1/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22<http://www.gnu.org/licenses/>.  */
23
24/*****************************************************************************
25 *
26 *    Helper add functions (for fma)
27 *
28 *    __BID_INLINE__ UINT64 get_add64(
29 *        UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
30 *        UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
31 *  					 int rounding_mode)
32 *
33 *   __BID_INLINE__ UINT64 get_add128(
34 *                       UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
35 *                       UINT64 sign_y, int final_exponent_y, UINT128 CY,
36 *                       int extra_digits, int rounding_mode)
37 *
38 *****************************************************************************
39 *
40 *  Algorithm description:
41 *
42 *  get_add64:  same as BID64 add, but arguments are unpacked and there
43 *                                 are no special case checks
44 *
45 *  get_add128: add 64-bit coefficient to 128-bit product (which contains
46 *                                        16+extra_digits decimal digits),
47 *                         return BID64 result
48 *              - the exponents are compared and the two coefficients are
49 *                properly aligned for addition/subtraction
50 *              - multiple paths are needed
51 *              - final result exponent is calculated and the lower term is
52 *                      rounded first if necessary, to avoid manipulating
53 *                      coefficients longer than 128 bits
54 *
55 ****************************************************************************/
56
57#ifndef _INLINE_BID_ADD_H_
58#define _INLINE_BID_ADD_H_
59
60#include "bid_internal.h"
61
62#define MAX_FORMAT_DIGITS     16
63#define DECIMAL_EXPONENT_BIAS 398
64#define MASK_BINARY_EXPONENT  0x7ff0000000000000ull
65#define BINARY_EXPONENT_BIAS  0x3ff
66#define UPPER_EXPON_LIMIT     51
67
68///////////////////////////////////////////////////////////////////////
69//
70// get_add64() is essentially the same as bid_add(), except that
71//             the arguments are unpacked
72//
73//////////////////////////////////////////////////////////////////////
74__BID_INLINE__ UINT64
75get_add64 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
76	   UINT64 sign_y, int exponent_y, UINT64 coefficient_y,
77	   int rounding_mode, unsigned *fpsc) {
78  UINT128 CA, CT, CT_new;
79  UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
80    rem_a;
81  UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp,
82    C64_new;
83  int_double tempx;
84  int exponent_a, exponent_b, diff_dec_expon;
85  int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
86  unsigned rmode, status;
87
88  // sort arguments by exponent
89  if (exponent_x <= exponent_y) {
90    sign_a = sign_y;
91    exponent_a = exponent_y;
92    coefficient_a = coefficient_y;
93    sign_b = sign_x;
94    exponent_b = exponent_x;
95    coefficient_b = coefficient_x;
96  } else {
97    sign_a = sign_x;
98    exponent_a = exponent_x;
99    coefficient_a = coefficient_x;
100    sign_b = sign_y;
101    exponent_b = exponent_y;
102    coefficient_b = coefficient_y;
103  }
104
105  // exponent difference
106  diff_dec_expon = exponent_a - exponent_b;
107
108  /* get binary coefficients of x and y */
109
110  //--- get number of bits in the coefficients of x and y ---
111
112  tempx.d = (double) coefficient_a;
113  bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
114
115  if (!coefficient_a) {
116    return get_BID64 (sign_b, exponent_b, coefficient_b, rounding_mode,
117		      fpsc);
118  }
119  if (diff_dec_expon > MAX_FORMAT_DIGITS) {
120    // normalize a to a 16-digit coefficient
121
122    scale_ca = estimate_decimal_digits[bin_expon_ca];
123    if (coefficient_a >= power10_table_128[scale_ca].w[0])
124      scale_ca++;
125
126    scale_k = 16 - scale_ca;
127
128    coefficient_a *= power10_table_128[scale_k].w[0];
129
130    diff_dec_expon -= scale_k;
131    exponent_a -= scale_k;
132
133    /* get binary coefficients of x and y */
134
135    //--- get number of bits in the coefficients of x and y ---
136    tempx.d = (double) coefficient_a;
137    bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
138
139    if (diff_dec_expon > MAX_FORMAT_DIGITS) {
140#ifdef SET_STATUS_FLAGS
141      if (coefficient_b) {
142	__set_status_flags (fpsc, INEXACT_EXCEPTION);
143      }
144#endif
145
146#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
147#ifndef IEEE_ROUND_NEAREST
148      if (((rounding_mode) & 3) && coefficient_b)	// not ROUNDING_TO_NEAREST
149      {
150	switch (rounding_mode) {
151	case ROUNDING_DOWN:
152	  if (sign_b) {
153	    coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
154	    if (coefficient_a < 1000000000000000ull) {
155	      exponent_a--;
156	      coefficient_a = 9999999999999999ull;
157	    } else if (coefficient_a >= 10000000000000000ull) {
158	      exponent_a++;
159	      coefficient_a = 1000000000000000ull;
160	    }
161	  }
162	  break;
163	case ROUNDING_UP:
164	  if (!sign_b) {
165	    coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
166	    if (coefficient_a < 1000000000000000ull) {
167	      exponent_a--;
168	      coefficient_a = 9999999999999999ull;
169	    } else if (coefficient_a >= 10000000000000000ull) {
170	      exponent_a++;
171	      coefficient_a = 1000000000000000ull;
172	    }
173	  }
174	  break;
175	default:	// RZ
176	  if (sign_a != sign_b) {
177	    coefficient_a--;
178	    if (coefficient_a < 1000000000000000ull) {
179	      exponent_a--;
180	      coefficient_a = 9999999999999999ull;
181	    }
182	  }
183	  break;
184	}
185      } else
186#endif
187#endif
188	// check special case here
189	if ((coefficient_a == 1000000000000000ull)
190	    && (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
191	    && (sign_a ^ sign_b)
192	    && (coefficient_b > 5000000000000000ull)) {
193	coefficient_a = 9999999999999999ull;
194	exponent_a--;
195      }
196
197      return get_BID64 (sign_a, exponent_a, coefficient_a,
198			rounding_mode, fpsc);
199    }
200  }
201  // test whether coefficient_a*10^(exponent_a-exponent_b)  may exceed 2^62
202  if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
203    // coefficient_a*10^(exponent_a-exponent_b)<2^63
204
205    // multiply by 10^(exponent_a-exponent_b)
206    coefficient_a *= power10_table_128[diff_dec_expon].w[0];
207
208    // sign mask
209    sign_b = ((SINT64) sign_b) >> 63;
210    // apply sign to coeff. of b
211    coefficient_b = (coefficient_b + sign_b) ^ sign_b;
212
213    // apply sign to coefficient a
214    sign_a = ((SINT64) sign_a) >> 63;
215    coefficient_a = (coefficient_a + sign_a) ^ sign_a;
216
217    coefficient_a += coefficient_b;
218    // get sign
219    sign_s = ((SINT64) coefficient_a) >> 63;
220    coefficient_a = (coefficient_a + sign_s) ^ sign_s;
221    sign_s &= 0x8000000000000000ull;
222
223    // coefficient_a < 10^16 ?
224    if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
225#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
226#ifndef IEEE_ROUND_NEAREST
227      if (rounding_mode == ROUNDING_DOWN && (!coefficient_a)
228	  && sign_a != sign_b)
229	sign_s = 0x8000000000000000ull;
230#endif
231#endif
232      return get_BID64 (sign_s, exponent_b, coefficient_a,
233			rounding_mode, fpsc);
234    }
235    // otherwise rounding is necessary
236
237    // already know coefficient_a<10^19
238    // coefficient_a < 10^17 ?
239    if (coefficient_a < power10_table_128[17].w[0])
240      extra_digits = 1;
241    else if (coefficient_a < power10_table_128[18].w[0])
242      extra_digits = 2;
243    else
244      extra_digits = 3;
245
246#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
247#ifndef IEEE_ROUND_NEAREST
248    rmode = rounding_mode;
249    if (sign_s && (unsigned) (rmode - 1) < 2)
250      rmode = 3 - rmode;
251#else
252    rmode = 0;
253#endif
254#else
255    rmode = 0;
256#endif
257    coefficient_a += round_const_table[rmode][extra_digits];
258
259    // get P*(2^M[extra_digits])/10^extra_digits
260    __mul_64x64_to_128 (CT, coefficient_a,
261			reciprocals10_64[extra_digits]);
262
263    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
264    amount = short_recip_scale[extra_digits];
265    C64 = CT.w[1] >> amount;
266
267  } else {
268    // coefficient_a*10^(exponent_a-exponent_b) is large
269    sign_s = sign_a;
270
271#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
272#ifndef IEEE_ROUND_NEAREST
273    rmode = rounding_mode;
274    if (sign_s && (unsigned) (rmode - 1) < 2)
275      rmode = 3 - rmode;
276#else
277    rmode = 0;
278#endif
279#else
280    rmode = 0;
281#endif
282
283    // check whether we can take faster path
284    scale_ca = estimate_decimal_digits[bin_expon_ca];
285
286    sign_ab = sign_a ^ sign_b;
287    sign_ab = ((SINT64) sign_ab) >> 63;
288
289    // T1 = 10^(16-diff_dec_expon)
290    T1 = power10_table_128[16 - diff_dec_expon].w[0];
291
292    // get number of digits in coefficient_a
293    //P_ca = power10_table_128[scale_ca].w[0];
294    //P_ca_m1 = power10_table_128[scale_ca-1].w[0];
295    if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
296      scale_ca++;
297      //P_ca_m1 = P_ca;
298      //P_ca = power10_table_128[scale_ca].w[0];
299    }
300
301    scale_k = 16 - scale_ca;
302
303    // apply sign
304    //Ts = (T1 + sign_ab) ^ sign_ab;
305
306    // test range of ca
307    //X = coefficient_a + Ts - P_ca_m1;
308
309    // addition
310    saved_ca = coefficient_a - T1;
311    coefficient_a =
312      (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
313    extra_digits = diff_dec_expon - scale_k;
314
315    // apply sign
316    saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
317    // add 10^16 and rounding constant
318    coefficient_b =
319      saved_cb + 10000000000000000ull +
320      round_const_table[rmode][extra_digits];
321
322    // get P*(2^M[extra_digits])/10^extra_digits
323    __mul_64x64_to_128 (CT, coefficient_b,
324			reciprocals10_64[extra_digits]);
325
326    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
327    amount = short_recip_scale[extra_digits];
328    C0_64 = CT.w[1] >> amount;
329
330    // result coefficient
331    C64 = C0_64 + coefficient_a;
332    // filter out difficult (corner) cases
333    // the following test is equivalent to
334    // ( (initial_coefficient_a + Ts) < P_ca &&
335    //     (initial_coefficient_a + Ts) > P_ca_m1 ),
336    // which ensures the number of digits in coefficient_a does not change
337    // after adding (the appropriately scaled and rounded) coefficient_b
338    if ((UINT64) (C64 - 1000000000000000ull - 1) >
339	9000000000000000ull - 2) {
340      if (C64 >= 10000000000000000ull) {
341	// result has more than 16 digits
342	if (!scale_k) {
343	  // must divide coeff_a by 10
344	  saved_ca = saved_ca + T1;
345	  __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
346	  //reciprocals10_64[1]);
347	  coefficient_a = CA.w[1] >> 1;
348	  rem_a =
349	    saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
350	  coefficient_a = coefficient_a - T1;
351
352	  saved_cb +=
353	    /*90000000000000000 */ +rem_a *
354	    power10_table_128[diff_dec_expon].w[0];
355	} else
356	  coefficient_a =
357	    (SINT64) (saved_ca - T1 -
358		      (T1 << 3)) * (SINT64) power10_table_128[scale_k -
359							      1].w[0];
360
361	extra_digits++;
362	coefficient_b =
363	  saved_cb + 100000000000000000ull +
364	  round_const_table[rmode][extra_digits];
365
366	// get P*(2^M[extra_digits])/10^extra_digits
367	__mul_64x64_to_128 (CT, coefficient_b,
368			    reciprocals10_64[extra_digits]);
369
370	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
371	amount = short_recip_scale[extra_digits];
372	C0_64 = CT.w[1] >> amount;
373
374	// result coefficient
375	C64 = C0_64 + coefficient_a;
376      } else if (C64 <= 1000000000000000ull) {
377	// less than 16 digits in result
378	coefficient_a =
379	  (SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
380							1].w[0];
381	//extra_digits --;
382	exponent_b--;
383	coefficient_b =
384	  (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
385	  round_const_table[rmode][extra_digits];
386
387	// get P*(2^M[extra_digits])/10^extra_digits
388	__mul_64x64_to_128 (CT_new, coefficient_b,
389			    reciprocals10_64[extra_digits]);
390
391	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
392	amount = short_recip_scale[extra_digits];
393	C0_64 = CT_new.w[1] >> amount;
394
395	// result coefficient
396	C64_new = C0_64 + coefficient_a;
397	if (C64_new < 10000000000000000ull) {
398	  C64 = C64_new;
399#ifdef SET_STATUS_FLAGS
400	  CT = CT_new;
401#endif
402	} else
403	  exponent_b++;
404      }
405
406    }
407
408  }
409
410#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
411#ifndef IEEE_ROUND_NEAREST
412  if (rmode == 0)	//ROUNDING_TO_NEAREST
413#endif
414    if (C64 & 1) {
415      // check whether fractional part of initial_P/10^extra_digits
416      // is exactly .5
417      // this is the same as fractional part of
418      //      (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
419
420      // get remainder
421      remainder_h = CT.w[1] << (64 - amount);
422
423      // test whether fractional part is 0
424      if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
425	C64--;
426      }
427    }
428#endif
429
430#ifdef SET_STATUS_FLAGS
431  status = INEXACT_EXCEPTION;
432
433  // get remainder
434  remainder_h = CT.w[1] << (64 - amount);
435
436  switch (rmode) {
437  case ROUNDING_TO_NEAREST:
438  case ROUNDING_TIES_AWAY:
439    // test whether fractional part is 0
440    if ((remainder_h == 0x8000000000000000ull)
441	&& (CT.w[0] < reciprocals10_64[extra_digits]))
442      status = EXACT_STATUS;
443    break;
444  case ROUNDING_DOWN:
445  case ROUNDING_TO_ZERO:
446    if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
447      status = EXACT_STATUS;
448    break;
449  default:
450    // round up
451    __add_carry_out (tmp, carry, CT.w[0],
452		     reciprocals10_64[extra_digits]);
453    if ((remainder_h >> (64 - amount)) + carry >=
454	(((UINT64) 1) << amount))
455      status = EXACT_STATUS;
456    break;
457  }
458  __set_status_flags (fpsc, status);
459
460#endif
461
462  return get_BID64 (sign_s, exponent_b + extra_digits, C64,
463		    rounding_mode, fpsc);
464}
465
466
467///////////////////////////////////////////////////////////////////
468// round 128-bit coefficient and return result in BID64 format
469// do not worry about midpoint cases
470//////////////////////////////////////////////////////////////////
471static UINT64
472__bid_simple_round64_sticky (UINT64 sign, int exponent, UINT128 P,
473			     int extra_digits, int rounding_mode,
474			     unsigned *fpsc) {
475  UINT128 Q_high, Q_low, C128;
476  UINT64 C64;
477  int amount, rmode;
478
479  rmode = rounding_mode;
480#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
481#ifndef IEEE_ROUND_NEAREST
482  if (sign && (unsigned) (rmode - 1) < 2)
483    rmode = 3 - rmode;
484#endif
485#endif
486  __add_128_64 (P, P, round_const_table[rmode][extra_digits]);
487
488  // get P*(2^M[extra_digits])/10^extra_digits
489  __mul_128x128_full (Q_high, Q_low, P,
490		      reciprocals10_128[extra_digits]);
491
492  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
493  amount = recip_scale[extra_digits];
494  __shr_128 (C128, Q_high, amount);
495
496  C64 = __low_64 (C128);
497
498#ifdef SET_STATUS_FLAGS
499
500  __set_status_flags (fpsc, INEXACT_EXCEPTION);
501
502#endif
503
504  return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
505}
506
507///////////////////////////////////////////////////////////////////
508// round 128-bit coefficient and return result in BID64 format
509///////////////////////////////////////////////////////////////////
510static UINT64
511__bid_full_round64 (UINT64 sign, int exponent, UINT128 P,
512		    int extra_digits, int rounding_mode,
513		    unsigned *fpsc) {
514  UINT128 Q_high, Q_low, C128, Stemp, PU;
515  UINT64 remainder_h, C64, carry, CY;
516  int amount, amount2, rmode, status = 0;
517
518  if (exponent < 0) {
519    if (exponent >= -16 && (extra_digits + exponent < 0)) {
520      extra_digits = -exponent;
521#ifdef SET_STATUS_FLAGS
522      if (extra_digits > 0) {
523	rmode = rounding_mode;
524	if (sign && (unsigned) (rmode - 1) < 2)
525	  rmode = 3 - rmode;
526	__add_128_128 (PU, P,
527		       round_const_table_128[rmode][extra_digits]);
528	if (__unsigned_compare_gt_128
529	    (power10_table_128[extra_digits + 15], PU))
530	  status = UNDERFLOW_EXCEPTION;
531      }
532#endif
533    }
534  }
535
536  if (extra_digits > 0) {
537    exponent += extra_digits;
538    rmode = rounding_mode;
539    if (sign && (unsigned) (rmode - 1) < 2)
540      rmode = 3 - rmode;
541    __add_128_128 (P, P, round_const_table_128[rmode][extra_digits]);
542
543    // get P*(2^M[extra_digits])/10^extra_digits
544    __mul_128x128_full (Q_high, Q_low, P,
545			reciprocals10_128[extra_digits]);
546
547    // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
548    amount = recip_scale[extra_digits];
549    __shr_128_long (C128, Q_high, amount);
550
551    C64 = __low_64 (C128);
552
553#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
554#ifndef IEEE_ROUND_NEAREST
555    if (rmode == 0)	//ROUNDING_TO_NEAREST
556#endif
557      if (C64 & 1) {
558	// check whether fractional part of initial_P/10^extra_digits
559	// is exactly .5
560
561	// get remainder
562	amount2 = 64 - amount;
563	remainder_h = 0;
564	remainder_h--;
565	remainder_h >>= amount2;
566	remainder_h = remainder_h & Q_high.w[0];
567
568	if (!remainder_h
569	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
570		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
571		    && Q_low.w[0] <
572		    reciprocals10_128[extra_digits].w[0]))) {
573	  C64--;
574	}
575      }
576#endif
577
578#ifdef SET_STATUS_FLAGS
579    status |= INEXACT_EXCEPTION;
580
581    // get remainder
582    remainder_h = Q_high.w[0] << (64 - amount);
583
584    switch (rmode) {
585    case ROUNDING_TO_NEAREST:
586    case ROUNDING_TIES_AWAY:
587      // test whether fractional part is 0
588      if (remainder_h == 0x8000000000000000ull
589	  && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
590	      || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
591		  && Q_low.w[0] <
592		  reciprocals10_128[extra_digits].w[0])))
593	status = EXACT_STATUS;
594      break;
595    case ROUNDING_DOWN:
596    case ROUNDING_TO_ZERO:
597      if (!remainder_h
598	  && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
599	      || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
600		  && Q_low.w[0] <
601		  reciprocals10_128[extra_digits].w[0])))
602	status = EXACT_STATUS;
603      break;
604    default:
605      // round up
606      __add_carry_out (Stemp.w[0], CY, Q_low.w[0],
607		       reciprocals10_128[extra_digits].w[0]);
608      __add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
609			  reciprocals10_128[extra_digits].w[1], CY);
610      if ((remainder_h >> (64 - amount)) + carry >=
611	  (((UINT64) 1) << amount))
612	status = EXACT_STATUS;
613    }
614
615    __set_status_flags (fpsc, status);
616
617#endif
618  } else {
619    C64 = P.w[0];
620    if (!C64) {
621      sign = 0;
622      if (rounding_mode == ROUNDING_DOWN)
623	sign = 0x8000000000000000ull;
624    }
625  }
626  return get_BID64 (sign, exponent, C64, rounding_mode, fpsc);
627}
628
629/////////////////////////////////////////////////////////////////////////////////
630// round 192-bit coefficient (P, remainder_P) and return result in BID64 format
631// the lowest 64 bits (remainder_P) are used for midpoint checking only
632////////////////////////////////////////////////////////////////////////////////
633static UINT64
634__bid_full_round64_remainder (UINT64 sign, int exponent, UINT128 P,
635			      int extra_digits, UINT64 remainder_P,
636			      int rounding_mode, unsigned *fpsc,
637			      unsigned uf_status) {
638  UINT128 Q_high, Q_low, C128, Stemp;
639  UINT64 remainder_h, C64, carry, CY;
640  int amount, amount2, rmode, status = uf_status;
641
642  rmode = rounding_mode;
643  if (sign && (unsigned) (rmode - 1) < 2)
644    rmode = 3 - rmode;
645  if (rmode == ROUNDING_UP && remainder_P) {
646    P.w[0]++;
647    if (!P.w[0])
648      P.w[1]++;
649  }
650
651  if (extra_digits) {
652    __add_128_64 (P, P, round_const_table[rmode][extra_digits]);
653
654    // get P*(2^M[extra_digits])/10^extra_digits
655    __mul_128x128_full (Q_high, Q_low, P,
656			reciprocals10_128[extra_digits]);
657
658    // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
659    amount = recip_scale[extra_digits];
660    __shr_128 (C128, Q_high, amount);
661
662    C64 = __low_64 (C128);
663
664#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
665#ifndef IEEE_ROUND_NEAREST
666    if (rmode == 0)	//ROUNDING_TO_NEAREST
667#endif
668      if (!remainder_P && (C64 & 1)) {
669	// check whether fractional part of initial_P/10^extra_digits
670	// is exactly .5
671
672	// get remainder
673	amount2 = 64 - amount;
674	remainder_h = 0;
675	remainder_h--;
676	remainder_h >>= amount2;
677	remainder_h = remainder_h & Q_high.w[0];
678
679	if (!remainder_h
680	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
681		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
682		    && Q_low.w[0] <
683		    reciprocals10_128[extra_digits].w[0]))) {
684	  C64--;
685	}
686      }
687#endif
688
689#ifdef SET_STATUS_FLAGS
690    status |= INEXACT_EXCEPTION;
691
692    if (!remainder_P) {
693      // get remainder
694      remainder_h = Q_high.w[0] << (64 - amount);
695
696      switch (rmode) {
697      case ROUNDING_TO_NEAREST:
698      case ROUNDING_TIES_AWAY:
699	// test whether fractional part is 0
700	if (remainder_h == 0x8000000000000000ull
701	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
702		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
703		    && Q_low.w[0] <
704		    reciprocals10_128[extra_digits].w[0])))
705	  status = EXACT_STATUS;
706	break;
707      case ROUNDING_DOWN:
708      case ROUNDING_TO_ZERO:
709	if (!remainder_h
710	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
711		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
712		    && Q_low.w[0] <
713		    reciprocals10_128[extra_digits].w[0])))
714	  status = EXACT_STATUS;
715	break;
716      default:
717	// round up
718	__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
719			 reciprocals10_128[extra_digits].w[0]);
720	__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
721			    reciprocals10_128[extra_digits].w[1], CY);
722	if ((remainder_h >> (64 - amount)) + carry >=
723	    (((UINT64) 1) << amount))
724	  status = EXACT_STATUS;
725      }
726    }
727    __set_status_flags (fpsc, status);
728
729#endif
730  } else {
731    C64 = P.w[0];
732#ifdef SET_STATUS_FLAGS
733    if (remainder_P) {
734      __set_status_flags (fpsc, uf_status | INEXACT_EXCEPTION);
735    }
736#endif
737  }
738
739  return get_BID64 (sign, exponent + extra_digits, C64, rounding_mode,
740		    fpsc);
741}
742
743
744///////////////////////////////////////////////////////////////////
745// get P/10^extra_digits
746// result fits in 64 bits
747///////////////////////////////////////////////////////////////////
748__BID_INLINE__ UINT64
749__truncate (UINT128 P, int extra_digits)
750// extra_digits <= 16
751{
752  UINT128 Q_high, Q_low, C128;
753  UINT64 C64;
754  int amount;
755
756  // get P*(2^M[extra_digits])/10^extra_digits
757  __mul_128x128_full (Q_high, Q_low, P,
758		      reciprocals10_128[extra_digits]);
759
760  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
761  amount = recip_scale[extra_digits];
762  __shr_128 (C128, Q_high, amount);
763
764  C64 = __low_64 (C128);
765
766  return C64;
767}
768
769
770///////////////////////////////////////////////////////////////////
771// return number of decimal digits in 128-bit value X
772///////////////////////////////////////////////////////////////////
773__BID_INLINE__ int
774__get_dec_digits64 (UINT128 X) {
775  int_double tempx;
776  int digits_x, bin_expon_cx;
777
778  if (!X.w[1]) {
779    //--- get number of bits in the coefficients of x and y ---
780    tempx.d = (double) X.w[0];
781    bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
782    // get number of decimal digits in the coeff_x
783    digits_x = estimate_decimal_digits[bin_expon_cx];
784    if (X.w[0] >= power10_table_128[digits_x].w[0])
785      digits_x++;
786    return digits_x;
787  }
788  tempx.d = (double) X.w[1];
789  bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
790  // get number of decimal digits in the coeff_x
791  digits_x = estimate_decimal_digits[bin_expon_cx + 64];
792  if (__unsigned_compare_ge_128 (X, power10_table_128[digits_x]))
793    digits_x++;
794
795  return digits_x;
796}
797
798
799////////////////////////////////////////////////////////////////////////////////
800//
801// add 64-bit coefficient to 128-bit coefficient, return result in BID64 format
802//
803////////////////////////////////////////////////////////////////////////////////
804__BID_INLINE__ UINT64
805get_add128 (UINT64 sign_x, int exponent_x, UINT64 coefficient_x,
806	    UINT64 sign_y, int final_exponent_y, UINT128 CY,
807	    int extra_digits, int rounding_mode, unsigned *fpsc) {
808  UINT128 CY_L, CX, FS, F, CT, ST, T2;
809  UINT64 CYh, CY0L, T, S, coefficient_y, remainder_y;
810  SINT64 D = 0;
811  int_double tempx;
812  int diff_dec_expon, extra_digits2, exponent_y, status;
813  int extra_dx, diff_dec2, bin_expon_cx, digits_x, rmode;
814
815  // CY has more than 16 decimal digits
816
817  exponent_y = final_exponent_y - extra_digits;
818
819#ifdef IEEE_ROUND_NEAREST_TIES_AWAY
820  rounding_mode = 0;
821#endif
822#ifdef IEEE_ROUND_NEAREST
823  rounding_mode = 0;
824#endif
825
826  if (exponent_x > exponent_y) {
827    // normalize x
828    //--- get number of bits in the coefficients of x and y ---
829    tempx.d = (double) coefficient_x;
830    bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
831    // get number of decimal digits in the coeff_x
832    digits_x = estimate_decimal_digits[bin_expon_cx];
833    if (coefficient_x >= power10_table_128[digits_x].w[0])
834      digits_x++;
835
836    extra_dx = 16 - digits_x;
837    coefficient_x *= power10_table_128[extra_dx].w[0];
838    if ((sign_x ^ sign_y) && (coefficient_x == 1000000000000000ull)) {
839      extra_dx++;
840      coefficient_x = 10000000000000000ull;
841    }
842    exponent_x -= extra_dx;
843
844    if (exponent_x > exponent_y) {
845
846      // exponent_x > exponent_y
847      diff_dec_expon = exponent_x - exponent_y;
848
849      if (exponent_x <= final_exponent_y + 1) {
850	__mul_64x64_to_128 (CX, coefficient_x,
851			    power10_table_128[diff_dec_expon].w[0]);
852
853	if (sign_x == sign_y) {
854	  __add_128_128 (CT, CY, CX);
855	  if ((exponent_x >
856	       final_exponent_y) /*&& (final_exponent_y>0) */ )
857	    extra_digits++;
858	  if (__unsigned_compare_ge_128
859	      (CT, power10_table_128[16 + extra_digits]))
860	    extra_digits++;
861	} else {
862	  __sub_128_128 (CT, CY, CX);
863	  if (((SINT64) CT.w[1]) < 0) {
864	    CT.w[0] = 0 - CT.w[0];
865	    CT.w[1] = 0 - CT.w[1];
866	    if (CT.w[0])
867	      CT.w[1]--;
868	    sign_y = sign_x;
869	  } else if (!(CT.w[1] | CT.w[0])) {
870	    sign_y =
871	      (rounding_mode !=
872	       ROUNDING_DOWN) ? 0 : 0x8000000000000000ull;
873	  }
874	  if ((exponent_x + 1 >=
875	       final_exponent_y) /*&& (final_exponent_y>=0) */ ) {
876	    extra_digits = __get_dec_digits64 (CT) - 16;
877	    if (extra_digits <= 0) {
878	      if (!CT.w[0] && rounding_mode == ROUNDING_DOWN)
879		sign_y = 0x8000000000000000ull;
880	      return get_BID64 (sign_y, exponent_y, CT.w[0],
881				rounding_mode, fpsc);
882	    }
883	  } else
884	    if (__unsigned_compare_gt_128
885		(power10_table_128[15 + extra_digits], CT))
886	    extra_digits--;
887	}
888
889	return __bid_full_round64 (sign_y, exponent_y, CT, extra_digits,
890				   rounding_mode, fpsc);
891      }
892      // diff_dec2+extra_digits is the number of digits to eliminate from
893      //                           argument CY
894      diff_dec2 = exponent_x - final_exponent_y;
895
896      if (diff_dec2 >= 17) {
897#ifndef IEEE_ROUND_NEAREST
898#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
899	if ((rounding_mode) & 3) {
900	  switch (rounding_mode) {
901	  case ROUNDING_UP:
902	    if (!sign_y) {
903	      D = ((SINT64) (sign_x ^ sign_y)) >> 63;
904	      D = D + D + 1;
905	      coefficient_x += D;
906	    }
907	    break;
908	  case ROUNDING_DOWN:
909	    if (sign_y) {
910	      D = ((SINT64) (sign_x ^ sign_y)) >> 63;
911	      D = D + D + 1;
912	      coefficient_x += D;
913	    }
914	    break;
915	  case ROUNDING_TO_ZERO:
916	    if (sign_y != sign_x) {
917	      D = 0 - 1;
918	      coefficient_x += D;
919	    }
920	    break;
921	  }
922	  if (coefficient_x < 1000000000000000ull) {
923	    coefficient_x -= D;
924	    coefficient_x =
925	      D + (coefficient_x << 1) + (coefficient_x << 3);
926	    exponent_x--;
927	  }
928	}
929#endif
930#endif
931#ifdef SET_STATUS_FLAGS
932	if (CY.w[1] | CY.w[0])
933	  __set_status_flags (fpsc, INEXACT_EXCEPTION);
934#endif
935	return get_BID64 (sign_x, exponent_x, coefficient_x,
936			  rounding_mode, fpsc);
937      }
938      // here exponent_x <= 16+final_exponent_y
939
940      // truncate CY to 16 dec. digits
941      CYh = __truncate (CY, extra_digits);
942
943      // get remainder
944      T = power10_table_128[extra_digits].w[0];
945      __mul_64x64_to_64 (CY0L, CYh, T);
946
947      remainder_y = CY.w[0] - CY0L;
948
949      // align coeff_x, CYh
950      __mul_64x64_to_128 (CX, coefficient_x,
951			  power10_table_128[diff_dec2].w[0]);
952
953      if (sign_x == sign_y) {
954	__add_128_64 (CT, CX, CYh);
955	if (__unsigned_compare_ge_128
956	    (CT, power10_table_128[16 + diff_dec2]))
957	  diff_dec2++;
958      } else {
959	if (remainder_y)
960	  CYh++;
961	__sub_128_64 (CT, CX, CYh);
962	if (__unsigned_compare_gt_128
963	    (power10_table_128[15 + diff_dec2], CT))
964	  diff_dec2--;
965      }
966
967      return __bid_full_round64_remainder (sign_x, final_exponent_y, CT,
968					   diff_dec2, remainder_y,
969					   rounding_mode, fpsc, 0);
970    }
971  }
972  // Here (exponent_x <= exponent_y)
973  {
974    diff_dec_expon = exponent_y - exponent_x;
975
976    if (diff_dec_expon > MAX_FORMAT_DIGITS) {
977      rmode = rounding_mode;
978
979      if ((sign_x ^ sign_y)) {
980	if (!CY.w[0])
981	  CY.w[1]--;
982	CY.w[0]--;
983	if (__unsigned_compare_gt_128
984	    (power10_table_128[15 + extra_digits], CY)) {
985	  if (rmode & 3) {
986	    extra_digits--;
987	    final_exponent_y--;
988	  } else {
989	    CY.w[0] = 1000000000000000ull;
990	    CY.w[1] = 0;
991	    extra_digits = 0;
992	  }
993	}
994      }
995      __scale128_10 (CY, CY);
996      extra_digits++;
997      CY.w[0] |= 1;
998
999      return __bid_simple_round64_sticky (sign_y, final_exponent_y, CY,
1000					  extra_digits, rmode, fpsc);
1001    }
1002    // apply sign to coeff_x
1003    sign_x ^= sign_y;
1004    sign_x = ((SINT64) sign_x) >> 63;
1005    CX.w[0] = (coefficient_x + sign_x) ^ sign_x;
1006    CX.w[1] = sign_x;
1007
1008    // check whether CY (rounded to 16 digits) and CX have
1009    //                     any digits in the same position
1010    diff_dec2 = final_exponent_y - exponent_x;
1011
1012    if (diff_dec2 <= 17) {
1013      // align CY to 10^ex
1014      S = power10_table_128[diff_dec_expon].w[0];
1015      __mul_64x128_short (CY_L, S, CY);
1016
1017      __add_128_128 (ST, CY_L, CX);
1018      extra_digits2 = __get_dec_digits64 (ST) - 16;
1019      return __bid_full_round64 (sign_y, exponent_x, ST, extra_digits2,
1020				 rounding_mode, fpsc);
1021    }
1022    // truncate CY to 16 dec. digits
1023    CYh = __truncate (CY, extra_digits);
1024
1025    // get remainder
1026    T = power10_table_128[extra_digits].w[0];
1027    __mul_64x64_to_64 (CY0L, CYh, T);
1028
1029    coefficient_y = CY.w[0] - CY0L;
1030    // add rounding constant
1031    rmode = rounding_mode;
1032    if (sign_y && (unsigned) (rmode - 1) < 2)
1033      rmode = 3 - rmode;
1034#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1035#ifndef IEEE_ROUND_NEAREST
1036    if (!(rmode & 3))	//ROUNDING_TO_NEAREST
1037#endif
1038#endif
1039    {
1040      coefficient_y += round_const_table[rmode][extra_digits];
1041    }
1042    // align coefficient_y,  coefficient_x
1043    S = power10_table_128[diff_dec_expon].w[0];
1044    __mul_64x64_to_128 (F, coefficient_y, S);
1045
1046    // fraction
1047    __add_128_128 (FS, F, CX);
1048
1049#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1050#ifndef IEEE_ROUND_NEAREST
1051    if (rmode == 0)	//ROUNDING_TO_NEAREST
1052#endif
1053    {
1054      // rounding code, here RN_EVEN
1055      // 10^(extra_digits+diff_dec_expon)
1056      T2 = power10_table_128[diff_dec_expon + extra_digits];
1057      if (__unsigned_compare_gt_128 (FS, T2)
1058	  || ((CYh & 1) && __test_equal_128 (FS, T2))) {
1059	CYh++;
1060	__sub_128_128 (FS, FS, T2);
1061      }
1062    }
1063#endif
1064#ifndef IEEE_ROUND_NEAREST
1065#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1066    if (rmode == 4)	//ROUNDING_TO_NEAREST
1067#endif
1068    {
1069      // rounding code, here RN_AWAY
1070      // 10^(extra_digits+diff_dec_expon)
1071      T2 = power10_table_128[diff_dec_expon + extra_digits];
1072      if (__unsigned_compare_ge_128 (FS, T2)) {
1073	CYh++;
1074	__sub_128_128 (FS, FS, T2);
1075      }
1076    }
1077#endif
1078#ifndef IEEE_ROUND_NEAREST
1079#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1080    switch (rmode) {
1081    case ROUNDING_DOWN:
1082    case ROUNDING_TO_ZERO:
1083      if ((SINT64) FS.w[1] < 0) {
1084	CYh--;
1085	if (CYh < 1000000000000000ull) {
1086	  CYh = 9999999999999999ull;
1087	  final_exponent_y--;
1088	}
1089      } else {
1090	T2 = power10_table_128[diff_dec_expon + extra_digits];
1091	if (__unsigned_compare_ge_128 (FS, T2)) {
1092	  CYh++;
1093	  __sub_128_128 (FS, FS, T2);
1094	}
1095      }
1096      break;
1097    case ROUNDING_UP:
1098      if ((SINT64) FS.w[1] < 0)
1099	break;
1100      T2 = power10_table_128[diff_dec_expon + extra_digits];
1101      if (__unsigned_compare_gt_128 (FS, T2)) {
1102	CYh += 2;
1103	__sub_128_128 (FS, FS, T2);
1104      } else if ((FS.w[1] == T2.w[1]) && (FS.w[0] == T2.w[0])) {
1105	CYh++;
1106	FS.w[1] = FS.w[0] = 0;
1107      } else if (FS.w[1] | FS.w[0])
1108	CYh++;
1109      break;
1110    }
1111#endif
1112#endif
1113
1114#ifdef SET_STATUS_FLAGS
1115    status = INEXACT_EXCEPTION;
1116#ifndef IEEE_ROUND_NEAREST
1117#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1118    if (!(rmode & 3))
1119#endif
1120#endif
1121    {
1122      // RN modes
1123      if ((FS.w[1] ==
1124	   round_const_table_128[0][diff_dec_expon + extra_digits].w[1])
1125	  && (FS.w[0] ==
1126	      round_const_table_128[0][diff_dec_expon +
1127				       extra_digits].w[0]))
1128	status = EXACT_STATUS;
1129    }
1130#ifndef IEEE_ROUND_NEAREST
1131#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1132    else if (!FS.w[1] && !FS.w[0])
1133      status = EXACT_STATUS;
1134#endif
1135#endif
1136
1137    __set_status_flags (fpsc, status);
1138#endif
1139
1140    return get_BID64 (sign_y, final_exponent_y, CYh, rounding_mode,
1141		      fpsc);
1142  }
1143
1144}
1145
1146//////////////////////////////////////////////////////////////////////////
1147//
1148//  If coefficient_z is less than 16 digits long, normalize to 16 digits
1149//
1150/////////////////////////////////////////////////////////////////////////
1151static UINT64
1152BID_normalize (UINT64 sign_z, int exponent_z,
1153	       UINT64 coefficient_z, UINT64 round_dir, int round_flag,
1154	       int rounding_mode, unsigned *fpsc) {
1155  SINT64 D;
1156  int_double tempx;
1157  int digits_z, bin_expon, scale, rmode;
1158
1159#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1160#ifndef IEEE_ROUND_NEAREST
1161  rmode = rounding_mode;
1162  if (sign_z && (unsigned) (rmode - 1) < 2)
1163    rmode = 3 - rmode;
1164#else
1165  if (coefficient_z >= power10_table_128[15].w[0])
1166    return z;
1167#endif
1168#endif
1169
1170  //--- get number of bits in the coefficients of x and y ---
1171  tempx.d = (double) coefficient_z;
1172  bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
1173  // get number of decimal digits in the coeff_x
1174  digits_z = estimate_decimal_digits[bin_expon];
1175  if (coefficient_z >= power10_table_128[digits_z].w[0])
1176    digits_z++;
1177
1178  scale = 16 - digits_z;
1179  exponent_z -= scale;
1180  if (exponent_z < 0) {
1181    scale += exponent_z;
1182    exponent_z = 0;
1183  }
1184  coefficient_z *= power10_table_128[scale].w[0];
1185
1186#ifdef SET_STATUS_FLAGS
1187  if (round_flag) {
1188    __set_status_flags (fpsc, INEXACT_EXCEPTION);
1189    if (coefficient_z < 1000000000000000ull)
1190      __set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
1191    else if ((coefficient_z == 1000000000000000ull) && !exponent_z
1192	     && ((SINT64) (round_dir ^ sign_z) < 0) && round_flag
1193	     && (rmode == ROUNDING_DOWN || rmode == ROUNDING_TO_ZERO))
1194      __set_status_flags (fpsc, UNDERFLOW_EXCEPTION);
1195  }
1196#endif
1197
1198#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
1199#ifndef IEEE_ROUND_NEAREST
1200  if (round_flag && (rmode & 3)) {
1201    D = round_dir ^ sign_z;
1202
1203    if (rmode == ROUNDING_UP) {
1204      if (D >= 0)
1205	coefficient_z++;
1206    } else {
1207      if (D < 0)
1208	coefficient_z--;
1209      if (coefficient_z < 1000000000000000ull && exponent_z) {
1210	coefficient_z = 9999999999999999ull;
1211	exponent_z--;
1212      }
1213    }
1214  }
1215#endif
1216#endif
1217
1218  return get_BID64 (sign_z, exponent_z, coefficient_z, rounding_mode,
1219		    fpsc);
1220}
1221
1222
1223//////////////////////////////////////////////////////////////////////////
1224//
1225//    0*10^ey + cz*10^ez,   ey<ez
1226//
1227//////////////////////////////////////////////////////////////////////////
1228
1229__BID_INLINE__ UINT64
1230add_zero64 (int exponent_y, UINT64 sign_z, int exponent_z,
1231	    UINT64 coefficient_z, unsigned *prounding_mode,
1232	    unsigned *fpsc) {
1233  int_double tempx;
1234  int bin_expon, scale_k, scale_cz;
1235  int diff_expon;
1236
1237  diff_expon = exponent_z - exponent_y;
1238
1239  tempx.d = (double) coefficient_z;
1240  bin_expon = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
1241  scale_cz = estimate_decimal_digits[bin_expon];
1242  if (coefficient_z >= power10_table_128[scale_cz].w[0])
1243    scale_cz++;
1244
1245  scale_k = 16 - scale_cz;
1246  if (diff_expon < scale_k)
1247    scale_k = diff_expon;
1248  coefficient_z *= power10_table_128[scale_k].w[0];
1249
1250  return get_BID64 (sign_z, exponent_z - scale_k, coefficient_z,
1251		    *prounding_mode, fpsc);
1252}
1253#endif
1254