1/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22<http://www.gnu.org/licenses/>.  */
23
24/*****************************************************************************
25 *    BID64 multiply
26 *****************************************************************************
27 *
28 *  Algorithm description:
29 *
30 *  if(number_digits(coefficient_x)+number_digits(coefficient_y) guaranteed
31 *       below 16)
32 *      return get_BID64(sign_x^sign_y, exponent_x + exponent_y - dec_bias,
33 *                     coefficient_x*coefficient_y)
34 *  else
35 *      get long product: coefficient_x*coefficient_y
36 *      determine number of digits to round off (extra_digits)
37 *      rounding is performed as a 128x128-bit multiplication by
38 *         2^M[extra_digits]/10^extra_digits, followed by a shift
39 *         M[extra_digits] is sufficiently large for required accuracy
40 *
41 ****************************************************************************/
42
43#include "bid_internal.h"
44
45#if DECIMAL_CALL_BY_REFERENCE
46
47void
48bid64_mul (UINT64 * pres, UINT64 * px,
49	   UINT64 *
50	   py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
51	   _EXC_INFO_PARAM) {
52  UINT64 x, y;
53#else
54
55UINT64
56bid64_mul (UINT64 x,
57	   UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
58	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
59#endif
60  UINT128 P, PU, C128, Q_high, Q_low, Stemp;
61  UINT64 sign_x, sign_y, coefficient_x, coefficient_y;
62  UINT64 C64, remainder_h, carry, CY, res;
63  UINT64 valid_x, valid_y;
64  int_double tempx, tempy;
65  int extra_digits, exponent_x, exponent_y, bin_expon_cx, bin_expon_cy,
66    bin_expon_product;
67  int rmode, digits_p, bp, amount, amount2, final_exponent, round_up;
68  unsigned status, uf_status;
69
70#if DECIMAL_CALL_BY_REFERENCE
71#if !DECIMAL_GLOBAL_ROUNDING
72  _IDEC_round rnd_mode = *prnd_mode;
73#endif
74  x = *px;
75  y = *py;
76#endif
77
78  valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
79  valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
80
81  // unpack arguments, check for NaN or Infinity
82  if (!valid_x) {
83
84#ifdef SET_STATUS_FLAGS
85    if ((y & SNAN_MASK64) == SNAN_MASK64)	// y is sNaN
86      __set_status_flags (pfpsf, INVALID_EXCEPTION);
87#endif
88    // x is Inf. or NaN
89
90    // test if x is NaN
91    if ((x & NAN_MASK64) == NAN_MASK64) {
92#ifdef SET_STATUS_FLAGS
93      if ((x & SNAN_MASK64) == SNAN_MASK64)	// sNaN
94	__set_status_flags (pfpsf, INVALID_EXCEPTION);
95#endif
96      BID_RETURN (coefficient_x & QUIET_MASK64);
97    }
98    // x is Infinity?
99    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
100      // check if y is 0
101      if (((y & INFINITY_MASK64) != INFINITY_MASK64)
102	  && !coefficient_y) {
103#ifdef SET_STATUS_FLAGS
104	__set_status_flags (pfpsf, INVALID_EXCEPTION);
105#endif
106	// y==0 , return NaN
107	BID_RETURN (NAN_MASK64);
108      }
109      // check if y is NaN
110      if ((y & NAN_MASK64) == NAN_MASK64)
111	// y==NaN , return NaN
112	BID_RETURN (coefficient_y & QUIET_MASK64);
113      // otherwise return +/-Inf
114      BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
115    }
116    // x is 0
117    if (((y & INFINITY_MASK64) != INFINITY_MASK64)) {
118      if ((y & SPECIAL_ENCODING_MASK64) == SPECIAL_ENCODING_MASK64)
119	exponent_y = ((UINT32) (y >> 51)) & 0x3ff;
120      else
121	exponent_y = ((UINT32) (y >> 53)) & 0x3ff;
122      sign_y = y & 0x8000000000000000ull;
123
124      exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
125      if (exponent_x > DECIMAL_MAX_EXPON_64)
126	exponent_x = DECIMAL_MAX_EXPON_64;
127      else if (exponent_x < 0)
128	exponent_x = 0;
129      BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
130    }
131  }
132  if (!valid_y) {
133    // y is Inf. or NaN
134
135    // test if y is NaN
136    if ((y & NAN_MASK64) == NAN_MASK64) {
137#ifdef SET_STATUS_FLAGS
138      if ((y & SNAN_MASK64) == SNAN_MASK64)	// sNaN
139	__set_status_flags (pfpsf, INVALID_EXCEPTION);
140#endif
141      BID_RETURN (coefficient_y & QUIET_MASK64);
142    }
143    // y is Infinity?
144    if ((y & INFINITY_MASK64) == INFINITY_MASK64) {
145      // check if x is 0
146      if (!coefficient_x) {
147	__set_status_flags (pfpsf, INVALID_EXCEPTION);
148	// x==0, return NaN
149	BID_RETURN (NAN_MASK64);
150      }
151      // otherwise return +/-Inf
152      BID_RETURN (((x ^ y) & 0x8000000000000000ull) | INFINITY_MASK64);
153    }
154    // y is 0
155    exponent_x += exponent_y - DECIMAL_EXPONENT_BIAS;
156    if (exponent_x > DECIMAL_MAX_EXPON_64)
157      exponent_x = DECIMAL_MAX_EXPON_64;
158    else if (exponent_x < 0)
159      exponent_x = 0;
160    BID_RETURN ((sign_x ^ sign_y) | (((UINT64) exponent_x) << 53));
161  }
162  //--- get number of bits in the coefficients of x and y ---
163  // version 2 (original)
164  tempx.d = (double) coefficient_x;
165  bin_expon_cx = ((tempx.i & MASK_BINARY_EXPONENT) >> 52);
166  tempy.d = (double) coefficient_y;
167  bin_expon_cy = ((tempy.i & MASK_BINARY_EXPONENT) >> 52);
168
169  // magnitude estimate for coefficient_x*coefficient_y is
170  //        2^(unbiased_bin_expon_cx + unbiased_bin_expon_cx)
171  bin_expon_product = bin_expon_cx + bin_expon_cy;
172
173  // check if coefficient_x*coefficient_y<2^(10*k+3)
174  // equivalent to unbiased_bin_expon_cx + unbiased_bin_expon_cx < 10*k+1
175  if (bin_expon_product < UPPER_EXPON_LIMIT + 2 * BINARY_EXPONENT_BIAS) {
176    //  easy multiply
177    C64 = coefficient_x * coefficient_y;
178
179    res =
180      get_BID64_small_mantissa (sign_x ^ sign_y,
181				exponent_x + exponent_y -
182				DECIMAL_EXPONENT_BIAS, C64, rnd_mode,
183				pfpsf);
184    BID_RETURN (res);
185  } else {
186    uf_status = 0;
187    // get 128-bit product: coefficient_x*coefficient_y
188    __mul_64x64_to_128 (P, coefficient_x, coefficient_y);
189
190    // tighten binary range of P:  leading bit is 2^bp
191    // unbiased_bin_expon_product <= bp <= unbiased_bin_expon_product+1
192    bin_expon_product -= 2 * BINARY_EXPONENT_BIAS;
193
194    __tight_bin_range_128 (bp, P, bin_expon_product);
195
196    // get number of decimal digits in the product
197    digits_p = estimate_decimal_digits[bp];
198    if (!(__unsigned_compare_gt_128 (power10_table_128[digits_p], P)))
199      digits_p++;	// if power10_table_128[digits_p] <= P
200
201    // determine number of decimal digits to be rounded out
202    extra_digits = digits_p - MAX_FORMAT_DIGITS;
203    final_exponent =
204      exponent_x + exponent_y + extra_digits - DECIMAL_EXPONENT_BIAS;
205
206#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
207#ifndef IEEE_ROUND_NEAREST
208    rmode = rnd_mode;
209    if (sign_x ^ sign_y && (unsigned) (rmode - 1) < 2)
210      rmode = 3 - rmode;
211#else
212    rmode = 0;
213#endif
214#else
215    rmode = 0;
216#endif
217
218    round_up = 0;
219    if (((unsigned) final_exponent) >= 3 * 256) {
220      if (final_exponent < 0) {
221	// underflow
222	if (final_exponent + 16 < 0) {
223	  res = sign_x ^ sign_y;
224	  __set_status_flags (pfpsf,
225			      UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
226	  if (rmode == ROUNDING_UP)
227	    res |= 1;
228	  BID_RETURN (res);
229	}
230
231	uf_status = UNDERFLOW_EXCEPTION;
232	if (final_exponent == -1) {
233	  __add_128_64 (PU, P, round_const_table[rmode][extra_digits]);
234	  if (__unsigned_compare_ge_128
235	      (PU, power10_table_128[extra_digits + 16]))
236	    uf_status = 0;
237	}
238	extra_digits -= final_exponent;
239	final_exponent = 0;
240
241	if (extra_digits > 17) {
242	  __mul_128x128_full (Q_high, Q_low, P, reciprocals10_128[16]);
243
244	  amount = recip_scale[16];
245	  __shr_128 (P, Q_high, amount);
246
247	  // get sticky bits
248	  amount2 = 64 - amount;
249	  remainder_h = 0;
250	  remainder_h--;
251	  remainder_h >>= amount2;
252	  remainder_h = remainder_h & Q_high.w[0];
253
254	  extra_digits -= 16;
255	  if (remainder_h || (Q_low.w[1] > reciprocals10_128[16].w[1]
256			      || (Q_low.w[1] ==
257				  reciprocals10_128[16].w[1]
258				  && Q_low.w[0] >=
259				  reciprocals10_128[16].w[0]))) {
260	    round_up = 1;
261	    __set_status_flags (pfpsf,
262				UNDERFLOW_EXCEPTION |
263				INEXACT_EXCEPTION);
264	    P.w[0] = (P.w[0] << 3) + (P.w[0] << 1);
265	    P.w[0] |= 1;
266	    extra_digits++;
267	  }
268	}
269      } else {
270	res =
271	  fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent,
272				   1000000000000000ull, rnd_mode,
273				   pfpsf);
274	BID_RETURN (res);
275      }
276    }
277
278
279    if (extra_digits > 0) {
280      // will divide by 10^(digits_p - 16)
281
282      // add a constant to P, depending on rounding mode
283      // 0.5*10^(digits_p - 16) for round-to-nearest
284      __add_128_64 (P, P, round_const_table[rmode][extra_digits]);
285
286      // get P*(2^M[extra_digits])/10^extra_digits
287      __mul_128x128_full (Q_high, Q_low, P,
288			  reciprocals10_128[extra_digits]);
289
290      // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
291      amount = recip_scale[extra_digits];
292      __shr_128 (C128, Q_high, amount);
293
294      C64 = __low_64 (C128);
295
296#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
297#ifndef IEEE_ROUND_NEAREST
298      if (rmode == 0)	//ROUNDING_TO_NEAREST
299#endif
300	if ((C64 & 1) && !round_up) {
301	  // check whether fractional part of initial_P/10^extra_digits
302	  // is exactly .5
303	  // this is the same as fractional part of
304	  // (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
305
306	  // get remainder
307	  remainder_h = Q_high.w[0] << (64 - amount);
308
309	  // test whether fractional part is 0
310	  if (!remainder_h
311	      && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
312		  || (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
313		      && Q_low.w[0] <
314		      reciprocals10_128[extra_digits].w[0]))) {
315	    C64--;
316	  }
317	}
318#endif
319
320#ifdef SET_STATUS_FLAGS
321      status = INEXACT_EXCEPTION | uf_status;
322
323      // get remainder
324      remainder_h = Q_high.w[0] << (64 - amount);
325
326      switch (rmode) {
327      case ROUNDING_TO_NEAREST:
328      case ROUNDING_TIES_AWAY:
329	// test whether fractional part is 0
330	if (remainder_h == 0x8000000000000000ull
331	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
332		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
333		    && Q_low.w[0] <
334		    reciprocals10_128[extra_digits].w[0])))
335	  status = EXACT_STATUS;
336	break;
337      case ROUNDING_DOWN:
338      case ROUNDING_TO_ZERO:
339	if (!remainder_h
340	    && (Q_low.w[1] < reciprocals10_128[extra_digits].w[1]
341		|| (Q_low.w[1] == reciprocals10_128[extra_digits].w[1]
342		    && Q_low.w[0] <
343		    reciprocals10_128[extra_digits].w[0])))
344	  status = EXACT_STATUS;
345	break;
346      default:
347	// round up
348	__add_carry_out (Stemp.w[0], CY, Q_low.w[0],
349			 reciprocals10_128[extra_digits].w[0]);
350	__add_carry_in_out (Stemp.w[1], carry, Q_low.w[1],
351			    reciprocals10_128[extra_digits].w[1], CY);
352	if ((remainder_h >> (64 - amount)) + carry >=
353	    (((UINT64) 1) << amount))
354	  status = EXACT_STATUS;
355      }
356
357      __set_status_flags (pfpsf, status);
358#endif
359
360      // convert to BID and return
361      res =
362	fast_get_BID64_check_OF (sign_x ^ sign_y, final_exponent, C64,
363				 rmode, pfpsf);
364      BID_RETURN (res);
365    }
366    // go to convert_format and exit
367    C64 = __low_64 (P);
368    res =
369      get_BID64 (sign_x ^ sign_y,
370		 exponent_x + exponent_y - DECIMAL_EXPONENT_BIAS, C64,
371		 rmode, pfpsf);
372    BID_RETURN (res);
373  }
374}
375