1/* Instruction scheduling pass.  Selective scheduler and pipeliner.
2   Copyright (C) 2006-2022 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
27#include "memmodel.h"
28#include "tm_p.h"
29#include "regs.h"
30#include "cfgbuild.h"
31#include "cfgcleanup.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "target.h"
35#include "sched-int.h"
36#include "rtlhooks-def.h"
37#include "ira.h"
38#include "ira-int.h"
39#include "rtl-iter.h"
40
41#ifdef INSN_SCHEDULING
42#include "regset.h"
43#include "cfgloop.h"
44#include "sel-sched-ir.h"
45#include "sel-sched-dump.h"
46#include "sel-sched.h"
47#include "dbgcnt.h"
48#include "function-abi.h"
49
50/* Implementation of selective scheduling approach.
51   The below implementation follows the original approach with the following
52   changes:
53
54   o the scheduler works after register allocation (but can be also tuned
55   to work before RA);
56   o some instructions are not copied or register renamed;
57   o conditional jumps are not moved with code duplication;
58   o several jumps in one parallel group are not supported;
59   o when pipelining outer loops, code motion through inner loops
60   is not supported;
61   o control and data speculation are supported;
62   o some improvements for better compile time/performance were made.
63
64   Terminology
65   ===========
66
67   A vinsn, or virtual insn, is an insn with additional data characterizing
68   insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69   Vinsns also act as smart pointers to save memory by reusing them in
70   different expressions.  A vinsn is described by vinsn_t type.
71
72   An expression is a vinsn with additional data characterizing its properties
73   at some point in the control flow graph.  The data may be its usefulness,
74   priority, speculative status, whether it was renamed/subsituted, etc.
75   An expression is described by expr_t type.
76
77   Availability set (av_set) is a set of expressions at a given control flow
78   point. It is represented as av_set_t.  The expressions in av sets are kept
79   sorted in the terms of expr_greater_p function.  It allows to truncate
80   the set while leaving the best expressions.
81
82   A fence is a point through which code motion is prohibited.  On each step,
83   we gather a parallel group of insns at a fence.  It is possible to have
84   multiple fences. A fence is represented via fence_t.
85
86   A boundary is the border between the fence group and the rest of the code.
87   Currently, we never have more than one boundary per fence, as we finalize
88   the fence group when a jump is scheduled. A boundary is represented
89   via bnd_t.
90
91   High-level overview
92   ===================
93
94   The scheduler finds regions to schedule, schedules each one, and finalizes.
95   The regions are formed starting from innermost loops, so that when the inner
96   loop is pipelined, its prologue can be scheduled together with yet unprocessed
97   outer loop. The rest of acyclic regions are found using extend_rgns:
98   the blocks that are not yet allocated to any regions are traversed in top-down
99   order, and a block is added to a region to which all its predecessors belong;
100   otherwise, the block starts its own region.
101
102   The main scheduling loop (sel_sched_region_2) consists of just
103   scheduling on each fence and updating fences.  For each fence,
104   we fill a parallel group of insns (fill_insns) until some insns can be added.
105   First, we compute available exprs (av-set) at the boundary of the current
106   group.  Second, we choose the best expression from it.  If the stall is
107   required to schedule any of the expressions, we advance the current cycle
108   appropriately.  So, the final group does not exactly correspond to a VLIW
109   word.  Third, we move the chosen expression to the boundary (move_op)
110   and update the intermediate av sets and liveness sets.  We quit fill_insns
111   when either no insns left for scheduling or we have scheduled enough insns
112   so we feel like advancing a scheduling point.
113
114   Computing available expressions
115   ===============================
116
117   The computation (compute_av_set) is a bottom-up traversal.  At each insn,
118   we're moving the union of its successors' sets through it via
119   moveup_expr_set.  The dependent expressions are removed.  Local
120   transformations (substitution, speculation) are applied to move more
121   exprs.  Then the expr corresponding to the current insn is added.
122   The result is saved on each basic block header.
123
124   When traversing the CFG, we're moving down for no more than max_ws insns.
125   Also, we do not move down to ineligible successors (is_ineligible_successor),
126   which include moving along a back-edge, moving to already scheduled code,
127   and moving to another fence.  The first two restrictions are lifted during
128   pipelining, which allows us to move insns along a back-edge.  We always have
129   an acyclic region for scheduling because we forbid motion through fences.
130
131   Choosing the best expression
132   ============================
133
134   We sort the final availability set via sel_rank_for_schedule, then we remove
135   expressions which are not yet ready (tick_check_p) or which dest registers
136   cannot be used.  For some of them, we choose another register via
137   find_best_reg.  To do this, we run find_used_regs to calculate the set of
138   registers which cannot be used.  The find_used_regs function performs
139   a traversal of code motion paths for an expr.  We consider for renaming
140   only registers which are from the same regclass as the original one and
141   using which does not interfere with any live ranges.  Finally, we convert
142   the resulting set to the ready list format and use max_issue and reorder*
143   hooks similarly to the Haifa scheduler.
144
145   Scheduling the best expression
146   ==============================
147
148   We run the move_op routine to perform the same type of code motion paths
149   traversal as in find_used_regs.  (These are working via the same driver,
150   code_motion_path_driver.)  When moving down the CFG, we look for original
151   instruction that gave birth to a chosen expression.  We undo
152   the transformations performed on an expression via the history saved in it.
153   When found, we remove the instruction or leave a reg-reg copy/speculation
154   check if needed.  On a way up, we insert bookkeeping copies at each join
155   point.  If a copy is not needed, it will be removed later during this
156   traversal.  We update the saved av sets and liveness sets on the way up, too.
157
158   Finalizing the schedule
159   =======================
160
161   When pipelining, we reschedule the blocks from which insns were pipelined
162   to get a tighter schedule.  On Itanium, we also perform bundling via
163   the same routine from ia64.cc.
164
165   Dependence analysis changes
166   ===========================
167
168   We augmented the sched-deps.cc with hooks that get called when a particular
169   dependence is found in a particular part of an insn.  Using these hooks, we
170   can do several actions such as: determine whether an insn can be moved through
171   another (has_dependence_p, moveup_expr); find out whether an insn can be
172   scheduled on the current cycle (tick_check_p); find out registers that
173   are set/used/clobbered by an insn and find out all the strange stuff that
174   restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
175   init_global_and_expr_for_insn).
176
177   Initialization changes
178   ======================
179
180   There are parts of haifa-sched.cc, sched-deps.cc, and sched-rgn.cc that are
181   reused in all of the schedulers.  We have split up the initialization of data
182   of such parts into different functions prefixed with scheduler type and
183   postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184   sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
185   The same splitting is done with current_sched_info structure:
186   dependence-related parts are in sched_deps_info, common part is in
187   common_sched_info, and haifa/sel/etc part is in current_sched_info.
188
189   Target contexts
190   ===============
191
192   As we now have multiple-point scheduling, this would not work with backends
193   which save some of the scheduler state to use it in the target hooks.
194   For this purpose, we introduce a concept of target contexts, which
195   encapsulate such information.  The backend should implement simple routines
196   of allocating/freeing/setting such a context.  The scheduler calls these
197   as target hooks and handles the target context as an opaque pointer (similar
198   to the DFA state type, state_t).
199
200   Various speedups
201   ================
202
203   As the correct data dependence graph is not supported during scheduling (which
204   is to be changed in mid-term), we cache as much of the dependence analysis
205   results as possible to avoid reanalyzing.  This includes: bitmap caches on
206   each insn in stream of the region saying yes/no for a query with a pair of
207   UIDs; hashtables with the previously done transformations on each insn in
208   stream; a vector keeping a history of transformations on each expr.
209
210   Also, we try to minimize the dependence context used on each fence to check
211   whether the given expression is ready for scheduling by removing from it
212   insns that are definitely completed the execution.  The results of
213   tick_check_p checks are also cached in a vector on each fence.
214
215   We keep a valid liveness set on each insn in a region to avoid the high
216   cost of recomputation on large basic blocks.
217
218   Finally, we try to minimize the number of needed updates to the availability
219   sets.  The updates happen in two cases: when fill_insns terminates,
220   we advance all fences and increase the stage number to show that the region
221   has changed and the sets are to be recomputed; and when the next iteration
222   of a loop in fill_insns happens (but this one reuses the saved av sets
223   on bb headers.)  Thus, we try to break the fill_insns loop only when
224   "significant" number of insns from the current scheduling window was
225   scheduled.  This should be made a target param.
226
227
228   TODO: correctly support the data dependence graph at all stages and get rid
229   of all caches.  This should speed up the scheduler.
230   TODO: implement moving cond jumps with bookkeeping copies on both targets.
231   TODO: tune the scheduler before RA so it does not create too much pseudos.
232
233
234   References:
235   S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
236   selective scheduling and software pipelining.
237   ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
238
239   Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240   and Dmitry Zhurikhin.  An interblock VLIW-targeted instruction scheduler
241   for GCC. In Proceedings of GCC Developers' Summit 2006.
242
243   Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik.  GCC Instruction
244   Scheduler and Software Pipeliner on the Itanium Platform.   EPIC-7 Workshop.
245   http://rogue.colorado.edu/EPIC7/.
246
247*/
248
249/* True when pipelining is enabled.  */
250bool pipelining_p;
251
252/* True if bookkeeping is enabled.  */
253bool bookkeeping_p;
254
255/* Maximum number of insns that are eligible for renaming.  */
256int max_insns_to_rename;
257
258
259/* Definitions of local types and macros.  */
260
261/* Represents possible outcomes of moving an expression through an insn.  */
262enum MOVEUP_EXPR_CODE
263  {
264    /* The expression is not changed.  */
265    MOVEUP_EXPR_SAME,
266
267    /* Not changed, but requires a new destination register.  */
268    MOVEUP_EXPR_AS_RHS,
269
270    /* Cannot be moved.  */
271    MOVEUP_EXPR_NULL,
272
273    /* Changed (substituted or speculated).  */
274    MOVEUP_EXPR_CHANGED
275  };
276
277/* The container to be passed into rtx search & replace functions.  */
278struct rtx_search_arg
279{
280  /* What we are searching for.  */
281  rtx x;
282
283  /* The occurrence counter.  */
284  int n;
285};
286
287typedef struct rtx_search_arg *rtx_search_arg_p;
288
289/* This struct contains precomputed hard reg sets that are needed when
290   computing registers available for renaming.  */
291struct hard_regs_data
292{
293  /* For every mode, this stores registers available for use with
294     that mode.  */
295  HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296
297  /* True when regs_for_mode[mode] is initialized.  */
298  bool regs_for_mode_ok[NUM_MACHINE_MODES];
299
300  /* For every register, it has regs that are ok to rename into it.
301     The register in question is always set.  If not, this means
302     that the whole set is not computed yet.  */
303  HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304
305  /* All registers that are used or call used.  */
306  HARD_REG_SET regs_ever_used;
307
308#ifdef STACK_REGS
309  /* Stack registers.  */
310  HARD_REG_SET stack_regs;
311#endif
312};
313
314/* Holds the results of computation of available for renaming and
315   unavailable hard registers.  */
316struct reg_rename
317{
318  /* These are unavailable due to calls crossing, globalness, etc.  */
319  HARD_REG_SET unavailable_hard_regs;
320
321  /* These are *available* for renaming.  */
322  HARD_REG_SET available_for_renaming;
323
324  /* The set of ABIs used by calls that the code motion path crosses.  */
325  unsigned int crossed_call_abis : NUM_ABI_IDS;
326};
327
328/* A global structure that contains the needed information about harg
329   regs.  */
330static struct hard_regs_data sel_hrd;
331
332
333/* This structure holds local data used in code_motion_path_driver hooks on
334   the same or adjacent levels of recursion.  Here we keep those parameters
335   that are not used in code_motion_path_driver routine itself, but only in
336   its hooks.  Moreover, all parameters that can be modified in hooks are
337   in this structure, so all other parameters passed explicitly to hooks are
338   read-only.  */
339struct cmpd_local_params
340{
341  /* Local params used in move_op_* functions.  */
342
343  /* Edges for bookkeeping generation.  */
344  edge e1, e2;
345
346  /* C_EXPR merged from all successors and locally allocated temporary C_EXPR.  */
347  expr_t c_expr_merged, c_expr_local;
348
349  /* Local params used in fur_* functions.  */
350  /* Copy of the ORIGINAL_INSN list, stores the original insns already
351     found before entering the current level of code_motion_path_driver.  */
352  def_list_t old_original_insns;
353
354  /* Local params used in move_op_* functions.  */
355  /* True when we have removed last insn in the block which was
356     also a boundary.  Do not update anything or create bookkeeping copies.  */
357  BOOL_BITFIELD removed_last_insn : 1;
358};
359
360/* Stores the static parameters for move_op_* calls.  */
361struct moveop_static_params
362{
363  /* Destination register.  */
364  rtx dest;
365
366  /* Current C_EXPR.  */
367  expr_t c_expr;
368
369  /* An UID of expr_vliw which is to be moved up.  If we find other exprs,
370     they are to be removed.  */
371  int uid;
372
373  /* This is initialized to the insn on which the driver stopped its traversal.  */
374  insn_t failed_insn;
375
376  /* True if we scheduled an insn with different register.  */
377  bool was_renamed;
378};
379
380/* Stores the static parameters for fur_* calls.  */
381struct fur_static_params
382{
383  /* Set of registers unavailable on the code motion path.  */
384  regset used_regs;
385
386  /* Pointer to the list of original insns definitions.  */
387  def_list_t *original_insns;
388
389  /* The set of ABIs used by calls that the code motion path crosses.  */
390  unsigned int crossed_call_abis : NUM_ABI_IDS;
391};
392
393typedef struct fur_static_params *fur_static_params_p;
394typedef struct cmpd_local_params *cmpd_local_params_p;
395typedef struct moveop_static_params *moveop_static_params_p;
396
397/* Set of hooks and parameters that determine behavior specific to
398   move_op or find_used_regs functions.  */
399struct code_motion_path_driver_info_def
400{
401  /* Called on enter to the basic block.  */
402  int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
403
404  /* Called when original expr is found.  */
405  void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
406
407  /* Called while descending current basic block if current insn is not
408     the original EXPR we're searching for.  */
409  bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
410
411  /* Function to merge C_EXPRes from different successors.  */
412  void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
413
414  /* Function to finalize merge from different successors and possibly
415     deallocate temporary data structures used for merging.  */
416  void (*after_merge_succs) (cmpd_local_params_p, void *);
417
418  /* Called on the backward stage of recursion to do moveup_expr.
419     Used only with move_op_*.  */
420  void (*ascend) (insn_t, void *);
421
422  /* Called on the ascending pass, before returning from the current basic
423     block or from the whole traversal.  */
424  void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
425
426  /* When processing successors in move_op we need only descend into
427     SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL.  */
428  int succ_flags;
429
430  /* The routine name to print in dumps ("move_op" of "find_used_regs").  */
431  const char *routine_name;
432};
433
434/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
435   FUR_HOOKS.  */
436struct code_motion_path_driver_info_def *code_motion_path_driver_info;
437
438/* Set of hooks for performing move_op and find_used_regs routines with
439   code_motion_path_driver.  */
440extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
441
442/* True if/when we want to emulate Haifa scheduler in the common code.
443   This is used in sched_rgn_local_init and in various places in
444   sched-deps.cc.  */
445int sched_emulate_haifa_p;
446
447/* GLOBAL_LEVEL is used to discard information stored in basic block headers
448   av_sets.  Av_set of bb header is valid if its (bb header's) level is equal
449   to GLOBAL_LEVEL.  And invalid if lesser.  This is primarily used to advance
450   scheduling window.  */
451int global_level;
452
453/* Current fences.  */
454flist_t fences;
455
456/* True when separable insns should be scheduled as RHSes.  */
457static bool enable_schedule_as_rhs_p;
458
459/* Used in verify_target_availability to assert that target reg is reported
460   unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
461   we haven't scheduled anything on the previous fence.
462   if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
463   have more conservative value than the one returned by the
464   find_used_regs, thus we shouldn't assert that these values are equal.  */
465static bool scheduled_something_on_previous_fence;
466
467/* All newly emitted insns will have their uids greater than this value.  */
468static int first_emitted_uid;
469
470/* Set of basic blocks that are forced to start new ebbs.  This is a subset
471   of all the ebb heads.  */
472bitmap forced_ebb_heads;
473
474/* Blocks that need to be rescheduled after pipelining.  */
475bitmap blocks_to_reschedule = NULL;
476
477/* True when the first lv set should be ignored when updating liveness.  */
478static bool ignore_first = false;
479
480/* Number of insns max_issue has initialized data structures for.  */
481static int max_issue_size = 0;
482
483/* Whether we can issue more instructions.  */
484static int can_issue_more;
485
486/* Maximum software lookahead window size, reduced when rescheduling after
487   pipelining.  */
488static int max_ws;
489
490/* Number of insns scheduled in current region.  */
491static int num_insns_scheduled;
492
493/* A vector of expressions is used to be able to sort them.  */
494static vec<expr_t> vec_av_set;
495
496/* A vector of vinsns is used to hold temporary lists of vinsns.  */
497typedef vec<vinsn_t> vinsn_vec_t;
498
499/* This vector has the exprs which may still present in av_sets, but actually
500   can't be moved up due to bookkeeping created during code motion to another
501   fence.  See comment near the call to update_and_record_unavailable_insns
502   for the detailed explanations.  */
503static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
504
505/* This vector has vinsns which are scheduled with renaming on the first fence
506   and then seen on the second.  For expressions with such vinsns, target
507   availability information may be wrong.  */
508static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
509
510/* Vector to store temporary nops inserted in move_op to prevent removal
511   of empty bbs.  */
512static vec<insn_t> vec_temp_moveop_nops;
513
514/* These bitmaps record original instructions scheduled on the current
515   iteration and bookkeeping copies created by them.  */
516static bitmap current_originators = NULL;
517static bitmap current_copies = NULL;
518
519/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
520   visit them afterwards.  */
521static bitmap code_motion_visited_blocks = NULL;
522
523/* Variables to accumulate different statistics.  */
524
525/* The number of bookkeeping copies created.  */
526static int stat_bookkeeping_copies;
527
528/* The number of insns that required bookkeeiping for their scheduling.  */
529static int stat_insns_needed_bookkeeping;
530
531/* The number of insns that got renamed.  */
532static int stat_renamed_scheduled;
533
534/* The number of substitutions made during scheduling.  */
535static int stat_substitutions_total;
536
537
538/* Forward declarations of static functions.  */
539static bool rtx_ok_for_substitution_p (rtx, rtx);
540static int sel_rank_for_schedule (const void *, const void *);
541static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
542static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
543
544static rtx get_dest_from_orig_ops (av_set_t);
545static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
546static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
547                            def_list_t *);
548static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
549static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
550                                    cmpd_local_params_p, void *);
551static void sel_sched_region_1 (void);
552static void sel_sched_region_2 (int);
553static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
554
555static void debug_state (state_t);
556
557
558/* Functions that work with fences.  */
559
560/* Advance one cycle on FENCE.  */
561static void
562advance_one_cycle (fence_t fence)
563{
564  unsigned i;
565  int cycle;
566  rtx_insn *insn;
567
568  advance_state (FENCE_STATE (fence));
569  cycle = ++FENCE_CYCLE (fence);
570  FENCE_ISSUED_INSNS (fence) = 0;
571  FENCE_STARTS_CYCLE_P (fence) = 1;
572  can_issue_more = issue_rate;
573  FENCE_ISSUE_MORE (fence) = can_issue_more;
574
575  for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
576    {
577      if (INSN_READY_CYCLE (insn) < cycle)
578        {
579          remove_from_deps (FENCE_DC (fence), insn);
580          FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
581          continue;
582        }
583      i++;
584    }
585  if (sched_verbose >= 2)
586    {
587      sel_print ("Finished a cycle.  Current cycle = %d\n", FENCE_CYCLE (fence));
588      debug_state (FENCE_STATE (fence));
589    }
590}
591
592/* Returns true when SUCC in a fallthru bb of INSN, possibly
593   skipping empty basic blocks.  */
594static bool
595in_fallthru_bb_p (rtx_insn *insn, rtx succ)
596{
597  basic_block bb = BLOCK_FOR_INSN (insn);
598  edge e;
599
600  if (bb == BLOCK_FOR_INSN (succ))
601    return true;
602
603  e = find_fallthru_edge_from (bb);
604  if (e)
605    bb = e->dest;
606  else
607    return false;
608
609  while (sel_bb_empty_p (bb))
610    bb = bb->next_bb;
611
612  return bb == BLOCK_FOR_INSN (succ);
613}
614
615/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
616   When a successor will continue a ebb, transfer all parameters of a fence
617   to the new fence.  ORIG_MAX_SEQNO is the maximal seqno before this round
618   of scheduling helping to distinguish between the old and the new code.  */
619static void
620extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
621			 int orig_max_seqno)
622{
623  bool was_here_p = false;
624  insn_t insn = NULL;
625  insn_t succ;
626  succ_iterator si;
627  ilist_iterator ii;
628  fence_t fence = FLIST_FENCE (old_fences);
629  basic_block bb;
630
631  /* Get the only element of FENCE_BNDS (fence).  */
632  FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
633    {
634      gcc_assert (!was_here_p);
635      was_here_p = true;
636    }
637  gcc_assert (was_here_p && insn != NULL_RTX);
638
639  /* When in the "middle" of the block, just move this fence
640     to the new list.  */
641  bb = BLOCK_FOR_INSN (insn);
642  if (! sel_bb_end_p (insn)
643      || (single_succ_p (bb)
644          && single_pred_p (single_succ (bb))))
645    {
646      insn_t succ;
647
648      succ = (sel_bb_end_p (insn)
649              ? sel_bb_head (single_succ (bb))
650              : NEXT_INSN (insn));
651
652      if (INSN_SEQNO (succ) > 0
653          && INSN_SEQNO (succ) <= orig_max_seqno
654          && INSN_SCHED_TIMES (succ) <= 0)
655        {
656          FENCE_INSN (fence) = succ;
657          move_fence_to_fences (old_fences, new_fences);
658
659          if (sched_verbose >= 1)
660            sel_print ("Fence %d continues as %d[%d] (state continue)\n",
661                       INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
662        }
663      return;
664    }
665
666  /* Otherwise copy fence's structures to (possibly) multiple successors.  */
667  FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
668    {
669      int seqno = INSN_SEQNO (succ);
670
671      if (seqno > 0 && seqno <= orig_max_seqno
672          && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
673        {
674          bool b = (in_same_ebb_p (insn, succ)
675                    || in_fallthru_bb_p (insn, succ));
676
677          if (sched_verbose >= 1)
678            sel_print ("Fence %d continues as %d[%d] (state %s)\n",
679                       INSN_UID (insn), INSN_UID (succ),
680                       BLOCK_NUM (succ), b ? "continue" : "reset");
681
682          if (b)
683            add_dirty_fence_to_fences (new_fences, succ, fence);
684          else
685            {
686              /* Mark block of the SUCC as head of the new ebb.  */
687              bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
688              add_clean_fence_to_fences (new_fences, succ, fence);
689            }
690        }
691    }
692}
693
694
695/* Functions to support substitution.  */
696
697/* Returns whether INSN with dependence status DS is eligible for
698   substitution, i.e. it's a copy operation x := y, and RHS that is
699   moved up through this insn should be substituted.  */
700static bool
701can_substitute_through_p (insn_t insn, ds_t ds)
702{
703  /* We can substitute only true dependencies.  */
704  if ((ds & DEP_OUTPUT)
705      || (ds & DEP_ANTI)
706      || ! INSN_RHS (insn)
707      || ! INSN_LHS (insn))
708    return false;
709
710  /* Now we just need to make sure the INSN_RHS consists of only one
711     simple REG rtx.  */
712  if (REG_P (INSN_LHS (insn))
713      && REG_P (INSN_RHS (insn)))
714    return true;
715  return false;
716}
717
718/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
719   source (if INSN is eligible for substitution).  Returns TRUE if
720   substitution was actually performed, FALSE otherwise.  Substitution might
721   be not performed because it's either EXPR' vinsn doesn't contain INSN's
722   destination or the resulting insn is invalid for the target machine.
723   When UNDO is true, perform unsubstitution instead (the difference is in
724   the part of rtx on which validate_replace_rtx is called).  */
725static bool
726substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
727{
728  rtx *where;
729  bool new_insn_valid;
730  vinsn_t *vi = &EXPR_VINSN (expr);
731  bool has_rhs = VINSN_RHS (*vi) != NULL;
732  rtx old, new_rtx;
733
734  /* Do not try to replace in SET_DEST.  Although we'll choose new
735     register for the RHS, we don't want to change RHS' original reg.
736     If the insn is not SET, we may still be able to substitute something
737     in it, and if we're here (don't have deps), it doesn't write INSN's
738     dest.  */
739  where = (has_rhs
740	   ? &VINSN_RHS (*vi)
741	   : &PATTERN (VINSN_INSN_RTX (*vi)));
742  old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
743
744  /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI.  */
745  if (rtx_ok_for_substitution_p (old, *where))
746    {
747      rtx_insn *new_insn;
748      rtx *where_replace;
749
750      /* We should copy these rtxes before substitution.  */
751      new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
752      new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
753
754      /* Where we'll replace.
755         WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
756	 used instead of SET_SRC.  */
757      where_replace = (has_rhs
758		       ? &SET_SRC (PATTERN (new_insn))
759		       : &PATTERN (new_insn));
760
761      new_insn_valid
762        = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
763                                                new_insn);
764
765      /* ??? Actually, constrain_operands result depends upon choice of
766         destination register.  E.g. if we allow single register to be an rhs,
767	 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
768	 in invalid insn dx=dx, so we'll loose this rhs here.
769	 Just can't come up with significant testcase for this, so just
770	 leaving it for now.  */
771      if (new_insn_valid)
772	{
773	  change_vinsn_in_expr (expr,
774				create_vinsn_from_insn_rtx (new_insn, false));
775
776	  /* Do not allow clobbering the address register of speculative
777             insns.  */
778	  if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
779              && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
780					 expr_dest_reg (expr)))
781	    EXPR_TARGET_AVAILABLE (expr) = false;
782
783	  return true;
784	}
785      else
786        return false;
787    }
788  else
789    return false;
790}
791
792/* Return the number of places WHAT appears within WHERE.
793   Bail out when we found a reference occupying several hard registers.  */
794static int
795count_occurrences_equiv (const_rtx what, const_rtx where)
796{
797  int count = 0;
798  subrtx_iterator::array_type array;
799  FOR_EACH_SUBRTX (iter, array, where, NONCONST)
800    {
801      const_rtx x = *iter;
802      if (REG_P (x) && REGNO (x) == REGNO (what))
803	{
804	  /* Bail out if mode is different or more than one register is
805	     used.  */
806	  if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
807	    return 0;
808	  count += 1;
809	}
810      else if (GET_CODE (x) == SUBREG
811	       && (!REG_P (SUBREG_REG (x))
812		   || REGNO (SUBREG_REG (x)) == REGNO (what)))
813	/* ??? Do not support substituting regs inside subregs.  In that case,
814	   simplify_subreg will be called by validate_replace_rtx, and
815	   unsubstitution will fail later.  */
816	return 0;
817    }
818  return count;
819}
820
821/* Returns TRUE if WHAT is found in WHERE rtx tree.  */
822static bool
823rtx_ok_for_substitution_p (rtx what, rtx where)
824{
825  return (count_occurrences_equiv (what, where) > 0);
826}
827
828
829/* Functions to support register renaming.  */
830
831/* Substitute VI's set source with REGNO.  Returns newly created pattern
832   that has REGNO as its source.  */
833static rtx_insn *
834create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
835{
836  rtx lhs_rtx;
837  rtx pattern;
838  rtx_insn *insn_rtx;
839
840  lhs_rtx = copy_rtx (VINSN_LHS (vi));
841
842  pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
843  insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
844
845  return insn_rtx;
846}
847
848/* Returns whether INSN's src can be replaced with register number
849   NEW_SRC_REG. E.g. the following insn is valid for i386:
850
851    (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
852      (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
853			(reg:SI 0 ax [orig:770 c1 ] [770]))
854		    (const_int 288 [0x120])) [0 str S1 A8])
855	    (const_int 0 [0x0])) 43 {*movqi_1} (nil)
856	(nil))
857
858  But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
859  because of operand constraints:
860
861    (define_insn "*movqi_1"
862      [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
863	    (match_operand:QI 1 "general_operand"      " q,qn,qm,q,rn,qm,qn")
864	    )]
865
866  So do constrain_operands here, before choosing NEW_SRC_REG as best
867  reg for rhs.  */
868
869static bool
870replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
871{
872  vinsn_t vi = INSN_VINSN (insn);
873  machine_mode mode;
874  rtx dst_loc;
875  bool res;
876
877  gcc_assert (VINSN_SEPARABLE_P (vi));
878
879  get_dest_and_mode (insn, &dst_loc, &mode);
880  gcc_assert (mode == GET_MODE (new_src_reg));
881
882  if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
883    return true;
884
885  /* See whether SET_SRC can be replaced with this register.  */
886  validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
887  res = verify_changes (0);
888  cancel_changes (0);
889
890  return res;
891}
892
893/* Returns whether INSN still be valid after replacing it's DEST with
894   register NEW_REG.  */
895static bool
896replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
897{
898  vinsn_t vi = INSN_VINSN (insn);
899  bool res;
900
901  /* We should deal here only with separable insns.  */
902  gcc_assert (VINSN_SEPARABLE_P (vi));
903  gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
904
905  /* See whether SET_DEST can be replaced with this register.  */
906  validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
907  res = verify_changes (0);
908  cancel_changes (0);
909
910  return res;
911}
912
913/* Create a pattern with rhs of VI and lhs of LHS_RTX.  */
914static rtx_insn *
915create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
916{
917  rtx rhs_rtx;
918  rtx pattern;
919  rtx_insn *insn_rtx;
920
921  rhs_rtx = copy_rtx (VINSN_RHS (vi));
922
923  pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
924  insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
925
926  return insn_rtx;
927}
928
929/* Substitute lhs in the given expression EXPR for the register with number
930   NEW_REGNO.  SET_DEST may be arbitrary rtx, not only register.  */
931static void
932replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
933{
934  rtx_insn *insn_rtx;
935  vinsn_t vinsn;
936
937  insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
938  vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
939
940  change_vinsn_in_expr (expr, vinsn);
941  EXPR_WAS_RENAMED (expr) = 1;
942  EXPR_TARGET_AVAILABLE (expr) = 1;
943}
944
945/* Returns whether VI writes either one of the USED_REGS registers or,
946   if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers.  */
947static bool
948vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
949                            HARD_REG_SET unavailable_hard_regs)
950{
951  unsigned regno;
952  reg_set_iterator rsi;
953
954  EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
955    {
956      if (REGNO_REG_SET_P (used_regs, regno))
957        return true;
958      if (HARD_REGISTER_NUM_P (regno)
959          && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
960	return true;
961    }
962
963  EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
964    {
965      if (REGNO_REG_SET_P (used_regs, regno))
966        return true;
967      if (HARD_REGISTER_NUM_P (regno)
968          && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
969	return true;
970    }
971
972  return false;
973}
974
975/* Returns register class of the output register in INSN.
976   Returns NO_REGS for call insns because some targets have constraints on
977   destination register of a call insn.
978
979   Code adopted from regrename.cc::build_def_use.  */
980static enum reg_class
981get_reg_class (rtx_insn *insn)
982{
983  int i, n_ops;
984
985  extract_constrain_insn (insn);
986  preprocess_constraints (insn);
987  n_ops = recog_data.n_operands;
988
989  const operand_alternative *op_alt = which_op_alt ();
990  if (asm_noperands (PATTERN (insn)) > 0)
991    {
992      for (i = 0; i < n_ops; i++)
993	if (recog_data.operand_type[i] == OP_OUT)
994	  {
995	    rtx *loc = recog_data.operand_loc[i];
996	    rtx op = *loc;
997	    enum reg_class cl = alternative_class (op_alt, i);
998
999	    if (REG_P (op)
1000		&& REGNO (op) == ORIGINAL_REGNO (op))
1001	      continue;
1002
1003	    return cl;
1004	  }
1005    }
1006  else if (!CALL_P (insn))
1007    {
1008      for (i = 0; i < n_ops + recog_data.n_dups; i++)
1009       {
1010	 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1011	 enum reg_class cl = alternative_class (op_alt, opn);
1012
1013	 if (recog_data.operand_type[opn] == OP_OUT ||
1014	     recog_data.operand_type[opn] == OP_INOUT)
1015	   return cl;
1016       }
1017    }
1018
1019/*  Insns like
1020    (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1021    may result in returning NO_REGS, cause flags is written implicitly through
1022    CMP insn, which has no OP_OUT | OP_INOUT operands.  */
1023  return NO_REGS;
1024}
1025
1026/* Calculate HARD_REGNO_RENAME_OK data for REGNO.  */
1027static void
1028init_hard_regno_rename (int regno)
1029{
1030  int cur_reg;
1031
1032  SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1033
1034  for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1035    {
1036      /* We are not interested in renaming in other regs.  */
1037      if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1038        continue;
1039
1040      if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1041        SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1042    }
1043}
1044
1045/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1046   data first.  */
1047static inline bool
1048sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1049{
1050  /* Check whether this is all calculated.  */
1051  if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1052    return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1053
1054  init_hard_regno_rename (from);
1055
1056  return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057}
1058
1059/* Calculate set of registers that are capable of holding MODE.  */
1060static void
1061init_regs_for_mode (machine_mode mode)
1062{
1063  int cur_reg;
1064
1065  CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1066
1067  for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1068    {
1069      int nregs;
1070      int i;
1071
1072      /* See whether it accepts all modes that occur in
1073         original insns.  */
1074      if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1075        continue;
1076
1077      nregs = hard_regno_nregs (cur_reg, mode);
1078
1079      for (i = nregs - 1; i >= 0; --i)
1080        if (fixed_regs[cur_reg + i]
1081                || global_regs[cur_reg + i]
1082            /* Can't use regs which aren't saved by
1083               the prologue.  */
1084            || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1085	    /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1086	       it affects aliasing globally and invalidates all AV sets.  */
1087	    || get_reg_base_value (cur_reg + i)
1088#ifdef LEAF_REGISTERS
1089            /* We can't use a non-leaf register if we're in a
1090               leaf function.  */
1091            || (crtl->is_leaf
1092                && !LEAF_REGISTERS[cur_reg + i])
1093#endif
1094            )
1095          break;
1096
1097      if (i >= 0)
1098        continue;
1099
1100      /* If the CUR_REG passed all the checks above,
1101         then it's ok.  */
1102      SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1103    }
1104
1105  sel_hrd.regs_for_mode_ok[mode] = true;
1106}
1107
1108/* Init all register sets gathered in HRD.  */
1109static void
1110init_hard_regs_data (void)
1111{
1112  int cur_reg = 0;
1113  int cur_mode = 0;
1114
1115  CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1116  for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1117    if (df_regs_ever_live_p (cur_reg)
1118	|| crtl->abi->clobbers_full_reg_p (cur_reg))
1119      SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1120
1121  /* Initialize registers that are valid based on mode when this is
1122     really needed.  */
1123  for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1124    sel_hrd.regs_for_mode_ok[cur_mode] = false;
1125
1126  /* Mark that all HARD_REGNO_RENAME_OK is not calculated.  */
1127  for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128    CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1129
1130#ifdef STACK_REGS
1131  CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1132
1133  for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1134    SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1135#endif
1136}
1137
1138/* Mark hardware regs in REG_RENAME_P that are not suitable
1139   for renaming rhs in INSN due to hardware restrictions (register class,
1140   modes compatibility etc).  This doesn't affect original insn's dest reg,
1141   if it isn't in USED_REGS.  DEF is a definition insn of rhs for which the
1142   destination register is sought.  LHS (DEF->ORIG_INSN) may be REG or MEM.
1143   Registers that are in used_regs are always marked in
1144   unavailable_hard_regs as well.  */
1145
1146static void
1147mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1148                            regset used_regs ATTRIBUTE_UNUSED)
1149{
1150  machine_mode mode;
1151  enum reg_class cl = NO_REGS;
1152  rtx orig_dest;
1153  unsigned cur_reg, regno;
1154  hard_reg_set_iterator hrsi;
1155
1156  gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1157  gcc_assert (reg_rename_p);
1158
1159  orig_dest = SET_DEST (PATTERN (def->orig_insn));
1160
1161  /* We have decided not to rename 'mem = something;' insns, as 'something'
1162     is usually a register.  */
1163  if (!REG_P (orig_dest))
1164    return;
1165
1166  regno = REGNO (orig_dest);
1167
1168  /* If before reload, don't try to work with pseudos.  */
1169  if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1170    return;
1171
1172  if (reload_completed)
1173    cl = get_reg_class (def->orig_insn);
1174
1175  /* Stop if the original register is one of the fixed_regs, global_regs or
1176     frame pointer, or we could not discover its class.  */
1177  if (fixed_regs[regno]
1178      || global_regs[regno]
1179      || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1180	  && regno == HARD_FRAME_POINTER_REGNUM)
1181      || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1182	  && regno == FRAME_POINTER_REGNUM)
1183      || (reload_completed && cl == NO_REGS))
1184    {
1185      SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1186
1187      /* Give a chance for original register, if it isn't in used_regs.  */
1188      if (!def->crossed_call_abis)
1189        CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1190
1191      return;
1192    }
1193
1194  /* If something allocated on stack in this function, mark frame pointer
1195     register unavailable, considering also modes.
1196     FIXME: it is enough to do this once per all original defs.  */
1197  if (frame_pointer_needed)
1198    {
1199      add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1200			   Pmode, FRAME_POINTER_REGNUM);
1201
1202      if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1203        add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1204			     Pmode, HARD_FRAME_POINTER_REGNUM);
1205    }
1206
1207#ifdef STACK_REGS
1208  /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1209     is equivalent to as if all stack regs were in this set.
1210     I.e. no stack register can be renamed, and even if it's an original
1211     register here we make sure it won't be lifted over it's previous def
1212     (it's previous def will appear as if it's a FIRST_STACK_REG def.
1213     The HARD_REGNO_RENAME_OK covers other cases in condition below.  */
1214  if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1215      && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1216    reg_rename_p->unavailable_hard_regs |= sel_hrd.stack_regs;
1217#endif
1218
1219  mode = GET_MODE (orig_dest);
1220
1221  /* If there's a call on this path, make regs from full_reg_clobbers
1222     unavailable.
1223
1224     ??? It would be better to track the set of clobbered registers
1225     directly, but that would be quite expensive in a def_t.  */
1226  if (def->crossed_call_abis)
1227    reg_rename_p->unavailable_hard_regs
1228      |= call_clobbers_in_region (def->crossed_call_abis,
1229				  reg_class_contents[ALL_REGS], mode);
1230
1231  /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and
1232     crossed_call_abis, but not register classes.  */
1233  if (!reload_completed)
1234    return;
1235
1236  /* Leave regs as 'available' only from the current
1237     register class.  */
1238  reg_rename_p->available_for_renaming = reg_class_contents[cl];
1239
1240  /* Leave only registers available for this mode.  */
1241  if (!sel_hrd.regs_for_mode_ok[mode])
1242    init_regs_for_mode (mode);
1243  reg_rename_p->available_for_renaming &= sel_hrd.regs_for_mode[mode];
1244
1245  /* Leave only those that are ok to rename.  */
1246  EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1247                                  0, cur_reg, hrsi)
1248    {
1249      int nregs;
1250      int i;
1251
1252      nregs = hard_regno_nregs (cur_reg, mode);
1253      gcc_assert (nregs > 0);
1254
1255      for (i = nregs - 1; i >= 0; --i)
1256        if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1257          break;
1258
1259      if (i >= 0)
1260        CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1261                            cur_reg);
1262    }
1263
1264  reg_rename_p->available_for_renaming &= ~reg_rename_p->unavailable_hard_regs;
1265
1266  /* Regno is always ok from the renaming part of view, but it really
1267     could be in *unavailable_hard_regs already, so set it here instead
1268     of there.  */
1269  SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1270}
1271
1272/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1273   best register more recently than REG2.  */
1274static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1275
1276/* Indicates the number of times renaming happened before the current one.  */
1277static int reg_rename_this_tick;
1278
1279/* Choose the register among free, that is suitable for storing
1280   the rhs value.
1281
1282   ORIGINAL_INSNS is the list of insns where the operation (rhs)
1283   originally appears.  There could be multiple original operations
1284   for single rhs since we moving it up and merging along different
1285   paths.
1286
1287   Some code is adapted from regrename.cc (regrename_optimize).
1288   If original register is available, function returns it.
1289   Otherwise it performs the checks, so the new register should
1290   comply with the following:
1291    - it should not violate any live ranges (such registers are in
1292      REG_RENAME_P->available_for_renaming set);
1293    - it should not be in the HARD_REGS_USED regset;
1294    - it should be in the class compatible with original uses;
1295    - it should not be clobbered through reference with different mode;
1296    - if we're in the leaf function, then the new register should
1297      not be in the LEAF_REGISTERS;
1298    - etc.
1299
1300   If several registers meet the conditions, the register with smallest
1301   tick is returned to achieve more even register allocation.
1302
1303   If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1304
1305   If no register satisfies the above conditions, NULL_RTX is returned.  */
1306static rtx
1307choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1308                   struct reg_rename *reg_rename_p,
1309                   def_list_t original_insns, bool *is_orig_reg_p_ptr)
1310{
1311  int best_new_reg;
1312  unsigned cur_reg;
1313  machine_mode mode = VOIDmode;
1314  unsigned regno, i, n;
1315  hard_reg_set_iterator hrsi;
1316  def_list_iterator di;
1317  def_t def;
1318
1319  /* If original register is available, return it.  */
1320  *is_orig_reg_p_ptr = true;
1321
1322  FOR_EACH_DEF (def, di, original_insns)
1323    {
1324      rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1325
1326      gcc_assert (REG_P (orig_dest));
1327
1328      /* Check that all original operations have the same mode.
1329         This is done for the next loop; if we'd return from this
1330         loop, we'd check only part of them, but in this case
1331         it doesn't matter.  */
1332      if (mode == VOIDmode)
1333        mode = GET_MODE (orig_dest);
1334      gcc_assert (mode == GET_MODE (orig_dest));
1335
1336      regno = REGNO (orig_dest);
1337      for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1338        if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1339          break;
1340
1341      /* All hard registers are available.  */
1342      if (i == n)
1343        {
1344          gcc_assert (mode != VOIDmode);
1345
1346          /* Hard registers should not be shared.  */
1347          return gen_rtx_REG (mode, regno);
1348        }
1349    }
1350
1351  *is_orig_reg_p_ptr = false;
1352  best_new_reg = -1;
1353
1354  /* Among all available regs choose the register that was
1355     allocated earliest.  */
1356  EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1357                                  0, cur_reg, hrsi)
1358    if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1359      {
1360	/* Check that all hard regs for mode are available.  */
1361	for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
1362	  if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1363	      || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1364				     cur_reg + i))
1365	    break;
1366
1367	if (i < n)
1368	  continue;
1369
1370        /* All hard registers are available.  */
1371        if (best_new_reg < 0
1372            || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1373          {
1374            best_new_reg = cur_reg;
1375
1376            /* Return immediately when we know there's no better reg.  */
1377            if (! reg_rename_tick[best_new_reg])
1378              break;
1379          }
1380      }
1381
1382  if (best_new_reg >= 0)
1383    {
1384      /* Use the check from the above loop.  */
1385      gcc_assert (mode != VOIDmode);
1386      return gen_rtx_REG (mode, best_new_reg);
1387    }
1388
1389  return NULL_RTX;
1390}
1391
1392/* A wrapper around choose_best_reg_1 () to verify that we make correct
1393   assumptions about available registers in the function.  */
1394static rtx
1395choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1396                 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1397{
1398  rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1399                                    original_insns, is_orig_reg_p_ptr);
1400
1401  /* FIXME loop over hard_regno_nregs here.  */
1402  gcc_assert (best_reg == NULL_RTX
1403	      || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1404
1405  return best_reg;
1406}
1407
1408/* Choose the pseudo register for storing rhs value.  As this is supposed
1409   to work before reload, we return either the original register or make
1410   the new one.  The parameters are the same that in choose_nest_reg_1
1411   functions, except that USED_REGS may contain pseudos.
1412   If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1413
1414   TODO: take into account register pressure while doing this.  Up to this
1415   moment, this function would never return NULL for pseudos, but we should
1416   not rely on this.  */
1417static rtx
1418choose_best_pseudo_reg (regset used_regs,
1419                        struct reg_rename *reg_rename_p,
1420                        def_list_t original_insns, bool *is_orig_reg_p_ptr)
1421{
1422  def_list_iterator i;
1423  def_t def;
1424  machine_mode mode = VOIDmode;
1425  bool bad_hard_regs = false;
1426
1427  /* We should not use this after reload.  */
1428  gcc_assert (!reload_completed);
1429
1430  /* If original register is available, return it.  */
1431  *is_orig_reg_p_ptr = true;
1432
1433  FOR_EACH_DEF (def, i, original_insns)
1434    {
1435      rtx dest = SET_DEST (PATTERN (def->orig_insn));
1436      int orig_regno;
1437
1438      gcc_assert (REG_P (dest));
1439
1440      /* Check that all original operations have the same mode.  */
1441      if (mode == VOIDmode)
1442        mode = GET_MODE (dest);
1443      else
1444        gcc_assert (mode == GET_MODE (dest));
1445      orig_regno = REGNO (dest);
1446
1447      /* Check that nothing in used_regs intersects with orig_regno.  When
1448	 we have a hard reg here, still loop over hard_regno_nregs.  */
1449      if (HARD_REGISTER_NUM_P (orig_regno))
1450	{
1451	  int j, n;
1452	  for (j = 0, n = REG_NREGS (dest); j < n; j++)
1453	    if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1454	      break;
1455	  if (j < n)
1456	    continue;
1457	}
1458      else
1459	{
1460	  if (REGNO_REG_SET_P (used_regs, orig_regno))
1461	    continue;
1462	}
1463      if (HARD_REGISTER_NUM_P (orig_regno))
1464	{
1465	  gcc_assert (df_regs_ever_live_p (orig_regno));
1466
1467	  /* For hard registers, we have to check hardware imposed
1468	     limitations (frame/stack registers, calls crossed).  */
1469	  if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1470				  orig_regno))
1471	    {
1472	      /* Don't let register cross a call if it doesn't already
1473		 cross one.  This condition is written in accordance with
1474		 that in sched-deps.cc sched_analyze_reg().  */
1475	      if (!reg_rename_p->crossed_call_abis
1476		  || REG_N_CALLS_CROSSED (orig_regno) > 0)
1477		return gen_rtx_REG (mode, orig_regno);
1478	    }
1479
1480	  bad_hard_regs = true;
1481	}
1482      else
1483	return dest;
1484    }
1485
1486  *is_orig_reg_p_ptr = false;
1487
1488  /* We had some original hard registers that couldn't be used.
1489     Those were likely special.  Don't try to create a pseudo.  */
1490  if (bad_hard_regs)
1491    return NULL_RTX;
1492
1493  /* We haven't found a register from original operations.  Get a new one.
1494     FIXME: control register pressure somehow.  */
1495  {
1496    rtx new_reg = gen_reg_rtx (mode);
1497
1498    gcc_assert (mode != VOIDmode);
1499
1500    max_regno = max_reg_num ();
1501    maybe_extend_reg_info_p ();
1502    REG_N_CALLS_CROSSED (REGNO (new_reg))
1503      = reg_rename_p->crossed_call_abis ? 1 : 0;
1504
1505    return new_reg;
1506  }
1507}
1508
1509/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1510   USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS.  */
1511static void
1512verify_target_availability (expr_t expr, regset used_regs,
1513			    struct reg_rename *reg_rename_p)
1514{
1515  unsigned n, i, regno;
1516  machine_mode mode;
1517  bool target_available, live_available, hard_available;
1518
1519  if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1520    return;
1521
1522  regno = expr_dest_regno (expr);
1523  mode = GET_MODE (EXPR_LHS (expr));
1524  target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1525  n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1526
1527  live_available = hard_available = true;
1528  for (i = 0; i < n; i++)
1529    {
1530      if (bitmap_bit_p (used_regs, regno + i))
1531        live_available = false;
1532      if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1533        hard_available = false;
1534    }
1535
1536  /* When target is not available, it may be due to hard register
1537     restrictions, e.g. crosses calls, so we check hard_available too.  */
1538  if (target_available)
1539    gcc_assert (live_available);
1540  else
1541    /* Check only if we haven't scheduled something on the previous fence,
1542       cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1543       and having more than one fence, we may end having targ_un in a block
1544       in which successors target register is actually available.
1545
1546       The last condition handles the case when a dependence from a call insn
1547       was created in sched-deps.cc for insns with destination registers that
1548       never crossed a call before, but do cross one after our code motion.
1549
1550       FIXME: in the latter case, we just uselessly called find_used_regs,
1551       because we can't move this expression with any other register
1552       as well.  */
1553    gcc_assert (scheduled_something_on_previous_fence || !live_available
1554		|| !hard_available
1555		|| (!reload_completed
1556		    && reg_rename_p->crossed_call_abis
1557		    && REG_N_CALLS_CROSSED (regno) == 0));
1558}
1559
1560/* Collect unavailable registers due to liveness for EXPR from BNDS
1561   into USED_REGS.  Save additional information about available
1562   registers and unavailable due to hardware restriction registers
1563   into REG_RENAME_P structure.  Save original insns into ORIGINAL_INSNS
1564   list.  */
1565static void
1566collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1567				    struct reg_rename *reg_rename_p,
1568				    def_list_t *original_insns)
1569{
1570  for (; bnds; bnds = BLIST_NEXT (bnds))
1571    {
1572      bool res;
1573      av_set_t orig_ops = NULL;
1574      bnd_t bnd = BLIST_BND (bnds);
1575
1576      /* If the chosen best expr doesn't belong to current boundary,
1577	 skip it.  */
1578      if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1579	continue;
1580
1581      /* Put in ORIG_OPS all exprs from this boundary that became
1582	 RES on top.  */
1583      orig_ops = find_sequential_best_exprs (bnd, expr, false);
1584
1585      /* Compute used regs and OR it into the USED_REGS.  */
1586      res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1587			    reg_rename_p, original_insns);
1588
1589      /* FIXME: the assert is true until we'd have several boundaries.  */
1590      gcc_assert (res);
1591      av_set_clear (&orig_ops);
1592    }
1593}
1594
1595/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1596   If BEST_REG is valid, replace LHS of EXPR with it.  */
1597static bool
1598try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1599{
1600  /* Try whether we'll be able to generate the insn
1601     'dest := best_reg' at the place of the original operation.  */
1602  for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1603    {
1604      insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1605
1606      gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1607
1608      if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1609	  && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1610	      || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1611	return false;
1612    }
1613
1614  /* Make sure that EXPR has the right destination
1615     register.  */
1616  if (expr_dest_regno (expr) != REGNO (best_reg))
1617    replace_dest_with_reg_in_expr (expr, best_reg);
1618  else
1619    EXPR_TARGET_AVAILABLE (expr) = 1;
1620
1621  return true;
1622}
1623
1624/* Select and assign best register to EXPR searching from BNDS.
1625   Set *IS_ORIG_REG_P to TRUE if original register was selected.
1626   Return FALSE if no register can be chosen, which could happen when:
1627   * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1628   * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1629     that are used on the moving path.  */
1630static bool
1631find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1632{
1633  static struct reg_rename reg_rename_data;
1634
1635  regset used_regs;
1636  def_list_t original_insns = NULL;
1637  bool reg_ok;
1638
1639  *is_orig_reg_p = false;
1640
1641  /* Don't bother to do anything if this insn doesn't set any registers.  */
1642  if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1643      && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1644    return true;
1645
1646  used_regs = get_clear_regset_from_pool ();
1647  CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1648
1649  collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1650				      &original_insns);
1651
1652  /* If after reload, make sure we're working with hard regs here.  */
1653  if (flag_checking && reload_completed)
1654    {
1655      reg_set_iterator rsi;
1656      unsigned i;
1657
1658      EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1659        gcc_unreachable ();
1660    }
1661
1662  if (EXPR_SEPARABLE_P (expr))
1663    {
1664      rtx best_reg = NULL_RTX;
1665      /* Check that we have computed availability of a target register
1666	 correctly.  */
1667      verify_target_availability (expr, used_regs, &reg_rename_data);
1668
1669      /* Turn everything in hard regs after reload.  */
1670      if (reload_completed)
1671	{
1672	  HARD_REG_SET hard_regs_used;
1673	  REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1674
1675	  /* Join hard registers unavailable due to register class
1676	     restrictions and live range intersection.  */
1677	  hard_regs_used |= reg_rename_data.unavailable_hard_regs;
1678
1679	  best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1680				      original_insns, is_orig_reg_p);
1681	}
1682      else
1683	best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1684					   original_insns, is_orig_reg_p);
1685
1686      if (!best_reg)
1687	reg_ok = false;
1688      else if (*is_orig_reg_p)
1689	{
1690	  /* In case of unification BEST_REG may be different from EXPR's LHS
1691	     when EXPR's LHS is unavailable, and there is another LHS among
1692	     ORIGINAL_INSNS.  */
1693	  reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1694	}
1695      else
1696	{
1697	  /* Forbid renaming of low-cost insns.  */
1698	  if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1699	    reg_ok = false;
1700	  else
1701	    reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1702	}
1703    }
1704  else
1705    {
1706      /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1707	 any of the HARD_REGS_USED set.  */
1708      if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1709				      reg_rename_data.unavailable_hard_regs))
1710	{
1711	  reg_ok = false;
1712	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1713	}
1714      else
1715	{
1716	  reg_ok = true;
1717	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1718	}
1719    }
1720
1721  ilist_clear (&original_insns);
1722  return_regset_to_pool (used_regs);
1723
1724  return reg_ok;
1725}
1726
1727
1728/* Return true if dependence described by DS can be overcomed.  */
1729static bool
1730can_speculate_dep_p (ds_t ds)
1731{
1732  if (spec_info == NULL)
1733    return false;
1734
1735  /* Leave only speculative data.  */
1736  ds &= SPECULATIVE;
1737
1738  if (ds == 0)
1739    return false;
1740
1741  {
1742    /* FIXME: make sched-deps.cc produce only those non-hard dependencies,
1743       that we can overcome.  */
1744    ds_t spec_mask = spec_info->mask;
1745
1746    if ((ds & spec_mask) != ds)
1747      return false;
1748  }
1749
1750  if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1751    return false;
1752
1753  return true;
1754}
1755
1756/* Get a speculation check instruction.
1757   C_EXPR is a speculative expression,
1758   CHECK_DS describes speculations that should be checked,
1759   ORIG_INSN is the original non-speculative insn in the stream.  */
1760static insn_t
1761create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1762{
1763  rtx check_pattern;
1764  rtx_insn *insn_rtx;
1765  insn_t insn;
1766  basic_block recovery_block;
1767  rtx_insn *label;
1768
1769  /* Create a recovery block if target is going to emit branchy check, or if
1770     ORIG_INSN was speculative already.  */
1771  if (targetm.sched.needs_block_p (check_ds)
1772      || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1773    {
1774      recovery_block = sel_create_recovery_block (orig_insn);
1775      label = BB_HEAD (recovery_block);
1776    }
1777  else
1778    {
1779      recovery_block = NULL;
1780      label = NULL;
1781    }
1782
1783  /* Get pattern of the check.  */
1784  check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1785						check_ds);
1786
1787  gcc_assert (check_pattern != NULL);
1788
1789  /* Emit check.  */
1790  insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1791
1792  insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1793				      INSN_SEQNO (orig_insn), orig_insn);
1794
1795  /* Make check to be non-speculative.  */
1796  EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1797  INSN_SPEC_CHECKED_DS (insn) = check_ds;
1798
1799  /* Decrease priority of check by difference of load/check instruction
1800     latencies.  */
1801  EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1802				       - sel_vinsn_cost (INSN_VINSN (insn)));
1803
1804  /* Emit copy of original insn (though with replaced target register,
1805     if needed) to the recovery block.  */
1806  if (recovery_block != NULL)
1807    {
1808      rtx twin_rtx;
1809
1810      twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1811      twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1812      sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1813					    INSN_EXPR (orig_insn),
1814					    INSN_SEQNO (insn),
1815					    bb_note (recovery_block));
1816    }
1817
1818  /* If we've generated a data speculation check, make sure
1819     that all the bookkeeping instruction we'll create during
1820     this move_op () will allocate an ALAT entry so that the
1821     check won't fail.
1822     In case of control speculation we must convert C_EXPR to control
1823     speculative mode, because failing to do so will bring us an exception
1824     thrown by the non-control-speculative load.  */
1825  check_ds = ds_get_max_dep_weak (check_ds);
1826  speculate_expr (c_expr, check_ds);
1827
1828  return insn;
1829}
1830
1831/* True when INSN is a "regN = regN" copy.  */
1832static bool
1833identical_copy_p (rtx_insn *insn)
1834{
1835  rtx lhs, rhs, pat;
1836
1837  pat = PATTERN (insn);
1838
1839  if (GET_CODE (pat) != SET)
1840    return false;
1841
1842  lhs = SET_DEST (pat);
1843  if (!REG_P (lhs))
1844    return false;
1845
1846  rhs = SET_SRC (pat);
1847  if (!REG_P (rhs))
1848    return false;
1849
1850  return REGNO (lhs) == REGNO (rhs);
1851}
1852
1853/* Undo all transformations on *AV_PTR that were done when
1854   moving through INSN.  */
1855static void
1856undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1857{
1858  av_set_iterator av_iter;
1859  expr_t expr;
1860  av_set_t new_set = NULL;
1861
1862  /* First, kill any EXPR that uses registers set by an insn.  This is
1863     required for correctness.  */
1864  FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1865    if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1866        && bitmap_intersect_p (INSN_REG_SETS (insn),
1867                               VINSN_REG_USES (EXPR_VINSN (expr)))
1868        /* When an insn looks like 'r1 = r1', we could substitute through
1869           it, but the above condition will still hold.  This happened with
1870           gcc.c-torture/execute/961125-1.c.  */
1871        && !identical_copy_p (insn))
1872      {
1873        if (sched_verbose >= 6)
1874          sel_print ("Expr %d removed due to use/set conflict\n",
1875                     INSN_UID (EXPR_INSN_RTX (expr)));
1876        av_set_iter_remove (&av_iter);
1877      }
1878
1879  /* Undo transformations looking at the history vector.  */
1880  FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1881    {
1882      int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1883                                        insn, EXPR_VINSN (expr), true);
1884
1885      if (index >= 0)
1886        {
1887          expr_history_def *phist;
1888
1889          phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1890
1891          switch (phist->type)
1892            {
1893            case TRANS_SPECULATION:
1894              {
1895                ds_t old_ds, new_ds;
1896
1897                /* Compute the difference between old and new speculative
1898                   statuses: that's what we need to check.
1899                   Earlier we used to assert that the status will really
1900                   change.  This no longer works because only the probability
1901                   bits in the status may have changed during compute_av_set,
1902                   and in the case of merging different probabilities of the
1903                   same speculative status along different paths we do not
1904                   record this in the history vector.  */
1905                old_ds = phist->spec_ds;
1906                new_ds = EXPR_SPEC_DONE_DS (expr);
1907
1908                old_ds &= SPECULATIVE;
1909                new_ds &= SPECULATIVE;
1910                new_ds &= ~old_ds;
1911
1912                EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1913                break;
1914              }
1915            case TRANS_SUBSTITUTION:
1916              {
1917                expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1918                vinsn_t new_vi;
1919                bool add = true;
1920
1921                new_vi = phist->old_expr_vinsn;
1922
1923                gcc_assert (VINSN_SEPARABLE_P (new_vi)
1924                            == EXPR_SEPARABLE_P (expr));
1925                copy_expr (tmp_expr, expr);
1926
1927                if (vinsn_equal_p (phist->new_expr_vinsn,
1928                                   EXPR_VINSN (tmp_expr)))
1929                  change_vinsn_in_expr (tmp_expr, new_vi);
1930                else
1931                  /* This happens when we're unsubstituting on a bookkeeping
1932                     copy, which was in turn substituted.  The history is wrong
1933                     in this case.  Do it the hard way.  */
1934                  add = substitute_reg_in_expr (tmp_expr, insn, true);
1935                if (add)
1936                  av_set_add (&new_set, tmp_expr);
1937                clear_expr (tmp_expr);
1938                break;
1939              }
1940            default:
1941              gcc_unreachable ();
1942            }
1943        }
1944
1945    }
1946
1947  av_set_union_and_clear (av_ptr, &new_set, NULL);
1948}
1949
1950
1951/* Moveup_* helpers for code motion and computing av sets.  */
1952
1953/* Propagates EXPR inside an insn group through THROUGH_INSN.
1954   The difference from the below function is that only substitution is
1955   performed.  */
1956static enum MOVEUP_EXPR_CODE
1957moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1958{
1959  vinsn_t vi = EXPR_VINSN (expr);
1960  ds_t *has_dep_p;
1961  ds_t full_ds;
1962
1963  /* Do this only inside insn group.  */
1964  gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1965
1966  full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1967  if (full_ds == 0)
1968    return MOVEUP_EXPR_SAME;
1969
1970  /* Substitution is the possible choice in this case.  */
1971  if (has_dep_p[DEPS_IN_RHS])
1972    {
1973      /* Can't substitute UNIQUE VINSNs.  */
1974      gcc_assert (!VINSN_UNIQUE_P (vi));
1975
1976      if (can_substitute_through_p (through_insn,
1977                                    has_dep_p[DEPS_IN_RHS])
1978          && substitute_reg_in_expr (expr, through_insn, false))
1979        {
1980          EXPR_WAS_SUBSTITUTED (expr) = true;
1981          return MOVEUP_EXPR_CHANGED;
1982        }
1983
1984      /* Don't care about this, as even true dependencies may be allowed
1985         in an insn group.  */
1986      return MOVEUP_EXPR_SAME;
1987    }
1988
1989  /* This can catch output dependencies in COND_EXECs.  */
1990  if (has_dep_p[DEPS_IN_INSN])
1991    return MOVEUP_EXPR_NULL;
1992
1993  /* This is either an output or an anti dependence, which usually have
1994     a zero latency.  Allow this here, if we'd be wrong, tick_check_p
1995     will fix this.  */
1996  gcc_assert (has_dep_p[DEPS_IN_LHS]);
1997  return MOVEUP_EXPR_AS_RHS;
1998}
1999
2000/* True when a trapping EXPR cannot be moved through THROUGH_INSN.  */
2001#define CANT_MOVE_TRAPPING(expr, through_insn)                \
2002  (VINSN_MAY_TRAP_P (EXPR_VINSN (expr))                       \
2003   && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2004   && !sel_insn_is_speculation_check (through_insn))
2005
2006/* True when a conflict on a target register was found during moveup_expr.  */
2007static bool was_target_conflict = false;
2008
2009/* Return true when moving a debug INSN across THROUGH_INSN will
2010   create a bookkeeping block.  We don't want to create such blocks,
2011   for they would cause codegen differences between compilations with
2012   and without debug info.  */
2013
2014static bool
2015moving_insn_creates_bookkeeping_block_p (insn_t insn,
2016					 insn_t through_insn)
2017{
2018  basic_block bbi, bbt;
2019  edge e1, e2;
2020  edge_iterator ei1, ei2;
2021
2022  if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2023    {
2024      if (sched_verbose >= 9)
2025	sel_print ("no bookkeeping required: ");
2026      return FALSE;
2027    }
2028
2029  bbi = BLOCK_FOR_INSN (insn);
2030
2031  if (EDGE_COUNT (bbi->preds) == 1)
2032    {
2033      if (sched_verbose >= 9)
2034	sel_print ("only one pred edge: ");
2035      return TRUE;
2036    }
2037
2038  bbt = BLOCK_FOR_INSN (through_insn);
2039
2040  FOR_EACH_EDGE (e1, ei1, bbt->succs)
2041    {
2042      FOR_EACH_EDGE (e2, ei2, bbi->preds)
2043	{
2044	  if (find_block_for_bookkeeping (e1, e2, TRUE))
2045	    {
2046	      if (sched_verbose >= 9)
2047		sel_print ("found existing block: ");
2048	      return FALSE;
2049	    }
2050	}
2051    }
2052
2053  if (sched_verbose >= 9)
2054    sel_print ("would create bookkeeping block: ");
2055
2056  return TRUE;
2057}
2058
2059/* Return true when the conflict with newly created implicit clobbers
2060   between EXPR and THROUGH_INSN is found because of renaming.  */
2061static bool
2062implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2063{
2064  HARD_REG_SET temp;
2065  rtx_insn *insn;
2066  rtx reg, rhs, pat;
2067  hard_reg_set_iterator hrsi;
2068  unsigned regno;
2069  bool valid;
2070
2071  /* Make a new pseudo register.  */
2072  reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2073  max_regno = max_reg_num ();
2074  maybe_extend_reg_info_p ();
2075
2076  /* Validate a change and bail out early.  */
2077  insn = EXPR_INSN_RTX (expr);
2078  validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2079  valid = verify_changes (0);
2080  cancel_changes (0);
2081  if (!valid)
2082    {
2083      if (sched_verbose >= 6)
2084	sel_print ("implicit clobbers failed validation, ");
2085      return true;
2086    }
2087
2088  /* Make a new insn with it.  */
2089  rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2090  pat = gen_rtx_SET (reg, rhs);
2091  start_sequence ();
2092  insn = emit_insn (pat);
2093  end_sequence ();
2094
2095  /* Calculate implicit clobbers.  */
2096  extract_insn (insn);
2097  preprocess_constraints (insn);
2098  alternative_mask prefrred = get_preferred_alternatives (insn);
2099  ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2100  temp &= ~ira_no_alloc_regs;
2101
2102  /* If any implicit clobber registers intersect with regular ones in
2103     through_insn, we have a dependency and thus bail out.  */
2104  EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2105    {
2106      vinsn_t vi = INSN_VINSN (through_insn);
2107      if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2108	  || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2109	  || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2110	return true;
2111    }
2112
2113  return false;
2114}
2115
2116/* Modifies EXPR so it can be moved through the THROUGH_INSN,
2117   performing necessary transformations.  Record the type of transformation
2118   made in PTRANS_TYPE, when it is not NULL.  When INSIDE_INSN_GROUP,
2119   permit all dependencies except true ones, and try to remove those
2120   too via forward substitution.  All cases when a non-eliminable
2121   non-zero cost dependency exists inside an insn group will be fixed
2122   in tick_check_p instead.  */
2123static enum MOVEUP_EXPR_CODE
2124moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125            enum local_trans_type *ptrans_type)
2126{
2127  vinsn_t vi = EXPR_VINSN (expr);
2128  insn_t insn = VINSN_INSN_RTX (vi);
2129  bool was_changed = false;
2130  bool as_rhs = false;
2131  ds_t *has_dep_p;
2132  ds_t full_ds;
2133
2134  /* ??? We use dependencies of non-debug insns on debug insns to
2135     indicate that the debug insns need to be reset if the non-debug
2136     insn is pulled ahead of it.  It's hard to figure out how to
2137     introduce such a notion in sel-sched, but it already fails to
2138     support debug insns in other ways, so we just go ahead and
2139     let the deug insns go corrupt for now.  */
2140  if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141    return MOVEUP_EXPR_SAME;
2142
2143  /* When inside_insn_group, delegate to the helper.  */
2144  if (inside_insn_group)
2145    return moveup_expr_inside_insn_group (expr, through_insn);
2146
2147  /* Deal with unique insns and control dependencies.  */
2148  if (VINSN_UNIQUE_P (vi))
2149    {
2150      /* We can move jumps without side-effects or jumps that are
2151	 mutually exclusive with instruction THROUGH_INSN (all in cases
2152	 dependencies allow to do so and jump is not speculative).  */
2153      if (control_flow_insn_p (insn))
2154        {
2155          basic_block fallthru_bb;
2156
2157          /* Do not move checks and do not move jumps through other
2158             jumps.  */
2159          if (control_flow_insn_p (through_insn)
2160              || sel_insn_is_speculation_check (insn))
2161            return MOVEUP_EXPR_NULL;
2162
2163          /* Don't move jumps through CFG joins.  */
2164          if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165            return MOVEUP_EXPR_NULL;
2166
2167          /* The jump should have a clear fallthru block, and
2168             this block should be in the current region.  */
2169          if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170              || ! in_current_region_p (fallthru_bb))
2171            return MOVEUP_EXPR_NULL;
2172
2173          /* And it should be mutually exclusive with through_insn.  */
2174          if (! sched_insns_conditions_mutex_p (insn, through_insn)
2175	      && ! DEBUG_INSN_P (through_insn))
2176            return MOVEUP_EXPR_NULL;
2177        }
2178
2179      /* Don't move what we can't move.  */
2180      if (EXPR_CANT_MOVE (expr)
2181	  && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182	return MOVEUP_EXPR_NULL;
2183
2184      /* Don't move SCHED_GROUP instruction through anything.
2185         If we don't force this, then it will be possible to start
2186         scheduling a sched_group before all its dependencies are
2187         resolved.
2188         ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189         as late as possible through rank_for_schedule.  */
2190      if (SCHED_GROUP_P (insn))
2191	return MOVEUP_EXPR_NULL;
2192    }
2193  else
2194    gcc_assert (!control_flow_insn_p (insn));
2195
2196  /* Don't move debug insns if this would require bookkeeping.  */
2197  if (DEBUG_INSN_P (insn)
2198      && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199      && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200    return MOVEUP_EXPR_NULL;
2201
2202  /* Deal with data dependencies.  */
2203  was_target_conflict = false;
2204  full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205  if (full_ds == 0)
2206    {
2207      if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208	return MOVEUP_EXPR_SAME;
2209    }
2210  else
2211    {
2212      /* We can move UNIQUE insn up only as a whole and unchanged,
2213         so it shouldn't have any dependencies.  */
2214      if (VINSN_UNIQUE_P (vi))
2215	return MOVEUP_EXPR_NULL;
2216    }
2217
2218  if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219    {
2220      int res;
2221
2222      res = speculate_expr (expr, full_ds);
2223      if (res >= 0)
2224	{
2225          /* Speculation was successful.  */
2226          full_ds = 0;
2227          was_changed = (res > 0);
2228          if (res == 2)
2229            was_target_conflict = true;
2230          if (ptrans_type)
2231            *ptrans_type = TRANS_SPECULATION;
2232	  sel_clear_has_dependence ();
2233	}
2234    }
2235
2236  if (has_dep_p[DEPS_IN_INSN])
2237    /* We have some dependency that cannot be discarded.  */
2238    return MOVEUP_EXPR_NULL;
2239
2240  if (has_dep_p[DEPS_IN_LHS])
2241    {
2242      /* Only separable insns can be moved up with the new register.
2243         Anyways, we should mark that the original register is
2244         unavailable.  */
2245      if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246        return MOVEUP_EXPR_NULL;
2247
2248      /* When renaming a hard register to a pseudo before reload, extra
2249	 dependencies can occur from the implicit clobbers of the insn.
2250	 Filter out such cases here.  */
2251      if (!reload_completed && REG_P (EXPR_LHS (expr))
2252	  && HARD_REGISTER_P (EXPR_LHS (expr))
2253	  && implicit_clobber_conflict_p (through_insn, expr))
2254	{
2255	  if (sched_verbose >= 6)
2256	    sel_print ("implicit clobbers conflict detected, ");
2257	  return MOVEUP_EXPR_NULL;
2258	}
2259      EXPR_TARGET_AVAILABLE (expr) = false;
2260      was_target_conflict = true;
2261      as_rhs = true;
2262    }
2263
2264  /* At this point we have either separable insns, that will be lifted
2265     up only as RHSes, or non-separable insns with no dependency in lhs.
2266     If dependency is in RHS, then try to perform substitution and move up
2267     substituted RHS:
2268
2269      Ex. 1:				  Ex.2
2270	y = x;				    y = x;
2271	z = y*2;			    y = y*2;
2272
2273    In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2274    moved above y=x assignment as z=x*2.
2275
2276    In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2277    side can be moved because of the output dependency.  The operation was
2278    cropped to its rhs above.  */
2279  if (has_dep_p[DEPS_IN_RHS])
2280    {
2281      ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2282
2283      /* Can't substitute UNIQUE VINSNs.  */
2284      gcc_assert (!VINSN_UNIQUE_P (vi));
2285
2286      if (can_speculate_dep_p (*rhs_dsp))
2287	{
2288          int res;
2289
2290          res = speculate_expr (expr, *rhs_dsp);
2291          if (res >= 0)
2292            {
2293              /* Speculation was successful.  */
2294              *rhs_dsp = 0;
2295              was_changed = (res > 0);
2296              if (res == 2)
2297                was_target_conflict = true;
2298              if (ptrans_type)
2299                *ptrans_type = TRANS_SPECULATION;
2300            }
2301	  else
2302	    return MOVEUP_EXPR_NULL;
2303	}
2304      else if (can_substitute_through_p (through_insn,
2305                                         *rhs_dsp)
2306               && substitute_reg_in_expr (expr, through_insn, false))
2307	{
2308          /* ??? We cannot perform substitution AND speculation on the same
2309             insn.  */
2310          gcc_assert (!was_changed);
2311          was_changed = true;
2312          if (ptrans_type)
2313            *ptrans_type = TRANS_SUBSTITUTION;
2314          EXPR_WAS_SUBSTITUTED (expr) = true;
2315	}
2316      else
2317	return MOVEUP_EXPR_NULL;
2318    }
2319
2320  /* Don't move trapping insns through jumps.
2321     This check should be at the end to give a chance to control speculation
2322     to perform its duties.  */
2323  if (CANT_MOVE_TRAPPING (expr, through_insn))
2324    return MOVEUP_EXPR_NULL;
2325
2326  return (was_changed
2327          ? MOVEUP_EXPR_CHANGED
2328          : (as_rhs
2329             ? MOVEUP_EXPR_AS_RHS
2330             : MOVEUP_EXPR_SAME));
2331}
2332
2333/* Try to look at bitmap caches for EXPR and INSN pair, return true
2334   if successful.  When INSIDE_INSN_GROUP, also try ignore dependencies
2335   that can exist within a parallel group.  Write to RES the resulting
2336   code for moveup_expr.  */
2337static bool
2338try_bitmap_cache (expr_t expr, insn_t insn,
2339                  bool inside_insn_group,
2340                  enum MOVEUP_EXPR_CODE *res)
2341{
2342  int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2343
2344  /* First check whether we've analyzed this situation already.  */
2345  if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2346    {
2347      if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2348        {
2349          if (sched_verbose >= 6)
2350            sel_print ("removed (cached)\n");
2351          *res = MOVEUP_EXPR_NULL;
2352          return true;
2353        }
2354      else
2355        {
2356          if (sched_verbose >= 6)
2357            sel_print ("unchanged (cached)\n");
2358          *res = MOVEUP_EXPR_SAME;
2359          return true;
2360        }
2361    }
2362  else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2363    {
2364      if (inside_insn_group)
2365        {
2366          if (sched_verbose >= 6)
2367            sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2368          *res = MOVEUP_EXPR_SAME;
2369          return true;
2370
2371        }
2372      else
2373        EXPR_TARGET_AVAILABLE (expr) = false;
2374
2375      /* This is the only case when propagation result can change over time,
2376         as we can dynamically switch off scheduling as RHS.  In this case,
2377         just check the flag to reach the correct decision.  */
2378      if (enable_schedule_as_rhs_p)
2379        {
2380          if (sched_verbose >= 6)
2381            sel_print ("unchanged (as RHS, cached)\n");
2382          *res = MOVEUP_EXPR_AS_RHS;
2383          return true;
2384        }
2385      else
2386        {
2387          if (sched_verbose >= 6)
2388            sel_print ("removed (cached as RHS, but renaming"
2389                       " is now disabled)\n");
2390          *res = MOVEUP_EXPR_NULL;
2391          return true;
2392        }
2393    }
2394
2395  return false;
2396}
2397
2398/* Try to look at bitmap caches for EXPR and INSN pair, return true
2399   if successful.  Write to RES the resulting code for moveup_expr.  */
2400static bool
2401try_transformation_cache (expr_t expr, insn_t insn,
2402                          enum MOVEUP_EXPR_CODE *res)
2403{
2404  struct transformed_insns *pti
2405    = (struct transformed_insns *)
2406    htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2407                         &EXPR_VINSN (expr),
2408                         VINSN_HASH_RTX (EXPR_VINSN (expr)));
2409  if (pti)
2410    {
2411      /* This EXPR was already moved through this insn and was
2412         changed as a result.  Fetch the proper data from
2413         the hashtable.  */
2414      insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2415                              INSN_UID (insn), pti->type,
2416                              pti->vinsn_old, pti->vinsn_new,
2417                              EXPR_SPEC_DONE_DS (expr));
2418
2419      if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2420        pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2421      change_vinsn_in_expr (expr, pti->vinsn_new);
2422      if (pti->was_target_conflict)
2423        EXPR_TARGET_AVAILABLE (expr) = false;
2424      if (pti->type == TRANS_SPECULATION)
2425        {
2426          EXPR_SPEC_DONE_DS (expr) = pti->ds;
2427          EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2428        }
2429
2430      if (sched_verbose >= 6)
2431        {
2432          sel_print ("changed (cached): ");
2433          dump_expr (expr);
2434          sel_print ("\n");
2435        }
2436
2437      *res = MOVEUP_EXPR_CHANGED;
2438      return true;
2439    }
2440
2441  return false;
2442}
2443
2444/* Update bitmap caches on INSN with result RES of propagating EXPR.  */
2445static void
2446update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2447                     enum MOVEUP_EXPR_CODE res)
2448{
2449  int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2450
2451  /* Do not cache result of propagating jumps through an insn group,
2452     as it is always true, which is not useful outside the group.  */
2453  if (inside_insn_group)
2454    return;
2455
2456  if (res == MOVEUP_EXPR_NULL)
2457    {
2458      bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459      bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460    }
2461  else if (res == MOVEUP_EXPR_SAME)
2462    {
2463      bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2464      bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2465    }
2466  else if (res == MOVEUP_EXPR_AS_RHS)
2467    {
2468      bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2469      bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2470    }
2471  else
2472    gcc_unreachable ();
2473}
2474
2475/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2476   and transformation type TRANS_TYPE.  */
2477static void
2478update_transformation_cache (expr_t expr, insn_t insn,
2479                             bool inside_insn_group,
2480                             enum local_trans_type trans_type,
2481                             vinsn_t expr_old_vinsn)
2482{
2483  struct transformed_insns *pti;
2484
2485  if (inside_insn_group)
2486    return;
2487
2488  pti = XNEW (struct transformed_insns);
2489  pti->vinsn_old = expr_old_vinsn;
2490  pti->vinsn_new = EXPR_VINSN (expr);
2491  pti->type = trans_type;
2492  pti->was_target_conflict = was_target_conflict;
2493  pti->ds = EXPR_SPEC_DONE_DS (expr);
2494  pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2495  vinsn_attach (pti->vinsn_old);
2496  vinsn_attach (pti->vinsn_new);
2497  *((struct transformed_insns **)
2498    htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2499                              pti, VINSN_HASH_RTX (expr_old_vinsn),
2500                              INSERT)) = pti;
2501}
2502
2503/* Same as moveup_expr, but first looks up the result of
2504   transformation in caches.  */
2505static enum MOVEUP_EXPR_CODE
2506moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2507{
2508  enum MOVEUP_EXPR_CODE res;
2509  bool got_answer = false;
2510
2511  if (sched_verbose >= 6)
2512    {
2513      sel_print ("Moving ");
2514      dump_expr (expr);
2515      sel_print (" through %d: ", INSN_UID (insn));
2516    }
2517
2518  if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2519      && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2520      && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2521	  == EXPR_INSN_RTX (expr)))
2522    /* Don't use cached information for debug insns that are heads of
2523       basic blocks.  */;
2524  else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2525    /* When inside insn group, we do not want remove stores conflicting
2526       with previosly issued loads.  */
2527    got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2528  else if (try_transformation_cache (expr, insn, &res))
2529    got_answer = true;
2530
2531  if (! got_answer)
2532    {
2533      /* Invoke moveup_expr and record the results.  */
2534      vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2535      ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2536      int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2537      bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2538      enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2539
2540      /* ??? Invent something better than this.  We can't allow old_vinsn
2541         to go, we need it for the history vector.  */
2542      vinsn_attach (expr_old_vinsn);
2543
2544      res = moveup_expr (expr, insn, inside_insn_group,
2545                         &trans_type);
2546      switch (res)
2547        {
2548        case MOVEUP_EXPR_NULL:
2549          update_bitmap_cache (expr, insn, inside_insn_group, res);
2550	  if (sched_verbose >= 6)
2551            sel_print ("removed\n");
2552	  break;
2553
2554	case MOVEUP_EXPR_SAME:
2555          update_bitmap_cache (expr, insn, inside_insn_group, res);
2556          if (sched_verbose >= 6)
2557            sel_print ("unchanged\n");
2558	  break;
2559
2560        case MOVEUP_EXPR_AS_RHS:
2561          gcc_assert (!unique_p || inside_insn_group);
2562          update_bitmap_cache (expr, insn, inside_insn_group, res);
2563	  if (sched_verbose >= 6)
2564            sel_print ("unchanged (as RHS)\n");
2565	  break;
2566
2567	case MOVEUP_EXPR_CHANGED:
2568          gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2569                      || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2570          insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2571                                  INSN_UID (insn), trans_type,
2572                                  expr_old_vinsn, EXPR_VINSN (expr),
2573                                  expr_old_spec_ds);
2574          update_transformation_cache (expr, insn, inside_insn_group,
2575                                       trans_type, expr_old_vinsn);
2576          if (sched_verbose >= 6)
2577            {
2578              sel_print ("changed: ");
2579              dump_expr (expr);
2580              sel_print ("\n");
2581            }
2582	  break;
2583	default:
2584	  gcc_unreachable ();
2585        }
2586
2587      vinsn_detach (expr_old_vinsn);
2588    }
2589
2590  return res;
2591}
2592
2593/* Moves an av set AVP up through INSN, performing necessary
2594   transformations.  */
2595static void
2596moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2597{
2598  av_set_iterator i;
2599  expr_t expr;
2600
2601  FOR_EACH_EXPR_1 (expr, i, avp)
2602    {
2603
2604      switch (moveup_expr_cached (expr, insn, inside_insn_group))
2605	{
2606	case MOVEUP_EXPR_SAME:
2607        case MOVEUP_EXPR_AS_RHS:
2608	  break;
2609
2610	case MOVEUP_EXPR_NULL:
2611	  av_set_iter_remove (&i);
2612	  break;
2613
2614	case MOVEUP_EXPR_CHANGED:
2615          expr = merge_with_other_exprs (avp, &i, expr);
2616	  break;
2617
2618	default:
2619	  gcc_unreachable ();
2620	}
2621    }
2622}
2623
2624/* Moves AVP set along PATH.  */
2625static void
2626moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2627{
2628  int last_cycle;
2629
2630  if (sched_verbose >= 6)
2631    sel_print ("Moving expressions up in the insn group...\n");
2632  if (! path)
2633    return;
2634  last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2635  while (path
2636         && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2637    {
2638      moveup_set_expr (avp, ILIST_INSN (path), true);
2639      path = ILIST_NEXT (path);
2640    }
2641}
2642
2643/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW.  */
2644static bool
2645equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2646{
2647  expr_def _tmp, *tmp = &_tmp;
2648  int last_cycle;
2649  bool res = true;
2650
2651  copy_expr_onside (tmp, expr);
2652  last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2653  while (path
2654         && res
2655         && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2656    {
2657      res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2658             != MOVEUP_EXPR_NULL);
2659      path = ILIST_NEXT (path);
2660    }
2661
2662  if (res)
2663    {
2664      vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2665      vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2666
2667      if (tmp_vinsn != expr_vliw_vinsn)
2668	res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2669    }
2670
2671  clear_expr (tmp);
2672  return res;
2673}
2674
2675
2676/* Functions that compute av and lv sets.  */
2677
2678/* Returns true if INSN is not a downward continuation of the given path P in
2679   the current stage.  */
2680static bool
2681is_ineligible_successor (insn_t insn, ilist_t p)
2682{
2683  insn_t prev_insn;
2684
2685  /* Check if insn is not deleted.  */
2686  if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2687    gcc_unreachable ();
2688  else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2689    gcc_unreachable ();
2690
2691  /* If it's the first insn visited, then the successor is ok.  */
2692  if (!p)
2693    return false;
2694
2695  prev_insn = ILIST_INSN (p);
2696
2697  if (/* a backward edge.  */
2698      INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2699      /* is already visited.  */
2700      || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2701	  && (ilist_is_in_p (p, insn)
2702              /* We can reach another fence here and still seqno of insn
2703                 would be equal to seqno of prev_insn.  This is possible
2704                 when prev_insn is a previously created bookkeeping copy.
2705                 In that case it'd get a seqno of insn.  Thus, check here
2706                 whether insn is in current fence too.  */
2707              || IN_CURRENT_FENCE_P (insn)))
2708      /* Was already scheduled on this round.  */
2709      || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2710	  && IN_CURRENT_FENCE_P (insn))
2711      /* An insn from another fence could also be
2712	 scheduled earlier even if this insn is not in
2713	 a fence list right now.  Check INSN_SCHED_CYCLE instead.  */
2714      || (!pipelining_p
2715          && INSN_SCHED_TIMES (insn) > 0))
2716    return true;
2717  else
2718    return false;
2719}
2720
2721/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2722   of handling multiple successors and properly merging its av_sets.  P is
2723   the current path traversed.  WS is the size of lookahead window.
2724   Return the av set computed.  */
2725static av_set_t
2726compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2727{
2728  struct succs_info *sinfo;
2729  av_set_t expr_in_all_succ_branches = NULL;
2730  int is;
2731  insn_t succ, zero_succ = NULL;
2732  av_set_t av1 = NULL;
2733
2734  gcc_assert (sel_bb_end_p (insn));
2735
2736  /* Find different kind of successors needed for correct computing of
2737     SPEC and TARGET_AVAILABLE attributes.  */
2738  sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2739
2740  /* Debug output.  */
2741  if (sched_verbose >= 6)
2742    {
2743      sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2744      dump_insn_vector (sinfo->succs_ok);
2745      sel_print ("\n");
2746      if (sinfo->succs_ok_n != sinfo->all_succs_n)
2747        sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2748    }
2749
2750  /* Add insn to the tail of current path.  */
2751  ilist_add (&p, insn);
2752
2753  FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2754    {
2755      av_set_t succ_set;
2756
2757      /* We will edit SUCC_SET and EXPR_SPEC field of its elements.  */
2758      succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2759
2760      av_set_split_usefulness (succ_set,
2761                               sinfo->probs_ok[is],
2762                               sinfo->all_prob);
2763
2764      if (sinfo->all_succs_n > 1)
2765	{
2766          /* Find EXPR'es that came from *all* successors and save them
2767             into expr_in_all_succ_branches.  This set will be used later
2768             for calculating speculation attributes of EXPR'es.  */
2769          if (is == 0)
2770            {
2771              expr_in_all_succ_branches = av_set_copy (succ_set);
2772
2773              /* Remember the first successor for later. */
2774              zero_succ = succ;
2775            }
2776          else
2777            {
2778              av_set_iterator i;
2779              expr_t expr;
2780
2781              FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2782                if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2783                  av_set_iter_remove (&i);
2784            }
2785	}
2786
2787      /* Union the av_sets.  Check liveness restrictions on target registers
2788         in special case of two successors.  */
2789      if (sinfo->succs_ok_n == 2 && is == 1)
2790        {
2791          basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2792          basic_block bb1 = BLOCK_FOR_INSN (succ);
2793
2794          gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2795          av_set_union_and_live (&av1, &succ_set,
2796                                 BB_LV_SET (bb0),
2797                                 BB_LV_SET (bb1),
2798                                 insn);
2799        }
2800      else
2801        av_set_union_and_clear (&av1, &succ_set, insn);
2802    }
2803
2804  /* Check liveness restrictions via hard way when there are more than
2805     two successors.  */
2806  if (sinfo->succs_ok_n > 2)
2807    FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2808      {
2809        basic_block succ_bb = BLOCK_FOR_INSN (succ);
2810	av_set_t av_succ = (is_ineligible_successor (succ, p)
2811			    ? NULL
2812			    : BB_AV_SET (succ_bb));
2813
2814        gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2815	mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
2816      }
2817
2818  /* Finally, check liveness restrictions on paths leaving the region.  */
2819  if (sinfo->all_succs_n > sinfo->succs_ok_n)
2820    FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2821      mark_unavailable_targets
2822        (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2823
2824  if (sinfo->all_succs_n > 1)
2825    {
2826      av_set_iterator i;
2827      expr_t expr;
2828
2829      /* Increase the spec attribute of all EXPR'es that didn't come
2830	 from all successors.  */
2831      FOR_EACH_EXPR (expr, i, av1)
2832	if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2833	  EXPR_SPEC (expr)++;
2834
2835      av_set_clear (&expr_in_all_succ_branches);
2836
2837      /* Do not move conditional branches through other
2838	 conditional branches.  So, remove all conditional
2839	 branches from av_set if current operator is a conditional
2840	 branch.  */
2841      av_set_substract_cond_branches (&av1);
2842    }
2843
2844  ilist_remove (&p);
2845  free_succs_info (sinfo);
2846
2847  if (sched_verbose >= 6)
2848    {
2849      sel_print ("av_succs (%d): ", INSN_UID (insn));
2850      dump_av_set (av1);
2851      sel_print ("\n");
2852    }
2853
2854  return av1;
2855}
2856
2857/* This function computes av_set for the FIRST_INSN by dragging valid
2858   av_set through all basic block insns either from the end of basic block
2859   (computed using compute_av_set_at_bb_end) or from the insn on which
2860   MAX_WS was exceeded.  It uses compute_av_set_at_bb_end to compute av_set
2861   below the basic block and handling conditional branches.
2862   FIRST_INSN - the basic block head, P - path consisting of the insns
2863   traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2864   and bb ends are added to the path), WS - current window size,
2865   NEED_COPY_P - true if we'll make a copy of av_set before returning it.  */
2866static av_set_t
2867compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2868			  bool need_copy_p)
2869{
2870  insn_t cur_insn;
2871  int end_ws = ws;
2872  insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2873  insn_t after_bb_end = NEXT_INSN (bb_end);
2874  insn_t last_insn;
2875  av_set_t av = NULL;
2876  basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2877
2878  /* Return NULL if insn is not on the legitimate downward path.  */
2879  if (is_ineligible_successor (first_insn, p))
2880    {
2881      if (sched_verbose >= 6)
2882        sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2883
2884      return NULL;
2885    }
2886
2887  /* If insn already has valid av(insn) computed, just return it.  */
2888  if (AV_SET_VALID_P (first_insn))
2889    {
2890      av_set_t av_set;
2891
2892      if (sel_bb_head_p (first_insn))
2893	av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2894      else
2895	av_set = NULL;
2896
2897      if (sched_verbose >= 6)
2898        {
2899          sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2900          dump_av_set (av_set);
2901          sel_print ("\n");
2902        }
2903
2904      return need_copy_p ? av_set_copy (av_set) : av_set;
2905    }
2906
2907  ilist_add (&p, first_insn);
2908
2909  /* As the result after this loop have completed, in LAST_INSN we'll
2910     have the insn which has valid av_set to start backward computation
2911     from: it either will be NULL because on it the window size was exceeded
2912     or other valid av_set as returned by compute_av_set for the last insn
2913     of the basic block.  */
2914  for (last_insn = first_insn; last_insn != after_bb_end;
2915       last_insn = NEXT_INSN (last_insn))
2916    {
2917      /* We may encounter valid av_set not only on bb_head, but also on
2918	 those insns on which previously MAX_WS was exceeded.  */
2919      if (AV_SET_VALID_P (last_insn))
2920	{
2921          if (sched_verbose >= 6)
2922            sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2923	  break;
2924	}
2925
2926      /* The special case: the last insn of the BB may be an
2927         ineligible_successor due to its SEQ_NO that was set on
2928	 it as a bookkeeping.  */
2929      if (last_insn != first_insn
2930          && is_ineligible_successor (last_insn, p))
2931	{
2932          if (sched_verbose >= 6)
2933            sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2934	  break;
2935	}
2936
2937      if (DEBUG_INSN_P (last_insn))
2938	continue;
2939
2940      if (end_ws > max_ws)
2941	{
2942	  /* We can reach max lookahead size at bb_header, so clean av_set
2943	     first.  */
2944	  INSN_WS_LEVEL (last_insn) = global_level;
2945
2946	  if (sched_verbose >= 6)
2947            sel_print ("Insn %d is beyond the software lookahead window size\n",
2948                       INSN_UID (last_insn));
2949	  break;
2950	}
2951
2952      end_ws++;
2953    }
2954
2955  /* Get the valid av_set into AV above the LAST_INSN to start backward
2956     computation from.  It either will be empty av_set or av_set computed from
2957     the successors on the last insn of the current bb.  */
2958  if (last_insn != after_bb_end)
2959    {
2960      av = NULL;
2961
2962      /* This is needed only to obtain av_sets that are identical to
2963         those computed by the old compute_av_set version.  */
2964      if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2965        av_set_add (&av, INSN_EXPR (last_insn));
2966    }
2967  else
2968    /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END.  */
2969    av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2970
2971  /* Compute av_set in AV starting from below the LAST_INSN up to
2972     location above the FIRST_INSN.  */
2973  for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2974       cur_insn = PREV_INSN (cur_insn))
2975    if (!INSN_NOP_P (cur_insn))
2976      {
2977        expr_t expr;
2978
2979        moveup_set_expr (&av, cur_insn, false);
2980
2981        /* If the expression for CUR_INSN is already in the set,
2982           replace it by the new one.  */
2983        expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2984        if (expr != NULL)
2985          {
2986            clear_expr (expr);
2987            copy_expr (expr, INSN_EXPR (cur_insn));
2988          }
2989        else
2990          av_set_add (&av, INSN_EXPR (cur_insn));
2991      }
2992
2993  /* Clear stale bb_av_set.  */
2994  if (sel_bb_head_p (first_insn))
2995    {
2996      av_set_clear (&BB_AV_SET (cur_bb));
2997      BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2998      BB_AV_LEVEL (cur_bb) = global_level;
2999    }
3000
3001  if (sched_verbose >= 6)
3002    {
3003      sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3004      dump_av_set (av);
3005      sel_print ("\n");
3006    }
3007
3008  ilist_remove (&p);
3009  return av;
3010}
3011
3012/* Compute av set before INSN.
3013   INSN - the current operation (actual rtx INSN)
3014   P - the current path, which is list of insns visited so far
3015   WS - software lookahead window size.
3016   UNIQUE_P - TRUE, if returned av_set will be changed, hence
3017   if we want to save computed av_set in s_i_d, we should make a copy of it.
3018
3019   In the resulting set we will have only expressions that don't have delay
3020   stalls and nonsubstitutable dependences.  */
3021static av_set_t
3022compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3023{
3024  return compute_av_set_inside_bb (insn, p, ws, unique_p);
3025}
3026
3027/* Propagate a liveness set LV through INSN.  */
3028static void
3029propagate_lv_set (regset lv, insn_t insn)
3030{
3031  gcc_assert (INSN_P (insn));
3032
3033  if (INSN_NOP_P (insn))
3034    return;
3035
3036  df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3037}
3038
3039/* Return livness set at the end of BB.  */
3040static regset
3041compute_live_after_bb (basic_block bb)
3042{
3043  edge e;
3044  edge_iterator ei;
3045  regset lv = get_clear_regset_from_pool ();
3046
3047  gcc_assert (!ignore_first);
3048
3049  FOR_EACH_EDGE (e, ei, bb->succs)
3050    if (sel_bb_empty_p (e->dest))
3051      {
3052        if (! BB_LV_SET_VALID_P (e->dest))
3053          {
3054            gcc_unreachable ();
3055            gcc_assert (BB_LV_SET (e->dest) == NULL);
3056            BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3057            BB_LV_SET_VALID_P (e->dest) = true;
3058          }
3059        IOR_REG_SET (lv, BB_LV_SET (e->dest));
3060      }
3061    else
3062      IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3063
3064  return lv;
3065}
3066
3067/* Compute the set of all live registers at the point before INSN and save
3068   it at INSN if INSN is bb header.  */
3069regset
3070compute_live (insn_t insn)
3071{
3072  basic_block bb = BLOCK_FOR_INSN (insn);
3073  insn_t final, temp;
3074  regset lv;
3075
3076  /* Return the valid set if we're already on it.  */
3077  if (!ignore_first)
3078    {
3079      regset src = NULL;
3080
3081      if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3082        src = BB_LV_SET (bb);
3083      else
3084        {
3085          gcc_assert (in_current_region_p (bb));
3086          if (INSN_LIVE_VALID_P (insn))
3087            src = INSN_LIVE (insn);
3088        }
3089
3090      if (src)
3091	{
3092	  lv = get_regset_from_pool ();
3093	  COPY_REG_SET (lv, src);
3094
3095          if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3096            {
3097              COPY_REG_SET (BB_LV_SET (bb), lv);
3098              BB_LV_SET_VALID_P (bb) = true;
3099            }
3100
3101	  return_regset_to_pool (lv);
3102	  return lv;
3103	}
3104    }
3105
3106  /* We've skipped the wrong lv_set.  Don't skip the right one.  */
3107  ignore_first = false;
3108  gcc_assert (in_current_region_p (bb));
3109
3110  /* Find a valid LV set in this block or below, if needed.
3111     Start searching from the next insn: either ignore_first is true, or
3112     INSN doesn't have a correct live set.  */
3113  temp = NEXT_INSN (insn);
3114  final = NEXT_INSN (BB_END (bb));
3115  while (temp != final && ! INSN_LIVE_VALID_P (temp))
3116    temp = NEXT_INSN (temp);
3117  if (temp == final)
3118    {
3119      lv = compute_live_after_bb (bb);
3120      temp = PREV_INSN (temp);
3121    }
3122  else
3123    {
3124      lv = get_regset_from_pool ();
3125      COPY_REG_SET (lv, INSN_LIVE (temp));
3126    }
3127
3128  /* Put correct lv sets on the insns which have bad sets.  */
3129  final = PREV_INSN (insn);
3130  while (temp != final)
3131    {
3132      propagate_lv_set (lv, temp);
3133      COPY_REG_SET (INSN_LIVE (temp), lv);
3134      INSN_LIVE_VALID_P (temp) = true;
3135      temp = PREV_INSN (temp);
3136    }
3137
3138  /* Also put it in a BB.  */
3139  if (sel_bb_head_p (insn))
3140    {
3141      basic_block bb = BLOCK_FOR_INSN (insn);
3142
3143      COPY_REG_SET (BB_LV_SET (bb), lv);
3144      BB_LV_SET_VALID_P (bb) = true;
3145    }
3146
3147  /* We return LV to the pool, but will not clear it there.  Thus we can
3148     legimatelly use LV till the next use of regset_pool_get ().  */
3149  return_regset_to_pool (lv);
3150  return lv;
3151}
3152
3153/* Update liveness sets for INSN.  */
3154static inline void
3155update_liveness_on_insn (rtx_insn *insn)
3156{
3157  ignore_first = true;
3158  compute_live (insn);
3159}
3160
3161/* Compute liveness below INSN and write it into REGS.  */
3162static inline void
3163compute_live_below_insn (rtx_insn *insn, regset regs)
3164{
3165  rtx_insn *succ;
3166  succ_iterator si;
3167
3168  FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3169    IOR_REG_SET (regs, compute_live (succ));
3170}
3171
3172/* Update the data gathered in av and lv sets starting from INSN.  */
3173static void
3174update_data_sets (rtx_insn *insn)
3175{
3176  update_liveness_on_insn (insn);
3177  if (sel_bb_head_p (insn))
3178    {
3179      gcc_assert (AV_LEVEL (insn) != 0);
3180      BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3181      compute_av_set (insn, NULL, 0, 0);
3182    }
3183}
3184
3185
3186/* Helper for move_op () and find_used_regs ().
3187   Return speculation type for which a check should be created on the place
3188   of INSN.  EXPR is one of the original ops we are searching for.  */
3189static ds_t
3190get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3191{
3192  ds_t to_check_ds;
3193  ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3194
3195  to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3196
3197  if (targetm.sched.get_insn_checked_ds)
3198    already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3199
3200  if (spec_info != NULL
3201      && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3202    already_checked_ds |= BEGIN_CONTROL;
3203
3204  already_checked_ds = ds_get_speculation_types (already_checked_ds);
3205
3206  to_check_ds &= ~already_checked_ds;
3207
3208  return to_check_ds;
3209}
3210
3211/* Find the set of registers that are unavailable for storing expres
3212   while moving ORIG_OPS up on the path starting from INSN due to
3213   liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3214
3215   All the original operations found during the traversal are saved in the
3216   ORIGINAL_INSNS list.
3217
3218   REG_RENAME_P denotes the set of hardware registers that
3219   cannot be used with renaming due to the register class restrictions,
3220   mode restrictions and other (the register we'll choose should be
3221   compatible class with the original uses, shouldn't be in call_used_regs,
3222   should be HARD_REGNO_RENAME_OK etc).
3223
3224   Returns TRUE if we've found all original insns, FALSE otherwise.
3225
3226   This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3227   to traverse the code motion paths.  This helper function finds registers
3228   that are not available for storing expres while moving ORIG_OPS up on the
3229   path starting from INSN.  A register considered as used on the moving path,
3230   if one of the following conditions is not satisfied:
3231
3232      (1) a register not set or read on any path from xi to an instance of
3233	  the original operation,
3234      (2) not among the live registers of the point immediately following the
3235          first original operation on a given downward path, except for the
3236	  original target register of the operation,
3237      (3) not live on the other path of any conditional branch that is passed
3238	  by the operation, in case original operations are not present on
3239	  both paths of the conditional branch.
3240
3241   All the original operations found during the traversal are saved in the
3242   ORIGINAL_INSNS list.
3243
3244   REG_RENAME_P->CROSSED_CALL_ABIS is true, if there is a call insn on the path
3245   from INSN to original insn. In this case CALL_USED_REG_SET will be added
3246   to unavailable hard regs at the point original operation is found.  */
3247
3248static bool
3249find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3250		struct reg_rename  *reg_rename_p, def_list_t *original_insns)
3251{
3252  def_list_iterator i;
3253  def_t def;
3254  int res;
3255  bool needs_spec_check_p = false;
3256  expr_t expr;
3257  av_set_iterator expr_iter;
3258  struct fur_static_params sparams;
3259  struct cmpd_local_params lparams;
3260
3261  /* We haven't visited any blocks yet.  */
3262  bitmap_clear (code_motion_visited_blocks);
3263
3264  /* Init parameters for code_motion_path_driver.  */
3265  sparams.crossed_call_abis = 0;
3266  sparams.original_insns = original_insns;
3267  sparams.used_regs = used_regs;
3268
3269  /* Set the appropriate hooks and data.  */
3270  code_motion_path_driver_info = &fur_hooks;
3271
3272  res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3273
3274  reg_rename_p->crossed_call_abis |= sparams.crossed_call_abis;
3275
3276  gcc_assert (res == 1);
3277  gcc_assert (original_insns && *original_insns);
3278
3279  /* ??? We calculate whether an expression needs a check when computing
3280     av sets.  This information is not as precise as it could be due to
3281     merging this bit in merge_expr.  We can do better in find_used_regs,
3282     but we want to avoid multiple traversals of the same code motion
3283     paths.  */
3284  FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3285    needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3286
3287  /* Mark hardware regs in REG_RENAME_P that are not suitable
3288     for renaming expr in INSN due to hardware restrictions (register class,
3289     modes compatibility etc).  */
3290  FOR_EACH_DEF (def, i, *original_insns)
3291    {
3292      vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3293
3294      if (VINSN_SEPARABLE_P (vinsn))
3295	mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3296
3297      /* Do not allow clobbering of ld.[sa] address in case some of the
3298         original operations need a check.  */
3299      if (needs_spec_check_p)
3300	IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3301    }
3302
3303  return true;
3304}
3305
3306
3307/* Functions to choose the best insn from available ones.  */
3308
3309/* Adjusts the priority for EXPR using the backend *_adjust_priority hook.  */
3310static int
3311sel_target_adjust_priority (expr_t expr)
3312{
3313  int priority = EXPR_PRIORITY (expr);
3314  int new_priority;
3315
3316  if (targetm.sched.adjust_priority)
3317    new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3318  else
3319    new_priority = priority;
3320
3321  /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly.  */
3322  EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3323
3324  if (sched_verbose >= 4)
3325    sel_print ("sel_target_adjust_priority: insn %d,  %d+%d = %d.\n",
3326	       INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3327	       EXPR_PRIORITY_ADJ (expr), new_priority);
3328
3329  return new_priority;
3330}
3331
3332/* Rank two available exprs for schedule.  Never return 0 here.  */
3333static int
3334sel_rank_for_schedule (const void *x, const void *y)
3335{
3336  expr_t tmp = *(const expr_t *) y;
3337  expr_t tmp2 = *(const expr_t *) x;
3338  insn_t tmp_insn, tmp2_insn;
3339  vinsn_t tmp_vinsn, tmp2_vinsn;
3340  int val;
3341
3342  tmp_vinsn = EXPR_VINSN (tmp);
3343  tmp2_vinsn = EXPR_VINSN (tmp2);
3344  tmp_insn = EXPR_INSN_RTX (tmp);
3345  tmp2_insn = EXPR_INSN_RTX (tmp2);
3346
3347  /* Schedule debug insns as early as possible.  */
3348  if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3349    return -1;
3350  else if (DEBUG_INSN_P (tmp2_insn))
3351    return 1;
3352
3353  /* Prefer SCHED_GROUP_P insns to any others.  */
3354  if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3355    {
3356      if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3357        return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3358
3359      /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3360         cannot be cloned.  */
3361      if (VINSN_UNIQUE_P (tmp2_vinsn))
3362        return 1;
3363      return -1;
3364    }
3365
3366  /* Discourage scheduling of speculative checks.  */
3367  val = (sel_insn_is_speculation_check (tmp_insn)
3368	 - sel_insn_is_speculation_check (tmp2_insn));
3369  if (val)
3370    return val;
3371
3372  /* Prefer not scheduled insn over scheduled one.  */
3373  if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3374    {
3375      val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3376      if (val)
3377	return val;
3378    }
3379
3380  /* Prefer jump over non-jump instruction.  */
3381  if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3382    return -1;
3383  else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3384    return 1;
3385
3386  /* Prefer an expr with non-zero usefulness.  */
3387  int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3388
3389  if (u1 == 0)
3390    {
3391      if (u2 == 0)
3392        u1 = u2 = 1;
3393      else
3394        return 1;
3395    }
3396  else if (u2 == 0)
3397    return -1;
3398
3399  /* Prefer an expr with greater priority.  */
3400  val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3401         - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3402  if (val)
3403    return val;
3404
3405  if (spec_info != NULL && spec_info->mask != 0)
3406    /* This code was taken from haifa-sched.cc: rank_for_schedule ().  */
3407    {
3408      ds_t ds1, ds2;
3409      dw_t dw1, dw2;
3410      int dw;
3411
3412      ds1 = EXPR_SPEC_DONE_DS (tmp);
3413      if (ds1)
3414	dw1 = ds_weak (ds1);
3415      else
3416	dw1 = NO_DEP_WEAK;
3417
3418      ds2 = EXPR_SPEC_DONE_DS (tmp2);
3419      if (ds2)
3420	dw2 = ds_weak (ds2);
3421      else
3422	dw2 = NO_DEP_WEAK;
3423
3424      dw = dw2 - dw1;
3425      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3426	return dw;
3427    }
3428
3429  /* Prefer an old insn to a bookkeeping insn.  */
3430  if (INSN_UID (tmp_insn) < first_emitted_uid
3431      && INSN_UID (tmp2_insn) >= first_emitted_uid)
3432    return -1;
3433  if (INSN_UID (tmp_insn) >= first_emitted_uid
3434      && INSN_UID (tmp2_insn) < first_emitted_uid)
3435    return 1;
3436
3437  /* Prefer an insn with smaller UID, as a last resort.
3438     We can't safely use INSN_LUID as it is defined only for those insns
3439     that are in the stream.  */
3440  return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3441}
3442
3443/* Filter out expressions from av set pointed to by AV_PTR
3444   that are pipelined too many times.  */
3445static void
3446process_pipelined_exprs (av_set_t *av_ptr)
3447{
3448  expr_t expr;
3449  av_set_iterator si;
3450
3451  /* Don't pipeline already pipelined code as that would increase
3452     number of unnecessary register moves.  */
3453  FOR_EACH_EXPR_1 (expr, si, av_ptr)
3454    {
3455      if (EXPR_SCHED_TIMES (expr)
3456	  >= param_selsched_max_sched_times)
3457	av_set_iter_remove (&si);
3458    }
3459}
3460
3461/* Filter speculative insns from AV_PTR if we don't want them.  */
3462static void
3463process_spec_exprs (av_set_t *av_ptr)
3464{
3465  expr_t expr;
3466  av_set_iterator si;
3467
3468  if (spec_info == NULL)
3469    return;
3470
3471  /* Scan *AV_PTR to find out if we want to consider speculative
3472     instructions for scheduling.  */
3473  FOR_EACH_EXPR_1 (expr, si, av_ptr)
3474    {
3475      ds_t ds;
3476
3477      ds = EXPR_SPEC_DONE_DS (expr);
3478
3479      /* The probability of a success is too low - don't speculate.  */
3480      if ((ds & SPECULATIVE)
3481          && (ds_weak (ds) < spec_info->data_weakness_cutoff
3482              || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3483	      || (pipelining_p && false
3484		  && (ds & DATA_SPEC)
3485		  && (ds & CONTROL_SPEC))))
3486        {
3487          av_set_iter_remove (&si);
3488          continue;
3489        }
3490    }
3491}
3492
3493/* Search for any use-like insns in AV_PTR and decide on scheduling
3494   them.  Return one when found, and NULL otherwise.
3495   Note that we check here whether a USE could be scheduled to avoid
3496   an infinite loop later.  */
3497static expr_t
3498process_use_exprs (av_set_t *av_ptr)
3499{
3500  expr_t expr;
3501  av_set_iterator si;
3502  bool uses_present_p = false;
3503  bool try_uses_p = true;
3504
3505  FOR_EACH_EXPR_1 (expr, si, av_ptr)
3506    {
3507      /* This will also initialize INSN_CODE for later use.  */
3508      if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3509        {
3510          /* If we have a USE in *AV_PTR that was not scheduled yet,
3511             do so because it will do good only.  */
3512          if (EXPR_SCHED_TIMES (expr) <= 0)
3513            {
3514              if (EXPR_TARGET_AVAILABLE (expr) == 1)
3515                return expr;
3516
3517              av_set_iter_remove (&si);
3518            }
3519          else
3520            {
3521              gcc_assert (pipelining_p);
3522
3523              uses_present_p = true;
3524            }
3525        }
3526      else
3527        try_uses_p = false;
3528    }
3529
3530  if (uses_present_p)
3531    {
3532      /* If we don't want to schedule any USEs right now and we have some
3533           in *AV_PTR, remove them, else just return the first one found.  */
3534      if (!try_uses_p)
3535        {
3536          FOR_EACH_EXPR_1 (expr, si, av_ptr)
3537            if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3538              av_set_iter_remove (&si);
3539        }
3540      else
3541        {
3542          FOR_EACH_EXPR_1 (expr, si, av_ptr)
3543            {
3544              gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3545
3546              if (EXPR_TARGET_AVAILABLE (expr) == 1)
3547                return expr;
3548
3549              av_set_iter_remove (&si);
3550            }
3551        }
3552    }
3553
3554  return NULL;
3555}
3556
3557/* Lookup EXPR in VINSN_VEC and return TRUE if found.  Also check patterns from
3558   EXPR's history of changes.  */
3559static bool
3560vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3561{
3562  vinsn_t vinsn, expr_vinsn;
3563  int n;
3564  unsigned i;
3565
3566  /* Start with checking expr itself and then proceed with all the old forms
3567     of expr taken from its history vector.  */
3568  for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3569       expr_vinsn;
3570       expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3571		     ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3572		     : NULL))
3573    FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3574      if (VINSN_SEPARABLE_P (vinsn))
3575	{
3576	  if (vinsn_equal_p (vinsn, expr_vinsn))
3577	    return true;
3578	}
3579      else
3580	{
3581	  /* For non-separable instructions, the blocking insn can have
3582	     another pattern due to substitution, and we can't choose
3583	     different register as in the above case.  Check all registers
3584	     being written instead.  */
3585	  if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3586				  VINSN_REG_SETS (expr_vinsn)))
3587	    return true;
3588	}
3589
3590  return false;
3591}
3592
3593/* Return true if either of expressions from ORIG_OPS can be blocked
3594   by previously created bookkeeping code.  STATIC_PARAMS points to static
3595   parameters of move_op.  */
3596static bool
3597av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3598{
3599  expr_t expr;
3600  av_set_iterator iter;
3601  moveop_static_params_p sparams;
3602
3603  /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3604     created while scheduling on another fence.  */
3605  FOR_EACH_EXPR (expr, iter, orig_ops)
3606    if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3607      return true;
3608
3609  gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3610  sparams = (moveop_static_params_p) static_params;
3611
3612  /* Expressions can be also blocked by bookkeeping created during current
3613     move_op.  */
3614  if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3615    FOR_EACH_EXPR (expr, iter, orig_ops)
3616      if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3617        return true;
3618
3619  /* Expressions in ORIG_OPS may have wrong destination register due to
3620     renaming.  Check with the right register instead.  */
3621  if (sparams->dest && REG_P (sparams->dest))
3622    {
3623      rtx reg = sparams->dest;
3624      vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3625
3626      if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3627	  || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3628	  || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3629	return true;
3630    }
3631
3632  return false;
3633}
3634
3635/* Clear VINSN_VEC and detach vinsns.  */
3636static void
3637vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3638{
3639  unsigned len = vinsn_vec->length ();
3640  if (len > 0)
3641    {
3642      vinsn_t vinsn;
3643      int n;
3644
3645      FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3646        vinsn_detach (vinsn);
3647      vinsn_vec->block_remove (0, len);
3648    }
3649}
3650
3651/* Add the vinsn of EXPR to the VINSN_VEC.  */
3652static void
3653vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3654{
3655  vinsn_attach (EXPR_VINSN (expr));
3656  vinsn_vec->safe_push (EXPR_VINSN (expr));
3657}
3658
3659/* Free the vector representing blocked expressions.  */
3660static void
3661vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3662{
3663  vinsn_vec.release ();
3664}
3665
3666/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT.  */
3667
3668void sel_add_to_insn_priority (rtx insn, int amount)
3669{
3670  EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3671
3672  if (sched_verbose >= 2)
3673    sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3674	       INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3675	       EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3676}
3677
3678/* Turn AV into a vector, filter inappropriate insns and sort it.  Return
3679   true if there is something to schedule.  BNDS and FENCE are current
3680   boundaries and fence, respectively.  If we need to stall for some cycles
3681   before an expr from AV would become available, write this number to
3682   *PNEED_STALL.  */
3683static bool
3684fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3685                 int *pneed_stall)
3686{
3687  av_set_iterator si;
3688  expr_t expr;
3689  int sched_next_worked = 0, stalled, n;
3690  static int av_max_prio, est_ticks_till_branch;
3691  int min_need_stall = -1;
3692  deps_t dc = BND_DC (BLIST_BND (bnds));
3693
3694  /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3695     already scheduled.  */
3696  if (av == NULL)
3697    return false;
3698
3699  /* Empty vector from the previous stuff.  */
3700  if (vec_av_set.length () > 0)
3701    vec_av_set.block_remove (0, vec_av_set.length ());
3702
3703  /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3704     for each insn.  */
3705  gcc_assert (vec_av_set.is_empty ());
3706  FOR_EACH_EXPR (expr, si, av)
3707    {
3708      vec_av_set.safe_push (expr);
3709
3710      gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3711
3712      /* Adjust priority using target backend hook.  */
3713      sel_target_adjust_priority (expr);
3714    }
3715
3716  /* Sort the vector.  */
3717  vec_av_set.qsort (sel_rank_for_schedule);
3718
3719  /* We record maximal priority of insns in av set for current instruction
3720     group.  */
3721  if (FENCE_STARTS_CYCLE_P (fence))
3722    av_max_prio = est_ticks_till_branch = INT_MIN;
3723
3724  /* Filter out inappropriate expressions.  Loop's direction is reversed to
3725     visit "best" instructions first.  We assume that vec::unordered_remove
3726     moves last element in place of one being deleted.  */
3727  for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3728    {
3729      expr_t expr = vec_av_set[n];
3730      insn_t insn = EXPR_INSN_RTX (expr);
3731      signed char target_available;
3732      bool is_orig_reg_p = true;
3733      int need_cycles, new_prio;
3734      bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3735
3736      /* Don't allow any insns other than from SCHED_GROUP if we have one.  */
3737      if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3738        {
3739          vec_av_set.unordered_remove (n);
3740          continue;
3741        }
3742
3743      /* Set number of sched_next insns (just in case there
3744         could be several).  */
3745      if (FENCE_SCHED_NEXT (fence))
3746        sched_next_worked++;
3747
3748      /* Check all liveness requirements and try renaming.
3749         FIXME: try to minimize calls to this.  */
3750      target_available = EXPR_TARGET_AVAILABLE (expr);
3751
3752      /* If insn was already scheduled on the current fence,
3753	 set TARGET_AVAILABLE to -1 no matter what expr's attribute says.  */
3754      if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3755	  && !fence_insn_p)
3756	target_available = -1;
3757
3758      /* If the availability of the EXPR is invalidated by the insertion of
3759	 bookkeeping earlier, make sure that we won't choose this expr for
3760	 scheduling if it's not separable, and if it is separable, then
3761	 we have to recompute the set of available registers for it.  */
3762      if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3763	{
3764          vec_av_set.unordered_remove (n);
3765          if (sched_verbose >= 4)
3766            sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3767                       INSN_UID (insn));
3768          continue;
3769        }
3770
3771      if (target_available == true)
3772	{
3773          /* Do nothing -- we can use an existing register.  */
3774	  is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3775        }
3776      else if (/* Non-separable instruction will never
3777                  get another register. */
3778               (target_available == false
3779                && !EXPR_SEPARABLE_P (expr))
3780               /* Don't try to find a register for low-priority expression.  */
3781               || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3782               /* ??? FIXME: Don't try to rename data speculation.  */
3783               || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3784               || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3785        {
3786          vec_av_set.unordered_remove (n);
3787          if (sched_verbose >= 4)
3788            sel_print ("Expr %d has no suitable target register\n",
3789                       INSN_UID (insn));
3790
3791	  /* A fence insn should not get here.  */
3792	  gcc_assert (!fence_insn_p);
3793	  continue;
3794        }
3795
3796      /* At this point a fence insn should always be available.  */
3797      gcc_assert (!fence_insn_p
3798		  || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3799
3800      /* Filter expressions that need to be renamed or speculated when
3801	 pipelining, because compensating register copies or speculation
3802	 checks are likely to be placed near the beginning of the loop,
3803	 causing a stall.  */
3804      if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3805	  && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3806	{
3807	  /* Estimation of number of cycles until loop branch for
3808	     renaming/speculation to be successful.  */
3809	  int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3810
3811	  if ((int) current_loop_nest->ninsns < 9)
3812	    {
3813	      vec_av_set.unordered_remove (n);
3814	      if (sched_verbose >= 4)
3815		sel_print ("Pipelining expr %d will likely cause stall\n",
3816			   INSN_UID (insn));
3817	      continue;
3818	    }
3819
3820	  if ((int) current_loop_nest->ninsns - num_insns_scheduled
3821	      < need_n_ticks_till_branch * issue_rate / 2
3822	      && est_ticks_till_branch < need_n_ticks_till_branch)
3823	     {
3824	       vec_av_set.unordered_remove (n);
3825	       if (sched_verbose >= 4)
3826		 sel_print ("Pipelining expr %d will likely cause stall\n",
3827			    INSN_UID (insn));
3828	       continue;
3829	     }
3830	}
3831
3832      /* We want to schedule speculation checks as late as possible.  Discard
3833	 them from av set if there are instructions with higher priority.  */
3834      if (sel_insn_is_speculation_check (insn)
3835	  && EXPR_PRIORITY (expr) < av_max_prio)
3836	{
3837          stalled++;
3838          min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3839          vec_av_set.unordered_remove (n);
3840	  if (sched_verbose >= 4)
3841	    sel_print ("Delaying speculation check %d until its first use\n",
3842		       INSN_UID (insn));
3843	  continue;
3844	}
3845
3846      /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO.  */
3847      if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3848	av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3849
3850      /* Don't allow any insns whose data is not yet ready.
3851         Check first whether we've already tried them and failed.  */
3852      if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3853	{
3854          need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3855			 - FENCE_CYCLE (fence));
3856	  if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3857	    est_ticks_till_branch = MAX (est_ticks_till_branch,
3858					 EXPR_PRIORITY (expr) + need_cycles);
3859
3860	  if (need_cycles > 0)
3861	    {
3862	      stalled++;
3863	      min_need_stall = (min_need_stall < 0
3864				? need_cycles
3865				: MIN (min_need_stall, need_cycles));
3866	      vec_av_set.unordered_remove (n);
3867
3868	      if (sched_verbose >= 4)
3869		sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3870			   INSN_UID (insn),
3871			   FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3872	      continue;
3873	    }
3874	}
3875
3876      /* Now resort to dependence analysis to find whether EXPR might be
3877         stalled due to dependencies from FENCE's context.  */
3878      need_cycles = tick_check_p (expr, dc, fence);
3879      new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3880
3881      if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3882	est_ticks_till_branch = MAX (est_ticks_till_branch,
3883				     new_prio);
3884
3885      if (need_cycles > 0)
3886        {
3887          if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3888            {
3889              int new_size = INSN_UID (insn) * 3 / 2;
3890
3891              FENCE_READY_TICKS (fence)
3892                = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3893                                     new_size, FENCE_READY_TICKS_SIZE (fence),
3894                                     sizeof (int));
3895            }
3896          FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3897            = FENCE_CYCLE (fence) + need_cycles;
3898
3899          stalled++;
3900          min_need_stall = (min_need_stall < 0
3901                            ? need_cycles
3902                            : MIN (min_need_stall, need_cycles));
3903
3904          vec_av_set.unordered_remove (n);
3905
3906          if (sched_verbose >= 4)
3907            sel_print ("Expr %d is not ready yet until cycle %d\n",
3908                       INSN_UID (insn),
3909                       FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3910          continue;
3911        }
3912
3913      if (sched_verbose >= 4)
3914        sel_print ("Expr %d is ok\n", INSN_UID (insn));
3915      min_need_stall = 0;
3916    }
3917
3918  /* Clear SCHED_NEXT.  */
3919  if (FENCE_SCHED_NEXT (fence))
3920    {
3921      gcc_assert (sched_next_worked == 1);
3922      FENCE_SCHED_NEXT (fence) = NULL;
3923    }
3924
3925  /* No need to stall if this variable was not initialized.  */
3926  if (min_need_stall < 0)
3927    min_need_stall = 0;
3928
3929  if (vec_av_set.is_empty ())
3930    {
3931      /* We need to set *pneed_stall here, because later we skip this code
3932         when ready list is empty.  */
3933      *pneed_stall = min_need_stall;
3934      return false;
3935    }
3936  else
3937    gcc_assert (min_need_stall == 0);
3938
3939  /* Sort the vector.  */
3940  vec_av_set.qsort (sel_rank_for_schedule);
3941
3942  if (sched_verbose >= 4)
3943    {
3944      sel_print ("Total ready exprs: %d, stalled: %d\n",
3945                 vec_av_set.length (), stalled);
3946      sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3947      FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3948        dump_expr (expr);
3949      sel_print ("\n");
3950    }
3951
3952  *pneed_stall = 0;
3953  return true;
3954}
3955
3956/* Convert a vectored and sorted av set to the ready list that
3957   the rest of the backend wants to see.  */
3958static void
3959convert_vec_av_set_to_ready (void)
3960{
3961  int n;
3962  expr_t expr;
3963
3964  /* Allocate and fill the ready list from the sorted vector.  */
3965  ready.n_ready = vec_av_set.length ();
3966  ready.first = ready.n_ready - 1;
3967
3968  gcc_assert (ready.n_ready > 0);
3969
3970  if (ready.n_ready > max_issue_size)
3971    {
3972      max_issue_size = ready.n_ready;
3973      sched_extend_ready_list (ready.n_ready);
3974    }
3975
3976  FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3977    {
3978      vinsn_t vi = EXPR_VINSN (expr);
3979      insn_t insn = VINSN_INSN_RTX (vi);
3980
3981      ready_try[n] = 0;
3982      ready.vec[n] = insn;
3983    }
3984}
3985
3986/* Initialize ready list from *AV_PTR for the max_issue () call.
3987   If any unrecognizable insn found in *AV_PTR, return it (and skip
3988   max_issue).  BND and FENCE are current boundary and fence,
3989   respectively.  If we need to stall for some cycles before an expr
3990   from *AV_PTR would become available, write this number to *PNEED_STALL.  */
3991static expr_t
3992fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3993                 int *pneed_stall)
3994{
3995  expr_t expr;
3996
3997  /* We do not support multiple boundaries per fence.  */
3998  gcc_assert (BLIST_NEXT (bnds) == NULL);
3999
4000  /* Process expressions required special handling, i.e.  pipelined,
4001     speculative and recog() < 0 expressions first.  */
4002  process_pipelined_exprs (av_ptr);
4003  process_spec_exprs (av_ptr);
4004
4005  /* A USE could be scheduled immediately.  */
4006  expr = process_use_exprs (av_ptr);
4007  if (expr)
4008    {
4009      *pneed_stall = 0;
4010      return expr;
4011    }
4012
4013  /* Turn the av set to a vector for sorting.  */
4014  if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4015    {
4016      ready.n_ready = 0;
4017      return NULL;
4018    }
4019
4020  /* Build the final ready list.  */
4021  convert_vec_av_set_to_ready ();
4022  return NULL;
4023}
4024
4025/* Wrapper for dfa_new_cycle ().  Returns TRUE if cycle was advanced.  */
4026static bool
4027sel_dfa_new_cycle (insn_t insn, fence_t fence)
4028{
4029  int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4030                             ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4031                             : FENCE_CYCLE (fence) - 1;
4032  bool res = false;
4033  int sort_p = 0;
4034
4035  if (!targetm.sched.dfa_new_cycle)
4036    return false;
4037
4038  memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4039
4040  while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4041                                                 insn, last_scheduled_cycle,
4042                                                 FENCE_CYCLE (fence), &sort_p))
4043    {
4044      memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4045      advance_one_cycle (fence);
4046      memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047      res = true;
4048    }
4049
4050  return res;
4051}
4052
4053/* Invoke reorder* target hooks on the ready list.  Return the number of insns
4054   we can issue.  FENCE is the current fence.  */
4055static int
4056invoke_reorder_hooks (fence_t fence)
4057{
4058  int issue_more;
4059  bool ran_hook = false;
4060
4061  /* Call the reorder hook at the beginning of the cycle, and call
4062     the reorder2 hook in the middle of the cycle.  */
4063  if (FENCE_ISSUED_INSNS (fence) == 0)
4064    {
4065      if (targetm.sched.reorder
4066          && !SCHED_GROUP_P (ready_element (&ready, 0))
4067          && ready.n_ready > 1)
4068        {
4069          /* Don't give reorder the most prioritized insn as it can break
4070             pipelining.  */
4071          if (pipelining_p)
4072            --ready.n_ready;
4073
4074          issue_more
4075            = targetm.sched.reorder (sched_dump, sched_verbose,
4076                                     ready_lastpos (&ready),
4077                                     &ready.n_ready, FENCE_CYCLE (fence));
4078
4079          if (pipelining_p)
4080            ++ready.n_ready;
4081
4082          ran_hook = true;
4083        }
4084      else
4085        /* Initialize can_issue_more for variable_issue.  */
4086        issue_more = issue_rate;
4087    }
4088  else if (targetm.sched.reorder2
4089           && !SCHED_GROUP_P (ready_element (&ready, 0)))
4090    {
4091      if (ready.n_ready == 1)
4092        issue_more =
4093          targetm.sched.reorder2 (sched_dump, sched_verbose,
4094                                  ready_lastpos (&ready),
4095                                  &ready.n_ready, FENCE_CYCLE (fence));
4096      else
4097        {
4098          if (pipelining_p)
4099            --ready.n_ready;
4100
4101          issue_more =
4102            targetm.sched.reorder2 (sched_dump, sched_verbose,
4103                                    ready.n_ready
4104                                    ? ready_lastpos (&ready) : NULL,
4105                                    &ready.n_ready, FENCE_CYCLE (fence));
4106
4107          if (pipelining_p)
4108            ++ready.n_ready;
4109        }
4110
4111      ran_hook = true;
4112    }
4113  else
4114    issue_more = FENCE_ISSUE_MORE (fence);
4115
4116  /* Ensure that ready list and vec_av_set are in line with each other,
4117     i.e. vec_av_set[i] == ready_element (&ready, i).  */
4118  if (issue_more && ran_hook)
4119    {
4120      int i, j, n;
4121      rtx_insn **arr = ready.vec;
4122      expr_t *vec = vec_av_set.address ();
4123
4124      for (i = 0, n = ready.n_ready; i < n; i++)
4125        if (EXPR_INSN_RTX (vec[i]) != arr[i])
4126          {
4127            for (j = i; j < n; j++)
4128              if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129                break;
4130            gcc_assert (j < n);
4131
4132	    std::swap (vec[i], vec[j]);
4133          }
4134    }
4135
4136  return issue_more;
4137}
4138
4139/* Return an EXPR corresponding to INDEX element of ready list, if
4140   FOLLOW_READY_ELEMENT is true (i.e., an expr of
4141   ready_element (&ready, INDEX) will be returned), and to INDEX element of
4142   ready.vec otherwise.  */
4143static inline expr_t
4144find_expr_for_ready (int index, bool follow_ready_element)
4145{
4146  expr_t expr;
4147  int real_index;
4148
4149  real_index = follow_ready_element ? ready.first - index : index;
4150
4151  expr = vec_av_set[real_index];
4152  gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4153
4154  return expr;
4155}
4156
4157/* Calculate insns worth trying via lookahead_guard hook.  Return a number
4158   of such insns found.  */
4159static int
4160invoke_dfa_lookahead_guard (void)
4161{
4162  int i, n;
4163  bool have_hook
4164    = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4165
4166  if (sched_verbose >= 2)
4167    sel_print ("ready after reorder: ");
4168
4169  for (i = 0, n = 0; i < ready.n_ready; i++)
4170    {
4171      expr_t expr;
4172      insn_t insn;
4173      int r;
4174
4175      /* In this loop insn is Ith element of the ready list given by
4176         ready_element, not Ith element of ready.vec.  */
4177      insn = ready_element (&ready, i);
4178
4179      if (! have_hook || i == 0)
4180        r = 0;
4181      else
4182        r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4183
4184      gcc_assert (INSN_CODE (insn) >= 0);
4185
4186      /* Only insns with ready_try = 0 can get here
4187         from fill_ready_list.  */
4188      gcc_assert (ready_try [i] == 0);
4189      ready_try[i] = r;
4190      if (!r)
4191        n++;
4192
4193      expr = find_expr_for_ready (i, true);
4194
4195      if (sched_verbose >= 2)
4196        {
4197          dump_vinsn (EXPR_VINSN (expr));
4198          sel_print (":%d; ", ready_try[i]);
4199        }
4200    }
4201
4202  if (sched_verbose >= 2)
4203    sel_print ("\n");
4204  return n;
4205}
4206
4207/* Calculate the number of privileged insns and return it.  */
4208static int
4209calculate_privileged_insns (void)
4210{
4211  expr_t cur_expr, min_spec_expr = NULL;
4212  int privileged_n = 0, i;
4213
4214  for (i = 0; i < ready.n_ready; i++)
4215    {
4216      if (ready_try[i])
4217        continue;
4218
4219      if (! min_spec_expr)
4220	min_spec_expr = find_expr_for_ready (i, true);
4221
4222      cur_expr = find_expr_for_ready (i, true);
4223
4224      if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4225        break;
4226
4227      ++privileged_n;
4228    }
4229
4230  if (i == ready.n_ready)
4231    privileged_n = 0;
4232
4233  if (sched_verbose >= 2)
4234    sel_print ("privileged_n: %d insns with SPEC %d\n",
4235               privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4236  return privileged_n;
4237}
4238
4239/* Call the rest of the hooks after the choice was made.  Return
4240   the number of insns that still can be issued given that the current
4241   number is ISSUE_MORE.  FENCE and BEST_INSN are the current fence
4242   and the insn chosen for scheduling, respectively.  */
4243static int
4244invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4245{
4246  gcc_assert (INSN_P (best_insn));
4247
4248  /* First, call dfa_new_cycle, and then variable_issue, if available.  */
4249  sel_dfa_new_cycle (best_insn, fence);
4250
4251  if (targetm.sched.variable_issue)
4252    {
4253      memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4254      issue_more =
4255        targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4256                                      issue_more);
4257      memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4258    }
4259  else if (!DEBUG_INSN_P (best_insn)
4260	   && GET_CODE (PATTERN (best_insn)) != USE
4261	   && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4262    issue_more--;
4263
4264  return issue_more;
4265}
4266
4267/* Estimate the cost of issuing INSN on DFA state STATE.  */
4268static int
4269estimate_insn_cost (rtx_insn *insn, state_t state)
4270{
4271  static state_t temp = NULL;
4272  int cost;
4273
4274  if (!temp)
4275    temp = xmalloc (dfa_state_size);
4276
4277  memcpy (temp, state, dfa_state_size);
4278  cost = state_transition (temp, insn);
4279
4280  if (cost < 0)
4281    return 0;
4282  else if (cost == 0)
4283    return 1;
4284  return cost;
4285}
4286
4287/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4288   This function properly handles ASMs, USEs etc.  */
4289static int
4290get_expr_cost (expr_t expr, fence_t fence)
4291{
4292  rtx_insn *insn = EXPR_INSN_RTX (expr);
4293
4294  if (recog_memoized (insn) < 0)
4295    {
4296      if (!FENCE_STARTS_CYCLE_P (fence)
4297	  && INSN_ASM_P (insn))
4298	/* This is asm insn which is tryed to be issued on the
4299	   cycle not first.  Issue it on the next cycle.  */
4300	return 1;
4301      else
4302	/* A USE insn, or something else we don't need to
4303	   understand.  We can't pass these directly to
4304	   state_transition because it will trigger a
4305	   fatal error for unrecognizable insns.  */
4306	return 0;
4307    }
4308  else
4309    return estimate_insn_cost (insn, FENCE_STATE (fence));
4310}
4311
4312/* Find the best insn for scheduling, either via max_issue or just take
4313   the most prioritized available.  */
4314static int
4315choose_best_insn (fence_t fence, int privileged_n, int *index)
4316{
4317  int can_issue = 0;
4318
4319  if (dfa_lookahead > 0)
4320    {
4321      cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4322      /* TODO: pass equivalent of first_cycle_insn_p to max_issue ().  */
4323      can_issue = max_issue (&ready, privileged_n,
4324                             FENCE_STATE (fence), true, index);
4325      if (sched_verbose >= 2)
4326        sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327                   can_issue, FENCE_ISSUED_INSNS (fence));
4328    }
4329  else
4330    {
4331      /* We can't use max_issue; just return the first available element.  */
4332      int i;
4333
4334      for (i = 0; i < ready.n_ready; i++)
4335	{
4336	  expr_t expr = find_expr_for_ready (i, true);
4337
4338	  if (get_expr_cost (expr, fence) < 1)
4339	    {
4340	      can_issue = can_issue_more;
4341	      *index = i;
4342
4343	      if (sched_verbose >= 2)
4344		sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346	      break;
4347	    }
4348	}
4349
4350      if (i == ready.n_ready)
4351	{
4352	  can_issue = 0;
4353	  *index = -1;
4354	}
4355    }
4356
4357  return can_issue;
4358}
4359
4360/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361   BNDS and FENCE are current boundaries and scheduling fence respectively.
4362   Return the expr found and NULL if nothing can be issued atm.
4363   Write to PNEED_STALL the number of cycles to stall if no expr was found.  */
4364static expr_t
4365find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366                int *pneed_stall)
4367{
4368  expr_t best;
4369
4370  /* Choose the best insn for scheduling via:
4371     1) sorting the ready list based on priority;
4372     2) calling the reorder hook;
4373     3) calling max_issue.  */
4374  best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375  if (best == NULL && ready.n_ready > 0)
4376    {
4377      int privileged_n, index;
4378
4379      can_issue_more = invoke_reorder_hooks (fence);
4380      if (can_issue_more > 0)
4381        {
4382          /* Try choosing the best insn until we find one that is could be
4383             scheduled due to liveness restrictions on its destination register.
4384             In the future, we'd like to choose once and then just probe insns
4385             in the order of their priority.  */
4386          invoke_dfa_lookahead_guard ();
4387          privileged_n = calculate_privileged_insns ();
4388          can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389          if (can_issue_more)
4390            best = find_expr_for_ready (index, true);
4391        }
4392      /* We had some available insns, so if we can't issue them,
4393         we have a stall.  */
4394      if (can_issue_more == 0)
4395        {
4396          best = NULL;
4397          *pneed_stall = 1;
4398        }
4399    }
4400
4401  if (best != NULL)
4402    {
4403      can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404                                               can_issue_more);
4405      if (targetm.sched.variable_issue
4406	  && can_issue_more == 0)
4407        *pneed_stall = 1;
4408    }
4409
4410  if (sched_verbose >= 2)
4411    {
4412      if (best != NULL)
4413        {
4414          sel_print ("Best expression (vliw form): ");
4415          dump_expr (best);
4416          sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4417        }
4418      else
4419        sel_print ("No best expr found!\n");
4420    }
4421
4422  return best;
4423}
4424
4425
4426/* Functions that implement the core of the scheduler.  */
4427
4428
4429/* Emit an instruction from EXPR with SEQNO and VINSN after
4430   PLACE_TO_INSERT.  */
4431static insn_t
4432emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4433                           insn_t place_to_insert)
4434{
4435  /* This assert fails when we have identical instructions
4436     one of which dominates the other.  In this case move_op ()
4437     finds the first instruction and doesn't search for second one.
4438     The solution would be to compute av_set after the first found
4439     insn and, if insn present in that set, continue searching.
4440     For now we workaround this issue in move_op.  */
4441  gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4442
4443  if (EXPR_WAS_RENAMED (expr))
4444    {
4445      unsigned regno = expr_dest_regno (expr);
4446
4447      if (HARD_REGISTER_NUM_P (regno))
4448	{
4449	  df_set_regs_ever_live (regno, true);
4450	  reg_rename_tick[regno] = ++reg_rename_this_tick;
4451	}
4452    }
4453
4454  return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4455                                       place_to_insert);
4456}
4457
4458/* Return TRUE if BB can hold bookkeeping code.  */
4459static bool
4460block_valid_for_bookkeeping_p (basic_block bb)
4461{
4462  insn_t bb_end = BB_END (bb);
4463
4464  if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4465    return false;
4466
4467  if (INSN_P (bb_end))
4468    {
4469      if (INSN_SCHED_TIMES (bb_end) > 0)
4470	return false;
4471    }
4472  else
4473    gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4474
4475  return true;
4476}
4477
4478/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4479   into E2->dest, except from E1->src (there may be a sequence of empty basic
4480   blocks between E1->src and E2->dest).  Return found block, or NULL if new
4481   one must be created.  If LAX holds, don't assume there is a simple path
4482   from E1->src to E2->dest.  */
4483static basic_block
4484find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4485{
4486  basic_block candidate_block = NULL;
4487  edge e;
4488
4489  /* Loop over edges from E1 to E2, inclusive.  */
4490  for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4491       EDGE_SUCC (e->dest, 0))
4492    {
4493      if (EDGE_COUNT (e->dest->preds) == 2)
4494	{
4495	  if (candidate_block == NULL)
4496	    candidate_block = (EDGE_PRED (e->dest, 0) == e
4497			       ? EDGE_PRED (e->dest, 1)->src
4498			       : EDGE_PRED (e->dest, 0)->src);
4499	  else
4500	    /* Found additional edge leading to path from e1 to e2
4501	       from aside.  */
4502	    return NULL;
4503	}
4504      else if (EDGE_COUNT (e->dest->preds) > 2)
4505	/* Several edges leading to path from e1 to e2 from aside.  */
4506	return NULL;
4507
4508      if (e == e2)
4509	return ((!lax || candidate_block)
4510		&& block_valid_for_bookkeeping_p (candidate_block)
4511		? candidate_block
4512		: NULL);
4513
4514      if (lax && EDGE_COUNT (e->dest->succs) != 1)
4515	return NULL;
4516    }
4517
4518  if (lax)
4519    return NULL;
4520
4521  gcc_unreachable ();
4522}
4523
4524/* Create new basic block for bookkeeping code for path(s) incoming into
4525   E2->dest, except from E1->src.  Return created block.  */
4526static basic_block
4527create_block_for_bookkeeping (edge e1, edge e2)
4528{
4529  basic_block new_bb, bb = e2->dest;
4530
4531  /* Check that we don't spoil the loop structure.  */
4532  if (current_loop_nest)
4533    {
4534      basic_block latch = current_loop_nest->latch;
4535
4536      /* We do not split header.  */
4537      gcc_assert (e2->dest != current_loop_nest->header);
4538
4539      /* We do not redirect the only edge to the latch block.  */
4540      gcc_assert (e1->dest != latch
4541		  || !single_pred_p (latch)
4542		  || e1 != single_pred_edge (latch));
4543    }
4544
4545  /* Split BB to insert BOOK_INSN there.  */
4546  new_bb = sched_split_block (bb, NULL);
4547
4548  /* Move note_list from the upper bb.  */
4549  gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4550  BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4551  BB_NOTE_LIST (bb) = NULL;
4552
4553  gcc_assert (e2->dest == bb);
4554
4555  /* Skip block for bookkeeping copy when leaving E1->src.  */
4556  if (e1->flags & EDGE_FALLTHRU)
4557    sel_redirect_edge_and_branch_force (e1, new_bb);
4558  else
4559    sel_redirect_edge_and_branch (e1, new_bb);
4560
4561  gcc_assert (e1->dest == new_bb);
4562  gcc_assert (sel_bb_empty_p (bb));
4563
4564  /* To keep basic block numbers in sync between debug and non-debug
4565     compilations, we have to rotate blocks here.  Consider that we
4566     started from (a,b)->d, (c,d)->e, and d contained only debug
4567     insns.  It would have been removed before if the debug insns
4568     weren't there, so we'd have split e rather than d.  So what we do
4569     now is to swap the block numbers of new_bb and
4570     single_succ(new_bb) == e, so that the insns that were in e before
4571     get the new block number.  */
4572
4573  if (MAY_HAVE_DEBUG_INSNS)
4574    {
4575      basic_block succ;
4576      insn_t insn = sel_bb_head (new_bb);
4577      insn_t last;
4578
4579      if (DEBUG_INSN_P (insn)
4580	  && single_succ_p (new_bb)
4581	  && (succ = single_succ (new_bb))
4582	  && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4583	  && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4584	{
4585	  while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4586	    insn = NEXT_INSN (insn);
4587
4588	  if (insn == last)
4589	    {
4590	      sel_global_bb_info_def gbi;
4591	      sel_region_bb_info_def rbi;
4592
4593	      if (sched_verbose >= 2)
4594		sel_print ("Swapping block ids %i and %i\n",
4595			   new_bb->index, succ->index);
4596
4597	      std::swap (new_bb->index, succ->index);
4598
4599	      SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4600	      SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4601
4602	      memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4603	      memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4604		      sizeof (gbi));
4605	      memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4606
4607	      memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4608	      memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4609		      sizeof (rbi));
4610	      memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4611
4612	      std::swap (BLOCK_TO_BB (new_bb->index),
4613			 BLOCK_TO_BB (succ->index));
4614
4615	      std::swap (CONTAINING_RGN (new_bb->index),
4616			 CONTAINING_RGN (succ->index));
4617
4618	      for (int i = 0; i < current_nr_blocks; i++)
4619		if (BB_TO_BLOCK (i) == succ->index)
4620		  BB_TO_BLOCK (i) = new_bb->index;
4621		else if (BB_TO_BLOCK (i) == new_bb->index)
4622		  BB_TO_BLOCK (i) = succ->index;
4623
4624	      FOR_BB_INSNS (new_bb, insn)
4625		if (INSN_P (insn))
4626		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4627
4628	      FOR_BB_INSNS (succ, insn)
4629		if (INSN_P (insn))
4630		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4631
4632	      if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4633		bitmap_set_bit (code_motion_visited_blocks, succ->index);
4634
4635	      gcc_assert (LABEL_P (BB_HEAD (new_bb))
4636			  && LABEL_P (BB_HEAD (succ)));
4637
4638	      if (sched_verbose >= 4)
4639		sel_print ("Swapping code labels %i and %i\n",
4640			   CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4641			   CODE_LABEL_NUMBER (BB_HEAD (succ)));
4642
4643	      std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644			 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645	    }
4646	}
4647    }
4648
4649  return bb;
4650}
4651
4652/* Return insn after which we must insert bookkeeping code for path(s) incoming
4653   into E2->dest, except from E1->src.  If the returned insn immediately
4654   precedes a fence, assign that fence to *FENCE_TO_REWIND.  */
4655static insn_t
4656find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4657{
4658  insn_t place_to_insert;
4659  /* Find a basic block that can hold bookkeeping.  If it can be found, do not
4660     create new basic block, but insert bookkeeping there.  */
4661  basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4662
4663  if (book_block)
4664    {
4665      place_to_insert = BB_END (book_block);
4666
4667      /* Don't use a block containing only debug insns for
4668	 bookkeeping, this causes scheduling differences between debug
4669	 and non-debug compilations, for the block would have been
4670	 removed already.  */
4671      if (DEBUG_INSN_P (place_to_insert))
4672	{
4673	  rtx_insn *insn = sel_bb_head (book_block);
4674
4675	  while (insn != place_to_insert &&
4676		 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4677	    insn = NEXT_INSN (insn);
4678
4679	  if (insn == place_to_insert)
4680	    book_block = NULL;
4681	}
4682    }
4683
4684  if (!book_block)
4685    {
4686      book_block = create_block_for_bookkeeping (e1, e2);
4687      place_to_insert = BB_END (book_block);
4688      if (sched_verbose >= 9)
4689	sel_print ("New block is %i, split from bookkeeping block %i\n",
4690		   EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4691    }
4692  else
4693    {
4694      if (sched_verbose >= 9)
4695	sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4696    }
4697
4698  *fence_to_rewind = NULL;
4699  /* If basic block ends with a jump, insert bookkeeping code right before it.
4700     Notice if we are crossing a fence when taking PREV_INSN.  */
4701  if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4702    {
4703      *fence_to_rewind = flist_lookup (fences, place_to_insert);
4704      place_to_insert = PREV_INSN (place_to_insert);
4705    }
4706
4707  return place_to_insert;
4708}
4709
4710/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4711   for JOIN_POINT.   */
4712static int
4713find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4714{
4715  int seqno;
4716
4717  /* Check if we are about to insert bookkeeping copy before a jump, and use
4718     jump's seqno for the copy; otherwise, use JOIN_POINT's seqno.  */
4719  rtx_insn *next = NEXT_INSN (place_to_insert);
4720  if (INSN_P (next)
4721      && JUMP_P (next)
4722      && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4723    {
4724      gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725      seqno = INSN_SEQNO (next);
4726    }
4727  else if (INSN_SEQNO (join_point) > 0)
4728    seqno = INSN_SEQNO (join_point);
4729  else
4730    {
4731      seqno = get_seqno_by_preds (place_to_insert);
4732
4733      /* Sometimes the fences can move in such a way that there will be
4734         no instructions with positive seqno around this bookkeeping.
4735         This means that there will be no way to get to it by a regular
4736         fence movement.  Never mind because we pick up such pieces for
4737         rescheduling anyways, so any positive value will do for now.  */
4738      if (seqno < 0)
4739        {
4740          gcc_assert (pipelining_p);
4741          seqno = 1;
4742        }
4743    }
4744
4745  gcc_assert (seqno > 0);
4746  return seqno;
4747}
4748
4749/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750   NEW_SEQNO to it.  Return created insn.  */
4751static insn_t
4752emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4753{
4754  rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4755
4756  vinsn_t new_vinsn
4757    = create_vinsn_from_insn_rtx (new_insn_rtx,
4758				  VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4759
4760  insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761					       place_to_insert);
4762
4763  INSN_SCHED_TIMES (new_insn) = 0;
4764  bitmap_set_bit (current_copies, INSN_UID (new_insn));
4765
4766  return new_insn;
4767}
4768
4769/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770   E2->dest, except from E1->src (there may be a sequence of empty blocks
4771   between E1->src and E2->dest).  Return block containing the copy.
4772   All scheduler data is initialized for the newly created insn.  */
4773static basic_block
4774generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4775{
4776  insn_t join_point, place_to_insert, new_insn;
4777  int new_seqno;
4778  bool need_to_exchange_data_sets;
4779  fence_t fence_to_rewind;
4780
4781  if (sched_verbose >= 4)
4782    sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4783	       e2->dest->index);
4784
4785  join_point = sel_bb_head (e2->dest);
4786  place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4787  new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4788  need_to_exchange_data_sets
4789    = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4790
4791  new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4792
4793  if (fence_to_rewind)
4794    FENCE_INSN (fence_to_rewind) = new_insn;
4795
4796  /* When inserting bookkeeping insn in new block, av sets should be
4797     following: old basic block (that now holds bookkeeping) data sets are
4798     the same as was before generation of bookkeeping, and new basic block
4799     (that now hold all other insns of old basic block) data sets are
4800     invalid.  So exchange data sets for these basic blocks as sel_split_block
4801     mistakenly exchanges them in this case.  Cannot do it earlier because
4802     when single instruction is added to new basic block it should hold NULL
4803     lv_set.  */
4804  if (need_to_exchange_data_sets)
4805    exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4806			BLOCK_FOR_INSN (join_point));
4807
4808  stat_bookkeeping_copies++;
4809  return BLOCK_FOR_INSN (new_insn);
4810}
4811
4812/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4813   on FENCE, but we are unable to copy them.  */
4814static void
4815remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4816{
4817  expr_t expr;
4818  av_set_iterator i;
4819
4820  /*  An expression does not need bookkeeping if it is available on all paths
4821      from current block to original block and current block dominates
4822      original block.  We check availability on all paths by examining
4823      EXPR_SPEC; this is not equivalent, because it may be positive even
4824      if expr is available on all paths (but if expr is not available on
4825      any path, EXPR_SPEC will be positive).  */
4826
4827  FOR_EACH_EXPR_1 (expr, i, av_ptr)
4828    {
4829      if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4830	  && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4831	  && (EXPR_SPEC (expr)
4832	      || !EXPR_ORIG_BB_INDEX (expr)
4833	      || !dominated_by_p (CDI_DOMINATORS,
4834				  BASIC_BLOCK_FOR_FN (cfun,
4835						      EXPR_ORIG_BB_INDEX (expr)),
4836				  BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4837	{
4838          if (sched_verbose >= 4)
4839            sel_print ("Expr %d removed because it would need bookkeeping, which "
4840                       "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4841	  av_set_iter_remove (&i);
4842	}
4843    }
4844}
4845
4846/* Moving conditional jump through some instructions.
4847
4848   Consider example:
4849
4850       ...                     <- current scheduling point
4851       NOTE BASIC BLOCK:       <- bb header
4852       (p8)  add r14=r14+0x9;;
4853       (p8)  mov [r14]=r23
4854       (!p8) jump L1;;
4855       NOTE BASIC BLOCK:
4856       ...
4857
4858   We can schedule jump one cycle earlier, than mov, because they cannot be
4859   executed together as their predicates are mutually exclusive.
4860
4861   This is done in this way: first, new fallthrough basic block is created
4862   after jump (it is always can be done, because there already should be a
4863   fallthrough block, where control flow goes in case of predicate being true -
4864   in our example; otherwise there should be a dependence between those
4865   instructions and jump and we cannot schedule jump right now);
4866   next, all instructions between jump and current scheduling point are moved
4867   to this new block.  And the result is this:
4868
4869      NOTE BASIC BLOCK:
4870      (!p8) jump L1           <- current scheduling point
4871      NOTE BASIC BLOCK:       <- bb header
4872      (p8)  add r14=r14+0x9;;
4873      (p8)  mov [r14]=r23
4874      NOTE BASIC BLOCK:
4875      ...
4876*/
4877static void
4878move_cond_jump (rtx_insn *insn, bnd_t bnd)
4879{
4880  edge ft_edge;
4881  basic_block block_from, block_next, block_new, block_bnd, bb;
4882  rtx_insn *next, *prev, *link, *head;
4883
4884  block_from = BLOCK_FOR_INSN (insn);
4885  block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4886  prev = BND_TO (bnd);
4887
4888  /* Moving of jump should not cross any other jumps or beginnings of new
4889     basic blocks.  The only exception is when we move a jump through
4890     mutually exclusive insns along fallthru edges.  */
4891  if (flag_checking && block_from != block_bnd)
4892    {
4893      bb = block_from;
4894      for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4895           link = PREV_INSN (link))
4896        {
4897          if (INSN_P (link))
4898            gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4899          if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4900            {
4901              gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4902              bb = BLOCK_FOR_INSN (link);
4903            }
4904        }
4905    }
4906
4907  /* Jump is moved to the boundary.  */
4908  next = PREV_INSN (insn);
4909  BND_TO (bnd) = insn;
4910
4911  ft_edge = find_fallthru_edge_from (block_from);
4912  block_next = ft_edge->dest;
4913  /* There must be a fallthrough block (or where should go
4914  control flow in case of false jump predicate otherwise?).  */
4915  gcc_assert (block_next);
4916
4917  /* Create new empty basic block after source block.  */
4918  block_new = sel_split_edge (ft_edge);
4919  gcc_assert (block_new->next_bb == block_next
4920              && block_from->next_bb == block_new);
4921
4922  /* Move all instructions except INSN to BLOCK_NEW.  */
4923  bb = block_bnd;
4924  head = BB_HEAD (block_new);
4925  while (bb != block_from->next_bb)
4926    {
4927      rtx_insn *from, *to;
4928      from = bb == block_bnd ? prev : sel_bb_head (bb);
4929      to = bb == block_from ? next : sel_bb_end (bb);
4930
4931      /* The jump being moved can be the first insn in the block.
4932         In this case we don't have to move anything in this block.  */
4933      if (NEXT_INSN (to) != from)
4934        {
4935          reorder_insns (from, to, head);
4936
4937          for (link = to; link != head; link = PREV_INSN (link))
4938            EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4939          head = to;
4940        }
4941
4942      /* Cleanup possibly empty blocks left.  */
4943      block_next = bb->next_bb;
4944      if (bb != block_from)
4945	tidy_control_flow (bb, false);
4946      bb = block_next;
4947    }
4948
4949  /* Assert there is no jump to BLOCK_NEW, only fallthrough edge.  */
4950  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4951
4952  gcc_assert (!sel_bb_empty_p (block_from)
4953              && !sel_bb_empty_p (block_new));
4954
4955  /* Update data sets for BLOCK_NEW to represent that INSN and
4956     instructions from the other branch of INSN is no longer
4957     available at BLOCK_NEW.  */
4958  BB_AV_LEVEL (block_new) = global_level;
4959  gcc_assert (BB_LV_SET (block_new) == NULL);
4960  BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4961  update_data_sets (sel_bb_head (block_new));
4962
4963  /* INSN is a new basic block header - so prepare its data
4964     structures and update availability and liveness sets.  */
4965  update_data_sets (insn);
4966
4967  if (sched_verbose >= 4)
4968    sel_print ("Moving jump %d\n", INSN_UID (insn));
4969}
4970
4971/* Remove nops generated during move_op for preventing removal of empty
4972   basic blocks.  */
4973static void
4974remove_temp_moveop_nops (bool full_tidying)
4975{
4976  int i;
4977  insn_t insn;
4978
4979  FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4980    {
4981      gcc_assert (INSN_NOP_P (insn));
4982      return_nop_to_pool (insn, full_tidying);
4983    }
4984
4985  /* Empty the vector.  */
4986  if (vec_temp_moveop_nops.length () > 0)
4987    vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4988}
4989
4990/* Records the maximal UID before moving up an instruction.  Used for
4991   distinguishing between bookkeeping copies and original insns.  */
4992static int max_uid_before_move_op = 0;
4993
4994/* When true, we're always scheduling next insn on the already scheduled code
4995   to get the right insn data for the following bundling or other passes.  */
4996static int force_next_insn = 0;
4997
4998/* Remove from AV_VLIW_P all instructions but next when debug counter
4999   tells us so.  Next instruction is fetched from BNDS.  */
5000static void
5001remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5002{
5003  if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
5004    /* Leave only the next insn in av_vliw.  */
5005    {
5006      av_set_iterator av_it;
5007      expr_t expr;
5008      bnd_t bnd = BLIST_BND (bnds);
5009      insn_t next = BND_TO (bnd);
5010
5011      gcc_assert (BLIST_NEXT (bnds) == NULL);
5012
5013      FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5014        if (EXPR_INSN_RTX (expr) != next)
5015          av_set_iter_remove (&av_it);
5016    }
5017}
5018
5019/* Compute available instructions on BNDS.  FENCE is the current fence.  Write
5020   the computed set to *AV_VLIW_P.  */
5021static void
5022compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5023{
5024  if (sched_verbose >= 2)
5025    {
5026      sel_print ("Boundaries: ");
5027      dump_blist (bnds);
5028      sel_print ("\n");
5029    }
5030
5031  for (; bnds; bnds = BLIST_NEXT (bnds))
5032    {
5033      bnd_t bnd = BLIST_BND (bnds);
5034      av_set_t av1_copy;
5035      insn_t bnd_to = BND_TO (bnd);
5036
5037      /* Rewind BND->TO to the basic block header in case some bookkeeping
5038         instructions were inserted before BND->TO and it needs to be
5039         adjusted.  */
5040      if (sel_bb_head_p (bnd_to))
5041        gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5042      else
5043        while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5044          {
5045            bnd_to = PREV_INSN (bnd_to);
5046            if (sel_bb_head_p (bnd_to))
5047              break;
5048          }
5049
5050      if (BND_TO (bnd) != bnd_to)
5051	{
5052  	  gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5053	  FENCE_INSN (fence) = bnd_to;
5054	  BND_TO (bnd) = bnd_to;
5055	}
5056
5057      av_set_clear (&BND_AV (bnd));
5058      BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5059
5060      av_set_clear (&BND_AV1 (bnd));
5061      BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5062
5063      moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5064
5065      av1_copy = av_set_copy (BND_AV1 (bnd));
5066      av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5067    }
5068
5069  if (sched_verbose >= 2)
5070    {
5071      sel_print ("Available exprs (vliw form): ");
5072      dump_av_set (*av_vliw_p);
5073      sel_print ("\n");
5074    }
5075}
5076
5077/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5078   expression.  When FOR_MOVEOP is true, also replace the register of
5079   expressions found with the register from EXPR_VLIW.  */
5080static av_set_t
5081find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5082{
5083  av_set_t expr_seq = NULL;
5084  expr_t expr;
5085  av_set_iterator i;
5086
5087  FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5088    {
5089      if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5090        {
5091          if (for_moveop)
5092            {
5093              /* The sequential expression has the right form to pass
5094                 to move_op except when renaming happened.  Put the
5095                 correct register in EXPR then.  */
5096              if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5097		{
5098                  if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5099		    {
5100		      replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5101		      stat_renamed_scheduled++;
5102		    }
5103		  /* Also put the correct TARGET_AVAILABLE bit on the expr.
5104                     This is needed when renaming came up with original
5105                     register.  */
5106                  else if (EXPR_TARGET_AVAILABLE (expr)
5107                           != EXPR_TARGET_AVAILABLE (expr_vliw))
5108		    {
5109		      gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5110		      EXPR_TARGET_AVAILABLE (expr) = 1;
5111		    }
5112		}
5113              if (EXPR_WAS_SUBSTITUTED (expr))
5114                stat_substitutions_total++;
5115            }
5116
5117          av_set_add (&expr_seq, expr);
5118
5119          /* With substitution inside insn group, it is possible
5120             that more than one expression in expr_seq will correspond
5121             to expr_vliw.  In this case, choose one as the attempt to
5122             move both leads to miscompiles.  */
5123          break;
5124        }
5125    }
5126
5127  if (for_moveop && sched_verbose >= 2)
5128    {
5129      sel_print ("Best expression(s) (sequential form): ");
5130      dump_av_set (expr_seq);
5131      sel_print ("\n");
5132    }
5133
5134  return expr_seq;
5135}
5136
5137
5138/* Move nop to previous block.  */
5139static void ATTRIBUTE_UNUSED
5140move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5141{
5142  insn_t prev_insn, next_insn;
5143
5144  gcc_assert (sel_bb_head_p (nop)
5145              && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5146  rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5147  prev_insn = sel_bb_end (prev_bb);
5148  next_insn = NEXT_INSN (nop);
5149  gcc_assert (prev_insn != NULL_RTX
5150              && PREV_INSN (note) == prev_insn);
5151
5152  SET_NEXT_INSN (prev_insn) = nop;
5153  SET_PREV_INSN (nop) = prev_insn;
5154
5155  SET_PREV_INSN (note) = nop;
5156  SET_NEXT_INSN (note) = next_insn;
5157
5158  SET_NEXT_INSN (nop) = note;
5159  SET_PREV_INSN (next_insn) = note;
5160
5161  BB_END (prev_bb) = nop;
5162  BLOCK_FOR_INSN (nop) = prev_bb;
5163}
5164
5165/* Prepare a place to insert the chosen expression on BND.  */
5166static insn_t
5167prepare_place_to_insert (bnd_t bnd)
5168{
5169  insn_t place_to_insert;
5170
5171  /* Init place_to_insert before calling move_op, as the later
5172     can possibly remove BND_TO (bnd).  */
5173  if (/* If this is not the first insn scheduled.  */
5174      BND_PTR (bnd))
5175    {
5176      /* Add it after last scheduled.  */
5177      place_to_insert = ILIST_INSN (BND_PTR (bnd));
5178      if (DEBUG_INSN_P (place_to_insert))
5179	{
5180	  ilist_t l = BND_PTR (bnd);
5181	  while ((l = ILIST_NEXT (l)) &&
5182		 DEBUG_INSN_P (ILIST_INSN (l)))
5183	    ;
5184	  if (!l)
5185	    place_to_insert = NULL;
5186	}
5187    }
5188  else
5189    place_to_insert = NULL;
5190
5191  if (!place_to_insert)
5192    {
5193      /* Add it before BND_TO.  The difference is in the
5194         basic block, where INSN will be added.  */
5195      place_to_insert = get_nop_from_pool (BND_TO (bnd));
5196      gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5197                  == BLOCK_FOR_INSN (BND_TO (bnd)));
5198    }
5199
5200  return place_to_insert;
5201}
5202
5203/* Find original instructions for EXPR_SEQ and move it to BND boundary.
5204   Return the expression to emit in C_EXPR.  */
5205static bool
5206move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5207                        av_set_t expr_seq, expr_t c_expr)
5208{
5209  bool b, should_move;
5210  unsigned book_uid;
5211  bitmap_iterator bi;
5212  int n_bookkeeping_copies_before_moveop;
5213
5214  /* Make a move.  This call will remove the original operation,
5215     insert all necessary bookkeeping instructions and update the
5216     data sets.  After that all we have to do is add the operation
5217     at before BND_TO (BND).  */
5218  n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5219  max_uid_before_move_op = get_max_uid ();
5220  bitmap_clear (current_copies);
5221  bitmap_clear (current_originators);
5222
5223  b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5224               get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5225
5226  /* We should be able to find the expression we've chosen for
5227     scheduling.  */
5228  gcc_assert (b);
5229
5230  if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5231    stat_insns_needed_bookkeeping++;
5232
5233  EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5234    {
5235      unsigned uid;
5236      bitmap_iterator bi;
5237
5238      /* We allocate these bitmaps lazily.  */
5239      if (! INSN_ORIGINATORS_BY_UID (book_uid))
5240        INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5241
5242      bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5243                   current_originators);
5244
5245      /* Transitively add all originators' originators.  */
5246      EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5247       if (INSN_ORIGINATORS_BY_UID (uid))
5248	 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5249			  INSN_ORIGINATORS_BY_UID (uid));
5250    }
5251
5252  return should_move;
5253}
5254
5255
5256/* Debug a DFA state as an array of bytes.  */
5257static void
5258debug_state (state_t state)
5259{
5260  unsigned char *p;
5261  unsigned int i, size = dfa_state_size;
5262
5263  sel_print ("state (%u):", size);
5264  for (i = 0, p = (unsigned char *) state; i < size; i++)
5265    sel_print (" %d", p[i]);
5266  sel_print ("\n");
5267}
5268
5269/* Advance state on FENCE with INSN.  Return true if INSN is
5270   an ASM, and we should advance state once more.  */
5271static bool
5272advance_state_on_fence (fence_t fence, insn_t insn)
5273{
5274  bool asm_p;
5275
5276  if (recog_memoized (insn) >= 0)
5277    {
5278      int res;
5279      state_t temp_state = alloca (dfa_state_size);
5280
5281      gcc_assert (!INSN_ASM_P (insn));
5282      asm_p = false;
5283
5284      memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5285      res = state_transition (FENCE_STATE (fence), insn);
5286      gcc_assert (res < 0);
5287
5288      if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5289        {
5290          FENCE_ISSUED_INSNS (fence)++;
5291
5292          /* We should never issue more than issue_rate insns.  */
5293          if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5294            gcc_unreachable ();
5295        }
5296    }
5297  else
5298    {
5299      /* This could be an ASM insn which we'd like to schedule
5300         on the next cycle.  */
5301      asm_p = INSN_ASM_P (insn);
5302      if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5303        advance_one_cycle (fence);
5304    }
5305
5306  if (sched_verbose >= 2)
5307    debug_state (FENCE_STATE (fence));
5308  if (!DEBUG_INSN_P (insn))
5309    FENCE_STARTS_CYCLE_P (fence) = 0;
5310  FENCE_ISSUE_MORE (fence) = can_issue_more;
5311  return asm_p;
5312}
5313
5314/* Update FENCE on which INSN was scheduled and this INSN, too.  NEED_STALL
5315   is nonzero if we need to stall after issuing INSN.  */
5316static void
5317update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5318{
5319  bool asm_p;
5320
5321  /* First, reflect that something is scheduled on this fence.  */
5322  asm_p = advance_state_on_fence (fence, insn);
5323  FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5324  vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5325  if (SCHED_GROUP_P (insn))
5326    {
5327      FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5328      SCHED_GROUP_P (insn) = 0;
5329    }
5330  else
5331    FENCE_SCHED_NEXT (fence) = NULL;
5332  if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5333    FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5334
5335  /* Set instruction scheduling info.  This will be used in bundling,
5336     pipelining, tick computations etc.  */
5337  ++INSN_SCHED_TIMES (insn);
5338  EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5339  EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5340  INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5341  INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5342
5343  /* This does not account for adjust_cost hooks, just add the biggest
5344     constant the hook may add to the latency.  TODO: make this
5345     a target dependent constant.  */
5346  INSN_READY_CYCLE (insn)
5347    = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5348                                 ? 1
5349                                 : maximal_insn_latency (insn) + 1);
5350
5351  /* Change these fields last, as they're used above.  */
5352  FENCE_AFTER_STALL_P (fence) = 0;
5353  if (asm_p || need_stall)
5354    advance_one_cycle (fence);
5355
5356  /* Indicate that we've scheduled something on this fence.  */
5357  FENCE_SCHEDULED_P (fence) = true;
5358  scheduled_something_on_previous_fence = true;
5359
5360  /* Print debug information when insn's fields are updated.  */
5361  if (sched_verbose >= 2)
5362    {
5363      sel_print ("Scheduling insn: ");
5364      dump_insn_1 (insn, 1);
5365      sel_print ("\n");
5366    }
5367}
5368
5369/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5370   old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5371   return it.  */
5372static blist_t *
5373update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5374                   blist_t *bnds_tailp)
5375{
5376  succ_iterator si;
5377  insn_t succ;
5378
5379  advance_deps_context (BND_DC (bnd), insn);
5380  FOR_EACH_SUCC_1 (succ, si, insn,
5381                   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5382    {
5383      ilist_t ptr = ilist_copy (BND_PTR (bnd));
5384
5385      ilist_add (&ptr, insn);
5386
5387      if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5388	  && is_ineligible_successor (succ, ptr))
5389	{
5390	  ilist_clear (&ptr);
5391	  continue;
5392	}
5393
5394      if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5395	{
5396	  if (sched_verbose >= 9)
5397	    sel_print ("Updating fence insn from %i to %i\n",
5398		       INSN_UID (insn), INSN_UID (succ));
5399	  FENCE_INSN (fence) = succ;
5400	}
5401      blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5402      bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5403    }
5404
5405  blist_remove (bndsp);
5406  return bnds_tailp;
5407}
5408
5409/* Schedule EXPR_VLIW on BND.  Return the insn emitted.  */
5410static insn_t
5411schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5412{
5413  av_set_t expr_seq;
5414  expr_t c_expr = XALLOCA (expr_def);
5415  insn_t place_to_insert;
5416  insn_t insn;
5417  bool should_move;
5418
5419  expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5420
5421  /* In case of scheduling a jump skipping some other instructions,
5422     prepare CFG.  After this, jump is at the boundary and can be
5423     scheduled as usual insn by MOVE_OP.  */
5424  if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5425    {
5426      insn = EXPR_INSN_RTX (expr_vliw);
5427
5428      /* Speculative jumps are not handled.  */
5429      if (insn != BND_TO (bnd)
5430          && !sel_insn_is_speculation_check (insn))
5431        move_cond_jump (insn, bnd);
5432    }
5433
5434  /* Find a place for C_EXPR to schedule.  */
5435  place_to_insert = prepare_place_to_insert (bnd);
5436  should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5437  clear_expr (c_expr);
5438
5439  /* Add the instruction.  The corner case to care about is when
5440     the expr_seq set has more than one expr, and we chose the one that
5441     is not equal to expr_vliw.  Then expr_vliw may be insn in stream, and
5442     we can't use it.  Generate the new vinsn.  */
5443  if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5444    {
5445      vinsn_t vinsn_new;
5446
5447      vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5448      change_vinsn_in_expr (expr_vliw, vinsn_new);
5449      should_move = false;
5450    }
5451  if (should_move)
5452    insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5453  else
5454    insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5455                                      place_to_insert);
5456
5457  /* Return the nops generated for preserving of data sets back
5458     into pool.  */
5459  if (INSN_NOP_P (place_to_insert))
5460    return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5461  remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5462
5463  av_set_clear (&expr_seq);
5464
5465  /* Save the expression scheduled so to reset target availability if we'll
5466     meet it later on the same fence.  */
5467  if (EXPR_WAS_RENAMED (expr_vliw))
5468    vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5469
5470  /* Check that the recent movement didn't destroyed loop
5471     structure.  */
5472  gcc_assert (!pipelining_p
5473              || current_loop_nest == NULL
5474              || loop_latch_edge (current_loop_nest));
5475  return insn;
5476}
5477
5478/* Stall for N cycles on FENCE.  */
5479static void
5480stall_for_cycles (fence_t fence, int n)
5481{
5482  int could_more;
5483
5484  could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5485  while (n--)
5486    advance_one_cycle (fence);
5487  if (could_more)
5488    FENCE_AFTER_STALL_P (fence) = 1;
5489}
5490
5491/* Gather a parallel group of insns at FENCE and assign their seqno
5492   to SEQNO.  All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5493   list for later recalculation of seqnos.  */
5494static void
5495fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5496{
5497  blist_t bnds = NULL, *bnds_tailp;
5498  av_set_t av_vliw = NULL;
5499  insn_t insn = FENCE_INSN (fence);
5500
5501  if (sched_verbose >= 2)
5502    sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5503               INSN_UID (insn), FENCE_CYCLE (fence));
5504
5505  blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5506  bnds_tailp = &BLIST_NEXT (bnds);
5507  set_target_context (FENCE_TC (fence));
5508  can_issue_more = FENCE_ISSUE_MORE (fence);
5509  target_bb = INSN_BB (insn);
5510
5511  /* Do while we can add any operation to the current group.  */
5512  do
5513    {
5514      blist_t *bnds_tailp1, *bndsp;
5515      expr_t expr_vliw;
5516      int need_stall = false;
5517      int was_stall = 0, scheduled_insns = 0;
5518      int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5519      int max_stall = pipelining_p ? 1 : 3;
5520      bool last_insn_was_debug = false;
5521      bool was_debug_bb_end_p = false;
5522
5523      compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5524      remove_insns_that_need_bookkeeping (fence, &av_vliw);
5525      remove_insns_for_debug (bnds, &av_vliw);
5526
5527      /* Return early if we have nothing to schedule.  */
5528      if (av_vliw == NULL)
5529        break;
5530
5531      /* Choose the best expression and, if needed, destination register
5532	 for it.  */
5533      do
5534        {
5535          expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5536          if (! expr_vliw && need_stall)
5537            {
5538              /* All expressions required a stall.  Do not recompute av sets
5539                 as we'll get the same answer (modulo the insns between
5540                 the fence and its boundary, which will not be available for
5541                 pipelining).
5542		 If we are going to stall for too long, break to recompute av
5543		 sets and bring more insns for pipelining.  */
5544              was_stall++;
5545	      if (need_stall <= 3)
5546		stall_for_cycles (fence, need_stall);
5547	      else
5548		{
5549		  stall_for_cycles (fence, 1);
5550		  break;
5551		}
5552            }
5553        }
5554      while (! expr_vliw && need_stall);
5555
5556      /* Now either we've selected expr_vliw or we have nothing to schedule.  */
5557      if (!expr_vliw)
5558        {
5559	  av_set_clear (&av_vliw);
5560          break;
5561        }
5562
5563      bndsp = &bnds;
5564      bnds_tailp1 = bnds_tailp;
5565
5566      do
5567	/* This code will be executed only once until we'd have several
5568           boundaries per fence.  */
5569        {
5570	  bnd_t bnd = BLIST_BND (*bndsp);
5571
5572	  if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5573	    {
5574	      bndsp = &BLIST_NEXT (*bndsp);
5575	      continue;
5576	    }
5577
5578          insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5579	  last_insn_was_debug = DEBUG_INSN_P (insn);
5580	  if (last_insn_was_debug)
5581	    was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5582          update_fence_and_insn (fence, insn, need_stall);
5583          bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5584
5585	  /* Add insn to the list of scheduled on this cycle instructions.  */
5586	  ilist_add (*scheduled_insns_tailpp, insn);
5587	  *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5588        }
5589      while (*bndsp != *bnds_tailp1);
5590
5591      av_set_clear (&av_vliw);
5592      if (!last_insn_was_debug)
5593	scheduled_insns++;
5594
5595      /* We currently support information about candidate blocks only for
5596	 one 'target_bb' block.  Hence we can't schedule after jump insn,
5597	 as this will bring two boundaries and, hence, necessity to handle
5598	 information for two or more blocks concurrently.  */
5599      if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5600          || (was_stall
5601              && (was_stall >= max_stall
5602                  || scheduled_insns >= max_insns)))
5603        break;
5604    }
5605  while (bnds);
5606
5607  gcc_assert (!FENCE_BNDS (fence));
5608
5609  /* Update boundaries of the FENCE.  */
5610  while (bnds)
5611    {
5612      ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5613
5614      if (ptr)
5615	{
5616	  insn = ILIST_INSN (ptr);
5617
5618	  if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5619	    ilist_add (&FENCE_BNDS (fence), insn);
5620	}
5621
5622      blist_remove (&bnds);
5623    }
5624
5625  /* Update target context on the fence.  */
5626  reset_target_context (FENCE_TC (fence), false);
5627}
5628
5629/* All exprs in ORIG_OPS must have the same destination register or memory.
5630   Return that destination.  */
5631static rtx
5632get_dest_from_orig_ops (av_set_t orig_ops)
5633{
5634  rtx dest = NULL_RTX;
5635  av_set_iterator av_it;
5636  expr_t expr;
5637  bool first_p = true;
5638
5639  FOR_EACH_EXPR (expr, av_it, orig_ops)
5640    {
5641      rtx x = EXPR_LHS (expr);
5642
5643      if (first_p)
5644	{
5645	  first_p = false;
5646	  dest = x;
5647	}
5648      else
5649	gcc_assert (dest == x
5650		    || (dest != NULL_RTX && x != NULL_RTX
5651			&& rtx_equal_p (dest, x)));
5652    }
5653
5654  return dest;
5655}
5656
5657/* Update data sets for the bookkeeping block and record those expressions
5658   which become no longer available after inserting this bookkeeping.  */
5659static void
5660update_and_record_unavailable_insns (basic_block book_block)
5661{
5662  av_set_iterator i;
5663  av_set_t old_av_set = NULL;
5664  expr_t cur_expr;
5665  rtx_insn *bb_end = sel_bb_end (book_block);
5666
5667  /* First, get correct liveness in the bookkeeping block.  The problem is
5668     the range between the bookeeping insn and the end of block.  */
5669  update_liveness_on_insn (bb_end);
5670  if (control_flow_insn_p (bb_end))
5671    update_liveness_on_insn (PREV_INSN (bb_end));
5672
5673  /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5674     fence above, where we may choose to schedule an insn which is
5675     actually blocked from moving up with the bookkeeping we create here.  */
5676  if (AV_SET_VALID_P (sel_bb_head (book_block)))
5677    {
5678      old_av_set = av_set_copy (BB_AV_SET (book_block));
5679      update_data_sets (sel_bb_head (book_block));
5680
5681      /* Traverse all the expressions in the old av_set and check whether
5682	 CUR_EXPR is in new AV_SET.  */
5683      FOR_EACH_EXPR (cur_expr, i, old_av_set)
5684        {
5685          expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5686					   EXPR_VINSN (cur_expr));
5687
5688          if (! new_expr
5689              /* In this case, we can just turn off the E_T_A bit, but we can't
5690                 represent this information with the current vector.  */
5691              || EXPR_TARGET_AVAILABLE (new_expr)
5692		 != EXPR_TARGET_AVAILABLE (cur_expr))
5693	    /* Unfortunately, the below code could be also fired up on
5694	       separable insns, e.g. when moving insns through the new
5695	       speculation check as in PR 53701.  */
5696            vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5697        }
5698
5699      av_set_clear (&old_av_set);
5700    }
5701}
5702
5703/* The main effect of this function is that sparams->c_expr is merged
5704   with (or copied to) lparams->c_expr_merged.  If there's only one successor,
5705   we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5706   lparams->c_expr_merged is copied back to sparams->c_expr after all
5707   successors has been traversed.  lparams->c_expr_local is an expr allocated
5708   on stack in the caller function, and is used if there is more than one
5709   successor.
5710
5711   SUCC is one of the SUCCS_NORMAL successors of INSN,
5712   MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5713   LPARAMS and STATIC_PARAMS contain the parameters described above.  */
5714static void
5715move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5716                     insn_t succ ATTRIBUTE_UNUSED,
5717		     int moveop_drv_call_res,
5718		     cmpd_local_params_p lparams, void *static_params)
5719{
5720  moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5721
5722  /* Nothing to do, if original expr wasn't found below.  */
5723  if (moveop_drv_call_res != 1)
5724    return;
5725
5726  /* If this is a first successor.  */
5727  if (!lparams->c_expr_merged)
5728    {
5729      lparams->c_expr_merged = sparams->c_expr;
5730      sparams->c_expr = lparams->c_expr_local;
5731    }
5732  else
5733    {
5734      /* We must merge all found expressions to get reasonable
5735	 EXPR_SPEC_DONE_DS for the resulting insn.  If we don't
5736	 do so then we can first find the expr with epsilon
5737	 speculation success probability and only then with the
5738	 good probability.  As a result the insn will get epsilon
5739	 probability and will never be scheduled because of
5740	 weakness_cutoff in find_best_expr.
5741
5742	 We call merge_expr_data here instead of merge_expr
5743	 because due to speculation C_EXPR and X may have the
5744	 same insns with different speculation types.  And as of
5745	 now such insns are considered non-equal.
5746
5747	 However, EXPR_SCHED_TIMES is different -- we must get
5748	 SCHED_TIMES from a real insn, not a bookkeeping copy.
5749	 We force this here.  Instead, we may consider merging
5750	 SCHED_TIMES to the maximum instead of minimum in the
5751	 below function.  */
5752      int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5753
5754      merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5755      if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5756	EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5757
5758      clear_expr (sparams->c_expr);
5759    }
5760}
5761
5762/*  Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5763
5764   SUCC is one of the SUCCS_NORMAL successors of INSN,
5765   MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5766     if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5767   STATIC_PARAMS contain USED_REGS set.  */
5768static void
5769fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5770		 int moveop_drv_call_res,
5771		 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5772		 void *static_params)
5773{
5774  regset succ_live;
5775  fur_static_params_p sparams = (fur_static_params_p) static_params;
5776
5777  /* Here we compute live regsets only for branches that do not lie
5778     on the code motion paths.  These branches correspond to value
5779     MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5780     for such branches code_motion_path_driver is not called.  */
5781  if (moveop_drv_call_res != 0)
5782    return;
5783
5784  /* Mark all registers that do not meet the following condition:
5785     (3) not live on the other path of any conditional branch
5786     that is passed by the operation, in case original
5787     operations are not present on both paths of the
5788     conditional branch.  */
5789  succ_live = compute_live (succ);
5790  IOR_REG_SET (sparams->used_regs, succ_live);
5791}
5792
5793/* This function is called after the last successor.  Copies LP->C_EXPR_MERGED
5794   into SP->CEXPR.  */
5795static void
5796move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5797{
5798  moveop_static_params_p sp = (moveop_static_params_p) sparams;
5799
5800  sp->c_expr = lp->c_expr_merged;
5801}
5802
5803/* Track bookkeeping copies created, insns scheduled, and blocks for
5804   rescheduling when INSN is found by move_op.  */
5805static void
5806track_scheduled_insns_and_blocks (rtx_insn *insn)
5807{
5808  /* Even if this insn can be a copy that will be removed during current move_op,
5809     we still need to count it as an originator.  */
5810  bitmap_set_bit (current_originators, INSN_UID (insn));
5811
5812  if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5813    {
5814      /* Note that original block needs to be rescheduled, as we pulled an
5815	 instruction out of it.  */
5816      if (INSN_SCHED_TIMES (insn) > 0)
5817	bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5818      else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5819	num_insns_scheduled++;
5820    }
5821
5822  /* For instructions we must immediately remove insn from the
5823     stream, so subsequent update_data_sets () won't include this
5824     insn into av_set.
5825     For expr we must make insn look like "INSN_REG (insn) := c_expr".  */
5826  if (INSN_UID (insn) > max_uid_before_move_op)
5827    stat_bookkeeping_copies--;
5828}
5829
5830/* Emit a register-register copy for INSN if needed.  Return true if
5831   emitted one.  PARAMS is the move_op static parameters.  */
5832static bool
5833maybe_emit_renaming_copy (rtx_insn *insn,
5834                          moveop_static_params_p params)
5835{
5836  bool insn_emitted  = false;
5837  rtx cur_reg;
5838
5839  /* Bail out early when expression cannot be renamed at all.  */
5840  if (!EXPR_SEPARABLE_P (params->c_expr))
5841    return false;
5842
5843  cur_reg = expr_dest_reg (params->c_expr);
5844  gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5845
5846  /* If original operation has expr and the register chosen for
5847     that expr is not original operation's dest reg, substitute
5848     operation's right hand side with the register chosen.  */
5849  if (REGNO (params->dest) != REGNO (cur_reg))
5850    {
5851      insn_t reg_move_insn, reg_move_insn_rtx;
5852
5853      reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5854                                                    params->dest);
5855      reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5856                                                   INSN_EXPR (insn),
5857                                                   INSN_SEQNO (insn),
5858                                                   insn);
5859      EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5860      replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5861
5862      insn_emitted = true;
5863      params->was_renamed = true;
5864    }
5865
5866  return insn_emitted;
5867}
5868
5869/* Emit a speculative check for INSN speculated as EXPR if needed.
5870   Return true if we've  emitted one.  PARAMS is the move_op static
5871   parameters.  */
5872static bool
5873maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5874                              moveop_static_params_p params)
5875{
5876  bool insn_emitted = false;
5877  insn_t x;
5878  ds_t check_ds;
5879
5880  check_ds = get_spec_check_type_for_insn (insn, expr);
5881  if (check_ds != 0)
5882    {
5883      /* A speculation check should be inserted.  */
5884      x = create_speculation_check (params->c_expr, check_ds, insn);
5885      insn_emitted = true;
5886    }
5887  else
5888    {
5889      EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5890      x = insn;
5891    }
5892
5893  gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5894              && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5895  return insn_emitted;
5896}
5897
5898/* Handle transformations that leave an insn in place of original
5899   insn such as renaming/speculation.  Return true if one of such
5900   transformations actually happened, and we have emitted this insn.  */
5901static bool
5902handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5903                                 moveop_static_params_p params)
5904{
5905  bool insn_emitted = false;
5906
5907  insn_emitted = maybe_emit_renaming_copy (insn, params);
5908  insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5909
5910  return insn_emitted;
5911}
5912
5913/* If INSN is the only insn in the basic block (not counting JUMP,
5914   which may be a jump to next insn, and DEBUG_INSNs), we want to
5915   leave a NOP there till the return to fill_insns.  */
5916
5917static bool
5918need_nop_to_preserve_insn_bb (rtx_insn *insn)
5919{
5920  insn_t bb_head, bb_end, bb_next, in_next;
5921  basic_block bb = BLOCK_FOR_INSN (insn);
5922
5923  bb_head = sel_bb_head (bb);
5924  bb_end = sel_bb_end (bb);
5925
5926  if (bb_head == bb_end)
5927    return true;
5928
5929  while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5930    bb_head = NEXT_INSN (bb_head);
5931
5932  if (bb_head == bb_end)
5933    return true;
5934
5935  while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5936    bb_end = PREV_INSN (bb_end);
5937
5938  if (bb_head == bb_end)
5939    return true;
5940
5941  bb_next = NEXT_INSN (bb_head);
5942  while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5943    bb_next = NEXT_INSN (bb_next);
5944
5945  if (bb_next == bb_end && JUMP_P (bb_end))
5946    return true;
5947
5948  in_next = NEXT_INSN (insn);
5949  while (DEBUG_INSN_P (in_next))
5950    in_next = NEXT_INSN (in_next);
5951
5952  if (IN_CURRENT_FENCE_P (in_next))
5953    return true;
5954
5955  return false;
5956}
5957
5958/* Remove INSN from stream.  When ONLY_DISCONNECT is true, its data
5959   is not removed but reused when INSN is re-emitted.  */
5960static void
5961remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5962{
5963  /* If there's only one insn in the BB, make sure that a nop is
5964     inserted into it, so the basic block won't disappear when we'll
5965     delete INSN below with sel_remove_insn. It should also survive
5966     till the return to fill_insns.  */
5967  if (need_nop_to_preserve_insn_bb (insn))
5968    {
5969      insn_t nop = get_nop_from_pool (insn);
5970      gcc_assert (INSN_NOP_P (nop));
5971      vec_temp_moveop_nops.safe_push (nop);
5972    }
5973
5974  sel_remove_insn (insn, only_disconnect, false);
5975}
5976
5977/* This function is called when original expr is found.
5978   INSN - current insn traversed, EXPR - the corresponding expr found.
5979   LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5980   is static parameters of move_op.  */
5981static void
5982move_op_orig_expr_found (insn_t insn, expr_t expr,
5983                         cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5984                         void *static_params)
5985{
5986  bool only_disconnect;
5987  moveop_static_params_p params = (moveop_static_params_p) static_params;
5988
5989  copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5990  track_scheduled_insns_and_blocks (insn);
5991  handle_emitting_transformations (insn, expr, params);
5992  only_disconnect = params->uid == INSN_UID (insn);
5993
5994  /* Mark that we've disconnected an insn.  */
5995  if (only_disconnect)
5996    params->uid = -1;
5997  remove_insn_from_stream (insn, only_disconnect);
5998}
5999
6000/* The function is called when original expr is found.
6001   INSN - current insn traversed, EXPR - the corresponding expr found,
6002   crossed_call_abis and original_insns in STATIC_PARAMS are updated.  */
6003static void
6004fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6005                     cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6006                     void *static_params)
6007{
6008  fur_static_params_p params = (fur_static_params_p) static_params;
6009  regset tmp;
6010
6011  if (CALL_P (insn))
6012    params->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6013
6014  def_list_add (params->original_insns, insn, params->crossed_call_abis);
6015
6016  /* Mark the registers that do not meet the following condition:
6017    (2) not among the live registers of the point
6018	immediately following the first original operation on
6019	a given downward path, except for the original target
6020	register of the operation.  */
6021  tmp = get_clear_regset_from_pool ();
6022  compute_live_below_insn (insn, tmp);
6023  AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6024  AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6025  IOR_REG_SET (params->used_regs, tmp);
6026  return_regset_to_pool (tmp);
6027
6028  /* (*1) We need to add to USED_REGS registers that are read by
6029     INSN's lhs. This may lead to choosing wrong src register.
6030     E.g. (scheduling const expr enabled):
6031
6032	429: ax=0x0	<- Can't use AX for this expr (0x0)
6033	433: dx=[bp-0x18]
6034	427: [ax+dx+0x1]=ax
6035	  REG_DEAD: ax
6036	168: di=dx
6037	  REG_DEAD: dx
6038     */
6039  /* FIXME: see comment above and enable MEM_P
6040     in vinsn_separable_p.  */
6041  gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6042	      || !MEM_P (INSN_LHS (insn)));
6043}
6044
6045/* This function is called on the ascending pass, before returning from
6046   current basic block.  */
6047static void
6048move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6049                       void *static_params)
6050{
6051  moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6052  basic_block book_block = NULL;
6053
6054  /* When we have removed the boundary insn for scheduling, which also
6055     happened to be the end insn in its bb, we don't need to update sets.  */
6056  if (!lparams->removed_last_insn
6057      && lparams->e1
6058      && sel_bb_head_p (insn))
6059    {
6060      /* We should generate bookkeeping code only if we are not at the
6061         top level of the move_op.  */
6062      if (sel_num_cfg_preds_gt_1 (insn))
6063        book_block = generate_bookkeeping_insn (sparams->c_expr,
6064                                                lparams->e1, lparams->e2);
6065      /* Update data sets for the current insn.  */
6066      update_data_sets (insn);
6067    }
6068
6069  /* If bookkeeping code was inserted, we need to update av sets of basic
6070     block that received bookkeeping.  After generation of bookkeeping insn,
6071     bookkeeping block does not contain valid av set because we are not following
6072     the original algorithm in every detail with regards to e.g. renaming
6073     simple reg-reg copies.  Consider example:
6074
6075     bookkeeping block           scheduling fence
6076     \            /
6077      \    join  /
6078       ----------
6079       |        |
6080       ----------
6081      /           \
6082     /             \
6083     r1 := r2          r1 := r3
6084
6085     We try to schedule insn "r1 := r3" on the current
6086     scheduling fence.  Also, note that av set of bookkeeping block
6087     contain both insns "r1 := r2" and "r1 := r3".  When the insn has
6088     been scheduled, the CFG is as follows:
6089
6090     r1 := r3               r1 := r3
6091     bookkeeping block           scheduling fence
6092     \            /
6093      \    join  /
6094       ----------
6095       |        |
6096       ----------
6097      /          \
6098     /            \
6099     r1 := r2
6100
6101     Here, insn "r1 := r3" was scheduled at the current scheduling point
6102     and bookkeeping code was generated at the bookeeping block.  This
6103     way insn "r1 := r2" is no longer available as a whole instruction
6104     (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6105     This situation is handled by calling update_data_sets.
6106
6107     Since update_data_sets is called only on the bookkeeping block, and
6108     it also may have predecessors with av_sets, containing instructions that
6109     are no longer available, we save all such expressions that become
6110     unavailable during data sets update on the bookkeeping block in
6111     VEC_BOOKKEEPING_BLOCKED_VINSNS.  Later we avoid selecting such
6112     expressions for scheduling.  This allows us to avoid recomputation of
6113     av_sets outside the code motion path.  */
6114
6115  if (book_block)
6116    update_and_record_unavailable_insns (book_block);
6117
6118  /* If INSN was previously marked for deletion, it's time to do it.  */
6119  if (lparams->removed_last_insn)
6120    insn = PREV_INSN (insn);
6121
6122  /* Do not tidy control flow at the topmost moveop, as we can erroneously
6123     kill a block with a single nop in which the insn should be emitted.  */
6124  if (lparams->e1)
6125    tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6126}
6127
6128/* This function is called on the ascending pass, before returning from the
6129   current basic block.  */
6130static void
6131fur_at_first_insn (insn_t insn,
6132                   cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6133                   void *static_params ATTRIBUTE_UNUSED)
6134{
6135  gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6136	      || AV_LEVEL (insn) == -1);
6137}
6138
6139/* Called on the backward stage of recursion to call moveup_expr for insn
6140   and sparams->c_expr.  */
6141static void
6142move_op_ascend (insn_t insn, void *static_params)
6143{
6144  enum MOVEUP_EXPR_CODE res;
6145  moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6146
6147  if (! INSN_NOP_P (insn))
6148    {
6149      res = moveup_expr_cached (sparams->c_expr, insn, false);
6150      gcc_assert (res != MOVEUP_EXPR_NULL);
6151    }
6152
6153  /* Update liveness for this insn as it was invalidated.  */
6154  update_liveness_on_insn (insn);
6155}
6156
6157/* This function is called on enter to the basic block.
6158   Returns TRUE if this block already have been visited and
6159   code_motion_path_driver should return 1, FALSE otherwise.  */
6160static int
6161fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6162	      void *static_params, bool visited_p)
6163{
6164  fur_static_params_p sparams = (fur_static_params_p) static_params;
6165
6166  if (visited_p)
6167    {
6168      /* If we have found something below this block, there should be at
6169	 least one insn in ORIGINAL_INSNS.  */
6170      gcc_assert (*sparams->original_insns);
6171
6172      /* Adjust CROSSED_CALL_ABIS, since we may have come to this block along
6173	 different path.  */
6174      DEF_LIST_DEF (*sparams->original_insns)->crossed_call_abis
6175	|= sparams->crossed_call_abis;
6176    }
6177  else
6178    local_params->old_original_insns = *sparams->original_insns;
6179
6180  return 1;
6181}
6182
6183/* Same as above but for move_op.   */
6184static int
6185move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6186                  cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6187                  void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6188{
6189  if (visited_p)
6190    return -1;
6191  return 1;
6192}
6193
6194/* This function is called while descending current basic block if current
6195   insn is not the original EXPR we're searching for.
6196
6197   Return value: FALSE, if code_motion_path_driver should perform a local
6198			cleanup and return 0 itself;
6199		 TRUE, if code_motion_path_driver should continue.  */
6200static bool
6201move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6202			    void *static_params)
6203{
6204  moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6205
6206  sparams->failed_insn = insn;
6207
6208  /* If we're scheduling separate expr, in order to generate correct code
6209     we need to stop the search at bookkeeping code generated with the
6210     same destination register or memory.  */
6211  if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6212    return false;
6213  return true;
6214}
6215
6216/* This function is called while descending current basic block if current
6217   insn is not the original EXPR we're searching for.
6218
6219   Return value: TRUE (code_motion_path_driver should continue).  */
6220static bool
6221fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6222{
6223  bool mutexed;
6224  expr_t r;
6225  av_set_iterator avi;
6226  fur_static_params_p sparams = (fur_static_params_p) static_params;
6227
6228  if (CALL_P (insn))
6229    sparams->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6230  else if (DEBUG_INSN_P (insn))
6231    return true;
6232
6233  /* If current insn we are looking at cannot be executed together
6234     with original insn, then we can skip it safely.
6235
6236     Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6237	      INSN = (!p6) r14 = r14 + 1;
6238
6239     Here we can schedule ORIG_OP with lhs = r14, though only
6240     looking at the set of used and set registers of INSN we must
6241     forbid it.  So, add set/used in INSN registers to the
6242     untouchable set only if there is an insn in ORIG_OPS that can
6243     affect INSN.  */
6244  mutexed = true;
6245  FOR_EACH_EXPR (r, avi, orig_ops)
6246    if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6247      {
6248	mutexed = false;
6249	break;
6250      }
6251
6252  /* Mark all registers that do not meet the following condition:
6253     (1) Not set or read on any path from xi to an instance of the
6254	 original operation.  */
6255  if (!mutexed)
6256    {
6257      IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6258      IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6259      IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6260    }
6261
6262  return true;
6263}
6264
6265/* Hooks and data to perform move_op operations with code_motion_path_driver.  */
6266struct code_motion_path_driver_info_def move_op_hooks = {
6267  move_op_on_enter,
6268  move_op_orig_expr_found,
6269  move_op_orig_expr_not_found,
6270  move_op_merge_succs,
6271  move_op_after_merge_succs,
6272  move_op_ascend,
6273  move_op_at_first_insn,
6274  SUCCS_NORMAL,
6275  "move_op"
6276};
6277
6278/* Hooks and data to perform find_used_regs operations
6279   with code_motion_path_driver.  */
6280struct code_motion_path_driver_info_def fur_hooks = {
6281  fur_on_enter,
6282  fur_orig_expr_found,
6283  fur_orig_expr_not_found,
6284  fur_merge_succs,
6285  NULL, /* fur_after_merge_succs */
6286  NULL, /* fur_ascend */
6287  fur_at_first_insn,
6288  SUCCS_ALL,
6289  "find_used_regs"
6290};
6291
6292/* Traverse all successors of INSN.  For each successor that is SUCCS_NORMAL
6293   code_motion_path_driver is called recursively.  Original operation
6294   was found at least on one path that is starting with one of INSN's
6295   successors (this fact is asserted).  ORIG_OPS is expressions we're looking
6296   for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6297   of either move_op or find_used_regs depending on the caller.
6298
6299   Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6300   know for sure at this point.  */
6301static int
6302code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6303                                ilist_t path, void *static_params)
6304{
6305  int res = 0;
6306  succ_iterator succ_i;
6307  insn_t succ;
6308  basic_block bb;
6309  int old_index;
6310  unsigned old_succs;
6311
6312  struct cmpd_local_params lparams;
6313  expr_def _x;
6314
6315  lparams.c_expr_local = &_x;
6316  lparams.c_expr_merged = NULL;
6317
6318  /* We need to process only NORMAL succs for move_op, and collect live
6319     registers from ALL branches (including those leading out of the
6320     region) for find_used_regs.
6321
6322     In move_op, there can be a case when insn's bb number has changed
6323     due to created bookkeeping.  This happens very rare, as we need to
6324     move expression from the beginning to the end of the same block.
6325     Rescan successors in this case.  */
6326
6327 rescan:
6328  bb = BLOCK_FOR_INSN (insn);
6329  old_index = bb->index;
6330  old_succs = EDGE_COUNT (bb->succs);
6331
6332  FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6333    {
6334      int b;
6335
6336      lparams.e1 = succ_i.e1;
6337      lparams.e2 = succ_i.e2;
6338
6339      /* Go deep into recursion only for NORMAL edges (non-backedges within the
6340	 current region).  */
6341      if (succ_i.current_flags == SUCCS_NORMAL)
6342	b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6343				     static_params);
6344      else
6345	b = 0;
6346
6347      /* Merge c_expres found or unify live register sets from different
6348	 successors.  */
6349      code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6350						 static_params);
6351      if (b == 1)
6352        res = b;
6353      else if (b == -1 && res != 1)
6354        res = b;
6355
6356      /* We have simplified the control flow below this point.  In this case,
6357         the iterator becomes invalid.  We need to try again.
6358	 If we have removed the insn itself, it could be only an
6359	 unconditional jump.  Thus, do not rescan but break immediately --
6360	 we have already visited the only successor block.  */
6361      if (!BLOCK_FOR_INSN (insn))
6362	{
6363	  if (sched_verbose >= 6)
6364	    sel_print ("Not doing rescan: already visited the only successor"
6365		       " of block %d\n", old_index);
6366	  break;
6367	}
6368      if (BLOCK_FOR_INSN (insn)->index != old_index
6369          || EDGE_COUNT (bb->succs) != old_succs)
6370        {
6371	  if (sched_verbose >= 6)
6372	    sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6373		       INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6374          insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6375          goto rescan;
6376        }
6377    }
6378
6379  /* Here, RES==1 if original expr was found at least for one of the
6380     successors.  After the loop, RES may happen to have zero value
6381     only if at some point the expr searched is present in av_set, but is
6382     not found below.  In most cases, this situation is an error.
6383     The exception is when the original operation is blocked by
6384     bookkeeping generated for another fence or for another path in current
6385     move_op.  */
6386  gcc_checking_assert (res == 1
6387		       || (res == 0
6388			    && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6389		       || res == -1);
6390
6391  /* Merge data, clean up, etc.  */
6392  if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6393    code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6394
6395  return res;
6396}
6397
6398
6399/* Perform a cleanup when the driver is about to terminate.  ORIG_OPS_P
6400   is the pointer to the av set with expressions we were looking for,
6401   PATH_P is the pointer to the traversed path.  */
6402static inline void
6403code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6404{
6405  ilist_remove (path_p);
6406  av_set_clear (orig_ops_p);
6407}
6408
6409/* The driver function that implements move_op or find_used_regs
6410   functionality dependent whether code_motion_path_driver_INFO is set to
6411   &MOVE_OP_HOOKS or &FUR_HOOKS.  This function implements the common parts
6412   of code (CFG traversal etc) that are shared among both functions.  INSN
6413   is the insn we're starting the search from, ORIG_OPS are the expressions
6414   we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6415   parameters of the driver, and STATIC_PARAMS are static parameters of
6416   the caller.
6417
6418   Returns whether original instructions were found.  Note that top-level
6419   code_motion_path_driver always returns true.  */
6420static int
6421code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6422			 cmpd_local_params_p local_params_in,
6423			 void *static_params)
6424{
6425  expr_t expr = NULL;
6426  basic_block bb = BLOCK_FOR_INSN (insn);
6427  insn_t first_insn, original_insn, bb_tail, before_first;
6428  bool removed_last_insn = false;
6429
6430  if (sched_verbose >= 6)
6431    {
6432      sel_print ("%s (", code_motion_path_driver_info->routine_name);
6433      dump_insn (insn);
6434      sel_print (",");
6435      dump_av_set (orig_ops);
6436      sel_print (")\n");
6437    }
6438
6439  gcc_assert (orig_ops);
6440
6441  /* If no original operations exist below this insn, return immediately.  */
6442  if (is_ineligible_successor (insn, path))
6443    {
6444      if (sched_verbose >= 6)
6445        sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6446      return false;
6447    }
6448
6449  /* The block can have invalid av set, in which case it was created earlier
6450     during move_op.  Return immediately.  */
6451  if (sel_bb_head_p (insn))
6452    {
6453      if (! AV_SET_VALID_P (insn))
6454        {
6455          if (sched_verbose >= 6)
6456            sel_print ("Returned from block %d as it had invalid av set\n",
6457                       bb->index);
6458          return false;
6459        }
6460
6461      if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6462        {
6463          /* We have already found an original operation on this branch, do not
6464             go any further and just return TRUE here.  If we don't stop here,
6465             function can have exponential behavior even on the small code
6466             with many different paths (e.g. with data speculation and
6467             recovery blocks).  */
6468          if (sched_verbose >= 6)
6469            sel_print ("Block %d already visited in this traversal\n", bb->index);
6470          if (code_motion_path_driver_info->on_enter)
6471            return code_motion_path_driver_info->on_enter (insn,
6472                                                           local_params_in,
6473                                                           static_params,
6474                                                           true);
6475        }
6476    }
6477
6478  if (code_motion_path_driver_info->on_enter)
6479    code_motion_path_driver_info->on_enter (insn, local_params_in,
6480                                            static_params, false);
6481  orig_ops = av_set_copy (orig_ops);
6482
6483  /* Filter the orig_ops set.  */
6484  if (AV_SET_VALID_P (insn))
6485    av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6486
6487  /* If no more original ops, return immediately.  */
6488  if (!orig_ops)
6489    {
6490      if (sched_verbose >= 6)
6491        sel_print ("No intersection with av set of block %d\n", bb->index);
6492      return false;
6493    }
6494
6495  /* For non-speculative insns we have to leave only one form of the
6496     original operation, because if we don't, we may end up with
6497     different C_EXPRes and, consequently, with bookkeepings for different
6498     expression forms along the same code motion path.  That may lead to
6499     generation of incorrect code.  So for each code motion we stick to
6500     the single form of the instruction,  except for speculative insns
6501     which we need to keep in different forms with all speculation
6502     types.  */
6503  av_set_leave_one_nonspec (&orig_ops);
6504
6505  /* It is not possible that all ORIG_OPS are filtered out.  */
6506  gcc_assert (orig_ops);
6507
6508  /* It is enough to place only heads and tails of visited basic blocks into
6509     the PATH.  */
6510  ilist_add (&path, insn);
6511  first_insn = original_insn = insn;
6512  bb_tail = sel_bb_end (bb);
6513
6514  /* Descend the basic block in search of the original expr; this part
6515     corresponds to the part of the original move_op procedure executed
6516     before the recursive call.  */
6517  for (;;)
6518    {
6519      /* Look at the insn and decide if it could be an ancestor of currently
6520	 scheduling operation.  If it is so, then the insn "dest = op" could
6521	 either be replaced with "dest = reg", because REG now holds the result
6522	 of OP, or just removed, if we've scheduled the insn as a whole.
6523
6524	 If this insn doesn't contain currently scheduling OP, then proceed
6525	 with searching and look at its successors.  Operations we're searching
6526	 for could have changed when moving up through this insn via
6527	 substituting.  In this case, perform unsubstitution on them first.
6528
6529	 When traversing the DAG below this insn is finished, insert
6530	 bookkeeping code, if the insn is a joint point, and remove
6531	 leftovers.  */
6532
6533      expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6534      if (expr)
6535	{
6536	  insn_t last_insn = PREV_INSN (insn);
6537
6538	  /* We have found the original operation.   */
6539          if (sched_verbose >= 6)
6540            sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6541
6542	  code_motion_path_driver_info->orig_expr_found
6543            (insn, expr, local_params_in, static_params);
6544
6545	  /* Step back, so on the way back we'll start traversing from the
6546	     previous insn (or we'll see that it's bb_note and skip that
6547	     loop).  */
6548          if (insn == first_insn)
6549            {
6550              first_insn = NEXT_INSN (last_insn);
6551              removed_last_insn = sel_bb_end_p (last_insn);
6552            }
6553	  insn = last_insn;
6554	  break;
6555	}
6556      else
6557	{
6558	  /* We haven't found the original expr, continue descending the basic
6559	     block.  */
6560	  if (code_motion_path_driver_info->orig_expr_not_found
6561              (insn, orig_ops, static_params))
6562	    {
6563	      /* Av set ops could have been changed when moving through this
6564	         insn.  To find them below it, we have to un-substitute them.  */
6565	      undo_transformations (&orig_ops, insn);
6566	    }
6567	  else
6568	    {
6569	      /* Clean up and return, if the hook tells us to do so.  It may
6570		 happen if we've encountered the previously created
6571		 bookkeeping.  */
6572	      code_motion_path_driver_cleanup (&orig_ops, &path);
6573	      return -1;
6574	    }
6575
6576	  gcc_assert (orig_ops);
6577        }
6578
6579      /* Stop at insn if we got to the end of BB.  */
6580      if (insn == bb_tail)
6581	break;
6582
6583      insn = NEXT_INSN (insn);
6584    }
6585
6586  /* Here INSN either points to the insn before the original insn (may be
6587     bb_note, if original insn was a bb_head) or to the bb_end.  */
6588  if (!expr)
6589    {
6590      int res;
6591      rtx_insn *last_insn = PREV_INSN (insn);
6592      bool added_to_path;
6593
6594      gcc_assert (insn == sel_bb_end (bb));
6595
6596      /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6597	 it's already in PATH then).  */
6598      if (insn != first_insn)
6599	{
6600	  ilist_add (&path, insn);
6601	  added_to_path = true;
6602	}
6603      else
6604        added_to_path = false;
6605
6606      /* Process_successors should be able to find at least one
6607	 successor for which code_motion_path_driver returns TRUE.  */
6608      res = code_motion_process_successors (insn, orig_ops,
6609                                            path, static_params);
6610
6611      /* Jump in the end of basic block could have been removed or replaced
6612         during code_motion_process_successors, so recompute insn as the
6613         last insn in bb.  */
6614      if (NEXT_INSN (last_insn) != insn)
6615        {
6616          insn = sel_bb_end (bb);
6617          first_insn = sel_bb_head (bb);
6618	  if (first_insn != original_insn)
6619	    first_insn = original_insn;
6620        }
6621
6622      /* Remove bb tail from path.  */
6623      if (added_to_path)
6624	ilist_remove (&path);
6625
6626      if (res != 1)
6627	{
6628	  /* This is the case when one of the original expr is no longer available
6629	     due to bookkeeping created on this branch with the same register.
6630	     In the original algorithm, which doesn't have update_data_sets call
6631	     on a bookkeeping block, it would simply result in returning
6632	     FALSE when we've encountered a previously generated bookkeeping
6633	     insn in moveop_orig_expr_not_found.  */
6634	  code_motion_path_driver_cleanup (&orig_ops, &path);
6635	  return res;
6636	}
6637    }
6638
6639  /* Don't need it any more.  */
6640  av_set_clear (&orig_ops);
6641
6642  /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6643     the beginning of the basic block.  */
6644  before_first = PREV_INSN (first_insn);
6645  while (insn != before_first)
6646    {
6647      if (code_motion_path_driver_info->ascend)
6648	code_motion_path_driver_info->ascend (insn, static_params);
6649
6650      insn = PREV_INSN (insn);
6651    }
6652
6653  /* Now we're at the bb head.  */
6654  insn = first_insn;
6655  ilist_remove (&path);
6656  local_params_in->removed_last_insn = removed_last_insn;
6657  code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6658
6659  /* This should be the very last operation as at bb head we could change
6660     the numbering by creating bookkeeping blocks.  */
6661  if (removed_last_insn)
6662    insn = PREV_INSN (insn);
6663
6664  /* If we have simplified the control flow and removed the first jump insn,
6665     there's no point in marking this block in the visited blocks bitmap.  */
6666  if (BLOCK_FOR_INSN (insn))
6667    bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6668  return true;
6669}
6670
6671/* Move up the operations from ORIG_OPS set traversing the dag starting
6672   from INSN.  PATH represents the edges traversed so far.
6673   DEST is the register chosen for scheduling the current expr.  Insert
6674   bookkeeping code in the join points.  EXPR_VLIW is the chosen expression,
6675   C_EXPR is how it looks like at the given cfg point.
6676   Set *SHOULD_MOVE to indicate whether we have only disconnected
6677   one of the insns found.
6678
6679   Returns whether original instructions were found, which is asserted
6680   to be true in the caller.  */
6681static bool
6682move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6683         rtx dest, expr_t c_expr, bool *should_move)
6684{
6685  struct moveop_static_params sparams;
6686  struct cmpd_local_params lparams;
6687  int res;
6688
6689  /* Init params for code_motion_path_driver.  */
6690  sparams.dest = dest;
6691  sparams.c_expr = c_expr;
6692  sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6693  sparams.failed_insn = NULL;
6694  sparams.was_renamed = false;
6695  lparams.e1 = NULL;
6696
6697  /* We haven't visited any blocks yet.  */
6698  bitmap_clear (code_motion_visited_blocks);
6699
6700  /* Set appropriate hooks and data.  */
6701  code_motion_path_driver_info = &move_op_hooks;
6702  res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6703
6704  gcc_assert (res != -1);
6705
6706  if (sparams.was_renamed)
6707    EXPR_WAS_RENAMED (expr_vliw) = true;
6708
6709  *should_move = (sparams.uid == -1);
6710
6711  return res;
6712}
6713
6714
6715/* Functions that work with regions.  */
6716
6717/* Current number of seqno used in init_seqno and init_seqno_1.  */
6718static int cur_seqno;
6719
6720/* A helper for init_seqno.  Traverse the region starting from BB and
6721   compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6722   Clear visited blocks from BLOCKS_TO_RESCHEDULE.  */
6723static void
6724init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6725{
6726  int bbi = BLOCK_TO_BB (bb->index);
6727  insn_t insn;
6728  insn_t succ_insn;
6729  succ_iterator si;
6730
6731  rtx_note *note = bb_note (bb);
6732  bitmap_set_bit (visited_bbs, bbi);
6733  if (blocks_to_reschedule)
6734    bitmap_clear_bit (blocks_to_reschedule, bb->index);
6735
6736  FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6737		   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6738    {
6739      basic_block succ = BLOCK_FOR_INSN (succ_insn);
6740      int succ_bbi = BLOCK_TO_BB (succ->index);
6741
6742      gcc_assert (in_current_region_p (succ));
6743
6744      if (!bitmap_bit_p (visited_bbs, succ_bbi))
6745	{
6746	  gcc_assert (succ_bbi > bbi);
6747
6748	  init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6749	}
6750      else if (blocks_to_reschedule)
6751        bitmap_set_bit (forced_ebb_heads, succ->index);
6752    }
6753
6754  for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6755    INSN_SEQNO (insn) = cur_seqno--;
6756}
6757
6758/* Initialize seqnos for the current region.  BLOCKS_TO_RESCHEDULE contains
6759   blocks on which we're rescheduling when pipelining, FROM is the block where
6760   traversing region begins (it may not be the head of the region when
6761   pipelining, but the head of the loop instead).
6762
6763   Returns the maximal seqno found.  */
6764static int
6765init_seqno (bitmap blocks_to_reschedule, basic_block from)
6766{
6767  bitmap_iterator bi;
6768  unsigned bbi;
6769
6770  auto_sbitmap visited_bbs (current_nr_blocks);
6771
6772  if (blocks_to_reschedule)
6773    {
6774      bitmap_ones (visited_bbs);
6775      EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6776        {
6777	  gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6778          bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6779	}
6780    }
6781  else
6782    {
6783      bitmap_clear (visited_bbs);
6784      from = EBB_FIRST_BB (0);
6785    }
6786
6787  cur_seqno = sched_max_luid - 1;
6788  init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6789
6790  /* cur_seqno may be positive if the number of instructions is less than
6791     sched_max_luid - 1 (when rescheduling or if some instructions have been
6792     removed by the call to purge_empty_blocks in sel_sched_region_1).  */
6793  gcc_assert (cur_seqno >= 0);
6794
6795  return sched_max_luid - 1;
6796}
6797
6798/* Initialize scheduling parameters for current region.  */
6799static void
6800sel_setup_region_sched_flags (void)
6801{
6802  enable_schedule_as_rhs_p = 1;
6803  bookkeeping_p = 1;
6804  pipelining_p = (bookkeeping_p
6805                  && (flag_sel_sched_pipelining != 0)
6806		  && current_loop_nest != NULL
6807		  && loop_has_exit_edges (current_loop_nest));
6808  max_insns_to_rename = param_selsched_insns_to_rename;
6809  max_ws = MAX_WS;
6810}
6811
6812/* Return true if all basic blocks of current region are empty.  */
6813static bool
6814current_region_empty_p (void)
6815{
6816  int i;
6817  for (i = 0; i < current_nr_blocks; i++)
6818    if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6819      return false;
6820
6821  return true;
6822}
6823
6824/* Prepare and verify loop nest for pipelining.  */
6825static void
6826setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6827{
6828  current_loop_nest = get_loop_nest_for_rgn (rgn);
6829
6830  if (!current_loop_nest)
6831    return;
6832
6833  /* If this loop has any saved loop preheaders from nested loops,
6834     add these basic blocks to the current region.  */
6835  sel_add_loop_preheaders (bbs);
6836
6837  /* Check that we're starting with a valid information.  */
6838  gcc_assert (loop_latch_edge (current_loop_nest));
6839  gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6840}
6841
6842/* Compute instruction priorities for current region.  */
6843static void
6844sel_compute_priorities (int rgn)
6845{
6846  sched_rgn_compute_dependencies (rgn);
6847
6848  /* Compute insn priorities in haifa style.  Then free haifa style
6849     dependencies that we've calculated for this.  */
6850  compute_priorities ();
6851
6852  if (sched_verbose >= 5)
6853    debug_rgn_dependencies (0);
6854
6855  free_rgn_deps ();
6856}
6857
6858/* Init scheduling data for RGN.  Returns true when this region should not
6859   be scheduled.  */
6860static bool
6861sel_region_init (int rgn)
6862{
6863  int i;
6864  bb_vec_t bbs;
6865
6866  rgn_setup_region (rgn);
6867
6868  /* Even if sched_is_disabled_for_current_region_p() is true, we still
6869     do region initialization here so the region can be bundled correctly,
6870     but we'll skip the scheduling in sel_sched_region ().  */
6871  if (current_region_empty_p ())
6872    return true;
6873
6874  bbs.create (current_nr_blocks);
6875
6876  for (i = 0; i < current_nr_blocks; i++)
6877    bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6878
6879  sel_init_bbs (bbs);
6880
6881  if (flag_sel_sched_pipelining)
6882    setup_current_loop_nest (rgn, &bbs);
6883
6884  sel_setup_region_sched_flags ();
6885
6886  /* Initialize luids and dependence analysis which both sel-sched and haifa
6887     need.  */
6888  sched_init_luids (bbs);
6889  sched_deps_init (false);
6890
6891  /* Initialize haifa data.  */
6892  rgn_setup_sched_infos ();
6893  sel_set_sched_flags ();
6894  haifa_init_h_i_d (bbs);
6895
6896  sel_compute_priorities (rgn);
6897  init_deps_global ();
6898
6899  /* Main initialization.  */
6900  sel_setup_sched_infos ();
6901  sel_init_global_and_expr (bbs);
6902
6903  bbs.release ();
6904
6905  blocks_to_reschedule = BITMAP_ALLOC (NULL);
6906
6907  /* Init correct liveness sets on each instruction of a single-block loop.
6908     This is the only situation when we can't update liveness when calling
6909     compute_live for the first insn of the loop.  */
6910  if (current_loop_nest)
6911    {
6912      int header =
6913	(sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6914	 ? 1
6915	 : 0);
6916
6917      if (current_nr_blocks == header + 1)
6918        update_liveness_on_insn
6919          (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6920    }
6921
6922  /* Set hooks so that no newly generated insn will go out unnoticed.  */
6923  sel_register_cfg_hooks ();
6924
6925  /* !!! We call target.sched.init () for the whole region, but we invoke
6926     targetm.sched.finish () for every ebb.  */
6927  if (targetm.sched.init)
6928    /* None of the arguments are actually used in any target.  */
6929    targetm.sched.init (sched_dump, sched_verbose, -1);
6930
6931  first_emitted_uid = get_max_uid () + 1;
6932  preheader_removed = false;
6933
6934  /* Reset register allocation ticks array.  */
6935  memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6936  reg_rename_this_tick = 0;
6937
6938  forced_ebb_heads = BITMAP_ALLOC (NULL);
6939
6940  setup_nop_vinsn ();
6941  current_copies = BITMAP_ALLOC (NULL);
6942  current_originators = BITMAP_ALLOC (NULL);
6943  code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6944
6945  return false;
6946}
6947
6948/* Simplify insns after the scheduling.  */
6949static void
6950simplify_changed_insns (void)
6951{
6952  int i;
6953
6954  for (i = 0; i < current_nr_blocks; i++)
6955    {
6956      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6957      rtx_insn *insn;
6958
6959      FOR_BB_INSNS (bb, insn)
6960	if (INSN_P (insn))
6961	  {
6962	    expr_t expr = INSN_EXPR (insn);
6963
6964	    if (EXPR_WAS_SUBSTITUTED (expr))
6965	      validate_simplify_insn (insn);
6966	  }
6967    }
6968}
6969
6970/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6971   this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6972   PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure.  */
6973static void
6974find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6975{
6976  rtx_insn *head, *tail;
6977  basic_block bb1 = bb;
6978  if (sched_verbose >= 2)
6979    sel_print ("Finishing schedule in bbs: ");
6980
6981  do
6982    {
6983      bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6984
6985      if (sched_verbose >= 2)
6986	sel_print ("%d; ", bb1->index);
6987    }
6988  while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6989
6990  if (sched_verbose >= 2)
6991    sel_print ("\n");
6992
6993  get_ebb_head_tail (bb, bb1, &head, &tail);
6994
6995  current_sched_info->head = head;
6996  current_sched_info->tail = tail;
6997  current_sched_info->prev_head = PREV_INSN (head);
6998  current_sched_info->next_tail = NEXT_INSN (tail);
6999}
7000
7001/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB.  */
7002static void
7003reset_sched_cycles_in_current_ebb (void)
7004{
7005  int last_clock = 0;
7006  int haifa_last_clock = -1;
7007  int haifa_clock = 0;
7008  int issued_insns = 0;
7009  insn_t insn;
7010
7011  if (targetm.sched.init)
7012    {
7013      /* None of the arguments are actually used in any target.
7014	 NB: We should have md_reset () hook for cases like this.  */
7015      targetm.sched.init (sched_dump, sched_verbose, -1);
7016    }
7017
7018  state_reset (curr_state);
7019  advance_state (curr_state);
7020
7021  for (insn = current_sched_info->head;
7022       insn != current_sched_info->next_tail;
7023       insn = NEXT_INSN (insn))
7024    {
7025      int cost, haifa_cost;
7026      int sort_p;
7027      bool asm_p, real_insn, after_stall, all_issued;
7028      int clock;
7029
7030      if (!INSN_P (insn))
7031	continue;
7032
7033      asm_p = false;
7034      real_insn = recog_memoized (insn) >= 0;
7035      clock = INSN_SCHED_CYCLE (insn);
7036
7037      cost = clock - last_clock;
7038
7039      /* Initialize HAIFA_COST.  */
7040      if (! real_insn)
7041	{
7042	  asm_p = INSN_ASM_P (insn);
7043
7044	  if (asm_p)
7045	    /* This is asm insn which *had* to be scheduled first
7046	       on the cycle.  */
7047	    haifa_cost = 1;
7048	  else
7049	    /* This is a use/clobber insn.  It should not change
7050	       cost.  */
7051	    haifa_cost = 0;
7052	}
7053      else
7054        haifa_cost = estimate_insn_cost (insn, curr_state);
7055
7056      /* Stall for whatever cycles we've stalled before.  */
7057      after_stall = 0;
7058      if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7059        {
7060          haifa_cost = cost;
7061          after_stall = 1;
7062        }
7063      all_issued = issued_insns == issue_rate;
7064      if (haifa_cost == 0 && all_issued)
7065	haifa_cost = 1;
7066      if (haifa_cost > 0)
7067	{
7068	  int i = 0;
7069
7070	  while (haifa_cost--)
7071	    {
7072	      advance_state (curr_state);
7073	      issued_insns = 0;
7074              i++;
7075
7076	      if (sched_verbose >= 2)
7077                {
7078                  sel_print ("advance_state (state_transition)\n");
7079                  debug_state (curr_state);
7080                }
7081
7082              /* The DFA may report that e.g. insn requires 2 cycles to be
7083                 issued, but on the next cycle it says that insn is ready
7084                 to go.  Check this here.  */
7085              if (!after_stall
7086                  && real_insn
7087                  && haifa_cost > 0
7088                  && estimate_insn_cost (insn, curr_state) == 0)
7089                break;
7090
7091              /* When the data dependency stall is longer than the DFA stall,
7092                 and when we have issued exactly issue_rate insns and stalled,
7093                 it could be that after this longer stall the insn will again
7094                 become unavailable  to the DFA restrictions.  Looks strange
7095                 but happens e.g. on x86-64.  So recheck DFA on the last
7096                 iteration.  */
7097              if ((after_stall || all_issued)
7098                  && real_insn
7099                  && haifa_cost == 0)
7100                haifa_cost = estimate_insn_cost (insn, curr_state);
7101            }
7102
7103	  haifa_clock += i;
7104          if (sched_verbose >= 2)
7105            sel_print ("haifa clock: %d\n", haifa_clock);
7106	}
7107      else
7108	gcc_assert (haifa_cost == 0);
7109
7110      if (sched_verbose >= 2)
7111	sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7112
7113      if (targetm.sched.dfa_new_cycle)
7114	while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7115					    haifa_last_clock, haifa_clock,
7116					    &sort_p))
7117	  {
7118	    advance_state (curr_state);
7119	    issued_insns = 0;
7120	    haifa_clock++;
7121	    if (sched_verbose >= 2)
7122              {
7123                sel_print ("advance_state (dfa_new_cycle)\n");
7124                debug_state (curr_state);
7125		sel_print ("haifa clock: %d\n", haifa_clock + 1);
7126              }
7127          }
7128
7129      if (real_insn)
7130	{
7131	  static state_t temp = NULL;
7132
7133	  if (!temp)
7134	    temp = xmalloc (dfa_state_size);
7135	  memcpy (temp, curr_state, dfa_state_size);
7136
7137	  cost = state_transition (curr_state, insn);
7138	  if (memcmp (temp, curr_state, dfa_state_size))
7139	    issued_insns++;
7140
7141          if (sched_verbose >= 2)
7142	    {
7143	      sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7144			 haifa_clock + 1);
7145              debug_state (curr_state);
7146	    }
7147	  gcc_assert (cost < 0);
7148	}
7149
7150      if (targetm.sched.variable_issue)
7151	targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7152
7153      INSN_SCHED_CYCLE (insn) = haifa_clock;
7154
7155      last_clock = clock;
7156      haifa_last_clock = haifa_clock;
7157    }
7158}
7159
7160/* Put TImode markers on insns starting a new issue group.  */
7161static void
7162put_TImodes (void)
7163{
7164  int last_clock = -1;
7165  insn_t insn;
7166
7167  for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7168       insn = NEXT_INSN (insn))
7169    {
7170      int cost, clock;
7171
7172      if (!INSN_P (insn))
7173	continue;
7174
7175      clock = INSN_SCHED_CYCLE (insn);
7176      cost = (last_clock == -1) ? 1 : clock - last_clock;
7177
7178      gcc_assert (cost >= 0);
7179
7180      if (issue_rate > 1
7181	  && GET_CODE (PATTERN (insn)) != USE
7182	  && GET_CODE (PATTERN (insn)) != CLOBBER)
7183	{
7184	  if (reload_completed && cost > 0)
7185	    PUT_MODE (insn, TImode);
7186
7187	  last_clock = clock;
7188	}
7189
7190      if (sched_verbose >= 2)
7191	sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7192    }
7193}
7194
7195/* Perform MD_FINISH on EBBs comprising current region.  When
7196   RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7197   to produce correct sched cycles on insns.  */
7198static void
7199sel_region_target_finish (bool reset_sched_cycles_p)
7200{
7201  int i;
7202  bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7203
7204  for (i = 0; i < current_nr_blocks; i++)
7205    {
7206      if (bitmap_bit_p (scheduled_blocks, i))
7207	continue;
7208
7209      /* While pipelining outer loops, skip bundling for loop
7210	 preheaders.  Those will be rescheduled in the outer loop.  */
7211      if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7212	continue;
7213
7214      find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7215
7216      if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7217	continue;
7218
7219      if (reset_sched_cycles_p)
7220	reset_sched_cycles_in_current_ebb ();
7221
7222      if (targetm.sched.init)
7223	targetm.sched.init (sched_dump, sched_verbose, -1);
7224
7225      put_TImodes ();
7226
7227      if (targetm.sched.finish)
7228	{
7229	  targetm.sched.finish (sched_dump, sched_verbose);
7230
7231	  /* Extend luids so that insns generated by the target will
7232	     get zero luid.  */
7233	  sched_extend_luids ();
7234	}
7235    }
7236
7237  BITMAP_FREE (scheduled_blocks);
7238}
7239
7240/* Free the scheduling data for the current region.  When RESET_SCHED_CYCLES_P
7241   is true, make an additional pass emulating scheduler to get correct insn
7242   cycles for md_finish calls.  */
7243static void
7244sel_region_finish (bool reset_sched_cycles_p)
7245{
7246  simplify_changed_insns ();
7247  sched_finish_ready_list ();
7248  free_nop_pool ();
7249
7250  /* Free the vectors.  */
7251  vec_av_set.release ();
7252  BITMAP_FREE (current_copies);
7253  BITMAP_FREE (current_originators);
7254  BITMAP_FREE (code_motion_visited_blocks);
7255  vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7256  vinsn_vec_free (vec_target_unavailable_vinsns);
7257
7258  /* If LV_SET of the region head should be updated, do it now because
7259     there will be no other chance.  */
7260  {
7261    succ_iterator si;
7262    insn_t insn;
7263
7264    FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7265                     SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7266      {
7267	basic_block bb = BLOCK_FOR_INSN (insn);
7268
7269	if (!BB_LV_SET_VALID_P (bb))
7270	  compute_live (insn);
7271      }
7272  }
7273
7274  /* Emulate the Haifa scheduler for bundling.  */
7275  if (reload_completed)
7276    sel_region_target_finish (reset_sched_cycles_p);
7277
7278  sel_finish_global_and_expr ();
7279
7280  BITMAP_FREE (forced_ebb_heads);
7281
7282  free_nop_vinsn ();
7283
7284  finish_deps_global ();
7285  sched_finish_luids ();
7286  h_d_i_d.release ();
7287
7288  sel_finish_bbs ();
7289  BITMAP_FREE (blocks_to_reschedule);
7290
7291  sel_unregister_cfg_hooks ();
7292
7293  max_issue_size = 0;
7294}
7295
7296
7297/* Functions that implement the scheduler driver.  */
7298
7299/* Schedule a parallel instruction group on each of FENCES.  MAX_SEQNO
7300   is the current maximum seqno.  SCHEDULED_INSNS_TAILPP is the list
7301   of insns scheduled -- these would be postprocessed later.  */
7302static void
7303schedule_on_fences (flist_t fences, int max_seqno,
7304                    ilist_t **scheduled_insns_tailpp)
7305{
7306  flist_t old_fences = fences;
7307
7308  if (sched_verbose >= 1)
7309    {
7310      sel_print ("\nScheduling on fences: ");
7311      dump_flist (fences);
7312      sel_print ("\n");
7313    }
7314
7315  scheduled_something_on_previous_fence = false;
7316  for (; fences; fences = FLIST_NEXT (fences))
7317    {
7318      fence_t fence = NULL;
7319      int seqno = 0;
7320      flist_t fences2;
7321      bool first_p = true;
7322
7323      /* Choose the next fence group to schedule.
7324         The fact that insn can be scheduled only once
7325         on the cycle is guaranteed by two properties:
7326         1. seqnos of parallel groups decrease with each iteration.
7327         2. If is_ineligible_successor () sees the larger seqno, it
7328         checks if candidate insn is_in_current_fence_p ().  */
7329      for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7330        {
7331          fence_t f = FLIST_FENCE (fences2);
7332
7333          if (!FENCE_PROCESSED_P (f))
7334            {
7335              int i = INSN_SEQNO (FENCE_INSN (f));
7336
7337              if (first_p || i > seqno)
7338                {
7339                  seqno = i;
7340                  fence = f;
7341                  first_p = false;
7342                }
7343              else
7344                /* ??? Seqnos of different groups should be different.  */
7345                gcc_assert (1 || i != seqno);
7346            }
7347        }
7348
7349      gcc_assert (fence);
7350
7351      /* As FENCE is nonnull, SEQNO is initialized.  */
7352      seqno -= max_seqno + 1;
7353      fill_insns (fence, seqno, scheduled_insns_tailpp);
7354      FENCE_PROCESSED_P (fence) = true;
7355    }
7356
7357  /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7358     don't need to keep bookkeeping-invalidated and target-unavailable
7359     vinsns any more.  */
7360  vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7361  vinsn_vec_clear (&vec_target_unavailable_vinsns);
7362}
7363
7364/* Calculate MIN_SEQNO and MAX_SEQNO.  */
7365static void
7366find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7367{
7368  *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7369
7370  /* The first element is already processed.  */
7371  while ((fences = FLIST_NEXT (fences)))
7372    {
7373      int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7374
7375      if (*min_seqno > seqno)
7376        *min_seqno = seqno;
7377      else if (*max_seqno < seqno)
7378        *max_seqno = seqno;
7379    }
7380}
7381
7382/* Calculate new fences from FENCES.  Write the current time to PTIME.  */
7383static flist_t
7384calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7385{
7386  flist_t old_fences = fences;
7387  struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7388  int max_time = 0;
7389
7390  flist_tail_init (new_fences);
7391  for (; fences; fences = FLIST_NEXT (fences))
7392    {
7393      fence_t fence = FLIST_FENCE (fences);
7394      insn_t insn;
7395
7396      if (!FENCE_BNDS (fence))
7397        {
7398          /* This fence doesn't have any successors.  */
7399          if (!FENCE_SCHEDULED_P (fence))
7400            {
7401              /* Nothing was scheduled on this fence.  */
7402              int seqno;
7403
7404              insn = FENCE_INSN (fence);
7405              seqno = INSN_SEQNO (insn);
7406              gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7407
7408              if (sched_verbose >= 1)
7409                sel_print ("Fence %d[%d] has not changed\n",
7410                           INSN_UID (insn),
7411                           BLOCK_NUM (insn));
7412              move_fence_to_fences (fences, new_fences);
7413            }
7414        }
7415      else
7416        extract_new_fences_from (fences, new_fences, orig_max_seqno);
7417      max_time = MAX (max_time, FENCE_CYCLE (fence));
7418    }
7419
7420  flist_clear (&old_fences);
7421  *ptime = max_time;
7422  return FLIST_TAIL_HEAD (new_fences);
7423}
7424
7425/* Update seqnos of insns given by PSCHEDULED_INSNS.  MIN_SEQNO and MAX_SEQNO
7426   are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7427   the highest seqno used in a region.  Return the updated highest seqno.  */
7428static int
7429update_seqnos_and_stage (int min_seqno, int max_seqno,
7430                         int highest_seqno_in_use,
7431                         ilist_t *pscheduled_insns)
7432{
7433  int new_hs;
7434  ilist_iterator ii;
7435  insn_t insn;
7436
7437  /* Actually, new_hs is the seqno of the instruction, that was
7438     scheduled first (i.e. it is the first one in SCHEDULED_INSNS).  */
7439  if (*pscheduled_insns)
7440    {
7441      new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7442                + highest_seqno_in_use + max_seqno - min_seqno + 2);
7443      gcc_assert (new_hs > highest_seqno_in_use);
7444    }
7445  else
7446    new_hs = highest_seqno_in_use;
7447
7448  FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7449    {
7450      gcc_assert (INSN_SEQNO (insn) < 0);
7451      INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7452      gcc_assert (INSN_SEQNO (insn) <= new_hs);
7453
7454      /* When not pipelining, purge unneeded insn info on the scheduled insns.
7455         For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7456         require > 1GB of memory e.g. on limit-fnargs.c.  */
7457      if (! pipelining_p)
7458        free_data_for_scheduled_insn (insn);
7459    }
7460
7461  ilist_clear (pscheduled_insns);
7462  global_level++;
7463
7464  return new_hs;
7465}
7466
7467/* The main driver for scheduling a region.  This function is responsible
7468   for correct propagation of fences (i.e. scheduling points) and creating
7469   a group of parallel insns at each of them.  It also supports
7470   pipelining.  ORIG_MAX_SEQNO is the maximal seqno before this pass
7471   of scheduling.  */
7472static void
7473sel_sched_region_2 (int orig_max_seqno)
7474{
7475  int highest_seqno_in_use = orig_max_seqno;
7476  int max_time = 0;
7477
7478  stat_bookkeeping_copies = 0;
7479  stat_insns_needed_bookkeeping = 0;
7480  stat_renamed_scheduled = 0;
7481  stat_substitutions_total = 0;
7482  num_insns_scheduled = 0;
7483
7484  while (fences)
7485    {
7486      int min_seqno, max_seqno;
7487      ilist_t scheduled_insns = NULL;
7488      ilist_t *scheduled_insns_tailp = &scheduled_insns;
7489
7490      find_min_max_seqno (fences, &min_seqno, &max_seqno);
7491      schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7492      fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7493      highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7494                                                      highest_seqno_in_use,
7495                                                      &scheduled_insns);
7496    }
7497
7498  if (sched_verbose >= 1)
7499    {
7500      sel_print ("Total scheduling time: %d cycles\n", max_time);
7501      sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7502		 "bookkeeping, %d insns renamed, %d insns substituted\n",
7503		 stat_bookkeeping_copies,
7504		 stat_insns_needed_bookkeeping,
7505		 stat_renamed_scheduled,
7506		 stat_substitutions_total);
7507    }
7508}
7509
7510/* Schedule a region.  When pipelining, search for possibly never scheduled
7511   bookkeeping code and schedule it.  Reschedule pipelined code without
7512   pipelining after.  */
7513static void
7514sel_sched_region_1 (void)
7515{
7516  int orig_max_seqno;
7517
7518  /* Remove empty blocks that might be in the region from the beginning.  */
7519  purge_empty_blocks ();
7520
7521  orig_max_seqno = init_seqno (NULL, NULL);
7522  gcc_assert (orig_max_seqno >= 1);
7523
7524  /* When pipelining outer loops, create fences on the loop header,
7525     not preheader.  */
7526  fences = NULL;
7527  if (current_loop_nest)
7528    init_fences (BB_END (EBB_FIRST_BB (0)));
7529  else
7530    init_fences (bb_note (EBB_FIRST_BB (0)));
7531  global_level = 1;
7532
7533  sel_sched_region_2 (orig_max_seqno);
7534
7535  gcc_assert (fences == NULL);
7536
7537  if (pipelining_p)
7538    {
7539      int i;
7540      basic_block bb;
7541      struct flist_tail_def _new_fences;
7542      flist_tail_t new_fences = &_new_fences;
7543      bool do_p = true;
7544
7545      pipelining_p = false;
7546      max_ws = MIN (max_ws, issue_rate * 3 / 2);
7547      bookkeeping_p = false;
7548      enable_schedule_as_rhs_p = false;
7549
7550      /* Schedule newly created code, that has not been scheduled yet.  */
7551      do_p = true;
7552
7553      while (do_p)
7554        {
7555          do_p = false;
7556
7557          for (i = 0; i < current_nr_blocks; i++)
7558            {
7559              basic_block bb = EBB_FIRST_BB (i);
7560
7561              if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7562                {
7563                  if (! bb_ends_ebb_p (bb))
7564                    bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7565                  if (sel_bb_empty_p (bb))
7566                    {
7567                      bitmap_clear_bit (blocks_to_reschedule, bb->index);
7568                      continue;
7569                    }
7570                  clear_outdated_rtx_info (bb);
7571                  if (sel_insn_is_speculation_check (BB_END (bb))
7572                      && JUMP_P (BB_END (bb)))
7573                    bitmap_set_bit (blocks_to_reschedule,
7574                                    BRANCH_EDGE (bb)->dest->index);
7575                }
7576              else if (! sel_bb_empty_p (bb)
7577                       && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7578                bitmap_set_bit (blocks_to_reschedule, bb->index);
7579            }
7580
7581          for (i = 0; i < current_nr_blocks; i++)
7582            {
7583              bb = EBB_FIRST_BB (i);
7584
7585              /* While pipelining outer loops, skip bundling for loop
7586                 preheaders.  Those will be rescheduled in the outer
7587                 loop.  */
7588              if (sel_is_loop_preheader_p (bb))
7589                {
7590                  clear_outdated_rtx_info (bb);
7591                  continue;
7592                }
7593
7594              if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7595                {
7596                  flist_tail_init (new_fences);
7597
7598                  orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7599
7600                  /* Mark BB as head of the new ebb.  */
7601                  bitmap_set_bit (forced_ebb_heads, bb->index);
7602
7603                  gcc_assert (fences == NULL);
7604
7605                  init_fences (bb_note (bb));
7606
7607                  sel_sched_region_2 (orig_max_seqno);
7608
7609                  do_p = true;
7610                  break;
7611                }
7612            }
7613        }
7614    }
7615}
7616
7617/* Schedule the RGN region.  */
7618void
7619sel_sched_region (int rgn)
7620{
7621  bool schedule_p;
7622  bool reset_sched_cycles_p;
7623
7624  if (sel_region_init (rgn))
7625    return;
7626
7627  if (sched_verbose >= 1)
7628    sel_print ("Scheduling region %d\n", rgn);
7629
7630  schedule_p = (!sched_is_disabled_for_current_region_p ()
7631                && dbg_cnt (sel_sched_region_cnt));
7632  reset_sched_cycles_p = pipelining_p;
7633  if (schedule_p)
7634    sel_sched_region_1 ();
7635  else
7636    {
7637      /* Schedule always selecting the next insn to make the correct data
7638	 for bundling or other later passes.  */
7639      pipelining_p = false;
7640      reset_sched_cycles_p = false;
7641      force_next_insn = 1;
7642      sel_sched_region_1 ();
7643      force_next_insn = 0;
7644    }
7645  sel_region_finish (reset_sched_cycles_p);
7646}
7647
7648/* Perform global init for the scheduler.  */
7649static void
7650sel_global_init (void)
7651{
7652  /* Remove empty blocks: their presence can break assumptions elsewhere,
7653     e.g. the logic to invoke update_liveness_on_insn in sel_region_init.  */
7654  cleanup_cfg (0);
7655
7656  calculate_dominance_info (CDI_DOMINATORS);
7657  alloc_sched_pools ();
7658
7659  /* Setup the infos for sched_init.  */
7660  sel_setup_sched_infos ();
7661  setup_sched_dump ();
7662
7663  sched_rgn_init (false);
7664  sched_init ();
7665
7666  sched_init_bbs ();
7667  /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass.  */
7668  after_recovery = 0;
7669  can_issue_more = issue_rate;
7670
7671  sched_extend_target ();
7672  sched_deps_init (true);
7673  setup_nop_and_exit_insns ();
7674  sel_extend_global_bb_info ();
7675  init_lv_sets ();
7676  init_hard_regs_data ();
7677}
7678
7679/* Free the global data of the scheduler.  */
7680static void
7681sel_global_finish (void)
7682{
7683  free_bb_note_pool ();
7684  free_lv_sets ();
7685  sel_finish_global_bb_info ();
7686
7687  free_regset_pool ();
7688  free_nop_and_exit_insns ();
7689
7690  sched_rgn_finish ();
7691  sched_deps_finish ();
7692  sched_finish ();
7693
7694  if (current_loops)
7695    sel_finish_pipelining ();
7696
7697  free_sched_pools ();
7698  free_dominance_info (CDI_DOMINATORS);
7699}
7700
7701/* Return true when we need to skip selective scheduling.  Used for debugging.  */
7702bool
7703maybe_skip_selective_scheduling (void)
7704{
7705  return ! dbg_cnt (sel_sched_cnt);
7706}
7707
7708/* The entry point.  */
7709void
7710run_selective_scheduling (void)
7711{
7712  int rgn;
7713
7714  if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7715    return;
7716
7717  sel_global_init ();
7718
7719  for (rgn = 0; rgn < nr_regions; rgn++)
7720    sel_sched_region (rgn);
7721
7722  sel_global_finish ();
7723}
7724
7725#endif
7726