1# Dynamic architecture support for GDB, the GNU debugger.
2
3# Copyright (C) 1998-2023 Free Software Foundation, Inc.
4
5# This file is part of GDB.
6
7# This program is free software; you can redistribute it and/or modify
8# it under the terms of the GNU General Public License as published by
9# the Free Software Foundation; either version 3 of the License, or
10# (at your option) any later version.
11
12# This program is distributed in the hope that it will be useful,
13# but WITHOUT ANY WARRANTY; without even the implied warranty of
14# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15# GNU General Public License for more details.
16
17# You should have received a copy of the GNU General Public License
18# along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
20# How to add to gdbarch:
21#
22# There are four kinds of fields in gdbarch:
23#
24# * Info - you should never need this; it is only for things that are
25# copied directly from the gdbarch_info.
26#
27# * Value - a variable.
28#
29# * Function - a function pointer.
30#
31# * Method - a function pointer, but the function takes a gdbarch as
32# its first parameter.
33#
34# You construct a new one with a call to one of those functions.  So,
35# for instance, you can use the function named "Value" to make a new
36# Value.
37#
38# All parameters are keyword-only.  This is done to help catch typos.
39#
40# Some parameters are shared among all types (including Info):
41#
42# * "name" - required, the name of the field.
43#
44# * "type" - required, the type of the field.  For functions and
45# methods, this is the return type.
46#
47# * "printer" - an expression to turn this field into a 'const char
48# *'.  This is used for dumping.  The string must live long enough to
49# be passed to printf.
50#
51# Value, Function, and Method share some more parameters.  Some of
52# these work in conjunction in a somewhat complicated way, so they are
53# described in a separate sub-section below.
54#
55# * "comment" - a comment that's written to the .h file.  Please
56# always use this.  (It isn't currently a required option for
57# historical reasons.)
58#
59# * "predicate" - a boolean, if True then a _p predicate function will
60# be generated.  The predicate will use the generic validation
61# function for the field.  See below.
62#
63# * "predefault", "postdefault", and "invalid" - These are used for
64# the initialization and verification steps:
65#
66# A gdbarch is zero-initialized.  Then, if a field has a pre-default,
67# the field is set to that value.  After initialization is complete
68# (that is, after the tdep code has a chance to change the settings),
69# the post-initialization step is done.
70#
71# There is a generic algorithm to generate a "validation function" for
72# all fields.  If the field has an "invalid" attribute with a string
73# value, then this string is the expression (note that a string-valued
74# "invalid" and "predicate" are mutually exclusive; and the case where
75# invalid is True means to ignore this field and instead use the
76# default checking that is about to be described).  Otherwise, if
77# there is a "predefault", then the field is valid if it differs from
78# the predefault.  Otherwise, the check is done against 0 (really NULL
79# for function pointers, but same idea).
80#
81# In post-initialization / validation, there are several cases.
82#
83# * If "invalid" is False, or if the field specifies "predicate",
84# validation is skipped.  Otherwise, a validation step is emitted.
85#
86# * Otherwise, the validity is checked using the usual validation
87# function (see above).  If the field is considered valid, nothing is
88# done.
89#
90# * Otherwise, the field's value is invalid.  If there is a
91# "postdefault", then the field is assigned that value.
92#
93# * Otherwise, the gdbarch will fail validation and gdb will crash.
94#
95# Function and Method share:
96#
97# * "params" - required, a tuple of tuples.  Each inner tuple is a
98# pair of the form (TYPE, NAME), where TYPE is the type of this
99# argument, and NAME is the name.  Note that while the names could be
100# auto-generated, this approach lets the "comment" field refer to
101# arguments in a nicer way.  It is also just nicer for users.
102#
103# * "param_checks" - optional, a list of strings.  Each string is an
104# expression that is placed within a gdb_assert before the call is
105# made to the Function/Method implementation.  Each expression is
106# something that should be true, and it is expected that the
107# expression will make use of the parameters named in 'params' (though
108# this is not required).
109#
110# * "result_checks" - optional, a list of strings.  Each string is an
111# expression that is placed within a gdb_assert after the call to the
112# Function/Method implementation.  Within each expression the variable
113# 'result' can be used to reference the result of the function/method
114# implementation.  The 'result_checks' can only be used if the 'type'
115# of this Function/Method is not 'void'.
116
117Info(
118    type="const struct bfd_arch_info *",
119    name="bfd_arch_info",
120    printer="gdbarch_bfd_arch_info (gdbarch)->printable_name",
121)
122
123Info(
124    type="enum bfd_endian",
125    name="byte_order",
126)
127
128Info(
129    type="enum bfd_endian",
130    name="byte_order_for_code",
131)
132
133Info(
134    type="enum gdb_osabi",
135    name="osabi",
136)
137
138Info(
139    type="const struct target_desc *",
140    name="target_desc",
141    printer="host_address_to_string (gdbarch->target_desc)",
142)
143
144Value(
145    comment="""
146Number of bits in a short or unsigned short for the target machine.
147""",
148    type="int",
149    name="short_bit",
150    predefault="2*TARGET_CHAR_BIT",
151    invalid=False,
152)
153
154int_bit = Value(
155    comment="""
156Number of bits in an int or unsigned int for the target machine.
157""",
158    type="int",
159    name="int_bit",
160    predefault="4*TARGET_CHAR_BIT",
161    invalid=False,
162)
163
164long_bit = Value(
165    comment="""
166Number of bits in a long or unsigned long for the target machine.
167""",
168    type="int",
169    name="long_bit",
170    predefault="4*TARGET_CHAR_BIT",
171    invalid=False,
172)
173
174Value(
175    comment="""
176Number of bits in a long long or unsigned long long for the target
177machine.
178""",
179    type="int",
180    name="long_long_bit",
181    predefault="2*" + long_bit.predefault,
182    invalid=False,
183)
184
185Value(
186    comment="""
187The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
188"long double".  These bit/format pairs should eventually be combined
189into a single object.  For the moment, just initialize them as a pair.
190Each format describes both the big and little endian layouts (if
191useful).
192""",
193    type="int",
194    name="bfloat16_bit",
195    predefault="2*TARGET_CHAR_BIT",
196    invalid=False,
197)
198
199Value(
200    type="const struct floatformat **",
201    name="bfloat16_format",
202    postdefault="floatformats_bfloat16",
203    invalid=True,
204    printer="pformat (gdbarch, gdbarch->bfloat16_format)",
205)
206
207Value(
208    type="int",
209    name="half_bit",
210    predefault="2*TARGET_CHAR_BIT",
211    invalid=False,
212)
213
214Value(
215    type="const struct floatformat **",
216    name="half_format",
217    postdefault="floatformats_ieee_half",
218    invalid=True,
219    printer="pformat (gdbarch, gdbarch->half_format)",
220)
221
222Value(
223    type="int",
224    name="float_bit",
225    predefault="4*TARGET_CHAR_BIT",
226    invalid=False,
227)
228
229Value(
230    type="const struct floatformat **",
231    name="float_format",
232    postdefault="floatformats_ieee_single",
233    invalid=True,
234    printer="pformat (gdbarch, gdbarch->float_format)",
235)
236
237Value(
238    type="int",
239    name="double_bit",
240    predefault="8*TARGET_CHAR_BIT",
241    invalid=False,
242)
243
244Value(
245    type="const struct floatformat **",
246    name="double_format",
247    postdefault="floatformats_ieee_double",
248    invalid=True,
249    printer="pformat (gdbarch, gdbarch->double_format)",
250)
251
252Value(
253    type="int",
254    name="long_double_bit",
255    predefault="8*TARGET_CHAR_BIT",
256    invalid=False,
257)
258
259Value(
260    type="const struct floatformat **",
261    name="long_double_format",
262    postdefault="floatformats_ieee_double",
263    invalid=True,
264    printer="pformat (gdbarch, gdbarch->long_double_format)",
265)
266
267Value(
268    comment="""
269The ABI default bit-size for "wchar_t".  wchar_t is a built-in type
270starting with C++11.
271""",
272    type="int",
273    name="wchar_bit",
274    predefault="4*TARGET_CHAR_BIT",
275    invalid=False,
276)
277
278Value(
279    comment="""
280One if `wchar_t' is signed, zero if unsigned.
281""",
282    type="int",
283    name="wchar_signed",
284    predefault="-1",
285    postdefault="1",
286    invalid=True,
287)
288
289Method(
290    comment="""
291Returns the floating-point format to be used for values of length LENGTH.
292NAME, if non-NULL, is the type name, which may be used to distinguish
293different target formats of the same length.
294""",
295    type="const struct floatformat **",
296    name="floatformat_for_type",
297    params=[("const char *", "name"), ("int", "length")],
298    predefault="default_floatformat_for_type",
299    invalid=False,
300)
301
302Value(
303    comment="""
304For most targets, a pointer on the target and its representation as an
305address in GDB have the same size and "look the same".  For such a
306target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
307/ addr_bit will be set from it.
308
309If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
310also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
311gdbarch_address_to_pointer as well.
312
313ptr_bit is the size of a pointer on the target
314""",
315    type="int",
316    name="ptr_bit",
317    predefault=int_bit.predefault,
318    invalid=False,
319)
320
321Value(
322    comment="""
323addr_bit is the size of a target address as represented in gdb
324""",
325    type="int",
326    name="addr_bit",
327    predefault="0",
328    postdefault="gdbarch_ptr_bit (gdbarch)",
329    invalid=True,
330)
331
332Value(
333    comment="""
334dwarf2_addr_size is the target address size as used in the Dwarf debug
335info.  For .debug_frame FDEs, this is supposed to be the target address
336size from the associated CU header, and which is equivalent to the
337DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
338Unfortunately there is no good way to determine this value.  Therefore
339dwarf2_addr_size simply defaults to the target pointer size.
340
341dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
342defined using the target's pointer size so far.
343
344Note that dwarf2_addr_size only needs to be redefined by a target if the
345GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
346and if Dwarf versions < 4 need to be supported.
347""",
348    type="int",
349    name="dwarf2_addr_size",
350    predefault="0",
351    postdefault="gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT",
352    invalid=True,
353)
354
355Value(
356    comment="""
357One if `char' acts like `signed char', zero if `unsigned char'.
358""",
359    type="int",
360    name="char_signed",
361    predefault="-1",
362    postdefault="1",
363    invalid=True,
364)
365
366Function(
367    type="CORE_ADDR",
368    name="read_pc",
369    params=[("readable_regcache *", "regcache")],
370    predicate=True,
371    invalid=True,
372)
373
374Function(
375    type="void",
376    name="write_pc",
377    params=[("struct regcache *", "regcache"), ("CORE_ADDR", "val")],
378    predicate=True,
379    invalid=True,
380)
381
382Method(
383    comment="""
384Function for getting target's idea of a frame pointer.  FIXME: GDB's
385whole scheme for dealing with "frames" and "frame pointers" needs a
386serious shakedown.
387""",
388    type="void",
389    name="virtual_frame_pointer",
390    params=[
391        ("CORE_ADDR", "pc"),
392        ("int *", "frame_regnum"),
393        ("LONGEST *", "frame_offset"),
394    ],
395    predefault="legacy_virtual_frame_pointer",
396    invalid=False,
397)
398
399Method(
400    type="enum register_status",
401    name="pseudo_register_read",
402    params=[
403        ("readable_regcache *", "regcache"),
404        ("int", "cookednum"),
405        ("gdb_byte *", "buf"),
406    ],
407    predicate=True,
408    invalid=True,
409)
410
411Method(
412    comment="""
413Read a register into a new struct value.  If the register is wholly
414or partly unavailable, this should call mark_value_bytes_unavailable
415as appropriate.  If this is defined, then pseudo_register_read will
416never be called.
417""",
418    type="struct value *",
419    name="pseudo_register_read_value",
420    params=[("readable_regcache *", "regcache"), ("int", "cookednum")],
421    predicate=True,
422    invalid=True,
423)
424
425Method(
426    type="void",
427    name="pseudo_register_write",
428    params=[
429        ("struct regcache *", "regcache"),
430        ("int", "cookednum"),
431        ("const gdb_byte *", "buf"),
432    ],
433    predicate=True,
434    invalid=True,
435)
436
437Value(
438    type="int",
439    name="num_regs",
440    predefault="-1",
441    invalid=True,
442)
443
444Value(
445    comment="""
446This macro gives the number of pseudo-registers that live in the
447register namespace but do not get fetched or stored on the target.
448These pseudo-registers may be aliases for other registers,
449combinations of other registers, or they may be computed by GDB.
450""",
451    type="int",
452    name="num_pseudo_regs",
453    predefault="0",
454    invalid=False,
455)
456
457Method(
458    comment="""
459Assemble agent expression bytecode to collect pseudo-register REG.
460Return -1 if something goes wrong, 0 otherwise.
461""",
462    type="int",
463    name="ax_pseudo_register_collect",
464    params=[("struct agent_expr *", "ax"), ("int", "reg")],
465    predicate=True,
466    invalid=True,
467)
468
469Method(
470    comment="""
471Assemble agent expression bytecode to push the value of pseudo-register
472REG on the interpreter stack.
473Return -1 if something goes wrong, 0 otherwise.
474""",
475    type="int",
476    name="ax_pseudo_register_push_stack",
477    params=[("struct agent_expr *", "ax"), ("int", "reg")],
478    predicate=True,
479    invalid=True,
480)
481
482Method(
483    comment="""
484Some architectures can display additional information for specific
485signals.
486UIOUT is the output stream where the handler will place information.
487""",
488    type="void",
489    name="report_signal_info",
490    params=[("struct ui_out *", "uiout"), ("enum gdb_signal", "siggnal")],
491    predicate=True,
492    invalid=True,
493)
494
495Value(
496    comment="""
497GDB's standard (or well known) register numbers.  These can map onto
498a real register or a pseudo (computed) register or not be defined at
499all (-1).
500gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
501""",
502    type="int",
503    name="sp_regnum",
504    predefault="-1",
505    invalid=False,
506)
507
508Value(
509    type="int",
510    name="pc_regnum",
511    predefault="-1",
512    invalid=False,
513)
514
515Value(
516    type="int",
517    name="ps_regnum",
518    predefault="-1",
519    invalid=False,
520)
521
522Value(
523    type="int",
524    name="fp0_regnum",
525    predefault="-1",
526    invalid=False,
527)
528
529Method(
530    comment="""
531Convert stab register number (from `r' declaration) to a gdb REGNUM.
532""",
533    type="int",
534    name="stab_reg_to_regnum",
535    params=[("int", "stab_regnr")],
536    predefault="no_op_reg_to_regnum",
537    invalid=False,
538)
539
540Method(
541    comment="""
542Provide a default mapping from a ecoff register number to a gdb REGNUM.
543""",
544    type="int",
545    name="ecoff_reg_to_regnum",
546    params=[("int", "ecoff_regnr")],
547    predefault="no_op_reg_to_regnum",
548    invalid=False,
549)
550
551Method(
552    comment="""
553Convert from an sdb register number to an internal gdb register number.
554""",
555    type="int",
556    name="sdb_reg_to_regnum",
557    params=[("int", "sdb_regnr")],
558    predefault="no_op_reg_to_regnum",
559    invalid=False,
560)
561
562Method(
563    comment="""
564Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
565Return -1 for bad REGNUM.  Note: Several targets get this wrong.
566""",
567    type="int",
568    name="dwarf2_reg_to_regnum",
569    params=[("int", "dwarf2_regnr")],
570    predefault="no_op_reg_to_regnum",
571    invalid=False,
572)
573
574Method(
575    comment="""
576Return the name of register REGNR for the specified architecture.
577REGNR can be any value greater than, or equal to zero, and less than
578'gdbarch_num_cooked_regs (GDBARCH)'.  If REGNR is not supported for
579GDBARCH, then this function will return an empty string, this function
580should never return nullptr.
581""",
582    type="const char *",
583    name="register_name",
584    params=[("int", "regnr")],
585    param_checks=["regnr >= 0", "regnr < gdbarch_num_cooked_regs (gdbarch)"],
586    result_checks=["result != nullptr"],
587    predefault="0",
588    invalid=True,
589)
590
591Method(
592    comment="""
593Return the type of a register specified by the architecture.  Only
594the register cache should call this function directly; others should
595use "register_type".
596""",
597    type="struct type *",
598    name="register_type",
599    params=[("int", "reg_nr")],
600    invalid=True,
601)
602
603Method(
604    comment="""
605Generate a dummy frame_id for THIS_FRAME assuming that the frame is
606a dummy frame.  A dummy frame is created before an inferior call,
607the frame_id returned here must match the frame_id that was built
608for the inferior call.  Usually this means the returned frame_id's
609stack address should match the address returned by
610gdbarch_push_dummy_call, and the returned frame_id's code address
611should match the address at which the breakpoint was set in the dummy
612frame.
613""",
614    type="struct frame_id",
615    name="dummy_id",
616    params=[("frame_info_ptr", "this_frame")],
617    predefault="default_dummy_id",
618    invalid=False,
619)
620
621Value(
622    comment="""
623Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
624deprecated_fp_regnum.
625""",
626    type="int",
627    name="deprecated_fp_regnum",
628    predefault="-1",
629    invalid=False,
630)
631
632Method(
633    type="CORE_ADDR",
634    name="push_dummy_call",
635    params=[
636        ("struct value *", "function"),
637        ("struct regcache *", "regcache"),
638        ("CORE_ADDR", "bp_addr"),
639        ("int", "nargs"),
640        ("struct value **", "args"),
641        ("CORE_ADDR", "sp"),
642        ("function_call_return_method", "return_method"),
643        ("CORE_ADDR", "struct_addr"),
644    ],
645    predicate=True,
646    invalid=True,
647)
648
649Value(
650    type="enum call_dummy_location_type",
651    name="call_dummy_location",
652    predefault="AT_ENTRY_POINT",
653    invalid=False,
654)
655
656Method(
657    type="CORE_ADDR",
658    name="push_dummy_code",
659    params=[
660        ("CORE_ADDR", "sp"),
661        ("CORE_ADDR", "funaddr"),
662        ("struct value **", "args"),
663        ("int", "nargs"),
664        ("struct type *", "value_type"),
665        ("CORE_ADDR *", "real_pc"),
666        ("CORE_ADDR *", "bp_addr"),
667        ("struct regcache *", "regcache"),
668    ],
669    predicate=True,
670    invalid=True,
671)
672
673Method(
674    comment="""
675Return true if the code of FRAME is writable.
676""",
677    type="int",
678    name="code_of_frame_writable",
679    params=[("frame_info_ptr", "frame")],
680    predefault="default_code_of_frame_writable",
681    invalid=False,
682)
683
684Method(
685    type="void",
686    name="print_registers_info",
687    params=[
688        ("struct ui_file *", "file"),
689        ("frame_info_ptr", "frame"),
690        ("int", "regnum"),
691        ("int", "all"),
692    ],
693    predefault="default_print_registers_info",
694    invalid=False,
695)
696
697Method(
698    type="void",
699    name="print_float_info",
700    params=[
701        ("struct ui_file *", "file"),
702        ("frame_info_ptr", "frame"),
703        ("const char *", "args"),
704    ],
705    predefault="default_print_float_info",
706    invalid=False,
707)
708
709Method(
710    type="void",
711    name="print_vector_info",
712    params=[
713        ("struct ui_file *", "file"),
714        ("frame_info_ptr", "frame"),
715        ("const char *", "args"),
716    ],
717    predicate=True,
718    invalid=True,
719)
720
721Method(
722    comment="""
723MAP a GDB RAW register number onto a simulator register number.  See
724also include/...-sim.h.
725""",
726    type="int",
727    name="register_sim_regno",
728    params=[("int", "reg_nr")],
729    predefault="legacy_register_sim_regno",
730    invalid=False,
731)
732
733Method(
734    type="int",
735    name="cannot_fetch_register",
736    params=[("int", "regnum")],
737    predefault="cannot_register_not",
738    invalid=False,
739)
740
741Method(
742    type="int",
743    name="cannot_store_register",
744    params=[("int", "regnum")],
745    predefault="cannot_register_not",
746    invalid=False,
747)
748
749Function(
750    comment="""
751Determine the address where a longjmp will land and save this address
752in PC.  Return nonzero on success.
753
754FRAME corresponds to the longjmp frame.
755""",
756    type="int",
757    name="get_longjmp_target",
758    params=[("frame_info_ptr", "frame"), ("CORE_ADDR *", "pc")],
759    predicate=True,
760    invalid=True,
761)
762
763Value(
764    type="int",
765    name="believe_pcc_promotion",
766    invalid=False,
767)
768
769Method(
770    type="int",
771    name="convert_register_p",
772    params=[("int", "regnum"), ("struct type *", "type")],
773    predefault="generic_convert_register_p",
774    invalid=False,
775)
776
777Function(
778    type="int",
779    name="register_to_value",
780    params=[
781        ("frame_info_ptr", "frame"),
782        ("int", "regnum"),
783        ("struct type *", "type"),
784        ("gdb_byte *", "buf"),
785        ("int *", "optimizedp"),
786        ("int *", "unavailablep"),
787    ],
788    invalid=False,
789)
790
791Function(
792    type="void",
793    name="value_to_register",
794    params=[
795        ("frame_info_ptr", "frame"),
796        ("int", "regnum"),
797        ("struct type *", "type"),
798        ("const gdb_byte *", "buf"),
799    ],
800    invalid=False,
801)
802
803Method(
804    comment="""
805Construct a value representing the contents of register REGNUM in
806frame FRAME_ID, interpreted as type TYPE.  The routine needs to
807allocate and return a struct value with all value attributes
808(but not the value contents) filled in.
809""",
810    type="struct value *",
811    name="value_from_register",
812    params=[
813        ("struct type *", "type"),
814        ("int", "regnum"),
815        ("struct frame_id", "frame_id"),
816    ],
817    predefault="default_value_from_register",
818    invalid=False,
819)
820
821Method(
822    type="CORE_ADDR",
823    name="pointer_to_address",
824    params=[("struct type *", "type"), ("const gdb_byte *", "buf")],
825    predefault="unsigned_pointer_to_address",
826    invalid=False,
827)
828
829Method(
830    type="void",
831    name="address_to_pointer",
832    params=[("struct type *", "type"), ("gdb_byte *", "buf"), ("CORE_ADDR", "addr")],
833    predefault="unsigned_address_to_pointer",
834    invalid=False,
835)
836
837Method(
838    type="CORE_ADDR",
839    name="integer_to_address",
840    params=[("struct type *", "type"), ("const gdb_byte *", "buf")],
841    predicate=True,
842    invalid=True,
843)
844
845Method(
846    comment="""
847Return the return-value convention that will be used by FUNCTION
848to return a value of type VALTYPE.  FUNCTION may be NULL in which
849case the return convention is computed based only on VALTYPE.
850
851If READBUF is not NULL, extract the return value and save it in this buffer.
852
853If WRITEBUF is not NULL, it contains a return value which will be
854stored into the appropriate register.  This can be used when we want
855to force the value returned by a function (see the "return" command
856for instance).
857""",
858    type="enum return_value_convention",
859    name="return_value",
860    params=[
861        ("struct value *", "function"),
862        ("struct type *", "valtype"),
863        ("struct regcache *", "regcache"),
864        ("gdb_byte *", "readbuf"),
865        ("const gdb_byte *", "writebuf"),
866    ],
867    predicate=True,
868    invalid=True,
869)
870
871Function(
872    comment="""
873Return the address at which the value being returned from
874the current function will be stored.  This routine is only
875called if the current function uses the the "struct return
876convention".
877
878May return 0 when unable to determine that address.""",
879    type="CORE_ADDR",
880    name="get_return_buf_addr",
881    params=[("struct type *", "val_type"), ("frame_info_ptr", "cur_frame")],
882    predefault="default_get_return_buf_addr",
883    invalid=False,
884)
885
886Method(
887    comment="""
888Return true if the return value of function is stored in the first hidden
889parameter.  In theory, this feature should be language-dependent, specified
890by language and its ABI, such as C++.  Unfortunately, compiler may
891implement it to a target-dependent feature.  So that we need such hook here
892to be aware of this in GDB.
893""",
894    type="int",
895    name="return_in_first_hidden_param_p",
896    params=[("struct type *", "type")],
897    predefault="default_return_in_first_hidden_param_p",
898    invalid=False,
899)
900
901Method(
902    type="CORE_ADDR",
903    name="skip_prologue",
904    params=[("CORE_ADDR", "ip")],
905    predefault="0",
906    invalid=True,
907)
908
909Method(
910    type="CORE_ADDR",
911    name="skip_main_prologue",
912    params=[("CORE_ADDR", "ip")],
913    predicate=True,
914    invalid=True,
915)
916
917Method(
918    comment="""
919On some platforms, a single function may provide multiple entry points,
920e.g. one that is used for function-pointer calls and a different one
921that is used for direct function calls.
922In order to ensure that breakpoints set on the function will trigger
923no matter via which entry point the function is entered, a platform
924may provide the skip_entrypoint callback.  It is called with IP set
925to the main entry point of a function (as determined by the symbol table),
926and should return the address of the innermost entry point, where the
927actual breakpoint needs to be set.  Note that skip_entrypoint is used
928by GDB common code even when debugging optimized code, where skip_prologue
929is not used.
930""",
931    type="CORE_ADDR",
932    name="skip_entrypoint",
933    params=[("CORE_ADDR", "ip")],
934    predicate=True,
935    invalid=True,
936)
937
938Function(
939    type="int",
940    name="inner_than",
941    params=[("CORE_ADDR", "lhs"), ("CORE_ADDR", "rhs")],
942    predefault="0",
943    invalid=True,
944)
945
946Method(
947    type="const gdb_byte *",
948    name="breakpoint_from_pc",
949    params=[("CORE_ADDR *", "pcptr"), ("int *", "lenptr")],
950    predefault="default_breakpoint_from_pc",
951    invalid=False,
952)
953
954Method(
955    comment="""
956Return the breakpoint kind for this target based on *PCPTR.
957""",
958    type="int",
959    name="breakpoint_kind_from_pc",
960    params=[("CORE_ADDR *", "pcptr")],
961    predefault="0",
962    invalid=True,
963)
964
965Method(
966    comment="""
967Return the software breakpoint from KIND.  KIND can have target
968specific meaning like the Z0 kind parameter.
969SIZE is set to the software breakpoint's length in memory.
970""",
971    type="const gdb_byte *",
972    name="sw_breakpoint_from_kind",
973    params=[("int", "kind"), ("int *", "size")],
974    predefault="NULL",
975    invalid=False,
976)
977
978Method(
979    comment="""
980Return the breakpoint kind for this target based on the current
981processor state (e.g. the current instruction mode on ARM) and the
982*PCPTR.  In default, it is gdbarch->breakpoint_kind_from_pc.
983""",
984    type="int",
985    name="breakpoint_kind_from_current_state",
986    params=[("struct regcache *", "regcache"), ("CORE_ADDR *", "pcptr")],
987    predefault="default_breakpoint_kind_from_current_state",
988    invalid=False,
989)
990
991Method(
992    type="CORE_ADDR",
993    name="adjust_breakpoint_address",
994    params=[("CORE_ADDR", "bpaddr")],
995    predicate=True,
996    invalid=True,
997)
998
999Method(
1000    type="int",
1001    name="memory_insert_breakpoint",
1002    params=[("struct bp_target_info *", "bp_tgt")],
1003    predefault="default_memory_insert_breakpoint",
1004    invalid=False,
1005)
1006
1007Method(
1008    type="int",
1009    name="memory_remove_breakpoint",
1010    params=[("struct bp_target_info *", "bp_tgt")],
1011    predefault="default_memory_remove_breakpoint",
1012    invalid=False,
1013)
1014
1015Value(
1016    type="CORE_ADDR",
1017    name="decr_pc_after_break",
1018    invalid=False,
1019)
1020
1021Value(
1022    comment="""
1023A function can be addressed by either it's "pointer" (possibly a
1024descriptor address) or "entry point" (first executable instruction).
1025The method "convert_from_func_ptr_addr" converting the former to the
1026latter.  gdbarch_deprecated_function_start_offset is being used to implement
1027a simplified subset of that functionality - the function's address
1028corresponds to the "function pointer" and the function's start
1029corresponds to the "function entry point" - and hence is redundant.
1030""",
1031    type="CORE_ADDR",
1032    name="deprecated_function_start_offset",
1033    invalid=False,
1034)
1035
1036Method(
1037    comment="""
1038Return the remote protocol register number associated with this
1039register.  Normally the identity mapping.
1040""",
1041    type="int",
1042    name="remote_register_number",
1043    params=[("int", "regno")],
1044    predefault="default_remote_register_number",
1045    invalid=False,
1046)
1047
1048Function(
1049    comment="""
1050Fetch the target specific address used to represent a load module.
1051""",
1052    type="CORE_ADDR",
1053    name="fetch_tls_load_module_address",
1054    params=[("struct objfile *", "objfile")],
1055    predicate=True,
1056    invalid=True,
1057)
1058
1059Method(
1060    comment="""
1061Return the thread-local address at OFFSET in the thread-local
1062storage for the thread PTID and the shared library or executable
1063file given by LM_ADDR.  If that block of thread-local storage hasn't
1064been allocated yet, this function may throw an error.  LM_ADDR may
1065be zero for statically linked multithreaded inferiors.
1066""",
1067    type="CORE_ADDR",
1068    name="get_thread_local_address",
1069    params=[("ptid_t", "ptid"), ("CORE_ADDR", "lm_addr"), ("CORE_ADDR", "offset")],
1070    predicate=True,
1071    invalid=True,
1072)
1073
1074Value(
1075    type="CORE_ADDR",
1076    name="frame_args_skip",
1077    invalid=False,
1078)
1079
1080Method(
1081    type="CORE_ADDR",
1082    name="unwind_pc",
1083    params=[("frame_info_ptr", "next_frame")],
1084    predefault="default_unwind_pc",
1085    invalid=False,
1086)
1087
1088Method(
1089    type="CORE_ADDR",
1090    name="unwind_sp",
1091    params=[("frame_info_ptr", "next_frame")],
1092    predefault="default_unwind_sp",
1093    invalid=False,
1094)
1095
1096Function(
1097    comment="""
1098DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
1099frame-base.  Enable frame-base before frame-unwind.
1100""",
1101    type="int",
1102    name="frame_num_args",
1103    params=[("frame_info_ptr", "frame")],
1104    predicate=True,
1105    invalid=True,
1106)
1107
1108Method(
1109    type="CORE_ADDR",
1110    name="frame_align",
1111    params=[("CORE_ADDR", "address")],
1112    predicate=True,
1113    invalid=True,
1114)
1115
1116Method(
1117    type="int",
1118    name="stabs_argument_has_addr",
1119    params=[("struct type *", "type")],
1120    predefault="default_stabs_argument_has_addr",
1121    invalid=False,
1122)
1123
1124Value(
1125    type="int",
1126    name="frame_red_zone_size",
1127    invalid=False,
1128)
1129
1130Method(
1131    type="CORE_ADDR",
1132    name="convert_from_func_ptr_addr",
1133    params=[("CORE_ADDR", "addr"), ("struct target_ops *", "targ")],
1134    predefault="convert_from_func_ptr_addr_identity",
1135    invalid=False,
1136)
1137
1138Method(
1139    comment="""
1140On some machines there are bits in addresses which are not really
1141part of the address, but are used by the kernel, the hardware, etc.
1142for special purposes.  gdbarch_addr_bits_remove takes out any such bits so
1143we get a "real" address such as one would find in a symbol table.
1144This is used only for addresses of instructions, and even then I'm
1145not sure it's used in all contexts.  It exists to deal with there
1146being a few stray bits in the PC which would mislead us, not as some
1147sort of generic thing to handle alignment or segmentation (it's
1148possible it should be in TARGET_READ_PC instead).
1149""",
1150    type="CORE_ADDR",
1151    name="addr_bits_remove",
1152    params=[("CORE_ADDR", "addr")],
1153    predefault="core_addr_identity",
1154    invalid=False,
1155)
1156
1157Method(
1158    comment="""
1159On some architectures, not all bits of a pointer are significant.
1160On AArch64, for example, the top bits of a pointer may carry a "tag", which
1161can be ignored by the kernel and the hardware.  The "tag" can be regarded as
1162additional data associated with the pointer, but it is not part of the address.
1163
1164Given a pointer for the architecture, this hook removes all the
1165non-significant bits and sign-extends things as needed.  It gets used to remove
1166non-address bits from data pointers (for example, removing the AArch64 MTE tag
1167bits from a pointer) and from code pointers (removing the AArch64 PAC signature
1168from a pointer containing the return address).
1169""",
1170    type="CORE_ADDR",
1171    name="remove_non_address_bits",
1172    params=[("CORE_ADDR", "pointer")],
1173    predefault="default_remove_non_address_bits",
1174    invalid=False,
1175)
1176
1177Method(
1178    comment="""
1179Return a string representation of the memory tag TAG.
1180""",
1181    type="std::string",
1182    name="memtag_to_string",
1183    params=[("struct value *", "tag")],
1184    predefault="default_memtag_to_string",
1185    invalid=False,
1186)
1187
1188Method(
1189    comment="""
1190Return true if ADDRESS contains a tag and false otherwise.  ADDRESS
1191must be either a pointer or a reference type.
1192""",
1193    type="bool",
1194    name="tagged_address_p",
1195    params=[("struct value *", "address")],
1196    predefault="default_tagged_address_p",
1197    invalid=False,
1198)
1199
1200Method(
1201    comment="""
1202Return true if the tag from ADDRESS matches the memory tag for that
1203particular address.  Return false otherwise.
1204""",
1205    type="bool",
1206    name="memtag_matches_p",
1207    params=[("struct value *", "address")],
1208    predefault="default_memtag_matches_p",
1209    invalid=False,
1210)
1211
1212Method(
1213    comment="""
1214Set the tags of type TAG_TYPE, for the memory address range
1215[ADDRESS, ADDRESS + LENGTH) to TAGS.
1216Return true if successful and false otherwise.
1217""",
1218    type="bool",
1219    name="set_memtags",
1220    params=[
1221        ("struct value *", "address"),
1222        ("size_t", "length"),
1223        ("const gdb::byte_vector &", "tags"),
1224        ("memtag_type", "tag_type"),
1225    ],
1226    predefault="default_set_memtags",
1227    invalid=False,
1228)
1229
1230Method(
1231    comment="""
1232Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
1233assuming ADDRESS is tagged.
1234""",
1235    type="struct value *",
1236    name="get_memtag",
1237    params=[("struct value *", "address"), ("memtag_type", "tag_type")],
1238    predefault="default_get_memtag",
1239    invalid=False,
1240)
1241
1242Value(
1243    comment="""
1244memtag_granule_size is the size of the allocation tag granule, for
1245architectures that support memory tagging.
1246This is 0 for architectures that do not support memory tagging.
1247For a non-zero value, this represents the number of bytes of memory per tag.
1248""",
1249    type="CORE_ADDR",
1250    name="memtag_granule_size",
1251    invalid=False,
1252)
1253
1254Function(
1255    comment="""
1256FIXME/cagney/2001-01-18: This should be split in two.  A target method that
1257indicates if the target needs software single step.  An ISA method to
1258implement it.
1259
1260FIXME/cagney/2001-01-18: The logic is backwards.  It should be asking if the
1261target can single step.  If not, then implement single step using breakpoints.
1262
1263Return a vector of addresses on which the software single step
1264breakpoints should be inserted.  NULL means software single step is
1265not used.
1266Multiple breakpoints may be inserted for some instructions such as
1267conditional branch.  However, each implementation must always evaluate
1268the condition and only put the breakpoint at the branch destination if
1269the condition is true, so that we ensure forward progress when stepping
1270past a conditional branch to self.
1271""",
1272    type="std::vector<CORE_ADDR>",
1273    name="software_single_step",
1274    params=[("struct regcache *", "regcache")],
1275    predicate=True,
1276    invalid=True,
1277)
1278
1279Method(
1280    comment="""
1281Return non-zero if the processor is executing a delay slot and a
1282further single-step is needed before the instruction finishes.
1283""",
1284    type="int",
1285    name="single_step_through_delay",
1286    params=[("frame_info_ptr", "frame")],
1287    predicate=True,
1288    invalid=True,
1289)
1290
1291Function(
1292    comment="""
1293FIXME: cagney/2003-08-28: Need to find a better way of selecting the
1294disassembler.  Perhaps objdump can handle it?
1295""",
1296    type="int",
1297    name="print_insn",
1298    params=[("bfd_vma", "vma"), ("struct disassemble_info *", "info")],
1299    predefault="default_print_insn",
1300    invalid=False,
1301)
1302
1303Function(
1304    type="CORE_ADDR",
1305    name="skip_trampoline_code",
1306    params=[("frame_info_ptr", "frame"), ("CORE_ADDR", "pc")],
1307    predefault="generic_skip_trampoline_code",
1308    invalid=False,
1309)
1310
1311Value(
1312    comment="Vtable of solib operations functions.",
1313    type="const struct target_so_ops *",
1314    name="so_ops",
1315    postdefault="&solib_target_so_ops",
1316    printer="host_address_to_string (gdbarch->so_ops)",
1317)
1318
1319Method(
1320    comment="""
1321If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
1322evaluates non-zero, this is the address where the debugger will place
1323a step-resume breakpoint to get us past the dynamic linker.
1324""",
1325    type="CORE_ADDR",
1326    name="skip_solib_resolver",
1327    params=[("CORE_ADDR", "pc")],
1328    predefault="generic_skip_solib_resolver",
1329    invalid=False,
1330)
1331
1332Method(
1333    comment="""
1334Some systems also have trampoline code for returning from shared libs.
1335""",
1336    type="int",
1337    name="in_solib_return_trampoline",
1338    params=[("CORE_ADDR", "pc"), ("const char *", "name")],
1339    predefault="generic_in_solib_return_trampoline",
1340    invalid=False,
1341)
1342
1343Method(
1344    comment="""
1345Return true if PC lies inside an indirect branch thunk.
1346""",
1347    type="bool",
1348    name="in_indirect_branch_thunk",
1349    params=[("CORE_ADDR", "pc")],
1350    predefault="default_in_indirect_branch_thunk",
1351    invalid=False,
1352)
1353
1354Method(
1355    comment="""
1356A target might have problems with watchpoints as soon as the stack
1357frame of the current function has been destroyed.  This mostly happens
1358as the first action in a function's epilogue.  stack_frame_destroyed_p()
1359is defined to return a non-zero value if either the given addr is one
1360instruction after the stack destroying instruction up to the trailing
1361return instruction or if we can figure out that the stack frame has
1362already been invalidated regardless of the value of addr.  Targets
1363which don't suffer from that problem could just let this functionality
1364untouched.
1365""",
1366    type="int",
1367    name="stack_frame_destroyed_p",
1368    params=[("CORE_ADDR", "addr")],
1369    predefault="generic_stack_frame_destroyed_p",
1370    invalid=False,
1371)
1372
1373Function(
1374    comment="""
1375Process an ELF symbol in the minimal symbol table in a backend-specific
1376way.  Normally this hook is supposed to do nothing, however if required,
1377then this hook can be used to apply tranformations to symbols that are
1378considered special in some way.  For example the MIPS backend uses it
1379to interpret `st_other' information to mark compressed code symbols so
1380that they can be treated in the appropriate manner in the processing of
1381the main symbol table and DWARF-2 records.
1382""",
1383    type="void",
1384    name="elf_make_msymbol_special",
1385    params=[("asymbol *", "sym"), ("struct minimal_symbol *", "msym")],
1386    predicate=True,
1387    invalid=True,
1388)
1389
1390Function(
1391    type="void",
1392    name="coff_make_msymbol_special",
1393    params=[("int", "val"), ("struct minimal_symbol *", "msym")],
1394    predefault="default_coff_make_msymbol_special",
1395    invalid=False,
1396)
1397
1398Function(
1399    comment="""
1400Process a symbol in the main symbol table in a backend-specific way.
1401Normally this hook is supposed to do nothing, however if required,
1402then this hook can be used to apply tranformations to symbols that
1403are considered special in some way.  This is currently used by the
1404MIPS backend to make sure compressed code symbols have the ISA bit
1405set.  This in turn is needed for symbol values seen in GDB to match
1406the values used at the runtime by the program itself, for function
1407and label references.
1408""",
1409    type="void",
1410    name="make_symbol_special",
1411    params=[("struct symbol *", "sym"), ("struct objfile *", "objfile")],
1412    predefault="default_make_symbol_special",
1413    invalid=False,
1414)
1415
1416Function(
1417    comment="""
1418Adjust the address retrieved from a DWARF-2 record other than a line
1419entry in a backend-specific way.  Normally this hook is supposed to
1420return the address passed unchanged, however if that is incorrect for
1421any reason, then this hook can be used to fix the address up in the
1422required manner.  This is currently used by the MIPS backend to make
1423sure addresses in FDE, range records, etc. referring to compressed
1424code have the ISA bit set, matching line information and the symbol
1425table.
1426""",
1427    type="CORE_ADDR",
1428    name="adjust_dwarf2_addr",
1429    params=[("CORE_ADDR", "pc")],
1430    predefault="default_adjust_dwarf2_addr",
1431    invalid=False,
1432)
1433
1434Function(
1435    comment="""
1436Adjust the address updated by a line entry in a backend-specific way.
1437Normally this hook is supposed to return the address passed unchanged,
1438however in the case of inconsistencies in these records, this hook can
1439be used to fix them up in the required manner.  This is currently used
1440by the MIPS backend to make sure all line addresses in compressed code
1441are presented with the ISA bit set, which is not always the case.  This
1442in turn ensures breakpoint addresses are correctly matched against the
1443stop PC.
1444""",
1445    type="CORE_ADDR",
1446    name="adjust_dwarf2_line",
1447    params=[("CORE_ADDR", "addr"), ("int", "rel")],
1448    predefault="default_adjust_dwarf2_line",
1449    invalid=False,
1450)
1451
1452Value(
1453    type="int",
1454    name="cannot_step_breakpoint",
1455    predefault="0",
1456    invalid=False,
1457)
1458
1459Value(
1460    comment="""
1461See comment in target.h about continuable, steppable and
1462non-steppable watchpoints.
1463""",
1464    type="int",
1465    name="have_nonsteppable_watchpoint",
1466    predefault="0",
1467    invalid=False,
1468)
1469
1470Function(
1471    type="type_instance_flags",
1472    name="address_class_type_flags",
1473    params=[("int", "byte_size"), ("int", "dwarf2_addr_class")],
1474    predicate=True,
1475    invalid=True,
1476)
1477
1478Method(
1479    type="const char *",
1480    name="address_class_type_flags_to_name",
1481    params=[("type_instance_flags", "type_flags")],
1482    predicate=True,
1483    invalid=True,
1484)
1485
1486Method(
1487    comment="""
1488Execute vendor-specific DWARF Call Frame Instruction.  OP is the instruction.
1489FS are passed from the generic execute_cfa_program function.
1490""",
1491    type="bool",
1492    name="execute_dwarf_cfa_vendor_op",
1493    params=[("gdb_byte", "op"), ("struct dwarf2_frame_state *", "fs")],
1494    predefault="default_execute_dwarf_cfa_vendor_op",
1495    invalid=False,
1496)
1497
1498Method(
1499    comment="""
1500Return the appropriate type_flags for the supplied address class.
1501This function should return true if the address class was recognized and
1502type_flags was set, false otherwise.
1503""",
1504    type="bool",
1505    name="address_class_name_to_type_flags",
1506    params=[("const char *", "name"), ("type_instance_flags *", "type_flags_ptr")],
1507    predicate=True,
1508    invalid=True,
1509)
1510
1511Method(
1512    comment="""
1513Is a register in a group
1514""",
1515    type="int",
1516    name="register_reggroup_p",
1517    params=[("int", "regnum"), ("const struct reggroup *", "reggroup")],
1518    predefault="default_register_reggroup_p",
1519    invalid=False,
1520)
1521
1522Function(
1523    comment="""
1524Fetch the pointer to the ith function argument.
1525""",
1526    type="CORE_ADDR",
1527    name="fetch_pointer_argument",
1528    params=[
1529        ("frame_info_ptr", "frame"),
1530        ("int", "argi"),
1531        ("struct type *", "type"),
1532    ],
1533    predicate=True,
1534    invalid=True,
1535)
1536
1537Method(
1538    comment="""
1539Iterate over all supported register notes in a core file.  For each
1540supported register note section, the iterator must call CB and pass
1541CB_DATA unchanged.  If REGCACHE is not NULL, the iterator can limit
1542the supported register note sections based on the current register
1543values.  Otherwise it should enumerate all supported register note
1544sections.
1545""",
1546    type="void",
1547    name="iterate_over_regset_sections",
1548    params=[
1549        ("iterate_over_regset_sections_cb *", "cb"),
1550        ("void *", "cb_data"),
1551        ("const struct regcache *", "regcache"),
1552    ],
1553    predicate=True,
1554    invalid=True,
1555)
1556
1557Method(
1558    comment="""
1559Create core file notes
1560""",
1561    type="gdb::unique_xmalloc_ptr<char>",
1562    name="make_corefile_notes",
1563    params=[("bfd *", "obfd"), ("int *", "note_size")],
1564    predicate=True,
1565    invalid=True,
1566)
1567
1568Method(
1569    comment="""
1570Find core file memory regions
1571""",
1572    type="int",
1573    name="find_memory_regions",
1574    params=[("find_memory_region_ftype", "func"), ("void *", "data")],
1575    predicate=True,
1576    invalid=True,
1577)
1578
1579Method(
1580    comment="""
1581Given a bfd OBFD, segment ADDRESS and SIZE, create a memory tag section to be dumped to a core file
1582""",
1583    type="asection *",
1584    name="create_memtag_section",
1585    params=[("bfd *", "obfd"), ("CORE_ADDR", "address"), ("size_t", "size")],
1586    predicate=True,
1587    invalid=True,
1588)
1589
1590Method(
1591    comment="""
1592Given a memory tag section OSEC, fill OSEC's contents with the appropriate tag data
1593""",
1594    type="bool",
1595    name="fill_memtag_section",
1596    params=[("asection *", "osec")],
1597    predicate=True,
1598    invalid=True,
1599)
1600
1601Method(
1602    comment="""
1603Decode a memory tag SECTION and return the tags of type TYPE contained in
1604the memory range [ADDRESS, ADDRESS + LENGTH).
1605If no tags were found, return an empty vector.
1606""",
1607    type="gdb::byte_vector",
1608    name="decode_memtag_section",
1609    params=[
1610        ("bfd_section *", "section"),
1611        ("int", "type"),
1612        ("CORE_ADDR", "address"),
1613        ("size_t", "length"),
1614    ],
1615    predicate=True,
1616    invalid=True,
1617)
1618
1619Method(
1620    comment="""
1621Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
1622core file into buffer READBUF with length LEN.  Return the number of bytes read
1623(zero indicates failure).
1624failed, otherwise, return the red length of READBUF.
1625""",
1626    type="ULONGEST",
1627    name="core_xfer_shared_libraries",
1628    params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1629    predicate=True,
1630    invalid=True,
1631)
1632
1633Method(
1634    comment="""
1635Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
1636libraries list from core file into buffer READBUF with length LEN.
1637Return the number of bytes read (zero indicates failure).
1638""",
1639    type="ULONGEST",
1640    name="core_xfer_shared_libraries_aix",
1641    params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1642    predicate=True,
1643    invalid=True,
1644)
1645
1646Method(
1647    comment="""
1648How the core target converts a PTID from a core file to a string.
1649""",
1650    type="std::string",
1651    name="core_pid_to_str",
1652    params=[("ptid_t", "ptid")],
1653    predicate=True,
1654    invalid=True,
1655)
1656
1657Method(
1658    comment="""
1659How the core target extracts the name of a thread from a core file.
1660""",
1661    type="const char *",
1662    name="core_thread_name",
1663    params=[("struct thread_info *", "thr")],
1664    predicate=True,
1665    invalid=True,
1666)
1667
1668Method(
1669    comment="""
1670Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
1671from core file into buffer READBUF with length LEN.  Return the number
1672of bytes read (zero indicates EOF, a negative value indicates failure).
1673""",
1674    type="LONGEST",
1675    name="core_xfer_siginfo",
1676    params=[("gdb_byte *", "readbuf"), ("ULONGEST", "offset"), ("ULONGEST", "len")],
1677    predicate=True,
1678    invalid=True,
1679)
1680
1681Value(
1682    comment="""
1683BFD target to use when generating a core file.
1684""",
1685    type="const char *",
1686    name="gcore_bfd_target",
1687    predicate=True,
1688    predefault="0",
1689    invalid=True,
1690    printer="pstring (gdbarch->gcore_bfd_target)",
1691)
1692
1693Value(
1694    comment="""
1695If the elements of C++ vtables are in-place function descriptors rather
1696than normal function pointers (which may point to code or a descriptor),
1697set this to one.
1698""",
1699    type="int",
1700    name="vtable_function_descriptors",
1701    predefault="0",
1702    invalid=False,
1703)
1704
1705Value(
1706    comment="""
1707Set if the least significant bit of the delta is used instead of the least
1708significant bit of the pfn for pointers to virtual member functions.
1709""",
1710    type="int",
1711    name="vbit_in_delta",
1712    predefault="0",
1713    invalid=False,
1714)
1715
1716Function(
1717    comment="""
1718Advance PC to next instruction in order to skip a permanent breakpoint.
1719""",
1720    type="void",
1721    name="skip_permanent_breakpoint",
1722    params=[("struct regcache *", "regcache")],
1723    predefault="default_skip_permanent_breakpoint",
1724    invalid=False,
1725)
1726
1727Value(
1728    comment="""
1729The maximum length of an instruction on this architecture in bytes.
1730""",
1731    type="ULONGEST",
1732    name="max_insn_length",
1733    predicate=True,
1734    predefault="0",
1735    invalid=True,
1736)
1737
1738Method(
1739    comment="""
1740Copy the instruction at FROM to TO, and make any adjustments
1741necessary to single-step it at that address.
1742
1743REGS holds the state the thread's registers will have before
1744executing the copied instruction; the PC in REGS will refer to FROM,
1745not the copy at TO.  The caller should update it to point at TO later.
1746
1747Return a pointer to data of the architecture's choice to be passed
1748to gdbarch_displaced_step_fixup.
1749
1750For a general explanation of displaced stepping and how GDB uses it,
1751see the comments in infrun.c.
1752
1753The TO area is only guaranteed to have space for
1754gdbarch_max_insn_length (arch) bytes, so this function must not
1755write more bytes than that to that area.
1756
1757If you do not provide this function, GDB assumes that the
1758architecture does not support displaced stepping.
1759
1760If the instruction cannot execute out of line, return NULL.  The
1761core falls back to stepping past the instruction in-line instead in
1762that case.
1763""",
1764    type="displaced_step_copy_insn_closure_up",
1765    name="displaced_step_copy_insn",
1766    params=[("CORE_ADDR", "from"), ("CORE_ADDR", "to"), ("struct regcache *", "regs")],
1767    predicate=True,
1768    invalid=True,
1769)
1770
1771Method(
1772    comment="""
1773Return true if GDB should use hardware single-stepping to execute a displaced
1774step instruction.  If false, GDB will simply restart execution at the
1775displaced instruction location, and it is up to the target to ensure GDB will
1776receive control again (e.g. by placing a software breakpoint instruction into
1777the displaced instruction buffer).
1778
1779The default implementation returns false on all targets that provide a
1780gdbarch_software_single_step routine, and true otherwise.
1781""",
1782    type="bool",
1783    name="displaced_step_hw_singlestep",
1784    params=[],
1785    predefault="default_displaced_step_hw_singlestep",
1786    invalid=False,
1787)
1788
1789Method(
1790    comment="""
1791Fix up the state resulting from successfully single-stepping a
1792displaced instruction, to give the result we would have gotten from
1793stepping the instruction in its original location.
1794
1795REGS is the register state resulting from single-stepping the
1796displaced instruction.
1797
1798CLOSURE is the result from the matching call to
1799gdbarch_displaced_step_copy_insn.
1800
1801If you provide gdbarch_displaced_step_copy_insn.but not this
1802function, then GDB assumes that no fixup is needed after
1803single-stepping the instruction.
1804
1805For a general explanation of displaced stepping and how GDB uses it,
1806see the comments in infrun.c.
1807""",
1808    type="void",
1809    name="displaced_step_fixup",
1810    params=[
1811        ("struct displaced_step_copy_insn_closure *", "closure"),
1812        ("CORE_ADDR", "from"),
1813        ("CORE_ADDR", "to"),
1814        ("struct regcache *", "regs"),
1815    ],
1816    predicate=True,
1817    predefault="NULL",
1818    invalid=True,
1819)
1820
1821Method(
1822    comment="""
1823Prepare THREAD for it to displaced step the instruction at its current PC.
1824
1825Throw an exception if any unexpected error happens.
1826""",
1827    type="displaced_step_prepare_status",
1828    name="displaced_step_prepare",
1829    params=[("thread_info *", "thread"), ("CORE_ADDR &", "displaced_pc")],
1830    predicate=True,
1831    invalid=True,
1832)
1833
1834Method(
1835    comment="""
1836Clean up after a displaced step of THREAD.
1837""",
1838    type="displaced_step_finish_status",
1839    name="displaced_step_finish",
1840    params=[("thread_info *", "thread"), ("gdb_signal", "sig")],
1841    predefault="NULL",
1842    invalid="(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)",
1843)
1844
1845Function(
1846    comment="""
1847Return the closure associated to the displaced step buffer that is at ADDR.
1848""",
1849    type="const displaced_step_copy_insn_closure *",
1850    name="displaced_step_copy_insn_closure_by_addr",
1851    params=[("inferior *", "inf"), ("CORE_ADDR", "addr")],
1852    predicate=True,
1853    invalid=True,
1854)
1855
1856Function(
1857    comment="""
1858PARENT_INF has forked and CHILD_PTID is the ptid of the child.  Restore the
1859contents of all displaced step buffers in the child's address space.
1860""",
1861    type="void",
1862    name="displaced_step_restore_all_in_ptid",
1863    params=[("inferior *", "parent_inf"), ("ptid_t", "child_ptid")],
1864    invalid=False,
1865)
1866
1867Method(
1868    comment="""
1869Relocate an instruction to execute at a different address.  OLDLOC
1870is the address in the inferior memory where the instruction to
1871relocate is currently at.  On input, TO points to the destination
1872where we want the instruction to be copied (and possibly adjusted)
1873to.  On output, it points to one past the end of the resulting
1874instruction(s).  The effect of executing the instruction at TO shall
1875be the same as if executing it at FROM.  For example, call
1876instructions that implicitly push the return address on the stack
1877should be adjusted to return to the instruction after OLDLOC;
1878relative branches, and other PC-relative instructions need the
1879offset adjusted; etc.
1880""",
1881    type="void",
1882    name="relocate_instruction",
1883    params=[("CORE_ADDR *", "to"), ("CORE_ADDR", "from")],
1884    predicate=True,
1885    predefault="NULL",
1886    invalid=True,
1887)
1888
1889Function(
1890    comment="""
1891Refresh overlay mapped state for section OSECT.
1892""",
1893    type="void",
1894    name="overlay_update",
1895    params=[("struct obj_section *", "osect")],
1896    predicate=True,
1897    invalid=True,
1898)
1899
1900Method(
1901    type="const struct target_desc *",
1902    name="core_read_description",
1903    params=[("struct target_ops *", "target"), ("bfd *", "abfd")],
1904    predicate=True,
1905    invalid=True,
1906)
1907
1908Value(
1909    comment="""
1910Set if the address in N_SO or N_FUN stabs may be zero.
1911""",
1912    type="int",
1913    name="sofun_address_maybe_missing",
1914    predefault="0",
1915    invalid=False,
1916)
1917
1918Method(
1919    comment="""
1920Parse the instruction at ADDR storing in the record execution log
1921the registers REGCACHE and memory ranges that will be affected when
1922the instruction executes, along with their current values.
1923Return -1 if something goes wrong, 0 otherwise.
1924""",
1925    type="int",
1926    name="process_record",
1927    params=[("struct regcache *", "regcache"), ("CORE_ADDR", "addr")],
1928    predicate=True,
1929    invalid=True,
1930)
1931
1932Method(
1933    comment="""
1934Save process state after a signal.
1935Return -1 if something goes wrong, 0 otherwise.
1936""",
1937    type="int",
1938    name="process_record_signal",
1939    params=[("struct regcache *", "regcache"), ("enum gdb_signal", "signal")],
1940    predicate=True,
1941    invalid=True,
1942)
1943
1944Method(
1945    comment="""
1946Signal translation: translate inferior's signal (target's) number
1947into GDB's representation.  The implementation of this method must
1948be host independent.  IOW, don't rely on symbols of the NAT_FILE
1949header (the nm-*.h files), the host <signal.h> header, or similar
1950headers.  This is mainly used when cross-debugging core files ---
1951"Live" targets hide the translation behind the target interface
1952(target_wait, target_resume, etc.).
1953""",
1954    type="enum gdb_signal",
1955    name="gdb_signal_from_target",
1956    params=[("int", "signo")],
1957    predicate=True,
1958    invalid=True,
1959)
1960
1961Method(
1962    comment="""
1963Signal translation: translate the GDB's internal signal number into
1964the inferior's signal (target's) representation.  The implementation
1965of this method must be host independent.  IOW, don't rely on symbols
1966of the NAT_FILE header (the nm-*.h files), the host <signal.h>
1967header, or similar headers.
1968Return the target signal number if found, or -1 if the GDB internal
1969signal number is invalid.
1970""",
1971    type="int",
1972    name="gdb_signal_to_target",
1973    params=[("enum gdb_signal", "signal")],
1974    predicate=True,
1975    invalid=True,
1976)
1977
1978Method(
1979    comment="""
1980Extra signal info inspection.
1981
1982Return a type suitable to inspect extra signal information.
1983""",
1984    type="struct type *",
1985    name="get_siginfo_type",
1986    params=[],
1987    predicate=True,
1988    invalid=True,
1989)
1990
1991Method(
1992    comment="""
1993Record architecture-specific information from the symbol table.
1994""",
1995    type="void",
1996    name="record_special_symbol",
1997    params=[("struct objfile *", "objfile"), ("asymbol *", "sym")],
1998    predicate=True,
1999    invalid=True,
2000)
2001
2002Method(
2003    comment="""
2004Function for the 'catch syscall' feature.
2005Get architecture-specific system calls information from registers.
2006""",
2007    type="LONGEST",
2008    name="get_syscall_number",
2009    params=[("thread_info *", "thread")],
2010    predicate=True,
2011    invalid=True,
2012)
2013
2014Value(
2015    comment="""
2016The filename of the XML syscall for this architecture.
2017""",
2018    type="const char *",
2019    name="xml_syscall_file",
2020    predefault="0",
2021    invalid=False,
2022    printer="pstring (gdbarch->xml_syscall_file)",
2023)
2024
2025Value(
2026    comment="""
2027Information about system calls from this architecture
2028""",
2029    type="struct syscalls_info *",
2030    name="syscalls_info",
2031    predefault="0",
2032    invalid=False,
2033    printer="host_address_to_string (gdbarch->syscalls_info)",
2034)
2035
2036Value(
2037    comment="""
2038SystemTap related fields and functions.
2039A NULL-terminated array of prefixes used to mark an integer constant
2040on the architecture's assembly.
2041For example, on x86 integer constants are written as:
2042
2043$10 ;; integer constant 10
2044
2045in this case, this prefix would be the character `$'.
2046""",
2047    type="const char *const *",
2048    name="stap_integer_prefixes",
2049    predefault="0",
2050    invalid=False,
2051    printer="pstring_list (gdbarch->stap_integer_prefixes)",
2052)
2053
2054Value(
2055    comment="""
2056A NULL-terminated array of suffixes used to mark an integer constant
2057on the architecture's assembly.
2058""",
2059    type="const char *const *",
2060    name="stap_integer_suffixes",
2061    predefault="0",
2062    invalid=False,
2063    printer="pstring_list (gdbarch->stap_integer_suffixes)",
2064)
2065
2066Value(
2067    comment="""
2068A NULL-terminated array of prefixes used to mark a register name on
2069the architecture's assembly.
2070For example, on x86 the register name is written as:
2071
2072%eax ;; register eax
2073
2074in this case, this prefix would be the character `%'.
2075""",
2076    type="const char *const *",
2077    name="stap_register_prefixes",
2078    predefault="0",
2079    invalid=False,
2080    printer="pstring_list (gdbarch->stap_register_prefixes)",
2081)
2082
2083Value(
2084    comment="""
2085A NULL-terminated array of suffixes used to mark a register name on
2086the architecture's assembly.
2087""",
2088    type="const char *const *",
2089    name="stap_register_suffixes",
2090    predefault="0",
2091    invalid=False,
2092    printer="pstring_list (gdbarch->stap_register_suffixes)",
2093)
2094
2095Value(
2096    comment="""
2097A NULL-terminated array of prefixes used to mark a register
2098indirection on the architecture's assembly.
2099For example, on x86 the register indirection is written as:
2100
2101(%eax) ;; indirecting eax
2102
2103in this case, this prefix would be the charater `('.
2104
2105Please note that we use the indirection prefix also for register
2106displacement, e.g., `4(%eax)' on x86.
2107""",
2108    type="const char *const *",
2109    name="stap_register_indirection_prefixes",
2110    predefault="0",
2111    invalid=False,
2112    printer="pstring_list (gdbarch->stap_register_indirection_prefixes)",
2113)
2114
2115Value(
2116    comment="""
2117A NULL-terminated array of suffixes used to mark a register
2118indirection on the architecture's assembly.
2119For example, on x86 the register indirection is written as:
2120
2121(%eax) ;; indirecting eax
2122
2123in this case, this prefix would be the charater `)'.
2124
2125Please note that we use the indirection suffix also for register
2126displacement, e.g., `4(%eax)' on x86.
2127""",
2128    type="const char *const *",
2129    name="stap_register_indirection_suffixes",
2130    predefault="0",
2131    invalid=False,
2132    printer="pstring_list (gdbarch->stap_register_indirection_suffixes)",
2133)
2134
2135Value(
2136    comment="""
2137Prefix(es) used to name a register using GDB's nomenclature.
2138
2139For example, on PPC a register is represented by a number in the assembly
2140language (e.g., `10' is the 10th general-purpose register).  However,
2141inside GDB this same register has an `r' appended to its name, so the 10th
2142register would be represented as `r10' internally.
2143""",
2144    type="const char *",
2145    name="stap_gdb_register_prefix",
2146    predefault="0",
2147    invalid=False,
2148    printer="pstring (gdbarch->stap_gdb_register_prefix)",
2149)
2150
2151Value(
2152    comment="""
2153Suffix used to name a register using GDB's nomenclature.
2154""",
2155    type="const char *",
2156    name="stap_gdb_register_suffix",
2157    predefault="0",
2158    invalid=False,
2159    printer="pstring (gdbarch->stap_gdb_register_suffix)",
2160)
2161
2162Method(
2163    comment="""
2164Check if S is a single operand.
2165
2166Single operands can be:
2167- Literal integers, e.g. `$10' on x86
2168- Register access, e.g. `%eax' on x86
2169- Register indirection, e.g. `(%eax)' on x86
2170- Register displacement, e.g. `4(%eax)' on x86
2171
2172This function should check for these patterns on the string
2173and return 1 if some were found, or zero otherwise.  Please try to match
2174as much info as you can from the string, i.e., if you have to match
2175something like `(%', do not match just the `('.
2176""",
2177    type="int",
2178    name="stap_is_single_operand",
2179    params=[("const char *", "s")],
2180    predicate=True,
2181    invalid=True,
2182)
2183
2184Method(
2185    comment="""
2186Function used to handle a "special case" in the parser.
2187
2188A "special case" is considered to be an unknown token, i.e., a token
2189that the parser does not know how to parse.  A good example of special
2190case would be ARM's register displacement syntax:
2191
2192[R0, #4]  ;; displacing R0 by 4
2193
2194Since the parser assumes that a register displacement is of the form:
2195
2196<number> <indirection_prefix> <register_name> <indirection_suffix>
2197
2198it means that it will not be able to recognize and parse this odd syntax.
2199Therefore, we should add a special case function that will handle this token.
2200
2201This function should generate the proper expression form of the expression
2202using GDB's internal expression mechanism (e.g., `write_exp_elt_opcode'
2203and so on).  It should also return 1 if the parsing was successful, or zero
2204if the token was not recognized as a special token (in this case, returning
2205zero means that the special parser is deferring the parsing to the generic
2206parser), and should advance the buffer pointer (p->arg).
2207""",
2208    type="expr::operation_up",
2209    name="stap_parse_special_token",
2210    params=[("struct stap_parse_info *", "p")],
2211    predicate=True,
2212    invalid=True,
2213)
2214
2215Method(
2216    comment="""
2217Perform arch-dependent adjustments to a register name.
2218
2219In very specific situations, it may be necessary for the register
2220name present in a SystemTap probe's argument to be handled in a
2221special way.  For example, on i386, GCC may over-optimize the
2222register allocation and use smaller registers than necessary.  In
2223such cases, the client that is reading and evaluating the SystemTap
2224probe (ourselves) will need to actually fetch values from the wider
2225version of the register in question.
2226
2227To illustrate the example, consider the following probe argument
2228(i386):
2229
22304@%ax
2231
2232This argument says that its value can be found at the %ax register,
2233which is a 16-bit register.  However, the argument's prefix says
2234that its type is "uint32_t", which is 32-bit in size.  Therefore, in
2235this case, GDB should actually fetch the probe's value from register
2236%eax, not %ax.  In this scenario, this function would actually
2237replace the register name from %ax to %eax.
2238
2239The rationale for this can be found at PR breakpoints/24541.
2240""",
2241    type="std::string",
2242    name="stap_adjust_register",
2243    params=[
2244        ("struct stap_parse_info *", "p"),
2245        ("const std::string &", "regname"),
2246        ("int", "regnum"),
2247    ],
2248    predicate=True,
2249    invalid=True,
2250)
2251
2252Method(
2253    comment="""
2254DTrace related functions.
2255The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
2256NARG must be >= 0.
2257""",
2258    type="expr::operation_up",
2259    name="dtrace_parse_probe_argument",
2260    params=[("int", "narg")],
2261    predicate=True,
2262    invalid=True,
2263)
2264
2265Method(
2266    comment="""
2267True if the given ADDR does not contain the instruction sequence
2268corresponding to a disabled DTrace is-enabled probe.
2269""",
2270    type="int",
2271    name="dtrace_probe_is_enabled",
2272    params=[("CORE_ADDR", "addr")],
2273    predicate=True,
2274    invalid=True,
2275)
2276
2277Method(
2278    comment="""
2279Enable a DTrace is-enabled probe at ADDR.
2280""",
2281    type="void",
2282    name="dtrace_enable_probe",
2283    params=[("CORE_ADDR", "addr")],
2284    predicate=True,
2285    invalid=True,
2286)
2287
2288Method(
2289    comment="""
2290Disable a DTrace is-enabled probe at ADDR.
2291""",
2292    type="void",
2293    name="dtrace_disable_probe",
2294    params=[("CORE_ADDR", "addr")],
2295    predicate=True,
2296    invalid=True,
2297)
2298
2299Value(
2300    comment="""
2301True if the list of shared libraries is one and only for all
2302processes, as opposed to a list of shared libraries per inferior.
2303This usually means that all processes, although may or may not share
2304an address space, will see the same set of symbols at the same
2305addresses.
2306""",
2307    type="int",
2308    name="has_global_solist",
2309    predefault="0",
2310    invalid=False,
2311)
2312
2313Value(
2314    comment="""
2315On some targets, even though each inferior has its own private
2316address space, the debug interface takes care of making breakpoints
2317visible to all address spaces automatically.  For such cases,
2318this property should be set to true.
2319""",
2320    type="int",
2321    name="has_global_breakpoints",
2322    predefault="0",
2323    invalid=False,
2324)
2325
2326Method(
2327    comment="""
2328True if inferiors share an address space (e.g., uClinux).
2329""",
2330    type="int",
2331    name="has_shared_address_space",
2332    params=[],
2333    predefault="default_has_shared_address_space",
2334    invalid=False,
2335)
2336
2337Method(
2338    comment="""
2339True if a fast tracepoint can be set at an address.
2340""",
2341    type="int",
2342    name="fast_tracepoint_valid_at",
2343    params=[("CORE_ADDR", "addr"), ("std::string *", "msg")],
2344    predefault="default_fast_tracepoint_valid_at",
2345    invalid=False,
2346)
2347
2348Method(
2349    comment="""
2350Guess register state based on tracepoint location.  Used for tracepoints
2351where no registers have been collected, but there's only one location,
2352allowing us to guess the PC value, and perhaps some other registers.
2353On entry, regcache has all registers marked as unavailable.
2354""",
2355    type="void",
2356    name="guess_tracepoint_registers",
2357    params=[("struct regcache *", "regcache"), ("CORE_ADDR", "addr")],
2358    predefault="default_guess_tracepoint_registers",
2359    invalid=False,
2360)
2361
2362Function(
2363    comment="""
2364Return the "auto" target charset.
2365""",
2366    type="const char *",
2367    name="auto_charset",
2368    params=[],
2369    predefault="default_auto_charset",
2370    invalid=False,
2371)
2372
2373Function(
2374    comment="""
2375Return the "auto" target wide charset.
2376""",
2377    type="const char *",
2378    name="auto_wide_charset",
2379    params=[],
2380    predefault="default_auto_wide_charset",
2381    invalid=False,
2382)
2383
2384Value(
2385    comment="""
2386If non-empty, this is a file extension that will be opened in place
2387of the file extension reported by the shared library list.
2388
2389This is most useful for toolchains that use a post-linker tool,
2390where the names of the files run on the target differ in extension
2391compared to the names of the files GDB should load for debug info.
2392""",
2393    type="const char *",
2394    name="solib_symbols_extension",
2395    invalid=False,
2396    printer="pstring (gdbarch->solib_symbols_extension)",
2397)
2398
2399Value(
2400    comment="""
2401If true, the target OS has DOS-based file system semantics.  That
2402is, absolute paths include a drive name, and the backslash is
2403considered a directory separator.
2404""",
2405    type="int",
2406    name="has_dos_based_file_system",
2407    predefault="0",
2408    invalid=False,
2409)
2410
2411Method(
2412    comment="""
2413Generate bytecodes to collect the return address in a frame.
2414Since the bytecodes run on the target, possibly with GDB not even
2415connected, the full unwinding machinery is not available, and
2416typically this function will issue bytecodes for one or more likely
2417places that the return address may be found.
2418""",
2419    type="void",
2420    name="gen_return_address",
2421    params=[
2422        ("struct agent_expr *", "ax"),
2423        ("struct axs_value *", "value"),
2424        ("CORE_ADDR", "scope"),
2425    ],
2426    predefault="default_gen_return_address",
2427    invalid=False,
2428)
2429
2430Method(
2431    comment="""
2432Implement the "info proc" command.
2433""",
2434    type="void",
2435    name="info_proc",
2436    params=[("const char *", "args"), ("enum info_proc_what", "what")],
2437    predicate=True,
2438    invalid=True,
2439)
2440
2441Method(
2442    comment="""
2443Implement the "info proc" command for core files.  Noe that there
2444are two "info_proc"-like methods on gdbarch -- one for core files,
2445one for live targets.
2446""",
2447    type="void",
2448    name="core_info_proc",
2449    params=[("const char *", "args"), ("enum info_proc_what", "what")],
2450    predicate=True,
2451    invalid=True,
2452)
2453
2454Method(
2455    comment="""
2456Iterate over all objfiles in the order that makes the most sense
2457for the architecture to make global symbol searches.
2458
2459CB is a callback function passed an objfile to be searched.  The iteration stops
2460if this function returns nonzero.
2461
2462If not NULL, CURRENT_OBJFILE corresponds to the objfile being
2463inspected when the symbol search was requested.
2464""",
2465    type="void",
2466    name="iterate_over_objfiles_in_search_order",
2467    params=[
2468        ("iterate_over_objfiles_in_search_order_cb_ftype", "cb"),
2469        ("struct objfile *", "current_objfile"),
2470    ],
2471    predefault="default_iterate_over_objfiles_in_search_order",
2472    invalid=False,
2473)
2474
2475Value(
2476    comment="""
2477Ravenscar arch-dependent ops.
2478""",
2479    type="struct ravenscar_arch_ops *",
2480    name="ravenscar_ops",
2481    predefault="NULL",
2482    invalid=False,
2483    printer="host_address_to_string (gdbarch->ravenscar_ops)",
2484)
2485
2486Method(
2487    comment="""
2488Return non-zero if the instruction at ADDR is a call; zero otherwise.
2489""",
2490    type="int",
2491    name="insn_is_call",
2492    params=[("CORE_ADDR", "addr")],
2493    predefault="default_insn_is_call",
2494    invalid=False,
2495)
2496
2497Method(
2498    comment="""
2499Return non-zero if the instruction at ADDR is a return; zero otherwise.
2500""",
2501    type="int",
2502    name="insn_is_ret",
2503    params=[("CORE_ADDR", "addr")],
2504    predefault="default_insn_is_ret",
2505    invalid=False,
2506)
2507
2508Method(
2509    comment="""
2510Return non-zero if the instruction at ADDR is a jump; zero otherwise.
2511""",
2512    type="int",
2513    name="insn_is_jump",
2514    params=[("CORE_ADDR", "addr")],
2515    predefault="default_insn_is_jump",
2516    invalid=False,
2517)
2518
2519Method(
2520    comment="""
2521Return true if there's a program/permanent breakpoint planted in
2522memory at ADDRESS, return false otherwise.
2523""",
2524    type="bool",
2525    name="program_breakpoint_here_p",
2526    params=[("CORE_ADDR", "address")],
2527    predefault="default_program_breakpoint_here_p",
2528    invalid=False,
2529)
2530
2531Method(
2532    comment="""
2533Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
2534Return 0 if *READPTR is already at the end of the buffer.
2535Return -1 if there is insufficient buffer for a whole entry.
2536Return 1 if an entry was read into *TYPEP and *VALP.
2537""",
2538    type="int",
2539    name="auxv_parse",
2540    params=[
2541        ("const gdb_byte **", "readptr"),
2542        ("const gdb_byte *", "endptr"),
2543        ("CORE_ADDR *", "typep"),
2544        ("CORE_ADDR *", "valp"),
2545    ],
2546    predicate=True,
2547    invalid=True,
2548)
2549
2550Method(
2551    comment="""
2552Print the description of a single auxv entry described by TYPE and VAL
2553to FILE.
2554""",
2555    type="void",
2556    name="print_auxv_entry",
2557    params=[("struct ui_file *", "file"), ("CORE_ADDR", "type"), ("CORE_ADDR", "val")],
2558    predefault="default_print_auxv_entry",
2559    invalid=False,
2560)
2561
2562Method(
2563    comment="""
2564Find the address range of the current inferior's vsyscall/vDSO, and
2565write it to *RANGE.  If the vsyscall's length can't be determined, a
2566range with zero length is returned.  Returns true if the vsyscall is
2567found, false otherwise.
2568""",
2569    type="int",
2570    name="vsyscall_range",
2571    params=[("struct mem_range *", "range")],
2572    predefault="default_vsyscall_range",
2573    invalid=False,
2574)
2575
2576Function(
2577    comment="""
2578Allocate SIZE bytes of PROT protected page aligned memory in inferior.
2579PROT has GDB_MMAP_PROT_* bitmask format.
2580Throw an error if it is not possible.  Returned address is always valid.
2581""",
2582    type="CORE_ADDR",
2583    name="infcall_mmap",
2584    params=[("CORE_ADDR", "size"), ("unsigned", "prot")],
2585    predefault="default_infcall_mmap",
2586    invalid=False,
2587)
2588
2589Function(
2590    comment="""
2591Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
2592Print a warning if it is not possible.
2593""",
2594    type="void",
2595    name="infcall_munmap",
2596    params=[("CORE_ADDR", "addr"), ("CORE_ADDR", "size")],
2597    predefault="default_infcall_munmap",
2598    invalid=False,
2599)
2600
2601Method(
2602    comment="""
2603Return string (caller has to use xfree for it) with options for GCC
2604to produce code for this target, typically "-m64", "-m32" or "-m31".
2605These options are put before CU's DW_AT_producer compilation options so that
2606they can override it.
2607""",
2608    type="std::string",
2609    name="gcc_target_options",
2610    params=[],
2611    predefault="default_gcc_target_options",
2612    invalid=False,
2613)
2614
2615Method(
2616    comment="""
2617Return a regular expression that matches names used by this
2618architecture in GNU configury triplets.  The result is statically
2619allocated and must not be freed.  The default implementation simply
2620returns the BFD architecture name, which is correct in nearly every
2621case.
2622""",
2623    type="const char *",
2624    name="gnu_triplet_regexp",
2625    params=[],
2626    predefault="default_gnu_triplet_regexp",
2627    invalid=False,
2628)
2629
2630Method(
2631    comment="""
2632Return the size in 8-bit bytes of an addressable memory unit on this
2633architecture.  This corresponds to the number of 8-bit bytes associated to
2634each address in memory.
2635""",
2636    type="int",
2637    name="addressable_memory_unit_size",
2638    params=[],
2639    predefault="default_addressable_memory_unit_size",
2640    invalid=False,
2641)
2642
2643Value(
2644    comment="""
2645Functions for allowing a target to modify its disassembler options.
2646""",
2647    type="const char *",
2648    name="disassembler_options_implicit",
2649    predefault="0",
2650    invalid=False,
2651    printer="pstring (gdbarch->disassembler_options_implicit)",
2652)
2653
2654Value(
2655    type="char **",
2656    name="disassembler_options",
2657    predefault="0",
2658    invalid=False,
2659    printer="pstring_ptr (gdbarch->disassembler_options)",
2660)
2661
2662Value(
2663    type="const disasm_options_and_args_t *",
2664    name="valid_disassembler_options",
2665    predefault="0",
2666    invalid=False,
2667    printer="host_address_to_string (gdbarch->valid_disassembler_options)",
2668)
2669
2670Method(
2671    comment="""
2672Type alignment override method.  Return the architecture specific
2673alignment required for TYPE.  If there is no special handling
2674required for TYPE then return the value 0, GDB will then apply the
2675default rules as laid out in gdbtypes.c:type_align.
2676""",
2677    type="ULONGEST",
2678    name="type_align",
2679    params=[("struct type *", "type")],
2680    predefault="default_type_align",
2681    invalid=False,
2682)
2683
2684Function(
2685    comment="""
2686Return a string containing any flags for the given PC in the given FRAME.
2687""",
2688    type="std::string",
2689    name="get_pc_address_flags",
2690    params=[("frame_info_ptr", "frame"), ("CORE_ADDR", "pc")],
2691    predefault="default_get_pc_address_flags",
2692    invalid=False,
2693)
2694
2695Method(
2696    comment="""
2697Read core file mappings
2698""",
2699    type="void",
2700    name="read_core_file_mappings",
2701    params=[
2702        ("struct bfd *", "cbfd"),
2703        ("read_core_file_mappings_pre_loop_ftype", "pre_loop_cb"),
2704        ("read_core_file_mappings_loop_ftype", "loop_cb"),
2705    ],
2706    predefault="default_read_core_file_mappings",
2707    invalid=False,
2708)
2709