1/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22<http://www.gnu.org/licenses/>.  */
23
24/*****************************************************************************
25 *    BID64 add
26 *****************************************************************************
27 *
28 *  Algorithm description:
29 *
30 *   if(exponent_a < exponent_b)
31 *       switch a, b
32 *   diff_expon = exponent_a - exponent_b
33 *   if(diff_expon > 16)
34 *      return normalize(a)
35 *   if(coefficient_a*10^diff_expon guaranteed below 2^62)
36 *       S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b
37 *       if(|S|<10^16)
38 *           return get_BID64(sign(S),exponent_b,|S|)
39 *       else
40 *          determine number of extra digits in S (1, 2, or 3)
41 *            return rounded result
42 *   else // large exponent difference
43 *       if(number_digits(coefficient_a*10^diff_expon) +/- 10^16)
44 *          guaranteed the same as
45 *          number_digits(coefficient_a*10^diff_expon) )
46 *           S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon))
47 *           corr = 10^16 + (sign_a^sign_b)*coefficient_b
48 *           corr*10^exponent_b is rounded so it aligns with S*10^exponent_S
49 *           return get_BID64(sign_a,exponent(S),S+rounded(corr))
50 *       else
51 *         add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b
52 *             in 128-bit integer arithmetic, then round to 16 decimal digits
53 *
54 *
55 ****************************************************************************/
56
57#include "bid_internal.h"
58
59#if DECIMAL_CALL_BY_REFERENCE
60void bid64_add (UINT64 * pres, UINT64 * px,
61		UINT64 *
62		py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
63		_EXC_INFO_PARAM);
64#else
65UINT64 bid64_add (UINT64 x,
66		  UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
67		  _EXC_MASKS_PARAM _EXC_INFO_PARAM);
68#endif
69
70#if DECIMAL_CALL_BY_REFERENCE
71
72void
73bid64_sub (UINT64 * pres, UINT64 * px,
74	   UINT64 *
75	   py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
76	   _EXC_INFO_PARAM) {
77  UINT64 y = *py;
78#if !DECIMAL_GLOBAL_ROUNDING
79  _IDEC_round rnd_mode = *prnd_mode;
80#endif
81  // check if y is not NaN
82  if (((y & NAN_MASK64) != NAN_MASK64))
83    y ^= 0x8000000000000000ull;
84  bid64_add (pres, px,
85	     &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
86	     _EXC_INFO_ARG);
87}
88#else
89
90UINT64
91bid64_sub (UINT64 x,
92	   UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
93	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
94  // check if y is not NaN
95  if (((y & NAN_MASK64) != NAN_MASK64))
96    y ^= 0x8000000000000000ull;
97
98  return bid64_add (x,
99		    y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
100		    _EXC_INFO_ARG);
101}
102#endif
103
104
105
106#if DECIMAL_CALL_BY_REFERENCE
107
108void
109bid64_add (UINT64 * pres, UINT64 * px,
110	   UINT64 *
111	   py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
112	   _EXC_INFO_PARAM) {
113  UINT64 x, y;
114#else
115
116UINT64
117bid64_add (UINT64 x,
118	   UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
119	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
120#endif
121
122  UINT128 CA, CT, CT_new;
123  UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new;
124  UINT64 valid_x, valid_y;
125  UINT64 res;
126  UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
127    rem_a;
128  UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp;
129  int_double tempx;
130  int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon;
131  int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
132  unsigned rmode, status;
133
134#if DECIMAL_CALL_BY_REFERENCE
135#if !DECIMAL_GLOBAL_ROUNDING
136  _IDEC_round rnd_mode = *prnd_mode;
137#endif
138  x = *px;
139  y = *py;
140#endif
141
142  valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
143  valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);
144
145  // unpack arguments, check for NaN or Infinity
146  if (!valid_x) {
147    // x is Inf. or NaN
148
149    // test if x is NaN
150    if ((x & NAN_MASK64) == NAN_MASK64) {
151#ifdef SET_STATUS_FLAGS
152      if (((x & SNAN_MASK64) == SNAN_MASK64)	// sNaN
153	  || ((y & SNAN_MASK64) == SNAN_MASK64))
154	__set_status_flags (pfpsf, INVALID_EXCEPTION);
155#endif
156      res = coefficient_x & QUIET_MASK64;
157      BID_RETURN (res);
158    }
159    // x is Infinity?
160    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
161      // check if y is Inf
162      if (((y & NAN_MASK64) == INFINITY_MASK64)) {
163	if (sign_x == (y & 0x8000000000000000ull)) {
164	  res = coefficient_x;
165	  BID_RETURN (res);
166	}
167	// return NaN
168	{
169#ifdef SET_STATUS_FLAGS
170	  __set_status_flags (pfpsf, INVALID_EXCEPTION);
171#endif
172	  res = NAN_MASK64;
173	  BID_RETURN (res);
174	}
175      }
176      // check if y is NaN
177      if (((y & NAN_MASK64) == NAN_MASK64)) {
178	res = coefficient_y & QUIET_MASK64;
179#ifdef SET_STATUS_FLAGS
180	if (((y & SNAN_MASK64) == SNAN_MASK64))
181	  __set_status_flags (pfpsf, INVALID_EXCEPTION);
182#endif
183	BID_RETURN (res);
184      }
185      // otherwise return +/-Inf
186      {
187	res = coefficient_x;
188	BID_RETURN (res);
189      }
190    }
191    // x is 0
192    {
193      if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) {
194	if (exponent_y <= exponent_x) {
195	  res = y;
196	  BID_RETURN (res);
197	}
198      }
199    }
200
201  }
202  if (!valid_y) {
203    // y is Inf. or NaN?
204    if (((y & INFINITY_MASK64) == INFINITY_MASK64)) {
205#ifdef SET_STATUS_FLAGS
206      if ((y & SNAN_MASK64) == SNAN_MASK64)	// sNaN
207	__set_status_flags (pfpsf, INVALID_EXCEPTION);
208#endif
209      res = coefficient_y & QUIET_MASK64;
210      BID_RETURN (res);
211    }
212    // y is 0
213    if (!coefficient_x) {	// x==0
214      if (exponent_x <= exponent_y)
215	res = ((UINT64) exponent_x) << 53;
216      else
217	res = ((UINT64) exponent_y) << 53;
218      if (sign_x == sign_y)
219	res |= sign_x;
220#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
221#ifndef IEEE_ROUND_NEAREST
222      if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y)
223	res |= 0x8000000000000000ull;
224#endif
225#endif
226      BID_RETURN (res);
227    } else if (exponent_y >= exponent_x) {
228      res = x;
229      BID_RETURN (res);
230    }
231  }
232  // sort arguments by exponent
233  if (exponent_x < exponent_y) {
234    sign_a = sign_y;
235    exponent_a = exponent_y;
236    coefficient_a = coefficient_y;
237    sign_b = sign_x;
238    exponent_b = exponent_x;
239    coefficient_b = coefficient_x;
240  } else {
241    sign_a = sign_x;
242    exponent_a = exponent_x;
243    coefficient_a = coefficient_x;
244    sign_b = sign_y;
245    exponent_b = exponent_y;
246    coefficient_b = coefficient_y;
247  }
248
249  // exponent difference
250  diff_dec_expon = exponent_a - exponent_b;
251
252  /* get binary coefficients of x and y */
253
254  //--- get number of bits in the coefficients of x and y ---
255
256  // version 2 (original)
257  tempx.d = (double) coefficient_a;
258  bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
259
260  if (diff_dec_expon > MAX_FORMAT_DIGITS) {
261    // normalize a to a 16-digit coefficient
262
263    scale_ca = estimate_decimal_digits[bin_expon_ca];
264    if (coefficient_a >= power10_table_128[scale_ca].w[0])
265      scale_ca++;
266
267    scale_k = 16 - scale_ca;
268
269    coefficient_a *= power10_table_128[scale_k].w[0];
270
271    diff_dec_expon -= scale_k;
272    exponent_a -= scale_k;
273
274    /* get binary coefficients of x and y */
275
276    //--- get number of bits in the coefficients of x and y ---
277    tempx.d = (double) coefficient_a;
278    bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;
279
280    if (diff_dec_expon > MAX_FORMAT_DIGITS) {
281#ifdef SET_STATUS_FLAGS
282      if (coefficient_b) {
283	__set_status_flags (pfpsf, INEXACT_EXCEPTION);
284      }
285#endif
286
287#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
288#ifndef IEEE_ROUND_NEAREST
289      if (((rnd_mode) & 3) && coefficient_b)	// not ROUNDING_TO_NEAREST
290      {
291	switch (rnd_mode) {
292	case ROUNDING_DOWN:
293	  if (sign_b) {
294	    coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
295	    if (coefficient_a < 1000000000000000ull) {
296	      exponent_a--;
297	      coefficient_a = 9999999999999999ull;
298	    } else if (coefficient_a >= 10000000000000000ull) {
299	      exponent_a++;
300	      coefficient_a = 1000000000000000ull;
301	    }
302	  }
303	  break;
304	case ROUNDING_UP:
305	  if (!sign_b) {
306	    coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
307	    if (coefficient_a < 1000000000000000ull) {
308	      exponent_a--;
309	      coefficient_a = 9999999999999999ull;
310	    } else if (coefficient_a >= 10000000000000000ull) {
311	      exponent_a++;
312	      coefficient_a = 1000000000000000ull;
313	    }
314	  }
315	  break;
316	default:	// RZ
317	  if (sign_a != sign_b) {
318	    coefficient_a--;
319	    if (coefficient_a < 1000000000000000ull) {
320	      exponent_a--;
321	      coefficient_a = 9999999999999999ull;
322	    }
323	  }
324	  break;
325	}
326      } else
327#endif
328#endif
329	// check special case here
330	if ((coefficient_a == 1000000000000000ull)
331	    && (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
332	    && (sign_a ^ sign_b)
333	    && (coefficient_b > 5000000000000000ull)) {
334	coefficient_a = 9999999999999999ull;
335	exponent_a--;
336      }
337
338      res =
339	fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a,
340				 rnd_mode, pfpsf);
341      BID_RETURN (res);
342    }
343  }
344  // test whether coefficient_a*10^(exponent_a-exponent_b)  may exceed 2^62
345  if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
346    // coefficient_a*10^(exponent_a-exponent_b)<2^63
347
348    // multiply by 10^(exponent_a-exponent_b)
349    coefficient_a *= power10_table_128[diff_dec_expon].w[0];
350
351    // sign mask
352    sign_b = ((SINT64) sign_b) >> 63;
353    // apply sign to coeff. of b
354    coefficient_b = (coefficient_b + sign_b) ^ sign_b;
355
356    // apply sign to coefficient a
357    sign_a = ((SINT64) sign_a) >> 63;
358    coefficient_a = (coefficient_a + sign_a) ^ sign_a;
359
360    coefficient_a += coefficient_b;
361    // get sign
362    sign_s = ((SINT64) coefficient_a) >> 63;
363    coefficient_a = (coefficient_a + sign_s) ^ sign_s;
364    sign_s &= 0x8000000000000000ull;
365
366    // coefficient_a < 10^16 ?
367    if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
368#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
369#ifndef IEEE_ROUND_NEAREST
370      if (rnd_mode == ROUNDING_DOWN && (!coefficient_a)
371	  && sign_a != sign_b)
372	sign_s = 0x8000000000000000ull;
373#endif
374#endif
375      res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a);
376      BID_RETURN (res);
377    }
378    // otherwise rounding is necessary
379
380    // already know coefficient_a<10^19
381    // coefficient_a < 10^17 ?
382    if (coefficient_a < power10_table_128[17].w[0])
383      extra_digits = 1;
384    else if (coefficient_a < power10_table_128[18].w[0])
385      extra_digits = 2;
386    else
387      extra_digits = 3;
388
389#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
390#ifndef IEEE_ROUND_NEAREST
391    rmode = rnd_mode;
392    if (sign_s && (unsigned) (rmode - 1) < 2)
393      rmode = 3 - rmode;
394#else
395    rmode = 0;
396#endif
397#else
398    rmode = 0;
399#endif
400    coefficient_a += round_const_table[rmode][extra_digits];
401
402    // get P*(2^M[extra_digits])/10^extra_digits
403    __mul_64x64_to_128 (CT, coefficient_a,
404			reciprocals10_64[extra_digits]);
405
406    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
407    amount = short_recip_scale[extra_digits];
408    C64 = CT.w[1] >> amount;
409
410  } else {
411    // coefficient_a*10^(exponent_a-exponent_b) is large
412    sign_s = sign_a;
413
414#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
415#ifndef IEEE_ROUND_NEAREST
416    rmode = rnd_mode;
417    if (sign_s && (unsigned) (rmode - 1) < 2)
418      rmode = 3 - rmode;
419#else
420    rmode = 0;
421#endif
422#else
423    rmode = 0;
424#endif
425
426    // check whether we can take faster path
427    scale_ca = estimate_decimal_digits[bin_expon_ca];
428
429    sign_ab = sign_a ^ sign_b;
430    sign_ab = ((SINT64) sign_ab) >> 63;
431
432    // T1 = 10^(16-diff_dec_expon)
433    T1 = power10_table_128[16 - diff_dec_expon].w[0];
434
435    // get number of digits in coefficient_a
436    if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
437      scale_ca++;
438    }
439
440    scale_k = 16 - scale_ca;
441
442    // addition
443    saved_ca = coefficient_a - T1;
444    coefficient_a =
445      (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
446    extra_digits = diff_dec_expon - scale_k;
447
448    // apply sign
449    saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
450    // add 10^16 and rounding constant
451    coefficient_b =
452      saved_cb + 10000000000000000ull +
453      round_const_table[rmode][extra_digits];
454
455    // get P*(2^M[extra_digits])/10^extra_digits
456    __mul_64x64_to_128 (CT, coefficient_b,
457			reciprocals10_64[extra_digits]);
458
459    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
460    amount = short_recip_scale[extra_digits];
461    C0_64 = CT.w[1] >> amount;
462
463    // result coefficient
464    C64 = C0_64 + coefficient_a;
465    // filter out difficult (corner) cases
466    // this test ensures the number of digits in coefficient_a does not change
467    // after adding (the appropriately scaled and rounded) coefficient_b
468    if ((UINT64) (C64 - 1000000000000000ull - 1) >
469	9000000000000000ull - 2) {
470      if (C64 >= 10000000000000000ull) {
471	// result has more than 16 digits
472	if (!scale_k) {
473	  // must divide coeff_a by 10
474	  saved_ca = saved_ca + T1;
475	  __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
476	  //reciprocals10_64[1]);
477	  coefficient_a = CA.w[1] >> 1;
478	  rem_a =
479	    saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
480	  coefficient_a = coefficient_a - T1;
481
482	  saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0];
483	} else
484	  coefficient_a =
485	    (SINT64) (saved_ca - T1 -
486		      (T1 << 3)) * (SINT64) power10_table_128[scale_k -
487							      1].w[0];
488
489	extra_digits++;
490	coefficient_b =
491	  saved_cb + 100000000000000000ull +
492	  round_const_table[rmode][extra_digits];
493
494	// get P*(2^M[extra_digits])/10^extra_digits
495	__mul_64x64_to_128 (CT, coefficient_b,
496			    reciprocals10_64[extra_digits]);
497
498	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
499	amount = short_recip_scale[extra_digits];
500	C0_64 = CT.w[1] >> amount;
501
502	// result coefficient
503	C64 = C0_64 + coefficient_a;
504      } else if (C64 <= 1000000000000000ull) {
505	// less than 16 digits in result
506	coefficient_a =
507	  (SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
508							1].w[0];
509	//extra_digits --;
510	exponent_b--;
511	coefficient_b =
512	  (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
513	  round_const_table[rmode][extra_digits];
514
515	// get P*(2^M[extra_digits])/10^extra_digits
516	__mul_64x64_to_128 (CT_new, coefficient_b,
517			    reciprocals10_64[extra_digits]);
518
519	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
520	amount = short_recip_scale[extra_digits];
521	C0_64 = CT_new.w[1] >> amount;
522
523	// result coefficient
524	C64_new = C0_64 + coefficient_a;
525	if (C64_new < 10000000000000000ull) {
526	  C64 = C64_new;
527#ifdef SET_STATUS_FLAGS
528	  CT = CT_new;
529#endif
530	} else
531	  exponent_b++;
532      }
533
534    }
535
536  }
537
538#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
539#ifndef IEEE_ROUND_NEAREST
540  if (rmode == 0)	//ROUNDING_TO_NEAREST
541#endif
542    if (C64 & 1) {
543      // check whether fractional part of initial_P/10^extra_digits is
544      // exactly .5
545      // this is the same as fractional part of
546      //      (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero
547
548      // get remainder
549      remainder_h = CT.w[1] << (64 - amount);
550
551      // test whether fractional part is 0
552      if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
553	C64--;
554      }
555    }
556#endif
557
558#ifdef SET_STATUS_FLAGS
559  status = INEXACT_EXCEPTION;
560
561  // get remainder
562  remainder_h = CT.w[1] << (64 - amount);
563
564  switch (rmode) {
565  case ROUNDING_TO_NEAREST:
566  case ROUNDING_TIES_AWAY:
567    // test whether fractional part is 0
568    if ((remainder_h == 0x8000000000000000ull)
569	&& (CT.w[0] < reciprocals10_64[extra_digits]))
570      status = EXACT_STATUS;
571    break;
572  case ROUNDING_DOWN:
573  case ROUNDING_TO_ZERO:
574    if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
575      status = EXACT_STATUS;
576    //if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y;
577    break;
578  default:
579    // round up
580    __add_carry_out (tmp, carry, CT.w[0],
581		     reciprocals10_64[extra_digits]);
582    if ((remainder_h >> (64 - amount)) + carry >=
583	(((UINT64) 1) << amount))
584      status = EXACT_STATUS;
585    break;
586  }
587  __set_status_flags (pfpsf, status);
588
589#endif
590
591  res =
592    fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64,
593			     rnd_mode, pfpsf);
594  BID_RETURN (res);
595}
596