1/* Read ELF (Executable and Linking Format) object files for GDB.
2
3   Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5   Written by Fred Fish at Cygnus Support.
6
7   This file is part of GDB.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 3 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21
22#include "defs.h"
23#include "bfd.h"
24#include "elf-bfd.h"
25#include "elf/common.h"
26#include "elf/internal.h"
27#include "elf/mips.h"
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
38#include "gdbtypes.h"
39#include "value.h"
40#include "infcall.h"
41#include "gdbthread.h"
42#include "inferior.h"
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
47#include "location.h"
48#include "auxv.h"
49#include "mdebugread.h"
50#include "ctfread.h"
51#include "gdbsupport/gdb_string_view.h"
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
54
55/* Forward declarations.  */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60/* The struct elfinfo is available only during ELF symbol table and
61   psymtab reading.  It is destroyed at the completion of psymtab-reading.
62   It's local to elf_symfile_read.  */
63
64struct elfinfo
65  {
66    asection *stabsect;		/* Section pointer for .stab section */
67    asection *mdebugsect;	/* Section pointer for .mdebug section */
68    asection *ctfsect;		/* Section pointer for .ctf section */
69  };
70
71/* Type for per-BFD data.  */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75/* Per-BFD data for probe info.  */
76
77static const struct bfd_key<elfread_data> probe_key;
78
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80   pointer where the given entry will jump to.  It gets updated by the real
81   function address during lazy ld.so resolving in the inferior.  These
82   minimal symbols are indexed for <tab>-completion.  */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86/* Locate the segments in ABFD.  */
87
88static symfile_segment_data_up
89elf_symfile_segments (bfd *abfd)
90{
91  Elf_Internal_Phdr *phdrs, **segments;
92  long phdrs_size;
93  int num_phdrs, num_segments, num_sections, i;
94  asection *sect;
95
96  phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97  if (phdrs_size == -1)
98    return NULL;
99
100  phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
101  num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102  if (num_phdrs == -1)
103    return NULL;
104
105  num_segments = 0;
106  segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
107  for (i = 0; i < num_phdrs; i++)
108    if (phdrs[i].p_type == PT_LOAD)
109      segments[num_segments++] = &phdrs[i];
110
111  if (num_segments == 0)
112    return NULL;
113
114  symfile_segment_data_up data (new symfile_segment_data);
115  data->segments.reserve (num_segments);
116
117  for (i = 0; i < num_segments; i++)
118    data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
119
120  num_sections = bfd_count_sections (abfd);
121
122  /* All elements are initialized to 0 (map to no segment).  */
123  data->segment_info.resize (num_sections);
124
125  for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126    {
127      int j;
128
129      if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
130	continue;
131
132      Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
133
134      for (j = 0; j < num_segments; j++)
135	if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
136	  {
137	    data->segment_info[i] = j + 1;
138	    break;
139	  }
140
141      /* We should have found a segment for every non-empty section.
142	 If we haven't, we will not relocate this section by any
143	 offsets we apply to the segments.  As an exception, do not
144	 warn about SHT_NOBITS sections; in normal ELF execution
145	 environments, SHT_NOBITS means zero-initialized and belongs
146	 in a segment, but in no-OS environments some tools (e.g. ARM
147	 RealView) use SHT_NOBITS for uninitialized data.  Since it is
148	 uninitialized, it doesn't need a program header.  Such
149	 binaries are not relocatable.  */
150      if (bfd_section_size (sect) > 0 && j == num_segments
151	  && (bfd_section_flags (sect) & SEC_LOAD) != 0)
152	warning (_("Loadable section \"%s\" outside of ELF segments"),
153		 bfd_section_name (sect));
154    }
155
156  return data;
157}
158
159/* We are called once per section from elf_symfile_read.  We
160   need to examine each section we are passed, check to see
161   if it is something we are interested in processing, and
162   if so, stash away some access information for the section.
163
164   For now we recognize the dwarf debug information sections and
165   line number sections from matching their section names.  The
166   ELF definition is no real help here since it has no direct
167   knowledge of DWARF (by design, so any debugging format can be
168   used).
169
170   We also recognize the ".stab" sections used by the Sun compilers
171   released with Solaris 2.
172
173   FIXME: The section names should not be hardwired strings (what
174   should they be?  I don't think most object file formats have enough
175   section flags to specify what kind of debug section it is.
176   -kingdon).  */
177
178static void
179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180{
181  struct elfinfo *ei;
182
183  ei = (struct elfinfo *) eip;
184  if (strcmp (sectp->name, ".stab") == 0)
185    {
186      ei->stabsect = sectp;
187    }
188  else if (strcmp (sectp->name, ".mdebug") == 0)
189    {
190      ei->mdebugsect = sectp;
191    }
192  else if (strcmp (sectp->name, ".ctf") == 0)
193    {
194      ei->ctfsect = sectp;
195    }
196}
197
198static struct minimal_symbol *
199record_minimal_symbol (minimal_symbol_reader &reader,
200		       gdb::string_view name, bool copy_name,
201		       CORE_ADDR address,
202		       enum minimal_symbol_type ms_type,
203		       asection *bfd_section, struct objfile *objfile)
204{
205  struct gdbarch *gdbarch = objfile->arch ();
206
207  if (ms_type == mst_text || ms_type == mst_file_text
208      || ms_type == mst_text_gnu_ifunc)
209    address = gdbarch_addr_bits_remove (gdbarch, address);
210
211  /* We only setup section information for allocatable sections.  Usually
212     we'd only expect to find msymbols for allocatable sections, but if the
213     ELF is malformed then this might not be the case.  In that case don't
214     create an msymbol that references an uninitialised section object.  */
215  int section_index = 0;
216  if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
217    section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
218
219  struct minimal_symbol *result
220    = reader.record_full (name, copy_name, address, ms_type, section_index);
221  if ((objfile->flags & OBJF_MAINLINE) == 0
222      && (ms_type == mst_data || ms_type == mst_bss))
223    result->maybe_copied = 1;
224
225  return result;
226}
227
228/* Read the symbol table of an ELF file.
229
230   Given an objfile, a symbol table, and a flag indicating whether the
231   symbol table contains regular, dynamic, or synthetic symbols, add all
232   the global function and data symbols to the minimal symbol table.
233
234   In stabs-in-ELF, as implemented by Sun, there are some local symbols
235   defined in the ELF symbol table, which can be used to locate
236   the beginnings of sections from each ".o" file that was linked to
237   form the executable objfile.  We gather any such info and record it
238   in data structures hung off the objfile's private data.  */
239
240#define ST_REGULAR 0
241#define ST_DYNAMIC 1
242#define ST_SYNTHETIC 2
243
244static void
245elf_symtab_read (minimal_symbol_reader &reader,
246		 struct objfile *objfile, int type,
247		 long number_of_symbols, asymbol **symbol_table,
248		 bool copy_names)
249{
250  struct gdbarch *gdbarch = objfile->arch ();
251  asymbol *sym;
252  long i;
253  CORE_ADDR symaddr;
254  enum minimal_symbol_type ms_type;
255  /* Name of the last file symbol.  This is either a constant string or is
256     saved on the objfile's filename cache.  */
257  const char *filesymname = "";
258  int stripped = (bfd_get_symcount (objfile->obfd) == 0);
259  int elf_make_msymbol_special_p
260    = gdbarch_elf_make_msymbol_special_p (gdbarch);
261
262  for (i = 0; i < number_of_symbols; i++)
263    {
264      sym = symbol_table[i];
265      if (sym->name == NULL || *sym->name == '\0')
266	{
267	  /* Skip names that don't exist (shouldn't happen), or names
268	     that are null strings (may happen).  */
269	  continue;
270	}
271
272      /* Skip "special" symbols, e.g. ARM mapping symbols.  These are
273	 symbols which do not correspond to objects in the symbol table,
274	 but have some other target-specific meaning.  */
275      if (bfd_is_target_special_symbol (objfile->obfd, sym))
276	{
277	  if (gdbarch_record_special_symbol_p (gdbarch))
278	    gdbarch_record_special_symbol (gdbarch, objfile, sym);
279	  continue;
280	}
281
282      if (type == ST_DYNAMIC
283	  && sym->section == bfd_und_section_ptr
284	  && (sym->flags & BSF_FUNCTION))
285	{
286	  struct minimal_symbol *msym;
287	  bfd *abfd = objfile->obfd;
288	  asection *sect;
289
290	  /* Symbol is a reference to a function defined in
291	     a shared library.
292	     If its value is non zero then it is usually the address
293	     of the corresponding entry in the procedure linkage table,
294	     plus the desired section offset.
295	     If its value is zero then the dynamic linker has to resolve
296	     the symbol.  We are unable to find any meaningful address
297	     for this symbol in the executable file, so we skip it.  */
298	  symaddr = sym->value;
299	  if (symaddr == 0)
300	    continue;
301
302	  /* sym->section is the undefined section.  However, we want to
303	     record the section where the PLT stub resides with the
304	     minimal symbol.  Search the section table for the one that
305	     covers the stub's address.  */
306	  for (sect = abfd->sections; sect != NULL; sect = sect->next)
307	    {
308	      if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
309		continue;
310
311	      if (symaddr >= bfd_section_vma (sect)
312		  && symaddr < bfd_section_vma (sect)
313			       + bfd_section_size (sect))
314		break;
315	    }
316	  if (!sect)
317	    continue;
318
319	  /* On ia64-hpux, we have discovered that the system linker
320	     adds undefined symbols with nonzero addresses that cannot
321	     be right (their address points inside the code of another
322	     function in the .text section).  This creates problems
323	     when trying to determine which symbol corresponds to
324	     a given address.
325
326	     We try to detect those buggy symbols by checking which
327	     section we think they correspond to.  Normally, PLT symbols
328	     are stored inside their own section, and the typical name
329	     for that section is ".plt".  So, if there is a ".plt"
330	     section, and yet the section name of our symbol does not
331	     start with ".plt", we ignore that symbol.  */
332	  if (!startswith (sect->name, ".plt")
333	      && bfd_get_section_by_name (abfd, ".plt") != NULL)
334	    continue;
335
336	  msym = record_minimal_symbol
337	    (reader, sym->name, copy_names,
338	     symaddr, mst_solib_trampoline, sect, objfile);
339	  if (msym != NULL)
340	    {
341	      msym->filename = filesymname;
342	      if (elf_make_msymbol_special_p)
343		gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
344	    }
345	  continue;
346	}
347
348      /* If it is a nonstripped executable, do not enter dynamic
349	 symbols, as the dynamic symbol table is usually a subset
350	 of the main symbol table.  */
351      if (type == ST_DYNAMIC && !stripped)
352	continue;
353      if (sym->flags & BSF_FILE)
354	filesymname = objfile->intern (sym->name);
355      else if (sym->flags & BSF_SECTION_SYM)
356	continue;
357      else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358			     | BSF_GNU_UNIQUE))
359	{
360	  struct minimal_symbol *msym;
361
362	  /* Select global/local/weak symbols.  Note that bfd puts abs
363	     symbols in their own section, so all symbols we are
364	     interested in will have a section.  */
365	  /* Bfd symbols are section relative.  */
366	  symaddr = sym->value + sym->section->vma;
367	  /* For non-absolute symbols, use the type of the section
368	     they are relative to, to intuit text/data.  Bfd provides
369	     no way of figuring this out for absolute symbols.  */
370	  if (sym->section == bfd_abs_section_ptr)
371	    {
372	      /* This is a hack to get the minimal symbol type
373		 right for Irix 5, which has absolute addresses
374		 with special section indices for dynamic symbols.
375
376		 NOTE: uweigand-20071112: Synthetic symbols do not
377		 have an ELF-private part, so do not touch those.  */
378	      unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379		((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381	      switch (shndx)
382		{
383		case SHN_MIPS_TEXT:
384		  ms_type = mst_text;
385		  break;
386		case SHN_MIPS_DATA:
387		  ms_type = mst_data;
388		  break;
389		case SHN_MIPS_ACOMMON:
390		  ms_type = mst_bss;
391		  break;
392		default:
393		  ms_type = mst_abs;
394		}
395
396	      /* If it is an Irix dynamic symbol, skip section name
397		 symbols, relocate all others by section offset.  */
398	      if (ms_type != mst_abs)
399		{
400		  if (sym->name[0] == '.')
401		    continue;
402		}
403	    }
404	  else if (sym->section->flags & SEC_CODE)
405	    {
406	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
407		{
408		  if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409		    ms_type = mst_text_gnu_ifunc;
410		  else
411		    ms_type = mst_text;
412		}
413	      /* The BSF_SYNTHETIC check is there to omit ppc64 function
414		 descriptors mistaken for static functions starting with 'L'.
415		 */
416	      else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417			&& (sym->flags & BSF_SYNTHETIC) == 0)
418		       || ((sym->flags & BSF_LOCAL)
419			   && sym->name[0] == '$'
420			   && sym->name[1] == 'L'))
421		/* Looks like a compiler-generated label.  Skip
422		   it.  The assembler should be skipping these (to
423		   keep executables small), but apparently with
424		   gcc on the (deleted) delta m88k SVR4, it loses.
425		   So to have us check too should be harmless (but
426		   I encourage people to fix this in the assembler
427		   instead of adding checks here).  */
428		continue;
429	      else
430		{
431		  ms_type = mst_file_text;
432		}
433	    }
434	  else if (sym->section->flags & SEC_ALLOC)
435	    {
436	      if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
437		{
438		  if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
439		    {
440		      ms_type = mst_data_gnu_ifunc;
441		    }
442		  else if (sym->section->flags & SEC_LOAD)
443		    {
444		      ms_type = mst_data;
445		    }
446		  else
447		    {
448		      ms_type = mst_bss;
449		    }
450		}
451	      else if (sym->flags & BSF_LOCAL)
452		{
453		  if (sym->section->flags & SEC_LOAD)
454		    {
455		      ms_type = mst_file_data;
456		    }
457		  else
458		    {
459		      ms_type = mst_file_bss;
460		    }
461		}
462	      else
463		{
464		  ms_type = mst_unknown;
465		}
466	    }
467	  else
468	    {
469	      /* FIXME:  Solaris2 shared libraries include lots of
470		 odd "absolute" and "undefined" symbols, that play
471		 hob with actions like finding what function the PC
472		 is in.  Ignore them if they aren't text, data, or bss.  */
473	      /* ms_type = mst_unknown; */
474	      continue;	/* Skip this symbol.  */
475	    }
476	  msym = record_minimal_symbol
477	    (reader, sym->name, copy_names, symaddr,
478	     ms_type, sym->section, objfile);
479
480	  if (msym)
481	    {
482	      /* NOTE: uweigand-20071112: A synthetic symbol does not have an
483		 ELF-private part.  */
484	      if (type != ST_SYNTHETIC)
485		{
486		  /* Pass symbol size field in via BFD.  FIXME!!!  */
487		  elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
488		  SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
489		}
490
491	      msym->filename = filesymname;
492	      if (elf_make_msymbol_special_p)
493		gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
494	    }
495
496	  /* If we see a default versioned symbol, install it under
497	     its version-less name.  */
498	  if (msym != NULL)
499	    {
500	      const char *atsign = strchr (sym->name, '@');
501
502	      if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
503		{
504		  int len = atsign - sym->name;
505
506		  record_minimal_symbol (reader,
507					 gdb::string_view (sym->name, len),
508					 true, symaddr, ms_type, sym->section,
509					 objfile);
510		}
511	    }
512
513	  /* For @plt symbols, also record a trampoline to the
514	     destination symbol.  The @plt symbol will be used in
515	     disassembly, and the trampoline will be used when we are
516	     trying to find the target.  */
517	  if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
518	    {
519	      int len = strlen (sym->name);
520
521	      if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
522		{
523		  struct minimal_symbol *mtramp;
524
525		  mtramp = record_minimal_symbol
526		    (reader, gdb::string_view (sym->name, len - 4), true,
527		     symaddr, mst_solib_trampoline, sym->section, objfile);
528		  if (mtramp)
529		    {
530		      SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
531		      mtramp->created_by_gdb = 1;
532		      mtramp->filename = filesymname;
533		      if (elf_make_msymbol_special_p)
534			gdbarch_elf_make_msymbol_special (gdbarch,
535							  sym, mtramp);
536		    }
537		}
538	    }
539	}
540    }
541}
542
543/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
544   for later look ups of which function to call when user requests
545   a STT_GNU_IFUNC function.  As the STT_GNU_IFUNC type is found at the target
546   library defining `function' we cannot yet know while reading OBJFILE which
547   of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
548   DYN_SYMBOL_TABLE is no longer easily available for OBJFILE.  */
549
550static void
551elf_rel_plt_read (minimal_symbol_reader &reader,
552		  struct objfile *objfile, asymbol **dyn_symbol_table)
553{
554  bfd *obfd = objfile->obfd;
555  const struct elf_backend_data *bed = get_elf_backend_data (obfd);
556  asection *relplt, *got_plt;
557  bfd_size_type reloc_count, reloc;
558  struct gdbarch *gdbarch = objfile->arch ();
559  struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
560  size_t ptr_size = TYPE_LENGTH (ptr_type);
561
562  if (objfile->separate_debug_objfile_backlink)
563    return;
564
565  got_plt = bfd_get_section_by_name (obfd, ".got.plt");
566  if (got_plt == NULL)
567    {
568      /* For platforms where there is no separate .got.plt.  */
569      got_plt = bfd_get_section_by_name (obfd, ".got");
570      if (got_plt == NULL)
571	return;
572    }
573
574  /* Depending on system, we may find jump slots in a relocation
575     section for either .got.plt or .plt.  */
576  asection *plt = bfd_get_section_by_name (obfd, ".plt");
577  int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
578
579  int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
580
581  /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc.  */
582  for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
583    {
584      const auto &this_hdr = elf_section_data (relplt)->this_hdr;
585
586      if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
587	{
588	  if (this_hdr.sh_info == plt_elf_idx
589	      || this_hdr.sh_info == got_plt_elf_idx)
590	    break;
591	}
592    }
593  if (relplt == NULL)
594    return;
595
596  if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
597    return;
598
599  std::string string_buffer;
600
601  /* Does ADDRESS reside in SECTION of OBFD?  */
602  auto within_section = [obfd] (asection *section, CORE_ADDR address)
603    {
604      if (section == NULL)
605	return false;
606
607      return (bfd_section_vma (section) <= address
608	      && (address < bfd_section_vma (section)
609		  + bfd_section_size (section)));
610    };
611
612  reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
613  for (reloc = 0; reloc < reloc_count; reloc++)
614    {
615      const char *name;
616      struct minimal_symbol *msym;
617      CORE_ADDR address;
618      const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
619      const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
620
621      name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
622      address = relplt->relocation[reloc].address;
623
624      asection *msym_section;
625
626      /* Does the pointer reside in either the .got.plt or .plt
627	 sections?  */
628      if (within_section (got_plt, address))
629	msym_section = got_plt;
630      else if (within_section (plt, address))
631	msym_section = plt;
632      else
633	continue;
634
635      /* We cannot check if NAME is a reference to
636	 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
637	 symbol is undefined and the objfile having NAME defined may
638	 not yet have been loaded.  */
639
640      string_buffer.assign (name);
641      string_buffer.append (got_suffix, got_suffix + got_suffix_len);
642
643      msym = record_minimal_symbol (reader, string_buffer,
644				    true, address, mst_slot_got_plt,
645				    msym_section, objfile);
646      if (msym)
647	SET_MSYMBOL_SIZE (msym, ptr_size);
648    }
649}
650
651/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked.  */
652
653static const struct objfile_key<htab, htab_deleter>
654  elf_objfile_gnu_ifunc_cache_data;
655
656/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data.  */
657
658struct elf_gnu_ifunc_cache
659{
660  /* This is always a function entry address, not a function descriptor.  */
661  CORE_ADDR addr;
662
663  char name[1];
664};
665
666/* htab_hash for elf_objfile_gnu_ifunc_cache_data.  */
667
668static hashval_t
669elf_gnu_ifunc_cache_hash (const void *a_voidp)
670{
671  const struct elf_gnu_ifunc_cache *a
672    = (const struct elf_gnu_ifunc_cache *) a_voidp;
673
674  return htab_hash_string (a->name);
675}
676
677/* htab_eq for elf_objfile_gnu_ifunc_cache_data.  */
678
679static int
680elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
681{
682  const struct elf_gnu_ifunc_cache *a
683    = (const struct elf_gnu_ifunc_cache *) a_voidp;
684  const struct elf_gnu_ifunc_cache *b
685    = (const struct elf_gnu_ifunc_cache *) b_voidp;
686
687  return strcmp (a->name, b->name) == 0;
688}
689
690/* Record the target function address of a STT_GNU_IFUNC function NAME is the
691   function entry address ADDR.  Return 1 if NAME and ADDR are considered as
692   valid and therefore they were successfully recorded, return 0 otherwise.
693
694   Function does not expect a duplicate entry.  Use
695   elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
696   exists.  */
697
698static int
699elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
700{
701  struct bound_minimal_symbol msym;
702  struct objfile *objfile;
703  htab_t htab;
704  struct elf_gnu_ifunc_cache entry_local, *entry_p;
705  void **slot;
706
707  msym = lookup_minimal_symbol_by_pc (addr);
708  if (msym.minsym == NULL)
709    return 0;
710  if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
711    return 0;
712  objfile = msym.objfile;
713
714  /* If .plt jumps back to .plt the symbol is still deferred for later
715     resolution and it has no use for GDB.  */
716  const char *target_name = msym.minsym->linkage_name ();
717  size_t len = strlen (target_name);
718
719  /* Note we check the symbol's name instead of checking whether the
720     symbol is in the .plt section because some systems have @plt
721     symbols in the .text section.  */
722  if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
723    return 0;
724
725  htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
726  if (htab == NULL)
727    {
728      htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
729				elf_gnu_ifunc_cache_eq,
730				NULL, xcalloc, xfree);
731      elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
732    }
733
734  entry_local.addr = addr;
735  obstack_grow (&objfile->objfile_obstack, &entry_local,
736		offsetof (struct elf_gnu_ifunc_cache, name));
737  obstack_grow_str0 (&objfile->objfile_obstack, name);
738  entry_p
739    = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
740
741  slot = htab_find_slot (htab, entry_p, INSERT);
742  if (*slot != NULL)
743    {
744      struct elf_gnu_ifunc_cache *entry_found_p
745	= (struct elf_gnu_ifunc_cache *) *slot;
746      struct gdbarch *gdbarch = objfile->arch ();
747
748      if (entry_found_p->addr != addr)
749	{
750	  /* This case indicates buggy inferior program, the resolved address
751	     should never change.  */
752
753	    warning (_("gnu-indirect-function \"%s\" has changed its resolved "
754		       "function_address from %s to %s"),
755		     name, paddress (gdbarch, entry_found_p->addr),
756		     paddress (gdbarch, addr));
757	}
758
759      /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack.  */
760    }
761  *slot = entry_p;
762
763  return 1;
764}
765
766/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
767   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
768   is not NULL) and the function returns 1.  It returns 0 otherwise.
769
770   Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
771   function.  */
772
773static int
774elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
775{
776  for (objfile *objfile : current_program_space->objfiles ())
777    {
778      htab_t htab;
779      struct elf_gnu_ifunc_cache *entry_p;
780      void **slot;
781
782      htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
783      if (htab == NULL)
784	continue;
785
786      entry_p = ((struct elf_gnu_ifunc_cache *)
787		 alloca (sizeof (*entry_p) + strlen (name)));
788      strcpy (entry_p->name, name);
789
790      slot = htab_find_slot (htab, entry_p, NO_INSERT);
791      if (slot == NULL)
792	continue;
793      entry_p = (struct elf_gnu_ifunc_cache *) *slot;
794      gdb_assert (entry_p != NULL);
795
796      if (addr_p)
797	*addr_p = entry_p->addr;
798      return 1;
799    }
800
801  return 0;
802}
803
804/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
805   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
806   is not NULL) and the function returns 1.  It returns 0 otherwise.
807
808   Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
809   elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
810   prevent cache entries duplicates.  */
811
812static int
813elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
814{
815  char *name_got_plt;
816  const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
817
818  name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
819  sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
820
821  for (objfile *objfile : current_program_space->objfiles ())
822    {
823      bfd *obfd = objfile->obfd;
824      struct gdbarch *gdbarch = objfile->arch ();
825      struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
826      size_t ptr_size = TYPE_LENGTH (ptr_type);
827      CORE_ADDR pointer_address, addr;
828      asection *plt;
829      gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
830      struct bound_minimal_symbol msym;
831
832      msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
833      if (msym.minsym == NULL)
834	continue;
835      if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
836	continue;
837      pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
838
839      plt = bfd_get_section_by_name (obfd, ".plt");
840      if (plt == NULL)
841	continue;
842
843      if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
844	continue;
845      if (target_read_memory (pointer_address, buf, ptr_size) != 0)
846	continue;
847      addr = extract_typed_address (buf, ptr_type);
848      addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
849						 current_top_target ());
850      addr = gdbarch_addr_bits_remove (gdbarch, addr);
851
852      if (elf_gnu_ifunc_record_cache (name, addr))
853	{
854	  if (addr_p != NULL)
855	    *addr_p = addr;
856	  return 1;
857	}
858    }
859
860  return 0;
861}
862
863/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
864   function NAME.  If the address is found it is stored to *ADDR_P (if ADDR_P
865   is not NULL) and the function returns true.  It returns false otherwise.
866
867   Both the elf_objfile_gnu_ifunc_cache_data hash table and
868   SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.  */
869
870static bool
871elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
872{
873  if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
874    return true;
875
876  if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
877    return true;
878
879  return false;
880}
881
882/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
883   call.  PC is theSTT_GNU_IFUNC resolving function entry.  The value returned
884   is the entry point of the resolved STT_GNU_IFUNC target function to call.
885   */
886
887static CORE_ADDR
888elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
889{
890  const char *name_at_pc;
891  CORE_ADDR start_at_pc, address;
892  struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
893  struct value *function, *address_val;
894  CORE_ADDR hwcap = 0;
895  struct value *hwcap_val;
896
897  /* Try first any non-intrusive methods without an inferior call.  */
898
899  if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
900      && start_at_pc == pc)
901    {
902      if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
903	return address;
904    }
905  else
906    name_at_pc = NULL;
907
908  function = allocate_value (func_func_type);
909  VALUE_LVAL (function) = lval_memory;
910  set_value_address (function, pc);
911
912  /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
913     parameter.  FUNCTION is the function entry address.  ADDRESS may be a
914     function descriptor.  */
915
916  target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
917  hwcap_val = value_from_longest (builtin_type (gdbarch)
918				  ->builtin_unsigned_long, hwcap);
919  address_val = call_function_by_hand (function, NULL, hwcap_val);
920  address = value_as_address (address_val);
921  address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
922  address = gdbarch_addr_bits_remove (gdbarch, address);
923
924  if (name_at_pc)
925    elf_gnu_ifunc_record_cache (name_at_pc, address);
926
927  return address;
928}
929
930/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition.  */
931
932static void
933elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
934{
935  struct breakpoint *b_return;
936  struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
937  struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
938  CORE_ADDR prev_pc = get_frame_pc (prev_frame);
939  int thread_id = inferior_thread ()->global_num;
940
941  gdb_assert (b->type == bp_gnu_ifunc_resolver);
942
943  for (b_return = b->related_breakpoint; b_return != b;
944       b_return = b_return->related_breakpoint)
945    {
946      gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
947      gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
948      gdb_assert (frame_id_p (b_return->frame_id));
949
950      if (b_return->thread == thread_id
951	  && b_return->loc->requested_address == prev_pc
952	  && frame_id_eq (b_return->frame_id, prev_frame_id))
953	break;
954    }
955
956  if (b_return == b)
957    {
958      /* No need to call find_pc_line for symbols resolving as this is only
959	 a helper breakpointer never shown to the user.  */
960
961      symtab_and_line sal;
962      sal.pspace = current_inferior ()->pspace;
963      sal.pc = prev_pc;
964      sal.section = find_pc_overlay (sal.pc);
965      sal.explicit_pc = 1;
966      b_return
967	= set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
968				    prev_frame_id,
969				    bp_gnu_ifunc_resolver_return).release ();
970
971      /* set_momentary_breakpoint invalidates PREV_FRAME.  */
972      prev_frame = NULL;
973
974      /* Add new b_return to the ring list b->related_breakpoint.  */
975      gdb_assert (b_return->related_breakpoint == b_return);
976      b_return->related_breakpoint = b->related_breakpoint;
977      b->related_breakpoint = b_return;
978    }
979}
980
981/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition.  */
982
983static void
984elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
985{
986  thread_info *thread = inferior_thread ();
987  struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
988  struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
989  struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
990  struct regcache *regcache = get_thread_regcache (thread);
991  struct value *func_func;
992  struct value *value;
993  CORE_ADDR resolved_address, resolved_pc;
994
995  gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
996
997  while (b->related_breakpoint != b)
998    {
999      struct breakpoint *b_next = b->related_breakpoint;
1000
1001      switch (b->type)
1002	{
1003	case bp_gnu_ifunc_resolver:
1004	  break;
1005	case bp_gnu_ifunc_resolver_return:
1006	  delete_breakpoint (b);
1007	  break;
1008	default:
1009	  internal_error (__FILE__, __LINE__,
1010			  _("handle_inferior_event: Invalid "
1011			    "gnu-indirect-function breakpoint type %d"),
1012			  (int) b->type);
1013	}
1014      b = b_next;
1015    }
1016  gdb_assert (b->type == bp_gnu_ifunc_resolver);
1017  gdb_assert (b->loc->next == NULL);
1018
1019  func_func = allocate_value (func_func_type);
1020  VALUE_LVAL (func_func) = lval_memory;
1021  set_value_address (func_func, b->loc->related_address);
1022
1023  value = allocate_value (value_type);
1024  gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1025			value_contents_raw (value), NULL);
1026  resolved_address = value_as_address (value);
1027  resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1028						    resolved_address,
1029						    current_top_target ());
1030  resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1031
1032  gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1033  elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1034			      resolved_pc);
1035
1036  b->type = bp_breakpoint;
1037  update_breakpoint_locations (b, current_program_space,
1038			       find_function_start_sal (resolved_pc, NULL, true),
1039			       {});
1040}
1041
1042/* A helper function for elf_symfile_read that reads the minimal
1043   symbols.  */
1044
1045static void
1046elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1047			  const struct elfinfo *ei)
1048{
1049  bfd *synth_abfd, *abfd = objfile->obfd;
1050  long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1051  asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1052  asymbol *synthsyms;
1053
1054  if (symtab_create_debug)
1055    {
1056      fprintf_unfiltered (gdb_stdlog,
1057			  "Reading minimal symbols of objfile %s ...\n",
1058			  objfile_name (objfile));
1059    }
1060
1061  /* If we already have minsyms, then we can skip some work here.
1062     However, if there were stabs or mdebug sections, we go ahead and
1063     redo all the work anyway, because the psym readers for those
1064     kinds of debuginfo need extra information found here.  This can
1065     go away once all types of symbols are in the per-BFD object.  */
1066  if (objfile->per_bfd->minsyms_read
1067      && ei->stabsect == NULL
1068      && ei->mdebugsect == NULL
1069      && ei->ctfsect == NULL)
1070    {
1071      if (symtab_create_debug)
1072	fprintf_unfiltered (gdb_stdlog,
1073			    "... minimal symbols previously read\n");
1074      return;
1075    }
1076
1077  minimal_symbol_reader reader (objfile);
1078
1079  /* Process the normal ELF symbol table first.  */
1080
1081  storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1082  if (storage_needed < 0)
1083    error (_("Can't read symbols from %s: %s"),
1084	   bfd_get_filename (objfile->obfd),
1085	   bfd_errmsg (bfd_get_error ()));
1086
1087  if (storage_needed > 0)
1088    {
1089      /* Memory gets permanently referenced from ABFD after
1090	 bfd_canonicalize_symtab so it must not get freed before ABFD gets.  */
1091
1092      symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1093      symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1094
1095      if (symcount < 0)
1096	error (_("Can't read symbols from %s: %s"),
1097	       bfd_get_filename (objfile->obfd),
1098	       bfd_errmsg (bfd_get_error ()));
1099
1100      elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1101		       false);
1102    }
1103
1104  /* Add the dynamic symbols.  */
1105
1106  storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1107
1108  if (storage_needed > 0)
1109    {
1110      /* Memory gets permanently referenced from ABFD after
1111	 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1112	 It happens only in the case when elf_slurp_reloc_table sees
1113	 asection->relocation NULL.  Determining which section is asection is
1114	 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1115	 implementation detail, though.  */
1116
1117      dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1118      dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1119						     dyn_symbol_table);
1120
1121      if (dynsymcount < 0)
1122	error (_("Can't read symbols from %s: %s"),
1123	       bfd_get_filename (objfile->obfd),
1124	       bfd_errmsg (bfd_get_error ()));
1125
1126      elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1127		       dyn_symbol_table, false);
1128
1129      elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1130    }
1131
1132  /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1133     elfutils (eu-strip) moves even the .symtab section into the .debug file.
1134
1135     bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1136     'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1137     address.  But with eu-strip files bfd_get_synthetic_symtab would fail to
1138     read the code address from .opd while it reads the .symtab section from
1139     a separate debug info file as the .opd section is SHT_NOBITS there.
1140
1141     With SYNTH_ABFD the .opd section will be read from the original
1142     backlinked binary where it is valid.  */
1143
1144  if (objfile->separate_debug_objfile_backlink)
1145    synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1146  else
1147    synth_abfd = abfd;
1148
1149  /* Add synthetic symbols - for instance, names for any PLT entries.  */
1150
1151  synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1152					 dynsymcount, dyn_symbol_table,
1153					 &synthsyms);
1154  if (synthcount > 0)
1155    {
1156      long i;
1157
1158      std::unique_ptr<asymbol *[]>
1159	synth_symbol_table (new asymbol *[synthcount]);
1160      for (i = 0; i < synthcount; i++)
1161	synth_symbol_table[i] = synthsyms + i;
1162      elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1163		       synth_symbol_table.get (), true);
1164
1165      xfree (synthsyms);
1166      synthsyms = NULL;
1167    }
1168
1169  /* Install any minimal symbols that have been collected as the current
1170     minimal symbols for this objfile.  The debug readers below this point
1171     should not generate new minimal symbols; if they do it's their
1172     responsibility to install them.  "mdebug" appears to be the only one
1173     which will do this.  */
1174
1175  reader.install ();
1176
1177  if (symtab_create_debug)
1178    fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1179}
1180
1181/* Scan and build partial symbols for a symbol file.
1182   We have been initialized by a call to elf_symfile_init, which
1183   currently does nothing.
1184
1185   This function only does the minimum work necessary for letting the
1186   user "name" things symbolically; it does not read the entire symtab.
1187   Instead, it reads the external and static symbols and puts them in partial
1188   symbol tables.  When more extensive information is requested of a
1189   file, the corresponding partial symbol table is mutated into a full
1190   fledged symbol table by going back and reading the symbols
1191   for real.
1192
1193   We look for sections with specific names, to tell us what debug
1194   format to look for:  FIXME!!!
1195
1196   elfstab_build_psymtabs() handles STABS symbols;
1197   mdebug_build_psymtabs() handles ECOFF debugging information.
1198
1199   Note that ELF files have a "minimal" symbol table, which looks a lot
1200   like a COFF symbol table, but has only the minimal information necessary
1201   for linking.  We process this also, and use the information to
1202   build gdb's minimal symbol table.  This gives us some minimal debugging
1203   capability even for files compiled without -g.  */
1204
1205static void
1206elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1207{
1208  bfd *abfd = objfile->obfd;
1209  struct elfinfo ei;
1210  bool has_dwarf2 = true;
1211
1212  memset ((char *) &ei, 0, sizeof (ei));
1213  if (!(objfile->flags & OBJF_READNEVER))
1214    bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1215
1216  elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1217
1218  /* ELF debugging information is inserted into the psymtab in the
1219     order of least informative first - most informative last.  Since
1220     the psymtab table is searched `most recent insertion first' this
1221     increases the probability that more detailed debug information
1222     for a section is found.
1223
1224     For instance, an object file might contain both .mdebug (XCOFF)
1225     and .debug_info (DWARF2) sections then .mdebug is inserted first
1226     (searched last) and DWARF2 is inserted last (searched first).  If
1227     we don't do this then the XCOFF info is found first - for code in
1228     an included file XCOFF info is useless.  */
1229
1230  if (ei.mdebugsect)
1231    {
1232      const struct ecoff_debug_swap *swap;
1233
1234      /* .mdebug section, presumably holding ECOFF debugging
1235         information.  */
1236      swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1237      if (swap)
1238	elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1239    }
1240  if (ei.stabsect)
1241    {
1242      asection *str_sect;
1243
1244      /* Stab sections have an associated string table that looks like
1245         a separate section.  */
1246      str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1247
1248      /* FIXME should probably warn about a stab section without a stabstr.  */
1249      if (str_sect)
1250	elfstab_build_psymtabs (objfile,
1251				ei.stabsect,
1252				str_sect->filepos,
1253				bfd_section_size (str_sect));
1254    }
1255
1256  if (dwarf2_has_info (objfile, NULL, true))
1257    {
1258      dw_index_kind index_kind;
1259
1260      /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1261	 debug information present in OBJFILE.  If there is such debug
1262	 info present never use an index.  */
1263      if (!objfile_has_partial_symbols (objfile)
1264	  && dwarf2_initialize_objfile (objfile, &index_kind))
1265	{
1266	  switch (index_kind)
1267	    {
1268	    case dw_index_kind::GDB_INDEX:
1269	      objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1270	      break;
1271	    case dw_index_kind::DEBUG_NAMES:
1272	      objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1273	      break;
1274	    }
1275	}
1276      else
1277	{
1278	  /* It is ok to do this even if the stabs reader made some
1279	     partial symbols, because OBJF_PSYMTABS_READ has not been
1280	     set, and so our lazy reader function will still be called
1281	     when needed.  */
1282	  objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1283	}
1284    }
1285  /* If the file has its own symbol tables it has no separate debug
1286     info.  `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1287     SYMTABS/PSYMTABS.  `.gnu_debuglink' may no longer be present with
1288     `.note.gnu.build-id'.
1289
1290     .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1291     .symtab, not .debug_* section.  But if we already added .gnu_debugdata as
1292     an objfile via find_separate_debug_file_in_section there was no separate
1293     debug info available.  Therefore do not attempt to search for another one,
1294     objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1295     be NULL and we would possibly violate it.  */
1296
1297  else if (!objfile_has_partial_symbols (objfile)
1298	   && objfile->separate_debug_objfile == NULL
1299	   && objfile->separate_debug_objfile_backlink == NULL)
1300    {
1301      std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1302
1303      if (debugfile.empty ())
1304	debugfile = find_separate_debug_file_by_debuglink (objfile);
1305
1306      if (!debugfile.empty ())
1307	{
1308	  gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1309
1310	  symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1311				    symfile_flags, objfile);
1312	}
1313      else
1314	{
1315	  has_dwarf2 = false;
1316	  const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1317
1318	  if (build_id != nullptr)
1319	    {
1320	      gdb::unique_xmalloc_ptr<char> symfile_path;
1321	      scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1322							build_id->size,
1323							objfile->original_name,
1324							&symfile_path));
1325
1326	      if (fd.get () >= 0)
1327		{
1328		  /* File successfully retrieved from server.  */
1329		  gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1330
1331		  if (debug_bfd == nullptr)
1332		    warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1333			     objfile->original_name);
1334		  else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1335		    {
1336		      symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1337						symfile_flags, objfile);
1338		      has_dwarf2 = true;
1339		    }
1340		}
1341	    }
1342	}
1343    }
1344
1345  /* Read the CTF section only if there is no DWARF info.  */
1346  if (!has_dwarf2 && ei.ctfsect)
1347    {
1348      elfctf_build_psymtabs (objfile);
1349    }
1350}
1351
1352/* Callback to lazily read psymtabs.  */
1353
1354static void
1355read_psyms (struct objfile *objfile)
1356{
1357  if (dwarf2_has_info (objfile, NULL))
1358    dwarf2_build_psymtabs (objfile);
1359}
1360
1361/* Initialize anything that needs initializing when a completely new symbol
1362   file is specified (not just adding some symbols from another file, e.g. a
1363   shared library).  */
1364
1365static void
1366elf_new_init (struct objfile *ignore)
1367{
1368}
1369
1370/* Perform any local cleanups required when we are done with a particular
1371   objfile.  I.E, we are in the process of discarding all symbol information
1372   for an objfile, freeing up all memory held for it, and unlinking the
1373   objfile struct from the global list of known objfiles.  */
1374
1375static void
1376elf_symfile_finish (struct objfile *objfile)
1377{
1378}
1379
1380/* ELF specific initialization routine for reading symbols.  */
1381
1382static void
1383elf_symfile_init (struct objfile *objfile)
1384{
1385  /* ELF objects may be reordered, so set OBJF_REORDERED.  If we
1386     find this causes a significant slowdown in gdb then we could
1387     set it in the debug symbol readers only when necessary.  */
1388  objfile->flags |= OBJF_REORDERED;
1389}
1390
1391/* Implementation of `sym_get_probes', as documented in symfile.h.  */
1392
1393static const elfread_data &
1394elf_get_probes (struct objfile *objfile)
1395{
1396  elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1397
1398  if (probes_per_bfd == NULL)
1399    {
1400      probes_per_bfd = probe_key.emplace (objfile->obfd);
1401
1402      /* Here we try to gather information about all types of probes from the
1403	 objfile.  */
1404      for (const static_probe_ops *ops : all_static_probe_ops)
1405	ops->get_probes (probes_per_bfd, objfile);
1406    }
1407
1408  return *probes_per_bfd;
1409}
1410
1411
1412
1413/* Implementation `sym_probe_fns', as documented in symfile.h.  */
1414
1415static const struct sym_probe_fns elf_probe_fns =
1416{
1417  elf_get_probes,		    /* sym_get_probes */
1418};
1419
1420/* Register that we are able to handle ELF object file formats.  */
1421
1422static const struct sym_fns elf_sym_fns =
1423{
1424  elf_new_init,			/* init anything gbl to entire symtab */
1425  elf_symfile_init,		/* read initial info, setup for sym_read() */
1426  elf_symfile_read,		/* read a symbol file into symtab */
1427  NULL,				/* sym_read_psymbols */
1428  elf_symfile_finish,		/* finished with file, cleanup */
1429  default_symfile_offsets,	/* Translate ext. to int. relocation */
1430  elf_symfile_segments,		/* Get segment information from a file.  */
1431  NULL,
1432  default_symfile_relocate,	/* Relocate a debug section.  */
1433  &elf_probe_fns,		/* sym_probe_fns */
1434  &psym_functions
1435};
1436
1437/* The same as elf_sym_fns, but not registered and lazily reads
1438   psymbols.  */
1439
1440const struct sym_fns elf_sym_fns_lazy_psyms =
1441{
1442  elf_new_init,			/* init anything gbl to entire symtab */
1443  elf_symfile_init,		/* read initial info, setup for sym_read() */
1444  elf_symfile_read,		/* read a symbol file into symtab */
1445  read_psyms,			/* sym_read_psymbols */
1446  elf_symfile_finish,		/* finished with file, cleanup */
1447  default_symfile_offsets,	/* Translate ext. to int. relocation */
1448  elf_symfile_segments,		/* Get segment information from a file.  */
1449  NULL,
1450  default_symfile_relocate,	/* Relocate a debug section.  */
1451  &elf_probe_fns,		/* sym_probe_fns */
1452  &psym_functions
1453};
1454
1455/* The same as elf_sym_fns, but not registered and uses the
1456   DWARF-specific GNU index rather than psymtab.  */
1457const struct sym_fns elf_sym_fns_gdb_index =
1458{
1459  elf_new_init,			/* init anything gbl to entire symab */
1460  elf_symfile_init,		/* read initial info, setup for sym_red() */
1461  elf_symfile_read,		/* read a symbol file into symtab */
1462  NULL,				/* sym_read_psymbols */
1463  elf_symfile_finish,		/* finished with file, cleanup */
1464  default_symfile_offsets,	/* Translate ext. to int. relocation */
1465  elf_symfile_segments,		/* Get segment information from a file.  */
1466  NULL,
1467  default_symfile_relocate,	/* Relocate a debug section.  */
1468  &elf_probe_fns,		/* sym_probe_fns */
1469  &dwarf2_gdb_index_functions
1470};
1471
1472/* The same as elf_sym_fns, but not registered and uses the
1473   DWARF-specific .debug_names index rather than psymtab.  */
1474const struct sym_fns elf_sym_fns_debug_names =
1475{
1476  elf_new_init,			/* init anything gbl to entire symab */
1477  elf_symfile_init,		/* read initial info, setup for sym_red() */
1478  elf_symfile_read,		/* read a symbol file into symtab */
1479  NULL,				/* sym_read_psymbols */
1480  elf_symfile_finish,		/* finished with file, cleanup */
1481  default_symfile_offsets,	/* Translate ext. to int. relocation */
1482  elf_symfile_segments,		/* Get segment information from a file.  */
1483  NULL,
1484  default_symfile_relocate,	/* Relocate a debug section.  */
1485  &elf_probe_fns,		/* sym_probe_fns */
1486  &dwarf2_debug_names_functions
1487};
1488
1489/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p.  */
1490
1491static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1492{
1493  elf_gnu_ifunc_resolve_addr,
1494  elf_gnu_ifunc_resolve_name,
1495  elf_gnu_ifunc_resolver_stop,
1496  elf_gnu_ifunc_resolver_return_stop
1497};
1498
1499void _initialize_elfread ();
1500void
1501_initialize_elfread ()
1502{
1503  add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1504
1505  gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1506}
1507