1249    s->block_start = 0L;
1250    s->lookahead = 0;
1251    s->insert = 0;
1252    s->match_length = s->prev_length = MIN_MATCH-1;
1253    s->match_available = 0;
1254    s->ins_h = 0;
1255#ifndef FASTEST
1256#ifdef ASMV
1257    match_init(); /* initialize the asm code */
1258#endif
1259#endif
1260}
1261
1262#ifndef FASTEST
1263/* ===========================================================================
1264 * Set match_start to the longest match starting at the given string and
1265 * return its length. Matches shorter or equal to prev_length are discarded,
1266 * in which case the result is equal to prev_length and match_start is
1267 * garbage.
1268 * IN assertions: cur_match is the head of the hash chain for the current
1269 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1270 * OUT assertion: the match length is not greater than s->lookahead.
1271 */
1272#ifndef ASMV
1273/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1274 * match.S. The code will be functionally equivalent.
1275 */
1276local uInt longest_match(s, cur_match)
1277    deflate_state *s;
1278    IPos cur_match;                             /* current match */
1279{
1280    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1281    register Bytef *scan = s->window + s->strstart; /* current string */
1282    register Bytef *match;                      /* matched string */
1283    register int len;                           /* length of current match */
1284    int best_len = (int)s->prev_length;         /* best match length so far */
1285    int nice_match = s->nice_match;             /* stop if match long enough */
1286    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1287        s->strstart - (IPos)MAX_DIST(s) : NIL;
1288    /* Stop when cur_match becomes <= limit. To simplify the code,
1289     * we prevent matches with the string of window index 0.
1290     */
1291    Posf *prev = s->prev;
1292    uInt wmask = s->w_mask;
1293
1294#ifdef UNALIGNED_OK
1295    /* Compare two bytes at a time. Note: this is not always beneficial.
1296     * Try with and without -DUNALIGNED_OK to check.
1297     */
1298    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1299    register ush scan_start = *(ushf*)scan;
1300    register ush scan_end   = *(ushf*)(scan+best_len-1);
1301#else
1302    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1303    register Byte scan_end1  = scan[best_len-1];
1304    register Byte scan_end   = scan[best_len];
1305#endif
1306
1307    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1308     * It is easy to get rid of this optimization if necessary.
1309     */
1310    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1311
1312    /* Do not waste too much time if we already have a good match: */
1313    if (s->prev_length >= s->good_match) {
1314        chain_length >>= 2;
1315    }
1316    /* Do not look for matches beyond the end of the input. This is necessary
1317     * to make deflate deterministic.
1318     */
1319    if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1320
1321    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1322
1323    do {
1324        Assert(cur_match < s->strstart, "no future");
1325        match = s->window + cur_match;
1326
1327        /* Skip to next match if the match length cannot increase
1328         * or if the match length is less than 2.  Note that the checks below
1329         * for insufficient lookahead only occur occasionally for performance
1330         * reasons.  Therefore uninitialized memory will be accessed, and
1331         * conditional jumps will be made that depend on those values.
1332         * However the length of the match is limited to the lookahead, so
1333         * the output of deflate is not affected by the uninitialized values.
1334         */
1335#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1336        /* This code assumes sizeof(unsigned short) == 2. Do not use
1337         * UNALIGNED_OK if your compiler uses a different size.
1338         */
1339        if (*(ushf*)(match+best_len-1) != scan_end ||
1340            *(ushf*)match != scan_start) continue;
1341
1342        /* It is not necessary to compare scan[2] and match[2] since they are
1343         * always equal when the other bytes match, given that the hash keys
1344         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1345         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1346         * lookahead only every 4th comparison; the 128th check will be made
1347         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1348         * necessary to put more guard bytes at the end of the window, or
1349         * to check more often for insufficient lookahead.
1350         */
1351        Assert(scan[2] == match[2], "scan[2]?");
1352        scan++, match++;
1353        do {
1354        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1355                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1356                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1357                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1358                 scan < strend);
1359        /* The funny "do {}" generates better code on most compilers */
1360
1361        /* Here, scan <= window+strstart+257 */
1362        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1363        if (*scan == *match) scan++;
1364
1365        len = (MAX_MATCH - 1) - (int)(strend-scan);
1366        scan = strend - (MAX_MATCH-1);
1367
1368#else /* UNALIGNED_OK */
1369
1370        if (match[best_len]   != scan_end  ||
1371            match[best_len-1] != scan_end1 ||
1372            *match            != *scan     ||
1373            *++match          != scan[1])      continue;
1374
1375        /* The check at best_len-1 can be removed because it will be made
1376         * again later. (This heuristic is not always a win.)
1377         * It is not necessary to compare scan[2] and match[2] since they
1378         * are always equal when the other bytes match, given that
1379         * the hash keys are equal and that HASH_BITS >= 8.
1380         */
1381        scan += 2, match++;
1382        Assert(*scan == *match, "match[2]?");
1383
1384        /* We check for insufficient lookahead only every 8th comparison;
1385         * the 256th check will be made at strstart+258.
1386         */
1387        do {
1388        } while (*++scan == *++match && *++scan == *++match &&
1389                 *++scan == *++match && *++scan == *++match &&
1390                 *++scan == *++match && *++scan == *++match &&
1391                 *++scan == *++match && *++scan == *++match &&
1392                 scan < strend);
1393
1394        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1395
1396        len = MAX_MATCH - (int)(strend - scan);
1397        scan = strend - MAX_MATCH;
1398
1399#endif /* UNALIGNED_OK */
1400
1401        if (len > best_len) {
1402            s->match_start = cur_match;
1403            best_len = len;
1404            if (len >= nice_match) break;
1405#ifdef UNALIGNED_OK
1406            scan_end = *(ushf*)(scan+best_len-1);
1407#else
1408            scan_end1  = scan[best_len-1];
1409            scan_end   = scan[best_len];
1410#endif
1411        }
1412    } while ((cur_match = prev[cur_match & wmask]) > limit
1413             && --chain_length != 0);
1414
1415    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1416    return s->lookahead;
1417}
1418#endif /* ASMV */
1419
1420#else /* FASTEST */
1421
1422/* ---------------------------------------------------------------------------
1423 * Optimized version for FASTEST only
1424 */
1425local uInt longest_match(s, cur_match)
1426    deflate_state *s;
1427    IPos cur_match;                             /* current match */
1428{
1429    register Bytef *scan = s->window + s->strstart; /* current string */
1430    register Bytef *match;                       /* matched string */
1431    register int len;                           /* length of current match */
1432    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1433
1434    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1435     * It is easy to get rid of this optimization if necessary.
1436     */
1437    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1438
1439    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1440
1441    Assert(cur_match < s->strstart, "no future");
1442
1443    match = s->window + cur_match;
1444
1445    /* Return failure if the match length is less than 2:
1446     */
1447    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1448
1449    /* The check at best_len-1 can be removed because it will be made
1450     * again later. (This heuristic is not always a win.)
1451     * It is not necessary to compare scan[2] and match[2] since they
1452     * are always equal when the other bytes match, given that
1453     * the hash keys are equal and that HASH_BITS >= 8.
1454     */
1455    scan += 2, match += 2;
1456    Assert(*scan == *match, "match[2]?");
1457
1458    /* We check for insufficient lookahead only every 8th comparison;
1459     * the 256th check will be made at strstart+258.
1460     */
1461    do {
1462    } while (*++scan == *++match && *++scan == *++match &&
1463             *++scan == *++match && *++scan == *++match &&
1464             *++scan == *++match && *++scan == *++match &&
1465             *++scan == *++match && *++scan == *++match &&
1466             scan < strend);
1467
1468    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1469
1470    len = MAX_MATCH - (int)(strend - scan);
1471
1472    if (len < MIN_MATCH) return MIN_MATCH - 1;
1473
1474    s->match_start = cur_match;
1475    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1476}
1477
1478#endif /* FASTEST */
1479
1480#ifdef ZLIB_DEBUG
1481
1482#define EQUAL 0
1483/* result of memcmp for equal strings */
1484
1485/* ===========================================================================
1486 * Check that the match at match_start is indeed a match.
1487 */
1488local void check_match(s, start, match, length)
1489    deflate_state *s;
1490    IPos start, match;
1491    int length;
1492{
1493    /* check that the match is indeed a match */
1494    if (zmemcmp(s->window + match,
1495                s->window + start, length) != EQUAL) {
1496        fprintf(stderr, " start %u, match %u, length %d\n",
1497                start, match, length);
1498        do {
1499            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1500        } while (--length != 0);
1501        z_error("invalid match");
1502    }
1503    if (z_verbose > 1) {
1504        fprintf(stderr,"\\[%d,%d]", start-match, length);
1505        do { putc(s->window[start++], stderr); } while (--length != 0);
1506    }
1507}
1508#else
1509#  define check_match(s, start, match, length)
1510#endif /* ZLIB_DEBUG */
1511
1512/* ===========================================================================
1513 * Fill the window when the lookahead becomes insufficient.
1514 * Updates strstart and lookahead.
1515 *
1516 * IN assertion: lookahead < MIN_LOOKAHEAD
1517 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1518 *    At least one byte has been read, or avail_in == 0; reads are
1519 *    performed for at least two bytes (required for the zip translate_eol
1520 *    option -- not supported here).
1521 */
1522local void fill_window(s)
1523    deflate_state *s;
1524{
1525    unsigned n;
1526    unsigned more;    /* Amount of free space at the end of the window. */
1527    uInt wsize = s->w_size;
1528
1529    Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1530
1531    do {
1532        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1533
1534        /* Deal with !@#$% 64K limit: */
1535        if (sizeof(int) <= 2) {
1536            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1537                more = wsize;
1538
1539            } else if (more == (unsigned)(-1)) {
1540                /* Very unlikely, but possible on 16 bit machine if
1541                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1542                 */
1543                more--;
1544            }
1545        }
1546
1547        /* If the window is almost full and there is insufficient lookahead,
1548         * move the upper half to the lower one to make room in the upper half.
1549         */
1550        if (s->strstart >= wsize+MAX_DIST(s)) {
1551
1552            zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1553            s->match_start -= wsize;
1554            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1555            s->block_start -= (long) wsize;
1556            if (s->insert > s->strstart)
1557                s->insert = s->strstart;
1558            slide_hash(s);
1559            more += wsize;
1560        }
1561        if (s->strm->avail_in == 0) break;
1562
1563        /* If there was no sliding:
1564         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1565         *    more == window_size - lookahead - strstart
1566         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1567         * => more >= window_size - 2*WSIZE + 2
1568         * In the BIG_MEM or MMAP case (not yet supported),
1569         *   window_size == input_size + MIN_LOOKAHEAD  &&
1570         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1571         * Otherwise, window_size == 2*WSIZE so more >= 2.
1572         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1573         */
1574        Assert(more >= 2, "more < 2");
1575
1576        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1577        s->lookahead += n;
1578
1579        /* Initialize the hash value now that we have some input: */
1580        if (s->lookahead + s->insert >= MIN_MATCH) {
1581            uInt str = s->strstart - s->insert;
1582            s->ins_h = s->window[str];
1583            UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1584#if MIN_MATCH != 3
1585            Call UPDATE_HASH() MIN_MATCH-3 more times
1586#endif
1587            while (s->insert) {
1588                UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1589#ifndef FASTEST
1590                s->prev[str & s->w_mask] = s->head[s->ins_h];
1591#endif
1592                s->head[s->ins_h] = (Pos)str;
1593                str++;
1594                s->insert--;
1595                if (s->lookahead + s->insert < MIN_MATCH)
1596                    break;
1597            }
1598        }
1599        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1600         * but this is not important since only literal bytes will be emitted.
1601         */
1602
1603    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1604
1605    /* If the WIN_INIT bytes after the end of the current data have never been
1606     * written, then zero those bytes in order to avoid memory check reports of
1607     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1608     * the longest match routines.  Update the high water mark for the next
1609     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1610     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1611     */
1612    if (s->high_water < s->window_size) {
1613        ulg curr = s->strstart + (ulg)(s->lookahead);
1614        ulg init;
1615
1616        if (s->high_water < curr) {
1617            /* Previous high water mark below current data -- zero WIN_INIT
1618             * bytes or up to end of window, whichever is less.
1619             */
1620            init = s->window_size - curr;
1621            if (init > WIN_INIT)
1622                init = WIN_INIT;
1623            zmemzero(s->window + curr, (unsigned)init);
1624            s->high_water = curr + init;
1625        }
1626        else if (s->high_water < (ulg)curr + WIN_INIT) {
1627            /* High water mark at or above current data, but below current data
1628             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1629             * to end of window, whichever is less.
1630             */
1631            init = (ulg)curr + WIN_INIT - s->high_water;
1632            if (init > s->window_size - s->high_water)
1633                init = s->window_size - s->high_water;
1634            zmemzero(s->window + s->high_water, (unsigned)init);
1635            s->high_water += init;
1636        }
1637    }
1638
1639    Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1640           "not enough room for search");
1641}
1642
1643/* ===========================================================================
1644 * Flush the current block, with given end-of-file flag.
1645 * IN assertion: strstart is set to the end of the current match.
1646 */
1647#define FLUSH_BLOCK_ONLY(s, last) { \
1648   _tr_flush_block(s, (s->block_start >= 0L ? \
1649                   (charf *)&s->window[(unsigned)s->block_start] : \
1650                   (charf *)Z_NULL), \
1651                (ulg)((long)s->strstart - s->block_start), \
1652                (last)); \
1653   s->block_start = s->strstart; \
1654   flush_pending(s->strm); \
1655   Tracev((stderr,"[FLUSH]")); \
1656}
1657
1658/* Same but force premature exit if necessary. */
1659#define FLUSH_BLOCK(s, last) { \
1660   FLUSH_BLOCK_ONLY(s, last); \
1661   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1662}
1663
1664/* Maximum stored block length in deflate format (not including header). */
1665#define MAX_STORED 65535
1666
1667/* Minimum of a and b. */
1668#define MIN(a, b) ((a) > (b) ? (b) : (a))
1669
1670/* ===========================================================================
1671 * Copy without compression as much as possible from the input stream, return
1672 * the current block state.
1673 *
1674 * In case deflateParams() is used to later switch to a non-zero compression
1675 * level, s->matches (otherwise unused when storing) keeps track of the number
1676 * of hash table slides to perform. If s->matches is 1, then one hash table
1677 * slide will be done when switching. If s->matches is 2, the maximum value
1678 * allowed here, then the hash table will be cleared, since two or more slides
1679 * is the same as a clear.
1680 *
1681 * deflate_stored() is written to minimize the number of times an input byte is
1682 * copied. It is most efficient with large input and output buffers, which
1683 * maximizes the opportunites to have a single copy from next_in to next_out.
1684 */
1685local block_state deflate_stored(s, flush)
1686    deflate_state *s;
1687    int flush;
1688{
1689    /* Smallest worthy block size when not flushing or finishing. By default
1690     * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1691     * large input and output buffers, the stored block size will be larger.
1692     */
1693    unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1694
1695    /* Copy as many min_block or larger stored blocks directly to next_out as
1696     * possible. If flushing, copy the remaining available input to next_out as
1697     * stored blocks, if there is enough space.
1698     */
1699    unsigned len, left, have, last = 0;
1700    unsigned used = s->strm->avail_in;
1701    do {
1702        /* Set len to the maximum size block that we can copy directly with the
1703         * available input data and output space. Set left to how much of that
1704         * would be copied from what's left in the window.
1705         */
1706        len = MAX_STORED;       /* maximum deflate stored block length */
1707        have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1708        if (s->strm->avail_out < have)          /* need room for header */
1709            break;
1710            /* maximum stored block length that will fit in avail_out: */
1711        have = s->strm->avail_out - have;
1712        left = s->strstart - s->block_start;    /* bytes left in window */
1713        if (len > (ulg)left + s->strm->avail_in)
1714            len = left + s->strm->avail_in;     /* limit len to the input */
1715        if (len > have)
1716            len = have;                         /* limit len to the output */
1717
1718        /* If the stored block would be less than min_block in length, or if
1719         * unable to copy all of the available input when flushing, then try
1720         * copying to the window and the pending buffer instead. Also don't
1721         * write an empty block when flushing -- deflate() does that.
1722         */
1723        if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1724                                flush == Z_NO_FLUSH ||
1725                                len != left + s->strm->avail_in))
1726            break;
1727
1728        /* Make a dummy stored block in pending to get the header bytes,
1729         * including any pending bits. This also updates the debugging counts.
1730         */
1731        last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1732        _tr_stored_block(s, (char *)0, 0L, last);
1733
1734        /* Replace the lengths in the dummy stored block with len. */
1735        s->pending_buf[s->pending - 4] = len;
1736        s->pending_buf[s->pending - 3] = len >> 8;
1737        s->pending_buf[s->pending - 2] = ~len;
1738        s->pending_buf[s->pending - 1] = ~len >> 8;
1739
1740        /* Write the stored block header bytes. */
1741        flush_pending(s->strm);
1742
1743#ifdef ZLIB_DEBUG
1744        /* Update debugging counts for the data about to be copied. */
1745        s->compressed_len += len << 3;
1746        s->bits_sent += len << 3;
1747#endif
1748
1749        /* Copy uncompressed bytes from the window to next_out. */
1750        if (left) {
1751            if (left > len)
1752                left = len;
1753            zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1754            s->strm->next_out += left;
1755            s->strm->avail_out -= left;
1756            s->strm->total_out += left;
1757            s->block_start += left;
1758            len -= left;
1759        }
1760
1761        /* Copy uncompressed bytes directly from next_in to next_out, updating
1762         * the check value.
1763         */
1764        if (len) {
1765            read_buf(s->strm, s->strm->next_out, len);
1766            s->strm->next_out += len;
1767            s->strm->avail_out -= len;
1768            s->strm->total_out += len;
1769        }
1770    } while (last == 0);
1771
1772    /* Update the sliding window with the last s->w_size bytes of the copied
1773     * data, or append all of the copied data to the existing window if less
1774     * than s->w_size bytes were copied. Also update the number of bytes to
1775     * insert in the hash tables, in the event that deflateParams() switches to
1776     * a non-zero compression level.
1777     */
1778    used -= s->strm->avail_in;      /* number of input bytes directly copied */
1779    if (used) {
1780        /* If any input was used, then no unused input remains in the window,
1781         * therefore s->block_start == s->strstart.
1782         */
1783        if (used >= s->w_size) {    /* supplant the previous history */
1784            s->matches = 2;         /* clear hash */
1785            zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1786            s->strstart = s->w_size;
1787            s->insert = s->strstart;
1788        }
1789        else {
1790            if (s->window_size - s->strstart <= used) {
1791                /* Slide the window down. */
1792                s->strstart -= s->w_size;
1793                zmemcpy(s->window, s->window + s->w_size, s->strstart);
1794                if (s->matches < 2)
1795                    s->matches++;   /* add a pending slide_hash() */
1796                if (s->insert > s->strstart)
1797                    s->insert = s->strstart;
1798            }
1799            zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1800            s->strstart += used;
1801            s->insert += MIN(used, s->w_size - s->insert);
1802        }
1803        s->block_start = s->strstart;
1804    }
1805    if (s->high_water < s->strstart)
1806        s->high_water = s->strstart;
1807
1808    /* If the last block was written to next_out, then done. */
1809    if (last)
1810        return finish_done;
1811
1812    /* If flushing and all input has been consumed, then done. */
1813    if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1814        s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1815        return block_done;
1816
1817    /* Fill the window with any remaining input. */
1818    have = s->window_size - s->strstart;
1819    if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1820        /* Slide the window down. */
1821        s->block_start -= s->w_size;
1822        s->strstart -= s->w_size;
1823        zmemcpy(s->window, s->window + s->w_size, s->strstart);
1824        if (s->matches < 2)
1825            s->matches++;           /* add a pending slide_hash() */
1826        have += s->w_size;          /* more space now */
1827        if (s->insert > s->strstart)
1828            s->insert = s->strstart;
1829    }
1830    if (have > s->strm->avail_in)
1831        have = s->strm->avail_in;
1832    if (have) {
1833        read_buf(s->strm, s->window + s->strstart, have);
1834        s->strstart += have;
1835        s->insert += MIN(have, s->w_size - s->insert);
1836    }
1837    if (s->high_water < s->strstart)
1838        s->high_water = s->strstart;
1839
1840    /* There was not enough avail_out to write a complete worthy or flushed
1841     * stored block to next_out. Write a stored block to pending instead, if we
1842     * have enough input for a worthy block, or if flushing and there is enough
1843     * room for the remaining input as a stored block in the pending buffer.
1844     */
1845    have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
1846        /* maximum stored block length that will fit in pending: */
1847    have = MIN(s->pending_buf_size - have, MAX_STORED);
1848    min_block = MIN(have, s->w_size);
1849    left = s->strstart - s->block_start;
1850    if (left >= min_block ||
1851        ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1852         s->strm->avail_in == 0 && left <= have)) {
1853        len = MIN(left, have);
1854        last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1855               len == left ? 1 : 0;
1856        _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1857        s->block_start += len;
1858        flush_pending(s->strm);
1859    }
1860
1861    /* We've done all we can with the available input and output. */
1862    return last ? finish_started : need_more;
1863}
1864
1865/* ===========================================================================
1866 * Compress as much as possible from the input stream, return the current
1867 * block state.
1868 * This function does not perform lazy evaluation of matches and inserts
1869 * new strings in the dictionary only for unmatched strings or for short
1870 * matches. It is used only for the fast compression options.
1871 */
1872local block_state deflate_fast(s, flush)
1873    deflate_state *s;
1874    int flush;
1875{
1876    IPos hash_head;       /* head of the hash chain */
1877    int bflush;           /* set if current block must be flushed */
1878
1879    for (;;) {
1880        /* Make sure that we always have enough lookahead, except
1881         * at the end of the input file. We need MAX_MATCH bytes
1882         * for the next match, plus MIN_MATCH bytes to insert the
1883         * string following the next match.
1884         */
1885        if (s->lookahead < MIN_LOOKAHEAD) {
1886            fill_window(s);
1887            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1888                return need_more;
1889            }
1890            if (s->lookahead == 0) break; /* flush the current block */
1891        }
1892
1893        /* Insert the string window[strstart .. strstart+2] in the
1894         * dictionary, and set hash_head to the head of the hash chain:
1895         */
1896        hash_head = NIL;
1897        if (s->lookahead >= MIN_MATCH) {
1898            INSERT_STRING(s, s->strstart, hash_head);
1899        }
1900
1901        /* Find the longest match, discarding those <= prev_length.
1902         * At this point we have always match_length < MIN_MATCH
1903         */
1904        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1905            /* To simplify the code, we prevent matches with the string
1906             * of window index 0 (in particular we have to avoid a match
1907             * of the string with itself at the start of the input file).
1908             */
1909            s->match_length = longest_match (s, hash_head);
1910            /* longest_match() sets match_start */
1911        }
1912        if (s->match_length >= MIN_MATCH) {
1913            check_match(s, s->strstart, s->match_start, s->match_length);
1914
1915            _tr_tally_dist(s, s->strstart - s->match_start,
1916                           s->match_length - MIN_MATCH, bflush);
1917
1918            s->lookahead -= s->match_length;
1919
1920            /* Insert new strings in the hash table only if the match length
1921             * is not too large. This saves time but degrades compression.
1922             */
1923#ifndef FASTEST
1924            if (s->match_length <= s->max_insert_length &&
1925                s->lookahead >= MIN_MATCH) {
1926                s->match_length--; /* string at strstart already in table */
1927                do {
1928                    s->strstart++;
1929                    INSERT_STRING(s, s->strstart, hash_head);
1930                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1931                     * always MIN_MATCH bytes ahead.
1932                     */
1933                } while (--s->match_length != 0);
1934                s->strstart++;
1935            } else
1936#endif
1937            {
1938                s->strstart += s->match_length;
1939                s->match_length = 0;
1940                s->ins_h = s->window[s->strstart];
1941                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1942#if MIN_MATCH != 3
1943                Call UPDATE_HASH() MIN_MATCH-3 more times
1944#endif
1945                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1946                 * matter since it will be recomputed at next deflate call.
1947                 */
1948            }
1949        } else {
1950            /* No match, output a literal byte */
1951            Tracevv((stderr,"%c", s->window[s->strstart]));
1952            _tr_tally_lit (s, s->window[s->strstart], bflush);
1953            s->lookahead--;
1954            s->strstart++;
1955        }
1956        if (bflush) FLUSH_BLOCK(s, 0);
1957    }
1958    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1959    if (flush == Z_FINISH) {
1960        FLUSH_BLOCK(s, 1);
1961        return finish_done;
1962    }
1963    if (s->sym_next)
1964        FLUSH_BLOCK(s, 0);
1965    return block_done;
1966}
1967
1968#ifndef FASTEST
1969/* ===========================================================================
1970 * Same as above, but achieves better compression. We use a lazy
1971 * evaluation for matches: a match is finally adopted only if there is
1972 * no better match at the next window position.
1973 */
1974local block_state deflate_slow(s, flush)
1975    deflate_state *s;
1976    int flush;
1977{
1978    IPos hash_head;          /* head of hash chain */
1979    int bflush;              /* set if current block must be flushed */
1980
1981    /* Process the input block. */
1982    for (;;) {
1983        /* Make sure that we always have enough lookahead, except
1984         * at the end of the input file. We need MAX_MATCH bytes
1985         * for the next match, plus MIN_MATCH bytes to insert the
1986         * string following the next match.
1987         */
1988        if (s->lookahead < MIN_LOOKAHEAD) {
1989            fill_window(s);
1990            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1991                return need_more;
1992            }
1993            if (s->lookahead == 0) break; /* flush the current block */
1994        }
1995
1996        /* Insert the string window[strstart .. strstart+2] in the
1997         * dictionary, and set hash_head to the head of the hash chain:
1998         */
1999        hash_head = NIL;
2000        if (s->lookahead >= MIN_MATCH) {
2001            INSERT_STRING(s, s->strstart, hash_head);
2002        }
2003
2004        /* Find the longest match, discarding those <= prev_length.
2005         */
2006        s->prev_length = s->match_length, s->prev_match = s->match_start;
2007        s->match_length = MIN_MATCH-1;
2008
2009        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
2010            s->strstart - hash_head <= MAX_DIST(s)) {
2011            /* To simplify the code, we prevent matches with the string
2012             * of window index 0 (in particular we have to avoid a match
2013             * of the string with itself at the start of the input file).
2014             */
2015            s->match_length = longest_match (s, hash_head);
2016            /* longest_match() sets match_start */
2017
2018            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
2019#if TOO_FAR <= 32767
2020                || (s->match_length == MIN_MATCH &&
2021                    s->strstart - s->match_start > TOO_FAR)
2022#endif
2023                )) {
2024
2025                /* If prev_match is also MIN_MATCH, match_start is garbage
2026                 * but we will ignore the current match anyway.
2027                 */
2028                s->match_length = MIN_MATCH-1;
2029            }
2030        }
2031        /* If there was a match at the previous step and the current
2032         * match is not better, output the previous match:
2033         */
2034        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2035            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2036            /* Do not insert strings in hash table beyond this. */
2037
2038            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2039
2040            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
2041                           s->prev_length - MIN_MATCH, bflush);
2042
2043            /* Insert in hash table all strings up to the end of the match.
2044             * strstart-1 and strstart are already inserted. If there is not
2045             * enough lookahead, the last two strings are not inserted in
2046             * the hash table.
2047             */
2048            s->lookahead -= s->prev_length-1;
2049            s->prev_length -= 2;
2050            do {
2051                if (++s->strstart <= max_insert) {
2052                    INSERT_STRING(s, s->strstart, hash_head);
2053                }
2054            } while (--s->prev_length != 0);
2055            s->match_available = 0;
2056            s->match_length = MIN_MATCH-1;
2057            s->strstart++;
2058
2059            if (bflush) FLUSH_BLOCK(s, 0);
2060
2061        } else if (s->match_available) {
2062            /* If there was no match at the previous position, output a
2063             * single literal. If there was a match but the current match
2064             * is longer, truncate the previous match to a single literal.
2065             */
2066            Tracevv((stderr,"%c", s->window[s->strstart-1]));
2067            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2068            if (bflush) {
2069                FLUSH_BLOCK_ONLY(s, 0);
2070            }
2071            s->strstart++;
2072            s->lookahead--;
2073            if (s->strm->avail_out == 0) return need_more;
2074        } else {
2075            /* There is no previous match to compare with, wait for
2076             * the next step to decide.
2077             */
2078            s->match_available = 1;
2079            s->strstart++;
2080            s->lookahead--;
2081        }
2082    }
2083    Assert (flush != Z_NO_FLUSH, "no flush?");
2084    if (s->match_available) {
2085        Tracevv((stderr,"%c", s->window[s->strstart-1]));
2086        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2087        s->match_available = 0;
2088    }
2089    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2090    if (flush == Z_FINISH) {
2091        FLUSH_BLOCK(s, 1);
2092        return finish_done;
2093    }
2094    if (s->sym_next)
2095        FLUSH_BLOCK(s, 0);
2096    return block_done;
2097}
2098#endif /* FASTEST */
2099
2100/* ===========================================================================
2101 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2102 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
2103 * deflate switches away from Z_RLE.)
2104 */
2105local block_state deflate_rle(s, flush)
2106    deflate_state *s;
2107    int flush;
2108{
2109    int bflush;             /* set if current block must be flushed */
2110    uInt prev;              /* byte at distance one to match */
2111    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
2112
2113    for (;;) {
2114        /* Make sure that we always have enough lookahead, except
2115         * at the end of the input file. We need MAX_MATCH bytes
2116         * for the longest run, plus one for the unrolled loop.
2117         */
2118        if (s->lookahead <= MAX_MATCH) {
2119            fill_window(s);
2120            if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2121                return need_more;
2122            }
2123            if (s->lookahead == 0) break; /* flush the current block */
2124        }
2125
2126        /* See how many times the previous byte repeats */
2127        s->match_length = 0;
2128        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2129            scan = s->window + s->strstart - 1;
2130            prev = *scan;
2131            if (prev == *++scan && prev == *++scan && prev == *++scan) {
2132                strend = s->window + s->strstart + MAX_MATCH;
2133                do {
2134                } while (prev == *++scan && prev == *++scan &&
2135                         prev == *++scan && prev == *++scan &&
2136                         prev == *++scan && prev == *++scan &&
2137                         prev == *++scan && prev == *++scan &&
2138                         scan < strend);
2139                s->match_length = MAX_MATCH - (uInt)(strend - scan);
2140                if (s->match_length > s->lookahead)
2141                    s->match_length = s->lookahead;
2142            }
2143            Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2144        }
2145
2146        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2147        if (s->match_length >= MIN_MATCH) {
2148            check_match(s, s->strstart, s->strstart - 1, s->match_length);
2149
2150            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2151
2152            s->lookahead -= s->match_length;
2153            s->strstart += s->match_length;
2154            s->match_length = 0;
2155        } else {
2156            /* No match, output a literal byte */
2157            Tracevv((stderr,"%c", s->window[s->strstart]));
2158            _tr_tally_lit (s, s->window[s->strstart], bflush);
2159            s->lookahead--;
2160            s->strstart++;
2161        }
2162        if (bflush) FLUSH_BLOCK(s, 0);
2163    }
2164    s->insert = 0;
2165    if (flush == Z_FINISH) {
2166        FLUSH_BLOCK(s, 1);
2167        return finish_done;
2168    }
2169    if (s->sym_next)
2170        FLUSH_BLOCK(s, 0);
2171    return block_done;
2172}
2173
2174/* ===========================================================================
2175 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
2176 * (It will be regenerated if this run of deflate switches away from Huffman.)
2177 */
2178local block_state deflate_huff(s, flush)
2179    deflate_state *s;
2180    int flush;
2181{
2182    int bflush;             /* set if current block must be flushed */
2183
2184    for (;;) {
2185        /* Make sure that we have a literal to write. */
2186        if (s->lookahead == 0) {
2187            fill_window(s);
2188            if (s->lookahead == 0) {
2189                if (flush == Z_NO_FLUSH)
2190                    return need_more;
2191                break;      /* flush the current block */
2192            }
2193        }
2194
2195        /* Output a literal byte */
2196        s->match_length = 0;
2197        Tracevv((stderr,"%c", s->window[s->strstart]));
2198        _tr_tally_lit (s, s->window[s->strstart], bflush);
2199        s->lookahead--;
2200        s->strstart++;
2201        if (bflush) FLUSH_BLOCK(s, 0);
2202    }
2203    s->insert = 0;
2204    if (flush == Z_FINISH) {
2205        FLUSH_BLOCK(s, 1);
2206        return finish_done;
2207    }
2208    if (s->sym_next)
2209        FLUSH_BLOCK(s, 0);
2210    return block_done;
2211}
2212