1#ifndef SIM_MAIN_H
2#define SIM_MAIN_H
3
4/* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
5
6#define WITH_TARGET_WORD_MSB 31
7
8#include "config.h"
9#include "sim-basics.h"
10#include "sim-signal.h"
11#include "sim-fpu.h"
12#include "sim-base.h"
13
14#include "simops.h"
15#include "bfd.h"
16
17
18typedef signed8 int8;
19typedef unsigned8 uint8;
20typedef signed16 int16;
21typedef unsigned16 uint16;
22typedef signed32 int32;
23typedef unsigned32 uint32;
24typedef unsigned32 reg_t;
25typedef unsigned64 reg64_t;
26
27
28/* The current state of the processor; registers, memory, etc.  */
29
30typedef struct _v850_regs {
31  reg_t regs[32];		/* general-purpose registers */
32  reg_t sregs[32];		/* system registers, including psw */
33  reg_t pc;
34  int dummy_mem;                /* where invalid accesses go */
35  reg_t mpu0_sregs[28];         /* mpu0 system registers */
36  reg_t mpu1_sregs[28];         /* mpu1 system registers */
37  reg_t fpu_sregs[28];          /* fpu system registers */
38  reg_t selID_sregs[7][32];	/* system registers, selID 1 thru selID 7 */
39  reg64_t vregs[32];		/* vector registers.  */
40} v850_regs;
41
42struct _sim_cpu
43{
44  /* ... simulator specific members ... */
45  v850_regs reg;
46  reg_t psw_mask;               /* only allow non-reserved bits to be set */
47  sim_event *pending_nmi;
48  /* ... base type ... */
49  sim_cpu_base base;
50};
51
52struct sim_state {
53  sim_cpu *cpu[MAX_NR_PROCESSORS];
54#if 0
55  SIM_ADDR rom_size;
56  SIM_ADDR low_end;
57  SIM_ADDR high_start;
58  SIM_ADDR high_base;
59  void *mem;
60#endif
61  sim_state_base base;
62};
63
64/* For compatibility, until all functions converted to passing
65   SIM_DESC as an argument */
66extern SIM_DESC simulator;
67
68
69#define V850_ROM_SIZE 0x8000
70#define V850_LOW_END 0x200000
71#define V850_HIGH_START 0xffe000
72
73
74/* Because we are still using the old semantic table, provide compat
75   macro's that store the instruction where the old simops expects
76   it. */
77
78extern uint32 OP[4];
79#if 0
80OP[0] = inst & 0x1f;           /* RRRRR -> reg1 */
81OP[1] = (inst >> 11) & 0x1f;   /* rrrrr -> reg2 */
82OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
83OP[3] = inst;
84#endif
85
86#define SAVE_1 \
87PC = cia; \
88OP[0] = instruction_0 & 0x1f; \
89OP[1] = (instruction_0 >> 11) & 0x1f; \
90OP[2] = 0; \
91OP[3] = instruction_0
92
93#define COMPAT_1(CALL) \
94SAVE_1; \
95PC += (CALL); \
96nia = PC
97
98#define SAVE_2 \
99PC = cia; \
100OP[0] = instruction_0 & 0x1f; \
101OP[1] = (instruction_0 >> 11) & 0x1f; \
102OP[2] = instruction_1; \
103OP[3] = (instruction_1 << 16) | instruction_0
104
105#define COMPAT_2(CALL) \
106SAVE_2; \
107PC += (CALL); \
108nia = PC
109
110
111/* new */
112#define GR  ((CPU)->reg.regs)
113#define SR  ((CPU)->reg.sregs)
114#define VR  ((CPU)->reg.vregs)
115#define MPU0_SR  ((STATE_CPU (sd, 0))->reg.mpu0_sregs)
116#define MPU1_SR  ((STATE_CPU (sd, 0))->reg.mpu1_sregs)
117#define FPU_SR   ((STATE_CPU (sd, 0))->reg.fpu_sregs)
118
119/* old */
120#define State    (STATE_CPU (simulator, 0)->reg)
121#define PC	(State.pc)
122#define SP_REGNO        3
123#define SP      (State.regs[SP_REGNO])
124#define EP	(State.regs[30])
125
126#define EIPC  (State.sregs[0])
127#define EIPSW (State.sregs[1])
128#define FEPC  (State.sregs[2])
129#define FEPSW (State.sregs[3])
130#define ECR   (State.sregs[4])
131#define PSW   (State.sregs[5])
132#define PSW_REGNO   5
133#define EIIC  (State.sregs[13])
134#define FEIC  (State.sregs[14])
135#define DBIC  (SR[15])
136#define CTPC  (SR[16])
137#define CTPSW (SR[17])
138#define DBPC  (State.sregs[18])
139#define DBPSW (State.sregs[19])
140#define CTBP  (State.sregs[20])
141#define DIR   (SR[21])
142#define EIWR  (SR[28])
143#define FEWR  (SR[29])
144#define DBWR  (SR[30])
145#define BSEL  (SR[31])
146
147#define PSW_US BIT32 (8)
148#define PSW_NP 0x80
149#define PSW_EP 0x40
150#define PSW_ID 0x20
151#define PSW_SAT 0x10
152#define PSW_CY 0x8
153#define PSW_OV 0x4
154#define PSW_S 0x2
155#define PSW_Z 0x1
156
157#define PSW_NPV	(1<<18)
158#define PSW_DMP	(1<<17)
159#define PSW_IMP	(1<<16)
160
161#define ECR_EICC 0x0000ffff
162#define ECR_FECC 0xffff0000
163
164/* FPU */
165
166#define FPSR  (FPU_SR[6])
167#define FPSR_REGNO 6
168#define FPEPC (FPU_SR[7])
169#define FPST  (FPU_SR[8])
170#define FPST_REGNO 8
171#define FPCC  (FPU_SR[9])
172#define FPCFG (FPU_SR[10])
173#define FPCFG_REGNO 10
174
175#define FPSR_DEM  0x00200000
176#define FPSR_SEM  0x00100000
177#define FPSR_RM   0x000c0000
178#define FPSR_RN   0x00000000
179#define FPSR_FS   0x00020000
180#define FPSR_PR   0x00010000
181
182#define FPSR_XC   0x0000fc00
183#define FPSR_XCE  0x00008000
184#define FPSR_XCV  0x00004000
185#define FPSR_XCZ  0x00002000
186#define FPSR_XCO  0x00001000
187#define FPSR_XCU  0x00000800
188#define FPSR_XCI  0x00000400
189
190#define FPSR_XE   0x000003e0
191#define FPSR_XEV  0x00000200
192#define FPSR_XEZ  0x00000100
193#define FPSR_XEO  0x00000080
194#define FPSR_XEU  0x00000040
195#define FPSR_XEI  0x00000020
196
197#define FPSR_XP   0x0000001f
198#define FPSR_XPV  0x00000010
199#define FPSR_XPZ  0x00000008
200#define FPSR_XPO  0x00000004
201#define FPSR_XPU  0x00000002
202#define FPSR_XPI  0x00000001
203
204#define FPST_PR   0x00008000
205#define FPST_XCE  0x00002000
206#define FPST_XCV  0x00001000
207#define FPST_XCZ  0x00000800
208#define FPST_XCO  0x00000400
209#define FPST_XCU  0x00000200
210#define FPST_XCI  0x00000100
211
212#define FPST_XPV  0x00000010
213#define FPST_XPZ  0x00000008
214#define FPST_XPO  0x00000004
215#define FPST_XPU  0x00000002
216#define FPST_XPI  0x00000001
217
218#define FPCFG_RM   0x00000180
219#define FPCFG_XEV  0x00000010
220#define FPCFG_XEZ  0x00000008
221#define FPCFG_XEO  0x00000004
222#define FPCFG_XEU  0x00000002
223#define FPCFG_XEI  0x00000001
224
225#define GET_FPCC()\
226 ((FPSR >> 24) &0xf)
227
228#define CLEAR_FPCC(bbb)\
229  (FPSR &= ~(1 << (bbb+24)))
230
231#define SET_FPCC(bbb)\
232 (FPSR |= 1 << (bbb+24))
233
234#define TEST_FPCC(bbb)\
235  ((FPSR & (1 << (bbb+24))) != 0)
236
237#define FPSR_GET_ROUND()					\
238  (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near		\
239   : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up	\
240   : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down	\
241   : sim_fpu_round_zero)
242
243
244enum FPU_COMPARE {
245  FPU_CMP_F = 0,
246  FPU_CMP_UN,
247  FPU_CMP_EQ,
248  FPU_CMP_UEQ,
249  FPU_CMP_OLT,
250  FPU_CMP_ULT,
251  FPU_CMP_OLE,
252  FPU_CMP_ULE,
253  FPU_CMP_SF,
254  FPU_CMP_NGLE,
255  FPU_CMP_SEQ,
256  FPU_CMP_NGL,
257  FPU_CMP_LT,
258  FPU_CMP_NGE,
259  FPU_CMP_LE,
260  FPU_CMP_NGT
261};
262
263
264/* MPU */
265#define MPM	(MPU1_SR[0])
266#define MPC	(MPU1_SR[1])
267#define MPC_REGNO 1
268#define TID	(MPU1_SR[2])
269#define PPA	(MPU1_SR[3])
270#define PPM	(MPU1_SR[4])
271#define PPC	(MPU1_SR[5])
272#define DCC	(MPU1_SR[6])
273#define DCV0	(MPU1_SR[7])
274#define DCV1	(MPU1_SR[8])
275#define SPAL	(MPU1_SR[10])
276#define SPAU	(MPU1_SR[11])
277#define IPA0L	(MPU1_SR[12])
278#define IPA0U	(MPU1_SR[13])
279#define IPA1L	(MPU1_SR[14])
280#define IPA1U	(MPU1_SR[15])
281#define IPA2L	(MPU1_SR[16])
282#define IPA2U	(MPU1_SR[17])
283#define IPA3L	(MPU1_SR[18])
284#define IPA3U	(MPU1_SR[19])
285#define DPA0L	(MPU1_SR[20])
286#define DPA0U	(MPU1_SR[21])
287#define DPA1L	(MPU1_SR[22])
288#define DPA1U	(MPU1_SR[23])
289#define DPA2L	(MPU1_SR[24])
290#define DPA2U	(MPU1_SR[25])
291#define DPA3L	(MPU1_SR[26])
292#define DPA3U	(MPU1_SR[27])
293
294#define PPC_PPE 0x1
295#define SPAL_SPE 0x1
296#define SPAL_SPS 0x10
297
298#define VIP	(MPU0_SR[0])
299#define VMECR	(MPU0_SR[4])
300#define VMTID	(MPU0_SR[5])
301#define VMADR	(MPU0_SR[6])
302#define VPECR	(MPU0_SR[8])
303#define VPTID	(MPU0_SR[9])
304#define VPADR	(MPU0_SR[10])
305#define VDECR	(MPU0_SR[12])
306#define VDTID	(MPU0_SR[13])
307
308#define MPM_AUE	0x2
309#define MPM_MPE	0x1
310
311#define VMECR_VMX   0x2
312#define VMECR_VMR   0x4
313#define VMECR_VMW   0x8
314#define VMECR_VMS   0x10
315#define VMECR_VMRMW 0x20
316#define VMECR_VMMS  0x40
317
318#define IPA2ADDR(IPA)	((IPA) & 0x1fffff80)
319#define IPA_IPE	0x1
320#define IPA_IPX	0x2
321#define IPA_IPR	0x4
322#define IPE0	(IPA0L & IPA_IPE)
323#define IPE1	(IPA1L & IPA_IPE)
324#define IPE2	(IPA2L & IPA_IPE)
325#define IPE3	(IPA3L & IPA_IPE)
326#define IPX0	(IPA0L & IPA_IPX)
327#define IPX1	(IPA1L & IPA_IPX)
328#define IPX2	(IPA2L & IPA_IPX)
329#define IPX3	(IPA3L & IPA_IPX)
330#define IPR0	(IPA0L & IPA_IPR)
331#define IPR1	(IPA1L & IPA_IPR)
332#define IPR2	(IPA2L & IPA_IPR)
333#define IPR3	(IPA3L & IPA_IPR)
334
335#define DPA2ADDR(DPA)	((DPA) & 0x1fffff80)
336#define DPA_DPE 0x1
337#define DPA_DPR 0x4
338#define DPA_DPW 0x8
339#define DPE0	(DPA0L & DPA_DPE)
340#define DPE1	(DPA1L & DPA_DPE)
341#define DPE2	(DPA2L & DPA_DPE)
342#define DPE3	(DPA3L & DPA_DPE)
343#define DPR0	(DPA0L & DPA_DPR)
344#define DPR1	(DPA1L & DPA_DPR)
345#define DPR2	(DPA2L & DPA_DPR)
346#define DPR3	(DPA3L & DPA_DPR)
347#define DPW0	(DPA0L & DPA_DPW)
348#define DPW1	(DPA1L & DPA_DPW)
349#define DPW2	(DPA2L & DPA_DPW)
350#define DPW3	(DPA3L & DPA_DPW)
351
352#define DCC_DCE0 0x1
353#define DCC_DCE1 0x10000
354
355#define PPA2ADDR(PPA)	((PPA) & 0x1fffff80)
356#define PPC_PPC 0xfffffffe
357#define PPC_PPE 0x1
358#define PPC_PPM 0x0000fff8
359
360
361#define SEXT3(x)	((((x)&0x7)^(~0x3))+0x4)
362
363/* sign-extend a 4-bit number */
364#define SEXT4(x)	((((x)&0xf)^(~0x7))+0x8)
365
366/* sign-extend a 5-bit number */
367#define SEXT5(x)	((((x)&0x1f)^(~0xf))+0x10)
368
369/* sign-extend a 9-bit number */
370#define SEXT9(x)	((((x)&0x1ff)^(~0xff))+0x100)
371
372/* sign-extend a 22-bit number */
373#define SEXT22(x)	((((x)&0x3fffff)^(~0x1fffff))+0x200000)
374
375/* sign extend a 40 bit number */
376#define SEXT40(x)	((((x) & UNSIGNED64 (0xffffffffff)) \
377			  ^ (~UNSIGNED64 (0x7fffffffff))) \
378			 + UNSIGNED64 (0x8000000000))
379
380/* sign extend a 44 bit number */
381#define SEXT44(x)	((((x) & UNSIGNED64 (0xfffffffffff)) \
382			  ^ (~ UNSIGNED64 (0x7ffffffffff))) \
383			 + UNSIGNED64 (0x80000000000))
384
385/* sign extend a 60 bit number */
386#define SEXT60(x)	((((x) & UNSIGNED64 (0xfffffffffffffff)) \
387			  ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
388			 + UNSIGNED64 (0x800000000000000))
389
390/* No sign extension */
391#define NOP(x)		(x)
392
393#define INC_ADDR(x,i)	x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
394
395#define RLW(x) load_mem (x, 4)
396
397/* Function declarations.  */
398
399#define IMEM16(EA) \
400sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
401
402#define IMEM16_IMMED(EA,N) \
403sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
404			 PC, exec_map, (EA) + (N) * 2)
405
406#define load_mem(ADDR,LEN) \
407sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
408			       PC, read_map, (ADDR))
409
410#define store_mem(ADDR,LEN,DATA) \
411sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
412				PC, write_map, (ADDR), (DATA))
413
414
415/* compare cccc field against PSW */
416int condition_met (unsigned code);
417
418
419/* Debug/tracing calls */
420
421enum op_types
422{
423  OP_UNKNOWN,
424  OP_NONE,
425  OP_TRAP,
426  OP_REG,
427  OP_REG_REG,
428  OP_REG_REG_CMP,
429  OP_REG_REG_MOVE,
430  OP_IMM_REG,
431  OP_IMM_REG_CMP,
432  OP_IMM_REG_MOVE,
433  OP_COND_BR,
434  OP_LOAD16,
435  OP_STORE16,
436  OP_LOAD32,
437  OP_STORE32,
438  OP_JUMP,
439  OP_IMM_REG_REG,
440  OP_UIMM_REG_REG,
441  OP_IMM16_REG_REG,
442  OP_UIMM16_REG_REG,
443  OP_BIT,
444  OP_EX1,
445  OP_EX2,
446  OP_LDSR,
447  OP_STSR,
448  OP_BIT_CHANGE,
449  OP_REG_REG_REG,
450  OP_REG_REG3,
451  OP_IMM_REG_REG_REG,
452  OP_PUSHPOP1,
453  OP_PUSHPOP2,
454  OP_PUSHPOP3,
455};
456
457#ifdef DEBUG
458void trace_input (char *name, enum op_types type, int size);
459void trace_output (enum op_types result);
460void trace_result (int has_result, unsigned32 result);
461
462extern int trace_num_values;
463extern unsigned32 trace_values[];
464extern unsigned32 trace_pc;
465extern const char *trace_name;
466extern int trace_module;
467
468#define TRACE_BRANCH0() \
469do { \
470  if (TRACE_BRANCH_P (CPU)) { \
471    trace_module = TRACE_BRANCH_IDX; \
472    trace_pc = cia; \
473    trace_name = itable[MY_INDEX].name; \
474    trace_num_values = 0; \
475    trace_result (1, (nia)); \
476  } \
477} while (0)
478
479#define TRACE_BRANCH1(IN1) \
480do { \
481  if (TRACE_BRANCH_P (CPU)) { \
482    trace_module = TRACE_BRANCH_IDX; \
483    trace_pc = cia; \
484    trace_name = itable[MY_INDEX].name; \
485    trace_values[0] = (IN1); \
486    trace_num_values = 1; \
487    trace_result (1, (nia)); \
488  } \
489} while (0)
490
491#define TRACE_BRANCH2(IN1, IN2) \
492do { \
493  if (TRACE_BRANCH_P (CPU)) { \
494    trace_module = TRACE_BRANCH_IDX; \
495    trace_pc = cia; \
496    trace_name = itable[MY_INDEX].name; \
497    trace_values[0] = (IN1); \
498    trace_values[1] = (IN2); \
499    trace_num_values = 2; \
500    trace_result (1, (nia)); \
501  } \
502} while (0)
503
504#define TRACE_BRANCH3(IN1, IN2, IN3) \
505do { \
506  if (TRACE_BRANCH_P (CPU)) { \
507    trace_module = TRACE_BRANCH_IDX; \
508    trace_pc = cia; \
509    trace_name = itable[MY_INDEX].name; \
510    trace_values[0] = (IN1); \
511    trace_values[1] = (IN2); \
512    trace_values[2] = (IN3); \
513    trace_num_values = 3; \
514    trace_result (1, (nia)); \
515  } \
516} while (0)
517
518#define TRACE_LD(ADDR,RESULT) \
519do { \
520  if (TRACE_MEMORY_P (CPU)) { \
521    trace_module = TRACE_MEMORY_IDX; \
522    trace_pc = cia; \
523    trace_name = itable[MY_INDEX].name; \
524    trace_values[0] = (ADDR); \
525    trace_num_values = 1; \
526    trace_result (1, (RESULT)); \
527  } \
528} while (0)
529
530#define TRACE_LD_NAME(NAME, ADDR,RESULT) \
531do { \
532  if (TRACE_MEMORY_P (CPU)) { \
533    trace_module = TRACE_MEMORY_IDX; \
534    trace_pc = cia; \
535    trace_name = (NAME); \
536    trace_values[0] = (ADDR); \
537    trace_num_values = 1; \
538    trace_result (1, (RESULT)); \
539  } \
540} while (0)
541
542#define TRACE_ST(ADDR,RESULT) \
543do { \
544  if (TRACE_MEMORY_P (CPU)) { \
545    trace_module = TRACE_MEMORY_IDX; \
546    trace_pc = cia; \
547    trace_name = itable[MY_INDEX].name; \
548    trace_values[0] = (ADDR); \
549    trace_num_values = 1; \
550    trace_result (1, (RESULT)); \
551  } \
552} while (0)
553
554#define TRACE_FP_INPUT_FPU1(V0)	\
555do { \
556  if (TRACE_FPU_P (CPU)) \
557    { \
558      unsigned64 f0; \
559      sim_fpu_to64 (&f0, (V0)); \
560      trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
561    } \
562} while (0)
563
564#define TRACE_FP_INPUT_FPU2(V0, V1) \
565do { \
566  if (TRACE_FPU_P (CPU)) \
567    { \
568      unsigned64 f0, f1; \
569      sim_fpu_to64 (&f0, (V0)); \
570      sim_fpu_to64 (&f1, (V1)); \
571      trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1);	\
572    } \
573} while (0)
574
575#define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
576do { \
577  if (TRACE_FPU_P (CPU)) \
578    { \
579      unsigned64 f0, f1, f2; \
580      sim_fpu_to64 (&f0, (V0)); \
581      sim_fpu_to64 (&f1, (V1)); \
582      sim_fpu_to64 (&f2, (V2)); \
583      trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
584    } \
585} while (0)
586
587#define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
588do { \
589  if (TRACE_FPU_P (CPU)) \
590    { \
591      int d0 = (V0); \
592      unsigned64 f1, f2; \
593      TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
594      TRACE_IDX (data) = TRACE_FPU_IDX;	\
595      sim_fpu_to64 (&f1, (V1)); \
596      sim_fpu_to64 (&f2, (V2)); \
597      save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
598      save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
599      save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
600    } \
601} while (0)
602
603#define TRACE_FP_INPUT_WORD2(V0, V1) \
604do { \
605  if (TRACE_FPU_P (CPU)) \
606    trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
607} while (0)
608
609#define TRACE_FP_RESULT_FPU1(R0) \
610do { \
611  if (TRACE_FPU_P (CPU)) \
612    { \
613      unsigned64 f0; \
614      sim_fpu_to64 (&f0, (R0));	\
615      trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
616    } \
617} while (0)
618
619#define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
620
621#define TRACE_FP_RESULT_WORD2(R0, R1) \
622do { \
623  if (TRACE_FPU_P (CPU)) \
624    trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
625} while (0)
626
627#else
628#define trace_input(NAME, IN1, IN2)
629#define trace_output(RESULT)
630#define trace_result(HAS_RESULT, RESULT)
631
632#define TRACE_ALU_INPUT0()
633#define TRACE_ALU_INPUT1(IN0)
634#define TRACE_ALU_INPUT2(IN0, IN1)
635#define TRACE_ALU_INPUT2(IN0, IN1)
636#define TRACE_ALU_INPUT2(IN0, IN1 INS2)
637#define TRACE_ALU_RESULT(RESULT)
638
639#define TRACE_BRANCH0()
640#define TRACE_BRANCH1(IN1)
641#define TRACE_BRANCH2(IN1, IN2)
642#define TRACE_BRANCH2(IN1, IN2, IN3)
643
644#define TRACE_LD(ADDR,RESULT)
645#define TRACE_ST(ADDR,RESULT)
646
647#endif
648
649#define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
650#define GPR_CLEAR(N)    (State.regs[(N)] = 0)
651
652extern void divun ( unsigned int       N,
653		    unsigned long int  als,
654		    unsigned long int  sfi,
655		    unsigned32 /*unsigned long int*/ *  quotient_ptr,
656		    unsigned32 /*unsigned long int*/ *  remainder_ptr,
657		    int *overflow_ptr
658		    );
659extern void divn ( unsigned int       N,
660		   unsigned long int  als,
661		   unsigned long int  sfi,
662		   signed32 /*signed long int*/ *  quotient_ptr,
663		   signed32 /*signed long int*/ *  remainder_ptr,
664		   int *overflow_ptr
665		   );
666extern int type1_regs[];
667extern int type2_regs[];
668extern int type3_regs[];
669
670#define SESR_OV   (1 << 0)
671#define SESR_SOV  (1 << 1)
672
673#define SESR      (State.sregs[12])
674
675#define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
676#define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
677#define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
678#define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
679
680#define SAT16(X)			\
681  do					\
682    {					\
683      signed64 z = (X);			\
684      if (z > 0x7fff)			\
685	{				\
686	  SESR |= SESR_OV | SESR_SOV;	\
687	  z = 0x7fff;			\
688	}				\
689      else if (z < -0x8000)		\
690	{				\
691	  SESR |= SESR_OV | SESR_SOV;	\
692	  z = - 0x8000;			\
693	}				\
694      (X) = z;				\
695    }					\
696  while (0)
697
698#define SAT32(X)			\
699  do					\
700    {					\
701      signed64 z = (X);			\
702      if (z > 0x7fffffff)		\
703	{				\
704	  SESR |= SESR_OV | SESR_SOV;	\
705	  z = 0x7fffffff;		\
706	}				\
707      else if (z < -0x80000000)		\
708	{				\
709	  SESR |= SESR_OV | SESR_SOV;	\
710	  z = - 0x80000000;		\
711	}				\
712      (X) = z;				\
713    }					\
714  while (0)
715
716#define ABS16(X)			\
717  do					\
718    {					\
719      signed64 z = (X) & 0xffff;	\
720      if (z == 0x8000)			\
721	{				\
722	  SESR |= SESR_OV | SESR_SOV;	\
723	  z = 0x7fff;			\
724	}				\
725      else if (z & 0x8000)		\
726	{				\
727	  z = (- z) & 0xffff;		\
728	}				\
729      (X) = z;				\
730    }					\
731  while (0)
732
733#define ABS32(X)			\
734  do					\
735    {					\
736      signed64 z = (X) & 0xffffffff;	\
737      if (z == 0x80000000)		\
738	{				\
739	  SESR |= SESR_OV | SESR_SOV;	\
740	  z = 0x7fffffff;		\
741	}				\
742      else if (z & 0x80000000)		\
743	{				\
744	  z = (- z) & 0xffffffff;	\
745	}				\
746      (X) = z;				\
747    }					\
748  while (0)
749
750#endif
751