1/* More subroutines needed by GCC output code on some machines.  */
2/* Compile this one with gcc.  */
3/* Copyright (C) 1989-2022 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24<http://www.gnu.org/licenses/>.  */
25
26#include "tconfig.h"
27#include "tsystem.h"
28#include "coretypes.h"
29#include "tm.h"
30#include "libgcc_tm.h"
31
32#ifdef HAVE_GAS_HIDDEN
33#define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
34#else
35#define ATTRIBUTE_HIDDEN
36#endif
37
38/* Work out the largest "word" size that we can deal with on this target.  */
39#if MIN_UNITS_PER_WORD > 4
40# define LIBGCC2_MAX_UNITS_PER_WORD 8
41#elif (MIN_UNITS_PER_WORD > 2 \
42       || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
43# define LIBGCC2_MAX_UNITS_PER_WORD 4
44#else
45# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
46#endif
47
48/* Work out what word size we are using for this compilation.
49   The value can be set on the command line.  */
50#ifndef LIBGCC2_UNITS_PER_WORD
51#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
52#endif
53
54#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
55
56#include "libgcc2.h"
57
58#ifdef DECLARE_LIBRARY_RENAMES
59  DECLARE_LIBRARY_RENAMES
60#endif
61
62#if defined (L_negdi2)
63DWtype
64__negdi2 (DWtype u)
65{
66  const DWunion uu = {.ll = u};
67  const DWunion w = { {.low = -uu.s.low,
68		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
69
70  return w.ll;
71}
72#endif
73
74#ifdef L_addvsi3
75Wtype
76__addvSI3 (Wtype a, Wtype b)
77{
78  Wtype w;
79
80  if (__builtin_add_overflow (a, b, &w))
81    abort ();
82
83  return w;
84}
85#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
86SItype
87__addvsi3 (SItype a, SItype b)
88{
89  SItype w;
90
91  if (__builtin_add_overflow (a, b, &w))
92    abort ();
93
94  return w;
95}
96#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
97#endif
98
99#ifdef L_addvdi3
100DWtype
101__addvDI3 (DWtype a, DWtype b)
102{
103  DWtype w;
104
105  if (__builtin_add_overflow (a, b, &w))
106    abort ();
107
108  return w;
109}
110#endif
111
112#ifdef L_subvsi3
113Wtype
114__subvSI3 (Wtype a, Wtype b)
115{
116  Wtype w;
117
118  if (__builtin_sub_overflow (a, b, &w))
119    abort ();
120
121  return w;
122}
123#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
124SItype
125__subvsi3 (SItype a, SItype b)
126{
127  SItype w;
128
129  if (__builtin_sub_overflow (a, b, &w))
130    abort ();
131
132  return w;
133}
134#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
135#endif
136
137#ifdef L_subvdi3
138DWtype
139__subvDI3 (DWtype a, DWtype b)
140{
141  DWtype w;
142
143  if (__builtin_sub_overflow (a, b, &w))
144    abort ();
145
146  return w;
147}
148#endif
149
150#ifdef L_mulvsi3
151Wtype
152__mulvSI3 (Wtype a, Wtype b)
153{
154  Wtype w;
155
156  if (__builtin_mul_overflow (a, b, &w))
157    abort ();
158
159  return w;
160}
161#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
162SItype
163__mulvsi3 (SItype a, SItype b)
164{
165  SItype w;
166
167  if (__builtin_mul_overflow (a, b, &w))
168    abort ();
169
170  return w;
171}
172#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
173#endif
174
175#ifdef L_negvsi2
176Wtype
177__negvSI2 (Wtype a)
178{
179  Wtype w;
180
181  if (__builtin_sub_overflow (0, a, &w))
182    abort ();
183
184  return w;
185}
186#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
187SItype
188__negvsi2 (SItype a)
189{
190  SItype w;
191
192  if (__builtin_sub_overflow (0, a, &w))
193    abort ();
194
195  return w;
196}
197#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
198#endif
199
200#ifdef L_negvdi2
201DWtype
202__negvDI2 (DWtype a)
203{
204  DWtype w;
205
206  if (__builtin_sub_overflow (0, a, &w))
207    abort ();
208
209  return w;
210}
211#endif
212
213#ifdef L_absvsi2
214Wtype
215__absvSI2 (Wtype a)
216{
217  const Wtype v = 0 - (a < 0);
218  Wtype w;
219
220  if (__builtin_add_overflow (a, v, &w))
221    abort ();
222
223  return v ^ w;
224}
225#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
226SItype
227__absvsi2 (SItype a)
228{
229  const SItype v = 0 - (a < 0);
230  SItype w;
231
232  if (__builtin_add_overflow (a, v, &w))
233    abort ();
234
235  return v ^ w;
236}
237#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
238#endif
239
240#ifdef L_absvdi2
241DWtype
242__absvDI2 (DWtype a)
243{
244  const DWtype v = 0 - (a < 0);
245  DWtype w;
246
247  if (__builtin_add_overflow (a, v, &w))
248    abort ();
249
250  return v ^ w;
251}
252#endif
253
254#ifdef L_mulvdi3
255DWtype
256__mulvDI3 (DWtype u, DWtype v)
257{
258  /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
259     but the checked multiplication needs only two.  */
260  const DWunion uu = {.ll = u};
261  const DWunion vv = {.ll = v};
262
263  if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
264    {
265      /* u fits in a single Wtype.  */
266      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
267	{
268	  /* v fits in a single Wtype as well.  */
269	  /* A single multiplication.  No overflow risk.  */
270	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
271	}
272      else
273	{
274	  /* Two multiplications.  */
275	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
276			* (UDWtype) (UWtype) vv.s.low};
277	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
278			* (UDWtype) (UWtype) vv.s.high};
279
280	  if (vv.s.high < 0)
281	    w1.s.high -= uu.s.low;
282	  if (uu.s.low < 0)
283	    w1.ll -= vv.ll;
284	  w1.ll += (UWtype) w0.s.high;
285	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
286	    {
287	      w0.s.high = w1.s.low;
288	      return w0.ll;
289	    }
290	}
291    }
292  else
293    {
294      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
295	{
296	  /* v fits into a single Wtype.  */
297	  /* Two multiplications.  */
298	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
299			* (UDWtype) (UWtype) vv.s.low};
300	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
301			* (UDWtype) (UWtype) vv.s.low};
302
303	  if (uu.s.high < 0)
304	    w1.s.high -= vv.s.low;
305	  if (vv.s.low < 0)
306	    w1.ll -= uu.ll;
307	  w1.ll += (UWtype) w0.s.high;
308	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
309	    {
310	      w0.s.high = w1.s.low;
311	      return w0.ll;
312	    }
313	}
314      else
315	{
316	  /* A few sign checks and a single multiplication.  */
317	  if (uu.s.high >= 0)
318	    {
319	      if (vv.s.high >= 0)
320		{
321		  if (uu.s.high == 0 && vv.s.high == 0)
322		    {
323		      const DWtype w = (UDWtype) (UWtype) uu.s.low
324			* (UDWtype) (UWtype) vv.s.low;
325		      if (__builtin_expect (w >= 0, 1))
326			return w;
327		    }
328		}
329	      else
330		{
331		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
332		    {
333		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
334				    * (UDWtype) (UWtype) vv.s.low};
335
336		      ww.s.high -= uu.s.low;
337		      if (__builtin_expect (ww.s.high < 0, 1))
338			return ww.ll;
339		    }
340		}
341	    }
342	  else
343	    {
344	      if (vv.s.high >= 0)
345		{
346		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
347		    {
348		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
349				    * (UDWtype) (UWtype) vv.s.low};
350
351		      ww.s.high -= vv.s.low;
352		      if (__builtin_expect (ww.s.high < 0, 1))
353			return ww.ll;
354		    }
355		}
356	      else
357		{
358		  if ((uu.s.high & vv.s.high) == (Wtype) -1
359		      && (uu.s.low | vv.s.low) != 0)
360		    {
361		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
362				    * (UDWtype) (UWtype) vv.s.low};
363
364		      ww.s.high -= uu.s.low;
365		      ww.s.high -= vv.s.low;
366		      if (__builtin_expect (ww.s.high >= 0, 1))
367			return ww.ll;
368		    }
369		}
370	    }
371	}
372    }
373
374  /* Overflow.  */
375  abort ();
376}
377#endif
378
379
380/* Unless shift functions are defined with full ANSI prototypes,
381   parameter b will be promoted to int if shift_count_type is smaller than an int.  */
382#ifdef L_lshrdi3
383DWtype
384__lshrdi3 (DWtype u, shift_count_type b)
385{
386  if (b == 0)
387    return u;
388
389  const DWunion uu = {.ll = u};
390  const shift_count_type bm = W_TYPE_SIZE - b;
391  DWunion w;
392
393  if (bm <= 0)
394    {
395      w.s.high = 0;
396      w.s.low = (UWtype) uu.s.high >> -bm;
397    }
398  else
399    {
400      const UWtype carries = (UWtype) uu.s.high << bm;
401
402      w.s.high = (UWtype) uu.s.high >> b;
403      w.s.low = ((UWtype) uu.s.low >> b) | carries;
404    }
405
406  return w.ll;
407}
408#endif
409
410#ifdef L_ashldi3
411DWtype
412__ashldi3 (DWtype u, shift_count_type b)
413{
414  if (b == 0)
415    return u;
416
417  const DWunion uu = {.ll = u};
418  const shift_count_type bm = W_TYPE_SIZE - b;
419  DWunion w;
420
421  if (bm <= 0)
422    {
423      w.s.low = 0;
424      w.s.high = (UWtype) uu.s.low << -bm;
425    }
426  else
427    {
428      const UWtype carries = (UWtype) uu.s.low >> bm;
429
430      w.s.low = (UWtype) uu.s.low << b;
431      w.s.high = ((UWtype) uu.s.high << b) | carries;
432    }
433
434  return w.ll;
435}
436#endif
437
438#ifdef L_ashrdi3
439DWtype
440__ashrdi3 (DWtype u, shift_count_type b)
441{
442  if (b == 0)
443    return u;
444
445  const DWunion uu = {.ll = u};
446  const shift_count_type bm = W_TYPE_SIZE - b;
447  DWunion w;
448
449  if (bm <= 0)
450    {
451      /* w.s.high = 1..1 or 0..0 */
452      w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
453      w.s.low = uu.s.high >> -bm;
454    }
455  else
456    {
457      const UWtype carries = (UWtype) uu.s.high << bm;
458
459      w.s.high = uu.s.high >> b;
460      w.s.low = ((UWtype) uu.s.low >> b) | carries;
461    }
462
463  return w.ll;
464}
465#endif
466
467#ifdef L_bswapsi2
468SItype
469__bswapsi2 (SItype u)
470{
471  return ((((u) & 0xff000000u) >> 24)
472	  | (((u) & 0x00ff0000u) >>  8)
473	  | (((u) & 0x0000ff00u) <<  8)
474	  | (((u) & 0x000000ffu) << 24));
475}
476#endif
477#ifdef L_bswapdi2
478DItype
479__bswapdi2 (DItype u)
480{
481  return ((((u) & 0xff00000000000000ull) >> 56)
482	  | (((u) & 0x00ff000000000000ull) >> 40)
483	  | (((u) & 0x0000ff0000000000ull) >> 24)
484	  | (((u) & 0x000000ff00000000ull) >>  8)
485	  | (((u) & 0x00000000ff000000ull) <<  8)
486	  | (((u) & 0x0000000000ff0000ull) << 24)
487	  | (((u) & 0x000000000000ff00ull) << 40)
488	  | (((u) & 0x00000000000000ffull) << 56));
489}
490#endif
491#ifdef L_ffssi2
492#undef int
493int
494__ffsSI2 (UWtype u)
495{
496  UWtype count;
497
498  if (u == 0)
499    return 0;
500
501  count_trailing_zeros (count, u);
502  return count + 1;
503}
504#endif
505
506#ifdef L_ffsdi2
507#undef int
508int
509__ffsDI2 (DWtype u)
510{
511  const DWunion uu = {.ll = u};
512  UWtype word, count, add;
513
514  if (uu.s.low != 0)
515    word = uu.s.low, add = 0;
516  else if (uu.s.high != 0)
517    word = uu.s.high, add = W_TYPE_SIZE;
518  else
519    return 0;
520
521  count_trailing_zeros (count, word);
522  return count + add + 1;
523}
524#endif
525
526#ifdef L_muldi3
527DWtype
528__muldi3 (DWtype u, DWtype v)
529{
530  const DWunion uu = {.ll = u};
531  const DWunion vv = {.ll = v};
532  DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
533
534  w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
535	       + (UWtype) uu.s.high * (UWtype) vv.s.low);
536
537  return w.ll;
538}
539#endif
540
541#if (defined (L_udivdi3) || defined (L_divdi3) || \
542     defined (L_umoddi3) || defined (L_moddi3))
543#if defined (sdiv_qrnnd)
544#define L_udiv_w_sdiv
545#endif
546#endif
547
548#ifdef L_udiv_w_sdiv
549#if defined (sdiv_qrnnd)
550#if (defined (L_udivdi3) || defined (L_divdi3) || \
551     defined (L_umoddi3) || defined (L_moddi3))
552static inline __attribute__ ((__always_inline__))
553#endif
554UWtype
555__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
556{
557  UWtype q, r;
558  UWtype c0, c1, b1;
559
560  if ((Wtype) d >= 0)
561    {
562      if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
563	{
564	  /* Dividend, divisor, and quotient are nonnegative.  */
565	  sdiv_qrnnd (q, r, a1, a0, d);
566	}
567      else
568	{
569	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
570	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
571	  /* Divide (c1*2^32 + c0) by d.  */
572	  sdiv_qrnnd (q, r, c1, c0, d);
573	  /* Add 2^31 to quotient.  */
574	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
575	}
576    }
577  else
578    {
579      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
580      c1 = a1 >> 1;			/* A/2 */
581      c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
582
583      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
584	{
585	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
586
587	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
588	  if ((d & 1) != 0)
589	    {
590	      if (r >= q)
591		r = r - q;
592	      else if (q - r <= d)
593		{
594		  r = r - q + d;
595		  q--;
596		}
597	      else
598		{
599		  r = r - q + 2*d;
600		  q -= 2;
601		}
602	    }
603	}
604      else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
605	{
606	  c1 = (b1 - 1) - c1;
607	  c0 = ~c0;			/* logical NOT */
608
609	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
610
611	  q = ~q;			/* (A/2)/b1 */
612	  r = (b1 - 1) - r;
613
614	  r = 2*r + (a0 & 1);		/* A/(2*b1) */
615
616	  if ((d & 1) != 0)
617	    {
618	      if (r >= q)
619		r = r - q;
620	      else if (q - r <= d)
621		{
622		  r = r - q + d;
623		  q--;
624		}
625	      else
626		{
627		  r = r - q + 2*d;
628		  q -= 2;
629		}
630	    }
631	}
632      else				/* Implies c1 = b1 */
633	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
634	  if (a0 >= -d)
635	    {
636	      q = -1;
637	      r = a0 + d;
638	    }
639	  else
640	    {
641	      q = -2;
642	      r = a0 + 2*d;
643	    }
644	}
645    }
646
647  *rp = r;
648  return q;
649}
650#else
651/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
652UWtype
653__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
654	       UWtype a1 __attribute__ ((__unused__)),
655	       UWtype a0 __attribute__ ((__unused__)),
656	       UWtype d __attribute__ ((__unused__)))
657{
658  return 0;
659}
660#endif
661#endif
662
663#if (defined (L_udivdi3) || defined (L_divdi3) || \
664     defined (L_umoddi3) || defined (L_moddi3) || \
665     defined (L_divmoddi4))
666#define L_udivmoddi4
667#endif
668
669#ifdef L_clz
670const UQItype __clz_tab[256] =
671{
672  0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
673  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
674  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
675  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
676  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
677  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
678  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
679  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
680};
681#endif
682
683#ifdef L_clzsi2
684#undef int
685int
686__clzSI2 (UWtype x)
687{
688  Wtype ret;
689
690  count_leading_zeros (ret, x);
691
692  return ret;
693}
694#endif
695
696#ifdef L_clzdi2
697#undef int
698int
699__clzDI2 (UDWtype x)
700{
701  const DWunion uu = {.ll = x};
702  UWtype word;
703  Wtype ret, add;
704
705  if (uu.s.high)
706    word = uu.s.high, add = 0;
707  else
708    word = uu.s.low, add = W_TYPE_SIZE;
709
710  count_leading_zeros (ret, word);
711  return ret + add;
712}
713#endif
714
715#ifdef L_ctzsi2
716#undef int
717int
718__ctzSI2 (UWtype x)
719{
720  Wtype ret;
721
722  count_trailing_zeros (ret, x);
723
724  return ret;
725}
726#endif
727
728#ifdef L_ctzdi2
729#undef int
730int
731__ctzDI2 (UDWtype x)
732{
733  const DWunion uu = {.ll = x};
734  UWtype word;
735  Wtype ret, add;
736
737  if (uu.s.low)
738    word = uu.s.low, add = 0;
739  else
740    word = uu.s.high, add = W_TYPE_SIZE;
741
742  count_trailing_zeros (ret, word);
743  return ret + add;
744}
745#endif
746
747#ifdef L_clrsbsi2
748#undef int
749int
750__clrsbSI2 (Wtype x)
751{
752  Wtype ret;
753
754  if (x < 0)
755    x = ~x;
756  if (x == 0)
757    return W_TYPE_SIZE - 1;
758  count_leading_zeros (ret, x);
759  return ret - 1;
760}
761#endif
762
763#ifdef L_clrsbdi2
764#undef int
765int
766__clrsbDI2 (DWtype x)
767{
768  const DWunion uu = {.ll = x};
769  UWtype word;
770  Wtype ret, add;
771
772  if (uu.s.high == 0)
773    word = uu.s.low, add = W_TYPE_SIZE;
774  else if (uu.s.high == -1)
775    word = ~uu.s.low, add = W_TYPE_SIZE;
776  else if (uu.s.high >= 0)
777    word = uu.s.high, add = 0;
778  else
779    word = ~uu.s.high, add = 0;
780
781  if (word == 0)
782    ret = W_TYPE_SIZE;
783  else
784    count_leading_zeros (ret, word);
785
786  return ret + add - 1;
787}
788#endif
789
790#ifdef L_popcount_tab
791const UQItype __popcount_tab[256] =
792{
793    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
794    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
795    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
796    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
797    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
798    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
799    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
800    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
801};
802#endif
803
804#if defined(L_popcountsi2) || defined(L_popcountdi2)
805#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
806#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
807#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
808#if W_TYPE_SIZE == __CHAR_BIT__
809#define POPCOUNTCST(x) x
810#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
811#define POPCOUNTCST(x) POPCOUNTCST2 (x)
812#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
813#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
814#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
815#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
816#endif
817#endif
818
819#ifdef L_popcountsi2
820#undef int
821int
822__popcountSI2 (UWtype x)
823{
824  /* Force table lookup on targets like AVR and RL78 which only
825     pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
826     have 1, and other small word targets.  */
827#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
828  x = x - ((x >> 1) & POPCOUNTCST (0x55));
829  x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
830  x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
831  return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
832#else
833  int i, ret = 0;
834
835  for (i = 0; i < W_TYPE_SIZE; i += 8)
836    ret += __popcount_tab[(x >> i) & 0xff];
837
838  return ret;
839#endif
840}
841#endif
842
843#ifdef L_popcountdi2
844#undef int
845int
846__popcountDI2 (UDWtype x)
847{
848  /* Force table lookup on targets like AVR and RL78 which only
849     pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
850     have 1, and other small word targets.  */
851#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
852  const DWunion uu = {.ll = x};
853  UWtype x1 = uu.s.low, x2 = uu.s.high;
854  x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
855  x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
856  x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
857  x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
858  x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
859  x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
860  x1 += x2;
861  return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
862#else
863  int i, ret = 0;
864
865  for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
866    ret += __popcount_tab[(x >> i) & 0xff];
867
868  return ret;
869#endif
870}
871#endif
872
873#ifdef L_paritysi2
874#undef int
875int
876__paritySI2 (UWtype x)
877{
878#if W_TYPE_SIZE > 64
879# error "fill out the table"
880#endif
881#if W_TYPE_SIZE > 32
882  x ^= x >> 32;
883#endif
884#if W_TYPE_SIZE > 16
885  x ^= x >> 16;
886#endif
887  x ^= x >> 8;
888  x ^= x >> 4;
889  x &= 0xf;
890  return (0x6996 >> x) & 1;
891}
892#endif
893
894#ifdef L_paritydi2
895#undef int
896int
897__parityDI2 (UDWtype x)
898{
899  const DWunion uu = {.ll = x};
900  UWtype nx = uu.s.low ^ uu.s.high;
901
902#if W_TYPE_SIZE > 64
903# error "fill out the table"
904#endif
905#if W_TYPE_SIZE > 32
906  nx ^= nx >> 32;
907#endif
908#if W_TYPE_SIZE > 16
909  nx ^= nx >> 16;
910#endif
911  nx ^= nx >> 8;
912  nx ^= nx >> 4;
913  nx &= 0xf;
914  return (0x6996 >> nx) & 1;
915}
916#endif
917
918#ifdef L_udivmoddi4
919#ifdef TARGET_HAS_NO_HW_DIVIDE
920
921#if (defined (L_udivdi3) || defined (L_divdi3) || \
922     defined (L_umoddi3) || defined (L_moddi3) || \
923     defined (L_divmoddi4))
924static inline __attribute__ ((__always_inline__))
925#endif
926UDWtype
927__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
928{
929  UDWtype q = 0, r = n, y = d;
930  UWtype lz1, lz2, i, k;
931
932  /* Implements align divisor shift dividend method. This algorithm
933     aligns the divisor under the dividend and then perform number of
934     test-subtract iterations which shift the dividend left. Number of
935     iterations is k + 1 where k is the number of bit positions the
936     divisor must be shifted left to align it under the dividend.
937     quotient bits can be saved in the rightmost positions of the dividend
938     as it shifts left on each test-subtract iteration. */
939
940  if (y <= r)
941    {
942      lz1 = __builtin_clzll (d);
943      lz2 = __builtin_clzll (n);
944
945      k = lz1 - lz2;
946      y = (y << k);
947
948      /* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
949	 aligned divisor. Normal iteration can drops the high order bit
950	 of the dividend. Therefore, first test-subtract iteration is a
951	 special case, saving its quotient bit in a separate location and
952	 not shifting the dividend. */
953      if (r >= y)
954	{
955	  r = r - y;
956	  q =  (1ULL << k);
957	}
958
959      if (k > 0)
960	{
961	  y = y >> 1;
962
963	  /* k additional iterations where k regular test subtract shift
964	    dividend iterations are done.  */
965	  i = k;
966	  do
967	    {
968	      if (r >= y)
969		r = ((r - y) << 1) + 1;
970	      else
971		r =  (r << 1);
972	      i = i - 1;
973	    } while (i != 0);
974
975	  /* First quotient bit is combined with the quotient bits resulting
976	     from the k regular iterations.  */
977	  q = q + r;
978	  r = r >> k;
979	  q = q - (r << k);
980	}
981    }
982
983  if (rp)
984    *rp = r;
985  return q;
986}
987#else
988
989#if (defined (L_udivdi3) || defined (L_divdi3) || \
990     defined (L_umoddi3) || defined (L_moddi3) || \
991     defined (L_divmoddi4))
992static inline __attribute__ ((__always_inline__))
993#endif
994UDWtype
995__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
996{
997  const DWunion nn = {.ll = n};
998  const DWunion dd = {.ll = d};
999  DWunion rr;
1000  UWtype d0, d1, n0, n1, n2;
1001  UWtype q0, q1;
1002  UWtype b, bm;
1003
1004  d0 = dd.s.low;
1005  d1 = dd.s.high;
1006  n0 = nn.s.low;
1007  n1 = nn.s.high;
1008
1009#if !UDIV_NEEDS_NORMALIZATION
1010  if (d1 == 0)
1011    {
1012      if (d0 > n1)
1013	{
1014	  /* 0q = nn / 0D */
1015
1016	  udiv_qrnnd (q0, n0, n1, n0, d0);
1017	  q1 = 0;
1018
1019	  /* Remainder in n0.  */
1020	}
1021      else
1022	{
1023	  /* qq = NN / 0d */
1024
1025	  if (d0 == 0)
1026	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
1027
1028	  udiv_qrnnd (q1, n1, 0, n1, d0);
1029	  udiv_qrnnd (q0, n0, n1, n0, d0);
1030
1031	  /* Remainder in n0.  */
1032	}
1033
1034      if (rp != 0)
1035	{
1036	  rr.s.low = n0;
1037	  rr.s.high = 0;
1038	  *rp = rr.ll;
1039	}
1040    }
1041
1042#else /* UDIV_NEEDS_NORMALIZATION */
1043
1044  if (d1 == 0)
1045    {
1046      if (d0 > n1)
1047	{
1048	  /* 0q = nn / 0D */
1049
1050	  count_leading_zeros (bm, d0);
1051
1052	  if (bm != 0)
1053	    {
1054	      /* Normalize, i.e. make the most significant bit of the
1055		 denominator set.  */
1056
1057	      d0 = d0 << bm;
1058	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
1059	      n0 = n0 << bm;
1060	    }
1061
1062	  udiv_qrnnd (q0, n0, n1, n0, d0);
1063	  q1 = 0;
1064
1065	  /* Remainder in n0 >> bm.  */
1066	}
1067      else
1068	{
1069	  /* qq = NN / 0d */
1070
1071	  if (d0 == 0)
1072	    d0 = 1 / d0;	/* Divide intentionally by zero.  */
1073
1074	  count_leading_zeros (bm, d0);
1075
1076	  if (bm == 0)
1077	    {
1078	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
1079		 conclude (the most significant bit of n1 is set) /\ (the
1080		 leading quotient digit q1 = 1).
1081
1082		 This special case is necessary, not an optimization.
1083		 (Shifts counts of W_TYPE_SIZE are undefined.)  */
1084
1085	      n1 -= d0;
1086	      q1 = 1;
1087	    }
1088	  else
1089	    {
1090	      /* Normalize.  */
1091
1092	      b = W_TYPE_SIZE - bm;
1093
1094	      d0 = d0 << bm;
1095	      n2 = n1 >> b;
1096	      n1 = (n1 << bm) | (n0 >> b);
1097	      n0 = n0 << bm;
1098
1099	      udiv_qrnnd (q1, n1, n2, n1, d0);
1100	    }
1101
1102	  /* n1 != d0...  */
1103
1104	  udiv_qrnnd (q0, n0, n1, n0, d0);
1105
1106	  /* Remainder in n0 >> bm.  */
1107	}
1108
1109      if (rp != 0)
1110	{
1111	  rr.s.low = n0 >> bm;
1112	  rr.s.high = 0;
1113	  *rp = rr.ll;
1114	}
1115    }
1116#endif /* UDIV_NEEDS_NORMALIZATION */
1117
1118  else
1119    {
1120      if (d1 > n1)
1121	{
1122	  /* 00 = nn / DD */
1123
1124	  q0 = 0;
1125	  q1 = 0;
1126
1127	  /* Remainder in n1n0.  */
1128	  if (rp != 0)
1129	    {
1130	      rr.s.low = n0;
1131	      rr.s.high = n1;
1132	      *rp = rr.ll;
1133	    }
1134	}
1135      else
1136	{
1137	  /* 0q = NN / dd */
1138
1139	  count_leading_zeros (bm, d1);
1140	  if (bm == 0)
1141	    {
1142	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
1143		 conclude (the most significant bit of n1 is set) /\ (the
1144		 quotient digit q0 = 0 or 1).
1145
1146		 This special case is necessary, not an optimization.  */
1147
1148	      /* The condition on the next line takes advantage of that
1149		 n1 >= d1 (true due to program flow).  */
1150	      if (n1 > d1 || n0 >= d0)
1151		{
1152		  q0 = 1;
1153		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
1154		}
1155	      else
1156		q0 = 0;
1157
1158	      q1 = 0;
1159
1160	      if (rp != 0)
1161		{
1162		  rr.s.low = n0;
1163		  rr.s.high = n1;
1164		  *rp = rr.ll;
1165		}
1166	    }
1167	  else
1168	    {
1169	      UWtype m1, m0;
1170	      /* Normalize.  */
1171
1172	      b = W_TYPE_SIZE - bm;
1173
1174	      d1 = (d1 << bm) | (d0 >> b);
1175	      d0 = d0 << bm;
1176	      n2 = n1 >> b;
1177	      n1 = (n1 << bm) | (n0 >> b);
1178	      n0 = n0 << bm;
1179
1180	      udiv_qrnnd (q0, n1, n2, n1, d1);
1181	      umul_ppmm (m1, m0, q0, d0);
1182
1183	      if (m1 > n1 || (m1 == n1 && m0 > n0))
1184		{
1185		  q0--;
1186		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
1187		}
1188
1189	      q1 = 0;
1190
1191	      /* Remainder in (n1n0 - m1m0) >> bm.  */
1192	      if (rp != 0)
1193		{
1194		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
1195		  rr.s.low = (n1 << b) | (n0 >> bm);
1196		  rr.s.high = n1 >> bm;
1197		  *rp = rr.ll;
1198		}
1199	    }
1200	}
1201    }
1202
1203  const DWunion ww = {{.low = q0, .high = q1}};
1204  return ww.ll;
1205}
1206#endif
1207#endif
1208
1209#ifdef L_divdi3
1210DWtype
1211__divdi3 (DWtype u, DWtype v)
1212{
1213  Wtype c = 0;
1214  DWunion uu = {.ll = u};
1215  DWunion vv = {.ll = v};
1216  DWtype w;
1217
1218  if (uu.s.high < 0)
1219    c = ~c,
1220    uu.ll = -uu.ll;
1221  if (vv.s.high < 0)
1222    c = ~c,
1223    vv.ll = -vv.ll;
1224
1225  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1226  if (c)
1227    w = -w;
1228
1229  return w;
1230}
1231#endif
1232
1233#ifdef L_moddi3
1234DWtype
1235__moddi3 (DWtype u, DWtype v)
1236{
1237  Wtype c = 0;
1238  DWunion uu = {.ll = u};
1239  DWunion vv = {.ll = v};
1240  DWtype w;
1241
1242  if (uu.s.high < 0)
1243    c = ~c,
1244    uu.ll = -uu.ll;
1245  if (vv.s.high < 0)
1246    vv.ll = -vv.ll;
1247
1248  (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1249  if (c)
1250    w = -w;
1251
1252  return w;
1253}
1254#endif
1255
1256#ifdef L_divmoddi4
1257DWtype
1258__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
1259{
1260  Wtype c1 = 0, c2 = 0;
1261  DWunion uu = {.ll = u};
1262  DWunion vv = {.ll = v};
1263  DWtype w;
1264  DWtype r;
1265
1266  if (uu.s.high < 0)
1267    c1 = ~c1, c2 = ~c2,
1268    uu.ll = -uu.ll;
1269  if (vv.s.high < 0)
1270    c1 = ~c1,
1271    vv.ll = -vv.ll;
1272
1273  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
1274  if (c1)
1275    w = -w;
1276  if (c2)
1277    r = -r;
1278
1279  *rp = r;
1280  return w;
1281}
1282#endif
1283
1284#ifdef L_umoddi3
1285UDWtype
1286__umoddi3 (UDWtype u, UDWtype v)
1287{
1288  UDWtype w;
1289
1290  (void) __udivmoddi4 (u, v, &w);
1291
1292  return w;
1293}
1294#endif
1295
1296#ifdef L_udivdi3
1297UDWtype
1298__udivdi3 (UDWtype n, UDWtype d)
1299{
1300  return __udivmoddi4 (n, d, (UDWtype *) 0);
1301}
1302#endif
1303
1304#ifdef L_cmpdi2
1305cmp_return_type
1306__cmpdi2 (DWtype a, DWtype b)
1307{
1308  return (a > b) - (a < b) + 1;
1309}
1310#endif
1311
1312#ifdef L_ucmpdi2
1313cmp_return_type
1314__ucmpdi2 (UDWtype a, UDWtype b)
1315{
1316  return (a > b) - (a < b) + 1;
1317}
1318#endif
1319
1320#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1321UDWtype
1322__fixunstfDI (TFtype a)
1323{
1324  if (a < 0)
1325    return 0;
1326
1327  /* Compute high word of result, as a flonum.  */
1328  const TFtype b = (a / Wtype_MAXp1_F);
1329  /* Convert that to fixed (but not to DWtype!),
1330     and shift it into the high word.  */
1331  UDWtype v = (UWtype) b;
1332  v <<= W_TYPE_SIZE;
1333  /* Remove high part from the TFtype, leaving the low part as flonum.  */
1334  a -= (TFtype)v;
1335  /* Convert that to fixed (but not to DWtype!) and add it in.
1336     Sometimes A comes out negative.  This is significant, since
1337     A has more bits than a long int does.  */
1338  if (a < 0)
1339    v -= (UWtype) (- a);
1340  else
1341    v += (UWtype) a;
1342  return v;
1343}
1344#endif
1345
1346#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1347DWtype
1348__fixtfdi (TFtype a)
1349{
1350  if (a < 0)
1351    return - __fixunstfDI (-a);
1352  return __fixunstfDI (a);
1353}
1354#endif
1355
1356#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1357UDWtype
1358__fixunsxfDI (XFtype a)
1359{
1360  if (a < 0)
1361    return 0;
1362
1363  /* Compute high word of result, as a flonum.  */
1364  const XFtype b = (a / Wtype_MAXp1_F);
1365  /* Convert that to fixed (but not to DWtype!),
1366     and shift it into the high word.  */
1367  UDWtype v = (UWtype) b;
1368  v <<= W_TYPE_SIZE;
1369  /* Remove high part from the XFtype, leaving the low part as flonum.  */
1370  a -= (XFtype)v;
1371  /* Convert that to fixed (but not to DWtype!) and add it in.
1372     Sometimes A comes out negative.  This is significant, since
1373     A has more bits than a long int does.  */
1374  if (a < 0)
1375    v -= (UWtype) (- a);
1376  else
1377    v += (UWtype) a;
1378  return v;
1379}
1380#endif
1381
1382#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1383DWtype
1384__fixxfdi (XFtype a)
1385{
1386  if (a < 0)
1387    return - __fixunsxfDI (-a);
1388  return __fixunsxfDI (a);
1389}
1390#endif
1391
1392#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1393UDWtype
1394__fixunsdfDI (DFtype a)
1395{
1396  /* Get high part of result.  The division here will just moves the radix
1397     point and will not cause any rounding.  Then the conversion to integral
1398     type chops result as desired.  */
1399  const UWtype hi = a / Wtype_MAXp1_F;
1400
1401  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1402     then subtract this from the number being converted.  This leaves the low
1403     part.  Convert that to integral type.  */
1404  const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1405
1406  /* Assemble result from the two parts.  */
1407  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1408}
1409#endif
1410
1411#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1412DWtype
1413__fixdfdi (DFtype a)
1414{
1415  if (a < 0)
1416    return - __fixunsdfDI (-a);
1417  return __fixunsdfDI (a);
1418}
1419#endif
1420
1421#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1422UDWtype
1423__fixunssfDI (SFtype a)
1424{
1425#if LIBGCC2_HAS_DF_MODE
1426  /* Convert the SFtype to a DFtype, because that is surely not going
1427     to lose any bits.  Some day someone else can write a faster version
1428     that avoids converting to DFtype, and verify it really works right.  */
1429  const DFtype dfa = a;
1430
1431  /* Get high part of result.  The division here will just moves the radix
1432     point and will not cause any rounding.  Then the conversion to integral
1433     type chops result as desired.  */
1434  const UWtype hi = dfa / Wtype_MAXp1_F;
1435
1436  /* Get low part of result.  Convert `hi' to floating type and scale it back,
1437     then subtract this from the number being converted.  This leaves the low
1438     part.  Convert that to integral type.  */
1439  const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1440
1441  /* Assemble result from the two parts.  */
1442  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1443#elif FLT_MANT_DIG < W_TYPE_SIZE
1444  if (a < 1)
1445    return 0;
1446  if (a < Wtype_MAXp1_F)
1447    return (UWtype)a;
1448  if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1449    {
1450      /* Since we know that there are fewer significant bits in the SFmode
1451	 quantity than in a word, we know that we can convert out all the
1452	 significant bits in one step, and thus avoid losing bits.  */
1453
1454      /* ??? This following loop essentially performs frexpf.  If we could
1455	 use the real libm function, or poke at the actual bits of the fp
1456	 format, it would be significantly faster.  */
1457
1458      UWtype shift = 0, counter;
1459      SFtype msb;
1460
1461      a /= Wtype_MAXp1_F;
1462      for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1463	{
1464	  SFtype counterf = (UWtype)1 << counter;
1465	  if (a >= counterf)
1466	    {
1467	      shift |= counter;
1468	      a /= counterf;
1469	    }
1470	}
1471
1472      /* Rescale into the range of one word, extract the bits of that
1473	 one word, and shift the result into position.  */
1474      a *= Wtype_MAXp1_F;
1475      counter = a;
1476      return (DWtype)counter << shift;
1477    }
1478  return -1;
1479#else
1480# error
1481#endif
1482}
1483#endif
1484
1485#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1486DWtype
1487__fixsfdi (SFtype a)
1488{
1489  if (a < 0)
1490    return - __fixunssfDI (-a);
1491  return __fixunssfDI (a);
1492}
1493#endif
1494
1495#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1496XFtype
1497__floatdixf (DWtype u)
1498{
1499#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1500# error
1501#endif
1502  XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1503  d *= Wtype_MAXp1_F;
1504  d += (UWtype)u;
1505  return d;
1506}
1507#endif
1508
1509#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1510XFtype
1511__floatundixf (UDWtype u)
1512{
1513#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
1514# error
1515#endif
1516  XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1517  d *= Wtype_MAXp1_F;
1518  d += (UWtype)u;
1519  return d;
1520}
1521#endif
1522
1523#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1524TFtype
1525__floatditf (DWtype u)
1526{
1527#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1528# error
1529#endif
1530  TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1531  d *= Wtype_MAXp1_F;
1532  d += (UWtype)u;
1533  return d;
1534}
1535#endif
1536
1537#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1538TFtype
1539__floatunditf (UDWtype u)
1540{
1541#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
1542# error
1543#endif
1544  TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1545  d *= Wtype_MAXp1_F;
1546  d += (UWtype)u;
1547  return d;
1548}
1549#endif
1550
1551#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE)	\
1552     || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1553#define DI_SIZE (W_TYPE_SIZE * 2)
1554#define F_MODE_OK(SIZE) \
1555  (SIZE < DI_SIZE							\
1556   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1557   && !AVOID_FP_TYPE_CONVERSION(SIZE))
1558#if defined(L_floatdisf)
1559#define FUNC __floatdisf
1560#define FSTYPE SFtype
1561#define FSSIZE __LIBGCC_SF_MANT_DIG__
1562#else
1563#define FUNC __floatdidf
1564#define FSTYPE DFtype
1565#define FSSIZE __LIBGCC_DF_MANT_DIG__
1566#endif
1567
1568FSTYPE
1569FUNC (DWtype u)
1570{
1571#if FSSIZE >= W_TYPE_SIZE
1572  /* When the word size is small, we never get any rounding error.  */
1573  FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1574  f *= Wtype_MAXp1_F;
1575  f += (UWtype)u;
1576  return f;
1577#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))	\
1578     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))	\
1579     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1580
1581#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1582# define FSIZE __LIBGCC_DF_MANT_DIG__
1583# define FTYPE DFtype
1584#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1585# define FSIZE __LIBGCC_XF_MANT_DIG__
1586# define FTYPE XFtype
1587#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1588# define FSIZE __LIBGCC_TF_MANT_DIG__
1589# define FTYPE TFtype
1590#else
1591# error
1592#endif
1593
1594#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1595
1596  /* Protect against double-rounding error.
1597     Represent any low-order bits, that might be truncated by a bit that
1598     won't be lost.  The bit can go in anywhere below the rounding position
1599     of the FSTYPE.  A fixed mask and bit position handles all usual
1600     configurations.  */
1601  if (! (- ((DWtype) 1 << FSIZE) < u
1602	 && u < ((DWtype) 1 << FSIZE)))
1603    {
1604      if ((UDWtype) u & (REP_BIT - 1))
1605	{
1606	  u &= ~ (REP_BIT - 1);
1607	  u |= REP_BIT;
1608	}
1609    }
1610
1611  /* Do the calculation in a wider type so that we don't lose any of
1612     the precision of the high word while multiplying it.  */
1613  FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1614  f *= Wtype_MAXp1_F;
1615  f += (UWtype)u;
1616  return (FSTYPE) f;
1617#else
1618#if FSSIZE >= W_TYPE_SIZE - 2
1619# error
1620#endif
1621  /* Finally, the word size is larger than the number of bits in the
1622     required FSTYPE, and we've got no suitable wider type.  The only
1623     way to avoid double rounding is to special case the
1624     extraction.  */
1625
1626  /* If there are no high bits set, fall back to one conversion.  */
1627  if ((Wtype)u == u)
1628    return (FSTYPE)(Wtype)u;
1629
1630  /* Otherwise, find the power of two.  */
1631  Wtype hi = u >> W_TYPE_SIZE;
1632  if (hi < 0)
1633    hi = -(UWtype) hi;
1634
1635  UWtype count, shift;
1636#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
1637  if (hi == 0)
1638    count = W_TYPE_SIZE;
1639  else
1640#endif
1641  count_leading_zeros (count, hi);
1642
1643  /* No leading bits means u == minimum.  */
1644  if (count == 0)
1645    return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
1646
1647  shift = 1 + W_TYPE_SIZE - count;
1648
1649  /* Shift down the most significant bits.  */
1650  hi = u >> shift;
1651
1652  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1653  if ((UWtype)u << (W_TYPE_SIZE - shift))
1654    hi |= 1;
1655
1656  /* Convert the one word of data, and rescale.  */
1657  FSTYPE f = hi, e;
1658  if (shift == W_TYPE_SIZE)
1659    e = Wtype_MAXp1_F;
1660  /* The following two cases could be merged if we knew that the target
1661     supported a native unsigned->float conversion.  More often, we only
1662     have a signed conversion, and have to add extra fixup code.  */
1663  else if (shift == W_TYPE_SIZE - 1)
1664    e = Wtype_MAXp1_F / 2;
1665  else
1666    e = (Wtype)1 << shift;
1667  return f * e;
1668#endif
1669}
1670#endif
1671
1672#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE)	\
1673     || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1674#define DI_SIZE (W_TYPE_SIZE * 2)
1675#define F_MODE_OK(SIZE) \
1676  (SIZE < DI_SIZE							\
1677   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
1678   && !AVOID_FP_TYPE_CONVERSION(SIZE))
1679#if defined(L_floatundisf)
1680#define FUNC __floatundisf
1681#define FSTYPE SFtype
1682#define FSSIZE __LIBGCC_SF_MANT_DIG__
1683#else
1684#define FUNC __floatundidf
1685#define FSTYPE DFtype
1686#define FSSIZE __LIBGCC_DF_MANT_DIG__
1687#endif
1688
1689FSTYPE
1690FUNC (UDWtype u)
1691{
1692#if FSSIZE >= W_TYPE_SIZE
1693  /* When the word size is small, we never get any rounding error.  */
1694  FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1695  f *= Wtype_MAXp1_F;
1696  f += (UWtype)u;
1697  return f;
1698#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))	\
1699     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))	\
1700     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1701
1702#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
1703# define FSIZE __LIBGCC_DF_MANT_DIG__
1704# define FTYPE DFtype
1705#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
1706# define FSIZE __LIBGCC_XF_MANT_DIG__
1707# define FTYPE XFtype
1708#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
1709# define FSIZE __LIBGCC_TF_MANT_DIG__
1710# define FTYPE TFtype
1711#else
1712# error
1713#endif
1714
1715#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1716
1717  /* Protect against double-rounding error.
1718     Represent any low-order bits, that might be truncated by a bit that
1719     won't be lost.  The bit can go in anywhere below the rounding position
1720     of the FSTYPE.  A fixed mask and bit position handles all usual
1721     configurations.  */
1722  if (u >= ((UDWtype) 1 << FSIZE))
1723    {
1724      if ((UDWtype) u & (REP_BIT - 1))
1725	{
1726	  u &= ~ (REP_BIT - 1);
1727	  u |= REP_BIT;
1728	}
1729    }
1730
1731  /* Do the calculation in a wider type so that we don't lose any of
1732     the precision of the high word while multiplying it.  */
1733  FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1734  f *= Wtype_MAXp1_F;
1735  f += (UWtype)u;
1736  return (FSTYPE) f;
1737#else
1738#if FSSIZE == W_TYPE_SIZE - 1
1739# error
1740#endif
1741  /* Finally, the word size is larger than the number of bits in the
1742     required FSTYPE, and we've got no suitable wider type.  The only
1743     way to avoid double rounding is to special case the
1744     extraction.  */
1745
1746  /* If there are no high bits set, fall back to one conversion.  */
1747  if ((UWtype)u == u)
1748    return (FSTYPE)(UWtype)u;
1749
1750  /* Otherwise, find the power of two.  */
1751  UWtype hi = u >> W_TYPE_SIZE;
1752
1753  UWtype count, shift;
1754  count_leading_zeros (count, hi);
1755
1756  shift = W_TYPE_SIZE - count;
1757
1758  /* Shift down the most significant bits.  */
1759  hi = u >> shift;
1760
1761  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
1762  if ((UWtype)u << (W_TYPE_SIZE - shift))
1763    hi |= 1;
1764
1765  /* Convert the one word of data, and rescale.  */
1766  FSTYPE f = hi, e;
1767  if (shift == W_TYPE_SIZE)
1768    e = Wtype_MAXp1_F;
1769  /* The following two cases could be merged if we knew that the target
1770     supported a native unsigned->float conversion.  More often, we only
1771     have a signed conversion, and have to add extra fixup code.  */
1772  else if (shift == W_TYPE_SIZE - 1)
1773    e = Wtype_MAXp1_F / 2;
1774  else
1775    e = (Wtype)1 << shift;
1776  return f * e;
1777#endif
1778}
1779#endif
1780
1781#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1782UWtype
1783__fixunsxfSI (XFtype a)
1784{
1785  if (a >= - (DFtype) Wtype_MIN)
1786    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1787  return (Wtype) a;
1788}
1789#endif
1790
1791#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1792UWtype
1793__fixunsdfSI (DFtype a)
1794{
1795  if (a >= - (DFtype) Wtype_MIN)
1796    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1797  return (Wtype) a;
1798}
1799#endif
1800
1801#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1802UWtype
1803__fixunssfSI (SFtype a)
1804{
1805  if (a >= - (SFtype) Wtype_MIN)
1806    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1807  return (Wtype) a;
1808}
1809#endif
1810
1811/* Integer power helper used from __builtin_powi for non-constant
1812   exponents.  */
1813
1814#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1815    || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1816    || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1817    || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1818# if defined(L_powisf2)
1819#  define TYPE SFtype
1820#  define NAME __powisf2
1821# elif defined(L_powidf2)
1822#  define TYPE DFtype
1823#  define NAME __powidf2
1824# elif defined(L_powixf2)
1825#  define TYPE XFtype
1826#  define NAME __powixf2
1827# elif defined(L_powitf2)
1828#  define TYPE TFtype
1829#  define NAME __powitf2
1830# endif
1831
1832#undef int
1833#undef unsigned
1834TYPE
1835NAME (TYPE x, int m)
1836{
1837  unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
1838  TYPE y = n % 2 ? x : 1;
1839  while (n >>= 1)
1840    {
1841      x = x * x;
1842      if (n % 2)
1843	y = y * x;
1844    }
1845  return m < 0 ? 1/y : y;
1846}
1847
1848#endif
1849
1850#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
1851    || ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1852    || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1853    || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1854    || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1855
1856#undef float
1857#undef double
1858#undef long
1859
1860#if defined(L_mulhc3) || defined(L_divhc3)
1861# define MTYPE	HFtype
1862# define CTYPE	HCtype
1863# define AMTYPE SFtype
1864# define MODE	hc
1865# define CEXT	__LIBGCC_HF_FUNC_EXT__
1866# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
1867#elif defined(L_mulsc3) || defined(L_divsc3)
1868# define MTYPE	SFtype
1869# define CTYPE	SCtype
1870# define AMTYPE DFtype
1871# define MODE	sc
1872# define CEXT	__LIBGCC_SF_FUNC_EXT__
1873# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
1874# define RBIG	(__LIBGCC_SF_MAX__ / 2)
1875# define RMIN	(__LIBGCC_SF_MIN__)
1876# define RMIN2	(__LIBGCC_SF_EPSILON__)
1877# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
1878# define RMAX2	(RBIG * RMIN2)
1879#elif defined(L_muldc3) || defined(L_divdc3)
1880# define MTYPE	DFtype
1881# define CTYPE	DCtype
1882# define MODE	dc
1883# define CEXT	__LIBGCC_DF_FUNC_EXT__
1884# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
1885# define RBIG	(__LIBGCC_DF_MAX__ / 2)
1886# define RMIN	(__LIBGCC_DF_MIN__)
1887# define RMIN2	(__LIBGCC_DF_EPSILON__)
1888# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
1889# define RMAX2  (RBIG * RMIN2)
1890#elif defined(L_mulxc3) || defined(L_divxc3)
1891# define MTYPE	XFtype
1892# define CTYPE	XCtype
1893# define MODE	xc
1894# define CEXT	__LIBGCC_XF_FUNC_EXT__
1895# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
1896# define RBIG	(__LIBGCC_XF_MAX__ / 2)
1897# define RMIN	(__LIBGCC_XF_MIN__)
1898# define RMIN2	(__LIBGCC_XF_EPSILON__)
1899# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
1900# define RMAX2	(RBIG * RMIN2)
1901#elif defined(L_multc3) || defined(L_divtc3)
1902# define MTYPE	TFtype
1903# define CTYPE	TCtype
1904# define MODE	tc
1905# define CEXT	__LIBGCC_TF_FUNC_EXT__
1906# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
1907# if __LIBGCC_TF_MANT_DIG__ == 106
1908#  define RBIG	(__LIBGCC_DF_MAX__ / 2)
1909#  define RMIN	(__LIBGCC_DF_MIN__)
1910#  define RMIN2  (__LIBGCC_DF_EPSILON__)
1911#  define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
1912# else
1913#  define RBIG	(__LIBGCC_TF_MAX__ / 2)
1914#  define RMIN	(__LIBGCC_TF_MIN__)
1915#  define RMIN2	(__LIBGCC_TF_EPSILON__)
1916#  define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
1917# endif
1918# define RMAX2	(RBIG * RMIN2)
1919#else
1920# error
1921#endif
1922
1923#define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
1924#define _CONCAT3(A,B,C)	A##B##C
1925
1926#define CONCAT2(A,B)	_CONCAT2(A,B)
1927#define _CONCAT2(A,B)	A##B
1928
1929#define isnan(x)	__builtin_isnan (x)
1930#define isfinite(x)	__builtin_isfinite (x)
1931#define isinf(x)	__builtin_isinf (x)
1932
1933#define INFINITY	CONCAT2(__builtin_huge_val, CEXT) ()
1934#define I		1i
1935
1936/* Helpers to make the following code slightly less gross.  */
1937#define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
1938#define FABS		CONCAT2(__builtin_fabs, CEXT)
1939
1940/* Verify that MTYPE matches up with CEXT.  */
1941extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1942
1943/* Ensure that we've lost any extra precision.  */
1944#if NOTRUNC
1945# define TRUNC(x)
1946#else
1947# define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
1948#endif
1949
1950#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
1951    || defined(L_mulxc3) || defined(L_multc3)
1952
1953CTYPE
1954CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1955{
1956  MTYPE ac, bd, ad, bc, x, y;
1957  CTYPE res;
1958
1959  ac = a * c;
1960  bd = b * d;
1961  ad = a * d;
1962  bc = b * c;
1963
1964  TRUNC (ac);
1965  TRUNC (bd);
1966  TRUNC (ad);
1967  TRUNC (bc);
1968
1969  x = ac - bd;
1970  y = ad + bc;
1971
1972  if (isnan (x) && isnan (y))
1973    {
1974      /* Recover infinities that computed as NaN + iNaN.  */
1975      _Bool recalc = 0;
1976      if (isinf (a) || isinf (b))
1977	{
1978	  /* z is infinite.  "Box" the infinity and change NaNs in
1979	     the other factor to 0.  */
1980	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
1981	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
1982	  if (isnan (c)) c = COPYSIGN (0, c);
1983	  if (isnan (d)) d = COPYSIGN (0, d);
1984          recalc = 1;
1985	}
1986     if (isinf (c) || isinf (d))
1987	{
1988	  /* w is infinite.  "Box" the infinity and change NaNs in
1989	     the other factor to 0.  */
1990	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
1991	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
1992	  if (isnan (a)) a = COPYSIGN (0, a);
1993	  if (isnan (b)) b = COPYSIGN (0, b);
1994	  recalc = 1;
1995	}
1996     if (!recalc
1997	  && (isinf (ac) || isinf (bd)
1998	      || isinf (ad) || isinf (bc)))
1999	{
2000	  /* Recover infinities from overflow by changing NaNs to 0.  */
2001	  if (isnan (a)) a = COPYSIGN (0, a);
2002	  if (isnan (b)) b = COPYSIGN (0, b);
2003	  if (isnan (c)) c = COPYSIGN (0, c);
2004	  if (isnan (d)) d = COPYSIGN (0, d);
2005	  recalc = 1;
2006	}
2007      if (recalc)
2008	{
2009	  x = INFINITY * (a * c - b * d);
2010	  y = INFINITY * (a * d + b * c);
2011	}
2012    }
2013
2014  __real__ res = x;
2015  __imag__ res = y;
2016  return res;
2017}
2018#endif /* complex multiply */
2019
2020#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
2021    || defined(L_divxc3) || defined(L_divtc3)
2022
2023CTYPE
2024CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
2025{
2026#if defined(L_divhc3)						\
2027  || (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
2028
2029  /* Half precision is handled with float precision.
2030     float is handled with double precision when double precision
2031     hardware is available.
2032     Due to the additional precision, the simple complex divide
2033     method (without Smith's method) is sufficient to get accurate
2034     answers and runs slightly faster than Smith's method.  */
2035
2036  AMTYPE aa, bb, cc, dd;
2037  AMTYPE denom;
2038  MTYPE x, y;
2039  CTYPE res;
2040  aa = a;
2041  bb = b;
2042  cc = c;
2043  dd = d;
2044
2045  denom = (cc * cc) + (dd * dd);
2046  x = ((aa * cc) + (bb * dd)) / denom;
2047  y = ((bb * cc) - (aa * dd)) / denom;
2048
2049#else
2050  MTYPE denom, ratio, x, y;
2051  CTYPE res;
2052
2053  /* double, extended, long double have significant potential
2054     underflow/overflow errors that can be greatly reduced with
2055     a limited number of tests and adjustments.  float is handled
2056     the same way when no HW double is available.
2057  */
2058
2059  /* Scale by max(c,d) to reduce chances of denominator overflowing.  */
2060  if (FABS (c) < FABS (d))
2061    {
2062      /* Prevent underflow when denominator is near max representable.  */
2063      if (FABS (d) >= RBIG)
2064	{
2065	  a = a / 2;
2066	  b = b / 2;
2067	  c = c / 2;
2068	  d = d / 2;
2069	}
2070      /* Avoid overflow/underflow issues when c and d are small.
2071	 Scaling up helps avoid some underflows.
2072	 No new overflow possible since c&d < RMIN2.  */
2073      if (FABS (d) < RMIN2)
2074	{
2075	  a = a * RMINSCAL;
2076	  b = b * RMINSCAL;
2077	  c = c * RMINSCAL;
2078	  d = d * RMINSCAL;
2079	}
2080      else
2081	{
2082	  if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
2083	      || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2084		  && (FABS (d) < RMAX2)))
2085	    {
2086	      a = a * RMINSCAL;
2087	      b = b * RMINSCAL;
2088	      c = c * RMINSCAL;
2089	      d = d * RMINSCAL;
2090	    }
2091	}
2092      ratio = c / d;
2093      denom = (c * ratio) + d;
2094      /* Choose alternate order of computation if ratio is subnormal.  */
2095      if (FABS (ratio) > RMIN)
2096	{
2097	  x = ((a * ratio) + b) / denom;
2098	  y = ((b * ratio) - a) / denom;
2099	}
2100      else
2101	{
2102	  x = ((c * (a / d)) + b) / denom;
2103	  y = ((c * (b / d)) - a) / denom;
2104	}
2105    }
2106  else
2107    {
2108      /* Prevent underflow when denominator is near max representable.  */
2109      if (FABS (c) >= RBIG)
2110	{
2111	  a = a / 2;
2112	  b = b / 2;
2113	  c = c / 2;
2114	  d = d / 2;
2115	}
2116      /* Avoid overflow/underflow issues when both c and d are small.
2117	 Scaling up helps avoid some underflows.
2118	 No new overflow possible since both c&d are less than RMIN2.  */
2119      if (FABS (c) < RMIN2)
2120	{
2121	  a = a * RMINSCAL;
2122	  b = b * RMINSCAL;
2123	  c = c * RMINSCAL;
2124	  d = d * RMINSCAL;
2125	}
2126      else
2127	{
2128	  if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
2129	      || ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
2130		  && (FABS (c) < RMAX2)))
2131	    {
2132	      a = a * RMINSCAL;
2133	      b = b * RMINSCAL;
2134	      c = c * RMINSCAL;
2135	      d = d * RMINSCAL;
2136	    }
2137	}
2138      ratio = d / c;
2139      denom = (d * ratio) + c;
2140      /* Choose alternate order of computation if ratio is subnormal.  */
2141      if (FABS (ratio) > RMIN)
2142	{
2143	  x = ((b * ratio) + a) / denom;
2144	  y = (b - (a * ratio)) / denom;
2145	}
2146      else
2147	{
2148	  x = (a + (d * (b / c))) / denom;
2149	  y = (b - (d * (a / c))) / denom;
2150	}
2151    }
2152#endif
2153
2154  /* Recover infinities and zeros that computed as NaN+iNaN; the only
2155     cases are nonzero/zero, infinite/finite, and finite/infinite.  */
2156  if (isnan (x) && isnan (y))
2157    {
2158      if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
2159	{
2160	  x = COPYSIGN (INFINITY, c) * a;
2161	  y = COPYSIGN (INFINITY, c) * b;
2162	}
2163      else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
2164	{
2165	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
2166	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
2167	  x = INFINITY * (a * c + b * d);
2168	  y = INFINITY * (b * c - a * d);
2169	}
2170      else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
2171	{
2172	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
2173	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
2174	  x = 0.0 * (a * c + b * d);
2175	  y = 0.0 * (b * c - a * d);
2176	}
2177    }
2178
2179  __real__ res = x;
2180  __imag__ res = y;
2181  return res;
2182}
2183#endif /* complex divide */
2184
2185#endif /* all complex float routines */
2186
2187/* From here on down, the routines use normal data types.  */
2188
2189#define SItype bogus_type
2190#define USItype bogus_type
2191#define DItype bogus_type
2192#define UDItype bogus_type
2193#define SFtype bogus_type
2194#define DFtype bogus_type
2195#undef Wtype
2196#undef UWtype
2197#undef HWtype
2198#undef UHWtype
2199#undef DWtype
2200#undef UDWtype
2201
2202#undef char
2203#undef short
2204#undef int
2205#undef long
2206#undef unsigned
2207#undef float
2208#undef double
2209
2210#ifdef L__gcc_bcmp
2211
2212/* Like bcmp except the sign is meaningful.
2213   Result is negative if S1 is less than S2,
2214   positive if S1 is greater, 0 if S1 and S2 are equal.  */
2215
2216int
2217__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
2218{
2219  while (size > 0)
2220    {
2221      const unsigned char c1 = *s1++, c2 = *s2++;
2222      if (c1 != c2)
2223	return c1 - c2;
2224      size--;
2225    }
2226  return 0;
2227}
2228
2229#endif
2230
2231/* __eprintf used to be used by GCC's private version of <assert.h>.
2232   We no longer provide that header, but this routine remains in libgcc.a
2233   for binary backward compatibility.  Note that it is not included in
2234   the shared version of libgcc.  */
2235#ifdef L_eprintf
2236#ifndef inhibit_libc
2237
2238#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
2239#include <stdio.h>
2240
2241void
2242__eprintf (const char *string, const char *expression,
2243	   unsigned int line, const char *filename)
2244{
2245  fprintf (stderr, string, expression, line, filename);
2246  fflush (stderr);
2247  abort ();
2248}
2249
2250#endif
2251#endif
2252
2253
2254#ifdef L_clear_cache
2255/* Clear part of an instruction cache.  */
2256
2257void
2258__clear_cache (void *beg __attribute__((__unused__)),
2259	       void *end __attribute__((__unused__)))
2260{
2261#ifdef CLEAR_INSN_CACHE
2262  /* Cast the void* pointers to char* as some implementations
2263     of the macro assume the pointers can be subtracted from
2264     one another.  */
2265  CLEAR_INSN_CACHE ((char *) beg, (char *) end);
2266#endif /* CLEAR_INSN_CACHE */
2267}
2268
2269#endif /* L_clear_cache */
2270
2271#ifdef L_trampoline
2272
2273/* Jump to a trampoline, loading the static chain address.  */
2274
2275#if defined(WINNT) && ! defined(__CYGWIN__)
2276#include <windows.h>
2277int getpagesize (void);
2278int mprotect (char *,int, int);
2279
2280int
2281getpagesize (void)
2282{
2283#ifdef _ALPHA_
2284  return 8192;
2285#else
2286  return 4096;
2287#endif
2288}
2289
2290int
2291mprotect (char *addr, int len, int prot)
2292{
2293  DWORD np, op;
2294
2295  if (prot == 7)
2296    np = 0x40;
2297  else if (prot == 5)
2298    np = 0x20;
2299  else if (prot == 4)
2300    np = 0x10;
2301  else if (prot == 3)
2302    np = 0x04;
2303  else if (prot == 1)
2304    np = 0x02;
2305  else if (prot == 0)
2306    np = 0x01;
2307  else
2308    return -1;
2309
2310  if (VirtualProtect (addr, len, np, &op))
2311    return 0;
2312  else
2313    return -1;
2314}
2315
2316#endif /* WINNT && ! __CYGWIN__ */
2317
2318#ifdef TRANSFER_FROM_TRAMPOLINE
2319TRANSFER_FROM_TRAMPOLINE
2320#endif
2321#endif /* L_trampoline */
2322
2323#ifndef __CYGWIN__
2324#ifdef L__main
2325
2326#include "gbl-ctors.h"
2327
2328/* Some systems use __main in a way incompatible with its use in gcc, in these
2329   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2330   give the same symbol without quotes for an alternative entry point.  You
2331   must define both, or neither.  */
2332#ifndef NAME__MAIN
2333#define NAME__MAIN "__main"
2334#define SYMBOL__MAIN __main
2335#endif
2336
2337#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
2338    || defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
2339#undef HAS_INIT_SECTION
2340#define HAS_INIT_SECTION
2341#endif
2342
2343#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2344
2345/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2346   code to run constructors.  In that case, we need to handle EH here, too.
2347   But MINGW32 is special because it handles CRTSTUFF and EH on its own.  */
2348
2349#ifdef __MINGW32__
2350#undef __LIBGCC_EH_FRAME_SECTION_NAME__
2351#endif
2352
2353#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2354#include "unwind-dw2-fde.h"
2355extern unsigned char __EH_FRAME_BEGIN__[];
2356#endif
2357
2358/* Run all the global destructors on exit from the program.  */
2359
2360void
2361__do_global_dtors (void)
2362{
2363#ifdef DO_GLOBAL_DTORS_BODY
2364  DO_GLOBAL_DTORS_BODY;
2365#else
2366  static func_ptr *p = __DTOR_LIST__ + 1;
2367  while (*p)
2368    {
2369      p++;
2370      (*(p-1)) ();
2371    }
2372#endif
2373#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
2374  {
2375    static int completed = 0;
2376    if (! completed)
2377      {
2378	completed = 1;
2379	__deregister_frame_info (__EH_FRAME_BEGIN__);
2380      }
2381  }
2382#endif
2383}
2384#endif
2385
2386#ifndef HAS_INIT_SECTION
2387/* Run all the global constructors on entry to the program.  */
2388
2389void
2390__do_global_ctors (void)
2391{
2392#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
2393  {
2394    static struct object object;
2395    __register_frame_info (__EH_FRAME_BEGIN__, &object);
2396  }
2397#endif
2398  DO_GLOBAL_CTORS_BODY;
2399  atexit (__do_global_dtors);
2400}
2401#endif /* no HAS_INIT_SECTION */
2402
2403#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2404/* Subroutine called automatically by `main'.
2405   Compiling a global function named `main'
2406   produces an automatic call to this function at the beginning.
2407
2408   For many systems, this routine calls __do_global_ctors.
2409   For systems which support a .init section we use the .init section
2410   to run __do_global_ctors, so we need not do anything here.  */
2411
2412extern void SYMBOL__MAIN (void);
2413void
2414SYMBOL__MAIN (void)
2415{
2416  /* Support recursive calls to `main': run initializers just once.  */
2417  static int initialized;
2418  if (! initialized)
2419    {
2420      initialized = 1;
2421      __do_global_ctors ();
2422    }
2423}
2424#endif /* no HAS_INIT_SECTION or INVOKE__main */
2425
2426#endif /* L__main */
2427#endif /* __CYGWIN__ */
2428
2429#ifdef L_ctors
2430
2431#include "gbl-ctors.h"
2432
2433/* Provide default definitions for the lists of constructors and
2434   destructors, so that we don't get linker errors.  These symbols are
2435   intentionally bss symbols, so that gld and/or collect will provide
2436   the right values.  */
2437
2438/* We declare the lists here with two elements each,
2439   so that they are valid empty lists if no other definition is loaded.
2440
2441   If we are using the old "set" extensions to have the gnu linker
2442   collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2443   must be in the bss/common section.
2444
2445   Long term no port should use those extensions.  But many still do.  */
2446#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
2447#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2448func_ptr __CTOR_LIST__[2] = {0, 0};
2449func_ptr __DTOR_LIST__[2] = {0, 0};
2450#else
2451func_ptr __CTOR_LIST__[2];
2452func_ptr __DTOR_LIST__[2];
2453#endif
2454#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
2455#endif /* L_ctors */
2456#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
2457