1/* RTL-level loop invariant motion.
2   Copyright (C) 2004-2022 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3.  If not see
18<http://www.gnu.org/licenses/>.  */
19
20/* This implements the loop invariant motion pass.  It is very simple
21   (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
22   things like address arithmetics -- other more complicated invariants should
23   be eliminated on GIMPLE either in tree-ssa-loop-im.cc or in tree-ssa-pre.cc.
24
25   We proceed loop by loop -- it is simpler than trying to handle things
26   globally and should not lose much.  First we inspect all sets inside loop
27   and create a dependency graph on insns (saying "to move this insn, you must
28   also move the following insns").
29
30   We then need to determine what to move.  We estimate the number of registers
31   used and move as many invariants as possible while we still have enough free
32   registers.  We prefer the expensive invariants.
33
34   Then we move the selected invariants out of the loop, creating a new
35   temporaries for them if necessary.  */
36
37#include "config.h"
38#include "system.h"
39#include "coretypes.h"
40#include "backend.h"
41#include "target.h"
42#include "rtl.h"
43#include "tree.h"
44#include "cfghooks.h"
45#include "df.h"
46#include "memmodel.h"
47#include "tm_p.h"
48#include "insn-config.h"
49#include "regs.h"
50#include "ira.h"
51#include "recog.h"
52#include "cfgrtl.h"
53#include "cfgloop.h"
54#include "expr.h"
55#include "rtl-iter.h"
56#include "dumpfile.h"
57
58/* The data stored for the loop.  */
59
60class loop_data
61{
62public:
63  class loop *outermost_exit;	/* The outermost exit of the loop.  */
64  bool has_call;		/* True if the loop contains a call.  */
65  /* Maximal register pressure inside loop for given register class
66     (defined only for the pressure classes).  */
67  int max_reg_pressure[N_REG_CLASSES];
68  /* Loop regs referenced and live pseudo-registers.  */
69  bitmap_head regs_ref;
70  bitmap_head regs_live;
71};
72
73#define LOOP_DATA(LOOP) ((class loop_data *) (LOOP)->aux)
74
75/* The description of an use.  */
76
77struct use
78{
79  rtx *pos;			/* Position of the use.  */
80  rtx_insn *insn;		/* The insn in that the use occurs.  */
81  unsigned addr_use_p;		/* Whether the use occurs in an address.  */
82  struct use *next;		/* Next use in the list.  */
83};
84
85/* The description of a def.  */
86
87struct def
88{
89  struct use *uses;		/* The list of uses that are uniquely reached
90				   by it.  */
91  unsigned n_uses;		/* Number of such uses.  */
92  unsigned n_addr_uses;		/* Number of uses in addresses.  */
93  unsigned invno;		/* The corresponding invariant.  */
94  bool can_prop_to_addr_uses;	/* True if the corresponding inv can be
95				   propagated into its address uses.  */
96};
97
98/* The data stored for each invariant.  */
99
100struct invariant
101{
102  /* The number of the invariant.  */
103  unsigned invno;
104
105  /* The number of the invariant with the same value.  */
106  unsigned eqto;
107
108  /* The number of invariants which eqto this.  */
109  unsigned eqno;
110
111  /* If we moved the invariant out of the loop, the original regno
112     that contained its value.  */
113  int orig_regno;
114
115  /* If we moved the invariant out of the loop, the register that contains its
116     value.  */
117  rtx reg;
118
119  /* The definition of the invariant.  */
120  struct def *def;
121
122  /* The insn in that it is defined.  */
123  rtx_insn *insn;
124
125  /* Whether it is always executed.  */
126  bool always_executed;
127
128  /* Whether to move the invariant.  */
129  bool move;
130
131  /* Whether the invariant is cheap when used as an address.  */
132  bool cheap_address;
133
134  /* Cost of the invariant.  */
135  unsigned cost;
136
137  /* Used for detecting already visited invariants during determining
138     costs of movements.  */
139  unsigned stamp;
140
141  /* The invariants it depends on.  */
142  bitmap depends_on;
143};
144
145/* Currently processed loop.  */
146static class loop *curr_loop;
147
148/* Table of invariants indexed by the df_ref uid field.  */
149
150static unsigned int invariant_table_size = 0;
151static struct invariant ** invariant_table;
152
153/* Entry for hash table of invariant expressions.  */
154
155struct invariant_expr_entry
156{
157  /* The invariant.  */
158  struct invariant *inv;
159
160  /* Its value.  */
161  rtx expr;
162
163  /* Its mode.  */
164  machine_mode mode;
165
166  /* Its hash.  */
167  hashval_t hash;
168};
169
170/* The actual stamp for marking already visited invariants during determining
171   costs of movements.  */
172
173static unsigned actual_stamp;
174
175typedef struct invariant *invariant_p;
176
177
178/* The invariants.  */
179
180static vec<invariant_p> invariants;
181
182/* Check the size of the invariant table and realloc if necessary.  */
183
184static void
185check_invariant_table_size (void)
186{
187  if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
188    {
189      unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
190      invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
191      memset (&invariant_table[invariant_table_size], 0,
192	      (new_size - invariant_table_size) * sizeof (struct invariant *));
193      invariant_table_size = new_size;
194    }
195}
196
197/* Test for possibility of invariantness of X.  */
198
199static bool
200check_maybe_invariant (rtx x)
201{
202  enum rtx_code code = GET_CODE (x);
203  int i, j;
204  const char *fmt;
205
206  switch (code)
207    {
208    CASE_CONST_ANY:
209    case SYMBOL_REF:
210    case CONST:
211    case LABEL_REF:
212      return true;
213
214    case PC:
215    case UNSPEC_VOLATILE:
216    case CALL:
217      return false;
218
219    case REG:
220      return true;
221
222    case MEM:
223      /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
224	 It should not be hard, and might be faster than "elsewhere".  */
225
226      /* Just handle the most trivial case where we load from an unchanging
227	 location (most importantly, pic tables).  */
228      if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
229	break;
230
231      return false;
232
233    case ASM_OPERANDS:
234      /* Don't mess with insns declared volatile.  */
235      if (MEM_VOLATILE_P (x))
236	return false;
237      break;
238
239    default:
240      break;
241    }
242
243  fmt = GET_RTX_FORMAT (code);
244  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
245    {
246      if (fmt[i] == 'e')
247	{
248	  if (!check_maybe_invariant (XEXP (x, i)))
249	    return false;
250	}
251      else if (fmt[i] == 'E')
252	{
253	  for (j = 0; j < XVECLEN (x, i); j++)
254	    if (!check_maybe_invariant (XVECEXP (x, i, j)))
255	      return false;
256	}
257    }
258
259  return true;
260}
261
262/* Returns the invariant definition for USE, or NULL if USE is not
263   invariant.  */
264
265static struct invariant *
266invariant_for_use (df_ref use)
267{
268  struct df_link *defs;
269  df_ref def;
270  basic_block bb = DF_REF_BB (use), def_bb;
271
272  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
273    return NULL;
274
275  defs = DF_REF_CHAIN (use);
276  if (!defs || defs->next)
277    return NULL;
278  def = defs->ref;
279  check_invariant_table_size ();
280  if (!invariant_table[DF_REF_ID (def)])
281    return NULL;
282
283  def_bb = DF_REF_BB (def);
284  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
285    return NULL;
286  return invariant_table[DF_REF_ID (def)];
287}
288
289/* Computes hash value for invariant expression X in INSN.  */
290
291static hashval_t
292hash_invariant_expr_1 (rtx_insn *insn, rtx x)
293{
294  enum rtx_code code = GET_CODE (x);
295  int i, j;
296  const char *fmt;
297  hashval_t val = code;
298  int do_not_record_p;
299  df_ref use;
300  struct invariant *inv;
301
302  switch (code)
303    {
304    CASE_CONST_ANY:
305    case SYMBOL_REF:
306    case CONST:
307    case LABEL_REF:
308      return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
309
310    case REG:
311      use = df_find_use (insn, x);
312      if (!use)
313	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
314      inv = invariant_for_use (use);
315      if (!inv)
316	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
317
318      gcc_assert (inv->eqto != ~0u);
319      return inv->eqto;
320
321    default:
322      break;
323    }
324
325  fmt = GET_RTX_FORMAT (code);
326  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
327    {
328      if (fmt[i] == 'e')
329	val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
330      else if (fmt[i] == 'E')
331	{
332	  for (j = 0; j < XVECLEN (x, i); j++)
333	    val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
334	}
335      else if (fmt[i] == 'i' || fmt[i] == 'n')
336	val ^= XINT (x, i);
337      else if (fmt[i] == 'p')
338	val ^= constant_lower_bound (SUBREG_BYTE (x));
339    }
340
341  return val;
342}
343
344/* Returns true if the invariant expressions E1 and E2 used in insns INSN1
345   and INSN2 have always the same value.  */
346
347static bool
348invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
349{
350  enum rtx_code code = GET_CODE (e1);
351  int i, j;
352  const char *fmt;
353  df_ref use1, use2;
354  struct invariant *inv1 = NULL, *inv2 = NULL;
355  rtx sub1, sub2;
356
357  /* If mode of only one of the operands is VOIDmode, it is not equivalent to
358     the other one.  If both are VOIDmode, we rely on the caller of this
359     function to verify that their modes are the same.  */
360  if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
361    return false;
362
363  switch (code)
364    {
365    CASE_CONST_ANY:
366    case SYMBOL_REF:
367    case CONST:
368    case LABEL_REF:
369      return rtx_equal_p (e1, e2);
370
371    case REG:
372      use1 = df_find_use (insn1, e1);
373      use2 = df_find_use (insn2, e2);
374      if (use1)
375	inv1 = invariant_for_use (use1);
376      if (use2)
377	inv2 = invariant_for_use (use2);
378
379      if (!inv1 && !inv2)
380	return rtx_equal_p (e1, e2);
381
382      if (!inv1 || !inv2)
383	return false;
384
385      gcc_assert (inv1->eqto != ~0u);
386      gcc_assert (inv2->eqto != ~0u);
387      return inv1->eqto == inv2->eqto;
388
389    default:
390      break;
391    }
392
393  fmt = GET_RTX_FORMAT (code);
394  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
395    {
396      if (fmt[i] == 'e')
397	{
398	  sub1 = XEXP (e1, i);
399	  sub2 = XEXP (e2, i);
400
401	  if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
402	    return false;
403	}
404
405      else if (fmt[i] == 'E')
406	{
407	  if (XVECLEN (e1, i) != XVECLEN (e2, i))
408	    return false;
409
410	  for (j = 0; j < XVECLEN (e1, i); j++)
411	    {
412	      sub1 = XVECEXP (e1, i, j);
413	      sub2 = XVECEXP (e2, i, j);
414
415	      if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
416		return false;
417	    }
418	}
419      else if (fmt[i] == 'i' || fmt[i] == 'n')
420	{
421	  if (XINT (e1, i) != XINT (e2, i))
422	    return false;
423	}
424      else if (fmt[i] == 'p')
425	{
426	  if (maybe_ne (SUBREG_BYTE (e1), SUBREG_BYTE (e2)))
427	    return false;
428	}
429      /* Unhandled type of subexpression, we fail conservatively.  */
430      else
431	return false;
432    }
433
434  return true;
435}
436
437struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
438{
439  static inline hashval_t hash (const invariant_expr_entry *);
440  static inline bool equal (const invariant_expr_entry *,
441			    const invariant_expr_entry *);
442};
443
444/* Returns hash value for invariant expression entry ENTRY.  */
445
446inline hashval_t
447invariant_expr_hasher::hash (const invariant_expr_entry *entry)
448{
449  return entry->hash;
450}
451
452/* Compares invariant expression entries ENTRY1 and ENTRY2.  */
453
454inline bool
455invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
456			      const invariant_expr_entry *entry2)
457{
458  if (entry1->mode != entry2->mode)
459    return 0;
460
461  return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
462				 entry2->inv->insn, entry2->expr);
463}
464
465typedef hash_table<invariant_expr_hasher> invariant_htab_type;
466
467/* Checks whether invariant with value EXPR in machine mode MODE is
468   recorded in EQ.  If this is the case, return the invariant.  Otherwise
469   insert INV to the table for this expression and return INV.  */
470
471static struct invariant *
472find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
473		    struct invariant *inv)
474{
475  hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
476  struct invariant_expr_entry *entry;
477  struct invariant_expr_entry pentry;
478  invariant_expr_entry **slot;
479
480  pentry.expr = expr;
481  pentry.inv = inv;
482  pentry.mode = mode;
483  slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
484  entry = *slot;
485
486  if (entry)
487    return entry->inv;
488
489  entry = XNEW (struct invariant_expr_entry);
490  entry->inv = inv;
491  entry->expr = expr;
492  entry->mode = mode;
493  entry->hash = hash;
494  *slot = entry;
495
496  return inv;
497}
498
499/* Finds invariants identical to INV and records the equivalence.  EQ is the
500   hash table of the invariants.  */
501
502static void
503find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
504{
505  unsigned depno;
506  bitmap_iterator bi;
507  struct invariant *dep;
508  rtx expr, set;
509  machine_mode mode;
510  struct invariant *tmp;
511
512  if (inv->eqto != ~0u)
513    return;
514
515  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
516    {
517      dep = invariants[depno];
518      find_identical_invariants (eq, dep);
519    }
520
521  set = single_set (inv->insn);
522  expr = SET_SRC (set);
523  mode = GET_MODE (expr);
524  if (mode == VOIDmode)
525    mode = GET_MODE (SET_DEST (set));
526
527  tmp = find_or_insert_inv (eq, expr, mode, inv);
528  inv->eqto = tmp->invno;
529
530  if (tmp->invno != inv->invno && inv->always_executed)
531    tmp->eqno++;
532
533  if (dump_file && inv->eqto != inv->invno)
534    fprintf (dump_file,
535	     "Invariant %d is equivalent to invariant %d.\n",
536	     inv->invno, inv->eqto);
537}
538
539/* Find invariants with the same value and record the equivalences.  */
540
541static void
542merge_identical_invariants (void)
543{
544  unsigned i;
545  struct invariant *inv;
546  invariant_htab_type eq (invariants.length ());
547
548  FOR_EACH_VEC_ELT (invariants, i, inv)
549    find_identical_invariants (&eq, inv);
550}
551
552/* Determines the basic blocks inside LOOP that are always executed and
553   stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
554   basic blocks that may either exit the loop, or contain the call that
555   does not have to return.  BODY is body of the loop obtained by
556   get_loop_body_in_dom_order.  */
557
558static void
559compute_always_reached (class loop *loop, basic_block *body,
560			bitmap may_exit, bitmap always_reached)
561{
562  unsigned i;
563
564  for (i = 0; i < loop->num_nodes; i++)
565    {
566      if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
567	bitmap_set_bit (always_reached, i);
568
569      if (bitmap_bit_p (may_exit, i))
570	return;
571    }
572}
573
574/* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
575   exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
576   additionally mark blocks that may exit due to a call.  */
577
578static void
579find_exits (class loop *loop, basic_block *body,
580	    bitmap may_exit, bitmap has_exit)
581{
582  unsigned i;
583  edge_iterator ei;
584  edge e;
585  class loop *outermost_exit = loop, *aexit;
586  bool has_call = false;
587  rtx_insn *insn;
588
589  for (i = 0; i < loop->num_nodes; i++)
590    {
591      if (body[i]->loop_father == loop)
592	{
593	  FOR_BB_INSNS (body[i], insn)
594	    {
595	      if (CALL_P (insn)
596		  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
597		      || !RTL_CONST_OR_PURE_CALL_P (insn)))
598		{
599		  has_call = true;
600		  bitmap_set_bit (may_exit, i);
601		  break;
602		}
603	    }
604
605	  FOR_EACH_EDGE (e, ei, body[i]->succs)
606	    {
607	      if (! flow_bb_inside_loop_p (loop, e->dest))
608		{
609		  bitmap_set_bit (may_exit, i);
610		  bitmap_set_bit (has_exit, i);
611		  outermost_exit = find_common_loop (outermost_exit,
612						     e->dest->loop_father);
613		}
614	      /* If we enter a subloop that might never terminate treat
615	         it like a possible exit.  */
616	      if (flow_loop_nested_p (loop, e->dest->loop_father))
617		bitmap_set_bit (may_exit, i);
618	    }
619	  continue;
620	}
621
622      /* Use the data stored for the subloop to decide whether we may exit
623	 through it.  It is sufficient to do this for header of the loop,
624	 as other basic blocks inside it must be dominated by it.  */
625      if (body[i]->loop_father->header != body[i])
626	continue;
627
628      if (LOOP_DATA (body[i]->loop_father)->has_call)
629	{
630	  has_call = true;
631	  bitmap_set_bit (may_exit, i);
632	}
633      aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
634      if (aexit != loop)
635	{
636	  bitmap_set_bit (may_exit, i);
637	  bitmap_set_bit (has_exit, i);
638
639	  if (flow_loop_nested_p (aexit, outermost_exit))
640	    outermost_exit = aexit;
641	}
642    }
643
644  if (loop->aux == NULL)
645    {
646      loop->aux = xcalloc (1, sizeof (class loop_data));
647      bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
648      bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
649    }
650  LOOP_DATA (loop)->outermost_exit = outermost_exit;
651  LOOP_DATA (loop)->has_call = has_call;
652}
653
654/* Check whether we may assign a value to X from a register.  */
655
656static bool
657may_assign_reg_p (rtx x)
658{
659  return (GET_MODE (x) != VOIDmode
660	  && GET_MODE (x) != BLKmode
661	  && can_copy_p (GET_MODE (x))
662	  /* Do not mess with the frame pointer adjustments that can
663	     be generated e.g. by expand_builtin_setjmp_receiver.  */
664	  && x != frame_pointer_rtx
665	  && (!REG_P (x)
666	      || !HARD_REGISTER_P (x)
667	      || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
668}
669
670/* Finds definitions that may correspond to invariants in LOOP with body
671   BODY.  */
672
673static void
674find_defs (class loop *loop)
675{
676  if (dump_file)
677    {
678      fprintf (dump_file,
679	       "*****starting processing of loop %d ******\n",
680	       loop->num);
681    }
682
683  df_chain_add_problem (DF_UD_CHAIN);
684  df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
685  df_analyze_loop (loop);
686  check_invariant_table_size ();
687
688  if (dump_file)
689    {
690      df_dump_region (dump_file);
691      fprintf (dump_file,
692	       "*****ending processing of loop %d ******\n",
693	       loop->num);
694    }
695}
696
697/* Creates a new invariant for definition DEF in INSN, depending on invariants
698   in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
699   unless the program ends due to a function call.  The newly created invariant
700   is returned.  */
701
702static struct invariant *
703create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
704		      bool always_executed)
705{
706  struct invariant *inv = XNEW (struct invariant);
707  rtx set = single_set (insn);
708  bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
709
710  inv->def = def;
711  inv->always_executed = always_executed;
712  inv->depends_on = depends_on;
713
714  /* If the set is simple, usually by moving it we move the whole store out of
715     the loop.  Otherwise we save only cost of the computation.  */
716  if (def)
717    {
718      inv->cost = set_rtx_cost (set, speed);
719      /* ??? Try to determine cheapness of address computation.  Unfortunately
720         the address cost is only a relative measure, we can't really compare
721	 it with any absolute number, but only with other address costs.
722	 But here we don't have any other addresses, so compare with a magic
723	 number anyway.  It has to be large enough to not regress PR33928
724	 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
725	 enough to not regress 410.bwaves either (by still moving reg+reg
726	 invariants).
727	 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
728      if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
729	inv->cheap_address = address_cost (SET_SRC (set), word_mode,
730					   ADDR_SPACE_GENERIC, speed) < 3;
731      else
732	inv->cheap_address = false;
733    }
734  else
735    {
736      inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
737				speed);
738      inv->cheap_address = false;
739    }
740
741  inv->move = false;
742  inv->reg = NULL_RTX;
743  inv->orig_regno = -1;
744  inv->stamp = 0;
745  inv->insn = insn;
746
747  inv->invno = invariants.length ();
748  inv->eqto = ~0u;
749
750  /* Itself.  */
751  inv->eqno = 1;
752
753  if (def)
754    def->invno = inv->invno;
755  invariants.safe_push (inv);
756
757  if (dump_file)
758    {
759      fprintf (dump_file,
760	       "Set in insn %d is invariant (%d), cost %d, depends on ",
761	       INSN_UID (insn), inv->invno, inv->cost);
762      dump_bitmap (dump_file, inv->depends_on);
763    }
764
765  return inv;
766}
767
768/* Return a canonical version of X for the address, from the point of view,
769   that all multiplications are represented as MULT instead of the multiply
770   by a power of 2 being represented as ASHIFT.
771
772   Callers should prepare a copy of X because this function may modify it
773   in place.  */
774
775static void
776canonicalize_address_mult (rtx x)
777{
778  subrtx_var_iterator::array_type array;
779  FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
780    {
781      rtx sub = *iter;
782      scalar_int_mode sub_mode;
783      if (is_a <scalar_int_mode> (GET_MODE (sub), &sub_mode)
784	  && GET_CODE (sub) == ASHIFT
785	  && CONST_INT_P (XEXP (sub, 1))
786	  && INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (sub_mode)
787	  && INTVAL (XEXP (sub, 1)) >= 0)
788	{
789	  HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
790	  PUT_CODE (sub, MULT);
791	  XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, sub_mode);
792	  iter.skip_subrtxes ();
793	}
794    }
795}
796
797/* Maximum number of sub expressions in address.  We set it to
798   a small integer since it's unlikely to have a complicated
799   address expression.  */
800
801#define MAX_CANON_ADDR_PARTS (5)
802
803/* Collect sub expressions in address X with PLUS as the seperator.
804   Sub expressions are stored in vector ADDR_PARTS.  */
805
806static void
807collect_address_parts (rtx x, vec<rtx> *addr_parts)
808{
809  subrtx_var_iterator::array_type array;
810  FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
811    {
812      rtx sub = *iter;
813
814      if (GET_CODE (sub) != PLUS)
815	{
816	  addr_parts->safe_push (sub);
817	  iter.skip_subrtxes ();
818	}
819    }
820}
821
822/* Compare function for sorting sub expressions X and Y based on
823   precedence defined for communitive operations.  */
824
825static int
826compare_address_parts (const void *x, const void *y)
827{
828  const rtx *rx = (const rtx *)x;
829  const rtx *ry = (const rtx *)y;
830  int px = commutative_operand_precedence (*rx);
831  int py = commutative_operand_precedence (*ry);
832
833  return (py - px);
834}
835
836/* Return a canonical version address for X by following steps:
837     1) Rewrite ASHIFT into MULT recursively.
838     2) Divide address into sub expressions with PLUS as the
839	separator.
840     3) Sort sub expressions according to precedence defined
841	for communative operations.
842     4) Simplify CONST_INT_P sub expressions.
843     5) Create new canonicalized address and return.
844   Callers should prepare a copy of X because this function may
845   modify it in place.  */
846
847static rtx
848canonicalize_address (rtx x)
849{
850  rtx res;
851  unsigned int i, j;
852  machine_mode mode = GET_MODE (x);
853  auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
854
855  /* Rewrite ASHIFT into MULT.  */
856  canonicalize_address_mult (x);
857  /* Divide address into sub expressions.  */
858  collect_address_parts (x, &addr_parts);
859  /* Unlikely to have very complicated address.  */
860  if (addr_parts.length () < 2
861      || addr_parts.length () > MAX_CANON_ADDR_PARTS)
862    return x;
863
864  /* Sort sub expressions according to canonicalization precedence.  */
865  addr_parts.qsort (compare_address_parts);
866
867  /* Simplify all constant int summary if possible.  */
868  for (i = 0; i < addr_parts.length (); i++)
869    if (CONST_INT_P (addr_parts[i]))
870      break;
871
872  for (j = i + 1; j < addr_parts.length (); j++)
873    {
874      gcc_assert (CONST_INT_P (addr_parts[j]));
875      addr_parts[i] = simplify_gen_binary (PLUS, mode,
876					   addr_parts[i],
877					   addr_parts[j]);
878    }
879
880  /* Chain PLUS operators to the left for !CONST_INT_P sub expressions.  */
881  res = addr_parts[0];
882  for (j = 1; j < i; j++)
883    res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
884
885  /* Pickup the last CONST_INT_P sub expression.  */
886  if (i < addr_parts.length ())
887    res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
888
889  return res;
890}
891
892/* Given invariant DEF and its address USE, check if the corresponding
893   invariant expr can be propagated into the use or not.  */
894
895static bool
896inv_can_prop_to_addr_use (struct def *def, df_ref use)
897{
898  struct invariant *inv;
899  rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
900  rtx_insn *use_insn = DF_REF_INSN (use);
901  rtx_insn *def_insn;
902  bool ok;
903
904  inv = invariants[def->invno];
905  /* No need to check if address expression is expensive.  */
906  if (!inv->cheap_address)
907    return false;
908
909  def_insn = inv->insn;
910  def_set = single_set (def_insn);
911  if (!def_set)
912    return false;
913
914  validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
915  ok = verify_changes (0);
916  /* Try harder with canonicalization in address expression.  */
917  if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
918    {
919      rtx src, dest, mem = NULL_RTX;
920
921      src = SET_SRC (use_set);
922      dest = SET_DEST (use_set);
923      if (MEM_P (src))
924	mem = src;
925      else if (MEM_P (dest))
926	mem = dest;
927
928      if (mem != NULL_RTX
929	  && !memory_address_addr_space_p (GET_MODE (mem),
930					   XEXP (mem, 0),
931					   MEM_ADDR_SPACE (mem)))
932	{
933	  rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
934	  if (memory_address_addr_space_p (GET_MODE (mem),
935					   addr, MEM_ADDR_SPACE (mem)))
936	    ok = true;
937	}
938    }
939  cancel_changes (0);
940  return ok;
941}
942
943/* Record USE at DEF.  */
944
945static void
946record_use (struct def *def, df_ref use)
947{
948  struct use *u = XNEW (struct use);
949
950  u->pos = DF_REF_REAL_LOC (use);
951  u->insn = DF_REF_INSN (use);
952  u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
953		   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
954  u->next = def->uses;
955  def->uses = u;
956  def->n_uses++;
957  if (u->addr_use_p)
958    {
959      /* Initialize propagation information if this is the first addr
960	 use of the inv def.  */
961      if (def->n_addr_uses == 0)
962	def->can_prop_to_addr_uses = true;
963
964      def->n_addr_uses++;
965      if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
966	def->can_prop_to_addr_uses = false;
967    }
968}
969
970/* Finds the invariants USE depends on and store them to the DEPENDS_ON
971   bitmap.  Returns true if all dependencies of USE are known to be
972   loop invariants, false otherwise.  */
973
974static bool
975check_dependency (basic_block bb, df_ref use, bitmap depends_on)
976{
977  df_ref def;
978  basic_block def_bb;
979  struct df_link *defs;
980  struct def *def_data;
981  struct invariant *inv;
982
983  if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
984    return false;
985
986  defs = DF_REF_CHAIN (use);
987  if (!defs)
988    {
989      unsigned int regno = DF_REF_REGNO (use);
990
991      /* If this is the use of an uninitialized argument register that is
992	 likely to be spilled, do not move it lest this might extend its
993	 lifetime and cause reload to die.  This can occur for a call to
994	 a function taking complex number arguments and moving the insns
995	 preparing the arguments without moving the call itself wouldn't
996	 gain much in practice.  */
997      if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
998	  && FUNCTION_ARG_REGNO_P (regno)
999	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
1000	return false;
1001
1002      return true;
1003    }
1004
1005  if (defs->next)
1006    return false;
1007
1008  def = defs->ref;
1009  check_invariant_table_size ();
1010  inv = invariant_table[DF_REF_ID (def)];
1011  if (!inv)
1012    return false;
1013
1014  def_data = inv->def;
1015  gcc_assert (def_data != NULL);
1016
1017  def_bb = DF_REF_BB (def);
1018  /* Note that in case bb == def_bb, we know that the definition
1019     dominates insn, because def has invariant_table[DF_REF_ID(def)]
1020     defined and we process the insns in the basic block bb
1021     sequentially.  */
1022  if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1023    return false;
1024
1025  bitmap_set_bit (depends_on, def_data->invno);
1026  return true;
1027}
1028
1029
1030/* Finds the invariants INSN depends on and store them to the DEPENDS_ON
1031   bitmap.  Returns true if all dependencies of INSN are known to be
1032   loop invariants, false otherwise.  */
1033
1034static bool
1035check_dependencies (rtx_insn *insn, bitmap depends_on)
1036{
1037  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1038  df_ref use;
1039  basic_block bb = BLOCK_FOR_INSN (insn);
1040
1041  FOR_EACH_INSN_INFO_USE (use, insn_info)
1042    if (!check_dependency (bb, use, depends_on))
1043      return false;
1044  FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1045    if (!check_dependency (bb, use, depends_on))
1046      return false;
1047
1048  return true;
1049}
1050
1051/* Pre-check candidate DEST to skip the one which cannot make a valid insn
1052   during move_invariant_reg.  SIMPLE is to skip HARD_REGISTER.  */
1053static bool
1054pre_check_invariant_p (bool simple, rtx dest)
1055{
1056  if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
1057    {
1058      df_ref use;
1059      unsigned int i = REGNO (dest);
1060      struct df_insn_info *insn_info;
1061      df_ref def_rec;
1062
1063      for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
1064	{
1065	  rtx_insn *ref = DF_REF_INSN (use);
1066	  insn_info = DF_INSN_INFO_GET (ref);
1067
1068	  FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
1069	    if (DF_REF_REGNO (def_rec) == i)
1070	      {
1071		/* Multi definitions at this stage, most likely are due to
1072		   instruction constraints, which requires both read and write
1073		   on the same register.  Since move_invariant_reg is not
1074		   powerful enough to handle such cases, just ignore the INV
1075		   and leave the chance to others.  */
1076		return false;
1077	      }
1078	}
1079    }
1080  return true;
1081}
1082
1083/* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
1084   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1085   unless the program ends due to a function call.  */
1086
1087static void
1088find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1089{
1090  df_ref ref;
1091  struct def *def;
1092  bitmap depends_on;
1093  rtx set, dest;
1094  bool simple = true;
1095  struct invariant *inv;
1096
1097  /* Jumps have control flow side-effects.  */
1098  if (JUMP_P (insn))
1099    return;
1100
1101  set = single_set (insn);
1102  if (!set)
1103    return;
1104  dest = SET_DEST (set);
1105
1106  if (!REG_P (dest)
1107      || HARD_REGISTER_P (dest))
1108    simple = false;
1109
1110  if (!may_assign_reg_p (dest)
1111      || !pre_check_invariant_p (simple, dest)
1112      || !check_maybe_invariant (SET_SRC (set)))
1113    return;
1114
1115  /* If the insn can throw exception, we cannot move it at all without changing
1116     cfg.  */
1117  if (can_throw_internal (insn))
1118    return;
1119
1120  /* We cannot make trapping insn executed, unless it was executed before.  */
1121  if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
1122    return;
1123
1124  depends_on = BITMAP_ALLOC (NULL);
1125  if (!check_dependencies (insn, depends_on))
1126    {
1127      BITMAP_FREE (depends_on);
1128      return;
1129    }
1130
1131  if (simple)
1132    def = XCNEW (struct def);
1133  else
1134    def = NULL;
1135
1136  inv = create_new_invariant (def, insn, depends_on, always_executed);
1137
1138  if (simple)
1139    {
1140      ref = df_find_def (insn, dest);
1141      check_invariant_table_size ();
1142      invariant_table[DF_REF_ID (ref)] = inv;
1143    }
1144}
1145
1146/* Record registers used in INSN that have a unique invariant definition.  */
1147
1148static void
1149record_uses (rtx_insn *insn)
1150{
1151  struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1152  df_ref use;
1153  struct invariant *inv;
1154
1155  FOR_EACH_INSN_INFO_USE (use, insn_info)
1156    {
1157      inv = invariant_for_use (use);
1158      if (inv)
1159	record_use (inv->def, use);
1160    }
1161  FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1162    {
1163      inv = invariant_for_use (use);
1164      if (inv)
1165	record_use (inv->def, use);
1166    }
1167}
1168
1169/* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
1170   executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1171   unless the program ends due to a function call.  */
1172
1173static void
1174find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1175{
1176  find_invariant_insn (insn, always_reached, always_executed);
1177  record_uses (insn);
1178}
1179
1180/* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
1181   basic block is always executed.  ALWAYS_EXECUTED is true if the basic
1182   block is always executed, unless the program ends due to a function
1183   call.  */
1184
1185static void
1186find_invariants_bb (class loop *loop, basic_block bb, bool always_reached,
1187		    bool always_executed)
1188{
1189  rtx_insn *insn;
1190  basic_block preheader = loop_preheader_edge (loop)->src;
1191
1192  /* Don't move insn of cold BB out of loop to preheader to reduce calculations
1193     and register live range in hot loop with cold BB.  */
1194  if (!always_executed && preheader->count > bb->count)
1195    {
1196      if (dump_file)
1197	fprintf (dump_file, "Don't move invariant from bb: %d out of loop %d\n",
1198		 bb->index, loop->num);
1199      return;
1200    }
1201
1202  FOR_BB_INSNS (bb, insn)
1203    {
1204      if (!NONDEBUG_INSN_P (insn))
1205	continue;
1206
1207      find_invariants_insn (insn, always_reached, always_executed);
1208
1209      if (always_reached
1210	  && CALL_P (insn)
1211	  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1212	      || ! RTL_CONST_OR_PURE_CALL_P (insn)))
1213	always_reached = false;
1214    }
1215}
1216
1217/* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
1218   basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
1219   bitmap of basic blocks in BODY that are always executed unless the program
1220   ends due to a function call.  */
1221
1222static void
1223find_invariants_body (class loop *loop, basic_block *body,
1224		      bitmap always_reached, bitmap always_executed)
1225{
1226  unsigned i;
1227
1228  for (i = 0; i < loop->num_nodes; i++)
1229    find_invariants_bb (loop, body[i], bitmap_bit_p (always_reached, i),
1230			bitmap_bit_p (always_executed, i));
1231}
1232
1233/* Finds invariants in LOOP.  */
1234
1235static void
1236find_invariants (class loop *loop)
1237{
1238  auto_bitmap may_exit;
1239  auto_bitmap always_reached;
1240  auto_bitmap has_exit;
1241  auto_bitmap always_executed;
1242  basic_block *body = get_loop_body_in_dom_order (loop);
1243
1244  find_exits (loop, body, may_exit, has_exit);
1245  compute_always_reached (loop, body, may_exit, always_reached);
1246  compute_always_reached (loop, body, has_exit, always_executed);
1247
1248  find_defs (loop);
1249  find_invariants_body (loop, body, always_reached, always_executed);
1250  merge_identical_invariants ();
1251
1252  free (body);
1253}
1254
1255/* Frees a list of uses USE.  */
1256
1257static void
1258free_use_list (struct use *use)
1259{
1260  struct use *next;
1261
1262  for (; use; use = next)
1263    {
1264      next = use->next;
1265      free (use);
1266    }
1267}
1268
1269/* Return pressure class and number of hard registers (through *NREGS)
1270   for destination of INSN. */
1271static enum reg_class
1272get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1273{
1274  rtx reg;
1275  enum reg_class pressure_class;
1276  rtx set = single_set (insn);
1277
1278  /* Considered invariant insns have only one set.  */
1279  gcc_assert (set != NULL_RTX);
1280  reg = SET_DEST (set);
1281  if (GET_CODE (reg) == SUBREG)
1282    reg = SUBREG_REG (reg);
1283  if (MEM_P (reg))
1284    {
1285      *nregs = 0;
1286      pressure_class = NO_REGS;
1287    }
1288  else
1289    {
1290      if (! REG_P (reg))
1291	reg = NULL_RTX;
1292      if (reg == NULL_RTX)
1293	pressure_class = GENERAL_REGS;
1294      else
1295	{
1296	  pressure_class = reg_allocno_class (REGNO (reg));
1297	  pressure_class = ira_pressure_class_translate[pressure_class];
1298	}
1299      *nregs
1300	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1301    }
1302  return pressure_class;
1303}
1304
1305/* Calculates cost and number of registers needed for moving invariant INV
1306   out of the loop and stores them to *COST and *REGS_NEEDED.  *CL will be
1307   the REG_CLASS of INV.  Return
1308     -1: if INV is invalid.
1309      0: if INV and its depends_on have same reg_class
1310      1: if INV and its depends_on have different reg_classes.  */
1311
1312static int
1313get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
1314	      enum reg_class *cl)
1315{
1316  int i, acomp_cost;
1317  unsigned aregs_needed[N_REG_CLASSES];
1318  unsigned depno;
1319  struct invariant *dep;
1320  bitmap_iterator bi;
1321  int ret = 1;
1322
1323  /* Find the representative of the class of the equivalent invariants.  */
1324  inv = invariants[inv->eqto];
1325
1326  *comp_cost = 0;
1327  if (! flag_ira_loop_pressure)
1328    regs_needed[0] = 0;
1329  else
1330    {
1331      for (i = 0; i < ira_pressure_classes_num; i++)
1332	regs_needed[ira_pressure_classes[i]] = 0;
1333    }
1334
1335  if (inv->move
1336      || inv->stamp == actual_stamp)
1337    return -1;
1338  inv->stamp = actual_stamp;
1339
1340  if (! flag_ira_loop_pressure)
1341    regs_needed[0]++;
1342  else
1343    {
1344      int nregs;
1345      enum reg_class pressure_class;
1346
1347      pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1348      regs_needed[pressure_class] += nregs;
1349      *cl = pressure_class;
1350      ret = 0;
1351    }
1352
1353  if (!inv->cheap_address
1354      || inv->def->n_uses == 0
1355      || inv->def->n_addr_uses < inv->def->n_uses
1356      /* Count cost if the inv can't be propagated into address uses.  */
1357      || !inv->def->can_prop_to_addr_uses)
1358    (*comp_cost) += inv->cost * inv->eqno;
1359
1360#ifdef STACK_REGS
1361  {
1362    /* Hoisting constant pool constants into stack regs may cost more than
1363       just single register.  On x87, the balance is affected both by the
1364       small number of FP registers, and by its register stack organization,
1365       that forces us to add compensation code in and around the loop to
1366       shuffle the operands to the top of stack before use, and pop them
1367       from the stack after the loop finishes.
1368
1369       To model this effect, we increase the number of registers needed for
1370       stack registers by two: one register push, and one register pop.
1371       This usually has the effect that FP constant loads from the constant
1372       pool are not moved out of the loop.
1373
1374       Note that this also means that dependent invariants cannot be moved.
1375       However, the primary purpose of this pass is to move loop invariant
1376       address arithmetic out of loops, and address arithmetic that depends
1377       on floating point constants is unlikely to ever occur.  */
1378    rtx set = single_set (inv->insn);
1379    if (set
1380	&& IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1381	&& constant_pool_constant_p (SET_SRC (set)))
1382      {
1383	if (flag_ira_loop_pressure)
1384	  regs_needed[ira_stack_reg_pressure_class] += 2;
1385	else
1386	  regs_needed[0] += 2;
1387      }
1388  }
1389#endif
1390
1391  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1392    {
1393      bool check_p;
1394      enum reg_class dep_cl = ALL_REGS;
1395      int dep_ret;
1396
1397      dep = invariants[depno];
1398
1399      /* If DEP is moved out of the loop, it is not a depends_on any more.  */
1400      if (dep->move)
1401	continue;
1402
1403      dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
1404
1405      if (! flag_ira_loop_pressure)
1406	check_p = aregs_needed[0] != 0;
1407      else
1408	{
1409	  for (i = 0; i < ira_pressure_classes_num; i++)
1410	    if (aregs_needed[ira_pressure_classes[i]] != 0)
1411	      break;
1412	  check_p = i < ira_pressure_classes_num;
1413
1414	  if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
1415	    {
1416	      *cl = ALL_REGS;
1417	      ret = 1;
1418	    }
1419	}
1420      if (check_p
1421	  /* We need to check always_executed, since if the original value of
1422	     the invariant may be preserved, we may need to keep it in a
1423	     separate register.  TODO check whether the register has an
1424	     use outside of the loop.  */
1425	  && dep->always_executed
1426	  && !dep->def->uses->next)
1427	{
1428	  /* If this is a single use, after moving the dependency we will not
1429	     need a new register.  */
1430	  if (! flag_ira_loop_pressure)
1431	    aregs_needed[0]--;
1432	  else
1433	    {
1434	      int nregs;
1435	      enum reg_class pressure_class;
1436
1437	      pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1438	      aregs_needed[pressure_class] -= nregs;
1439	    }
1440	}
1441
1442      if (! flag_ira_loop_pressure)
1443	regs_needed[0] += aregs_needed[0];
1444      else
1445	{
1446	  for (i = 0; i < ira_pressure_classes_num; i++)
1447	    regs_needed[ira_pressure_classes[i]]
1448	      += aregs_needed[ira_pressure_classes[i]];
1449	}
1450      (*comp_cost) += acomp_cost;
1451    }
1452  return ret;
1453}
1454
1455/* Calculates gain for eliminating invariant INV.  REGS_USED is the number
1456   of registers used in the loop, NEW_REGS is the number of new variables
1457   already added due to the invariant motion.  The number of registers needed
1458   for it is stored in *REGS_NEEDED.  SPEED and CALL_P are flags passed
1459   through to estimate_reg_pressure_cost. */
1460
1461static int
1462gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1463		    unsigned *new_regs, unsigned regs_used,
1464		    bool speed, bool call_p)
1465{
1466  int comp_cost, size_cost;
1467  /* Workaround -Wmaybe-uninitialized false positive during
1468     profiledbootstrap by initializing it.  */
1469  enum reg_class cl = NO_REGS;
1470  int ret;
1471
1472  actual_stamp++;
1473
1474  ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
1475
1476  if (! flag_ira_loop_pressure)
1477    {
1478      size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1479					       regs_used, speed, call_p)
1480		   - estimate_reg_pressure_cost (new_regs[0],
1481						 regs_used, speed, call_p));
1482    }
1483  else if (ret < 0)
1484    return -1;
1485  else if ((ret == 0) && (cl == NO_REGS))
1486    /* Hoist it anyway since it does not impact register pressure.  */
1487    return 1;
1488  else
1489    {
1490      int i;
1491      enum reg_class pressure_class;
1492
1493      for (i = 0; i < ira_pressure_classes_num; i++)
1494	{
1495	  pressure_class = ira_pressure_classes[i];
1496
1497	  if (!reg_classes_intersect_p (pressure_class, cl))
1498	    continue;
1499
1500	  if ((int) new_regs[pressure_class]
1501	      + (int) regs_needed[pressure_class]
1502	      + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1503	      + param_ira_loop_reserved_regs
1504	      > ira_class_hard_regs_num[pressure_class])
1505	    break;
1506	}
1507      if (i < ira_pressure_classes_num)
1508	/* There will be register pressure excess and we want not to
1509	   make this loop invariant motion.  All loop invariants with
1510	   non-positive gains will be rejected in function
1511	   find_invariants_to_move.  Therefore we return the negative
1512	   number here.
1513
1514	   One could think that this rejects also expensive loop
1515	   invariant motions and this will hurt code performance.
1516	   However numerous experiments with different heuristics
1517	   taking invariant cost into account did not confirm this
1518	   assumption.  There are possible explanations for this
1519	   result:
1520           o probably all expensive invariants were already moved out
1521             of the loop by PRE and gimple invariant motion pass.
1522           o expensive invariant execution will be hidden by insn
1523             scheduling or OOO processor hardware because usually such
1524             invariants have a lot of freedom to be executed
1525             out-of-order.
1526	   Another reason for ignoring invariant cost vs spilling cost
1527	   heuristics is also in difficulties to evaluate accurately
1528	   spill cost at this stage.  */
1529	return -1;
1530      else
1531	size_cost = 0;
1532    }
1533
1534  return comp_cost - size_cost;
1535}
1536
1537/* Finds invariant with best gain for moving.  Returns the gain, stores
1538   the invariant in *BEST and number of registers needed for it to
1539   *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
1540   NEW_REGS is the number of new variables already added due to invariant
1541   motion.  */
1542
1543static int
1544best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1545			 unsigned *new_regs, unsigned regs_used,
1546			 bool speed, bool call_p)
1547{
1548  struct invariant *inv;
1549  int i, gain = 0, again;
1550  unsigned aregs_needed[N_REG_CLASSES], invno;
1551
1552  FOR_EACH_VEC_ELT (invariants, invno, inv)
1553    {
1554      if (inv->move)
1555	continue;
1556
1557      /* Only consider the "representatives" of equivalent invariants.  */
1558      if (inv->eqto != inv->invno)
1559	continue;
1560
1561      again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1562      				  speed, call_p);
1563      if (again > gain)
1564	{
1565	  gain = again;
1566	  *best = inv;
1567	  if (! flag_ira_loop_pressure)
1568	    regs_needed[0] = aregs_needed[0];
1569	  else
1570	    {
1571	      for (i = 0; i < ira_pressure_classes_num; i++)
1572		regs_needed[ira_pressure_classes[i]]
1573		  = aregs_needed[ira_pressure_classes[i]];
1574	    }
1575	}
1576    }
1577
1578  return gain;
1579}
1580
1581/* Marks invariant INVNO and all its dependencies for moving.  */
1582
1583static void
1584set_move_mark (unsigned invno, int gain)
1585{
1586  struct invariant *inv = invariants[invno];
1587  bitmap_iterator bi;
1588
1589  /* Find the representative of the class of the equivalent invariants.  */
1590  inv = invariants[inv->eqto];
1591
1592  if (inv->move)
1593    return;
1594  inv->move = true;
1595
1596  if (dump_file)
1597    {
1598      if (gain >= 0)
1599	fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1600		 invno, gain);
1601      else
1602	fprintf (dump_file, "Decided to move dependent invariant %d\n",
1603		 invno);
1604    };
1605
1606  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1607    {
1608      set_move_mark (invno, -1);
1609    }
1610}
1611
1612/* Determines which invariants to move.  */
1613
1614static void
1615find_invariants_to_move (bool speed, bool call_p)
1616{
1617  int gain;
1618  unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1619  struct invariant *inv = NULL;
1620
1621  if (!invariants.length ())
1622    return;
1623
1624  if (flag_ira_loop_pressure)
1625    /* REGS_USED is actually never used when the flag is on.  */
1626    regs_used = 0;
1627  else
1628    /* We do not really do a good job in estimating number of
1629       registers used; we put some initial bound here to stand for
1630       induction variables etc.  that we do not detect.  */
1631    {
1632      unsigned int n_regs = DF_REG_SIZE (df);
1633
1634      regs_used = 2;
1635
1636      for (i = 0; i < n_regs; i++)
1637	{
1638	  if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1639	    {
1640	      /* This is a value that is used but not changed inside loop.  */
1641	      regs_used++;
1642	    }
1643	}
1644    }
1645
1646  if (! flag_ira_loop_pressure)
1647    new_regs[0] = regs_needed[0] = 0;
1648  else
1649    {
1650      for (i = 0; (int) i < ira_pressure_classes_num; i++)
1651	new_regs[ira_pressure_classes[i]] = 0;
1652    }
1653  while ((gain = best_gain_for_invariant (&inv, regs_needed,
1654					  new_regs, regs_used,
1655					  speed, call_p)) > 0)
1656    {
1657      set_move_mark (inv->invno, gain);
1658      if (! flag_ira_loop_pressure)
1659	new_regs[0] += regs_needed[0];
1660      else
1661	{
1662	  for (i = 0; (int) i < ira_pressure_classes_num; i++)
1663	    new_regs[ira_pressure_classes[i]]
1664	      += regs_needed[ira_pressure_classes[i]];
1665	}
1666    }
1667}
1668
1669/* Replace the uses, reached by the definition of invariant INV, by REG.
1670
1671   IN_GROUP is nonzero if this is part of a group of changes that must be
1672   performed as a group.  In that case, the changes will be stored.  The
1673   function `apply_change_group' will validate and apply the changes.  */
1674
1675static int
1676replace_uses (struct invariant *inv, rtx reg, bool in_group)
1677{
1678  /* Replace the uses we know to be dominated.  It saves work for copy
1679     propagation, and also it is necessary so that dependent invariants
1680     are computed right.  */
1681  if (inv->def)
1682    {
1683      struct use *use;
1684      for (use = inv->def->uses; use; use = use->next)
1685	validate_change (use->insn, use->pos, reg, true);
1686
1687      /* If we aren't part of a larger group, apply the changes now.  */
1688      if (!in_group)
1689	return apply_change_group ();
1690    }
1691
1692  return 1;
1693}
1694
1695/* Whether invariant INV setting REG can be moved out of LOOP, at the end of
1696   the block preceding its header.  */
1697
1698static bool
1699can_move_invariant_reg (class loop *loop, struct invariant *inv, rtx reg)
1700{
1701  df_ref def, use;
1702  unsigned int dest_regno, defs_in_loop_count = 0;
1703  rtx_insn *insn = inv->insn;
1704  basic_block bb = BLOCK_FOR_INSN (inv->insn);
1705  auto_vec <rtx_insn *, 16> debug_insns_to_reset;
1706
1707  /* We ignore hard register and memory access for cost and complexity reasons.
1708     Hard register are few at this stage and expensive to consider as they
1709     require building a separate data flow.  Memory access would require using
1710     df_simulate_* and can_move_insns_across functions and is more complex.  */
1711  if (!REG_P (reg) || HARD_REGISTER_P (reg))
1712    return false;
1713
1714  /* Check whether the set is always executed.  We could omit this condition if
1715     we know that the register is unused outside of the loop, but it does not
1716     seem worth finding out.  */
1717  if (!inv->always_executed)
1718    return false;
1719
1720  /* Check that all uses that would be dominated by def are already dominated
1721     by it.  */
1722  dest_regno = REGNO (reg);
1723  for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
1724    {
1725      rtx_insn *use_insn;
1726      basic_block use_bb;
1727
1728      use_insn = DF_REF_INSN (use);
1729      use_bb = BLOCK_FOR_INSN (use_insn);
1730
1731      /* Ignore instruction considered for moving.  */
1732      if (use_insn == insn)
1733	continue;
1734
1735      /* Don't consider uses outside loop.  */
1736      if (!flow_bb_inside_loop_p (loop, use_bb))
1737	continue;
1738
1739      /* Don't move if a use is not dominated by def in insn.  */
1740      if ((use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
1741	  || !dominated_by_p (CDI_DOMINATORS, use_bb, bb))
1742	{
1743	  if (!DEBUG_INSN_P (use_insn))
1744	    return false;
1745	  debug_insns_to_reset.safe_push (use_insn);
1746	}
1747    }
1748
1749  /* Check for other defs.  Any other def in the loop might reach a use
1750     currently reached by the def in insn.  */
1751  for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
1752    {
1753      basic_block def_bb = DF_REF_BB (def);
1754
1755      /* Defs in exit block cannot reach a use they weren't already.  */
1756      if (single_succ_p (def_bb))
1757	{
1758	  basic_block def_bb_succ;
1759
1760	  def_bb_succ = single_succ (def_bb);
1761	  if (!flow_bb_inside_loop_p (loop, def_bb_succ))
1762	    continue;
1763	}
1764
1765      if (++defs_in_loop_count > 1)
1766	return false;
1767    }
1768
1769  /* Reset debug uses if a use is not dominated by def in insn.  */
1770  for (auto use_insn : debug_insns_to_reset)
1771    {
1772      INSN_VAR_LOCATION_LOC (use_insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1773      df_insn_rescan (use_insn);
1774    }
1775
1776  return true;
1777}
1778
1779/* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
1780   otherwise.  */
1781
1782static bool
1783move_invariant_reg (class loop *loop, unsigned invno)
1784{
1785  struct invariant *inv = invariants[invno];
1786  struct invariant *repr = invariants[inv->eqto];
1787  unsigned i;
1788  basic_block preheader = loop_preheader_edge (loop)->src;
1789  rtx reg, set, dest, note;
1790  bitmap_iterator bi;
1791  int regno = -1;
1792
1793  if (inv->reg)
1794    return true;
1795  if (!repr->move)
1796    return false;
1797
1798  /* If this is a representative of the class of equivalent invariants,
1799     really move the invariant.  Otherwise just replace its use with
1800     the register used for the representative.  */
1801  if (inv == repr)
1802    {
1803      if (inv->depends_on)
1804	{
1805	  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1806	    {
1807	      if (!move_invariant_reg (loop, i))
1808		goto fail;
1809	    }
1810	}
1811
1812      /* If possible, just move the set out of the loop.  Otherwise, we
1813	 need to create a temporary register.  */
1814      set = single_set (inv->insn);
1815      reg = dest = SET_DEST (set);
1816      if (GET_CODE (reg) == SUBREG)
1817	reg = SUBREG_REG (reg);
1818      if (REG_P (reg))
1819	regno = REGNO (reg);
1820
1821      if (!can_move_invariant_reg (loop, inv, dest))
1822	{
1823	  reg = gen_reg_rtx_and_attrs (dest);
1824
1825	  /* Try replacing the destination by a new pseudoregister.  */
1826	  validate_change (inv->insn, &SET_DEST (set), reg, true);
1827
1828	  /* As well as all the dominated uses.  */
1829	  replace_uses (inv, reg, true);
1830
1831	  /* And validate all the changes.  */
1832	  if (!apply_change_group ())
1833	    goto fail;
1834
1835	  emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1836	}
1837      else if (dump_file)
1838	fprintf (dump_file, "Invariant %d moved without introducing a new "
1839			    "temporary register\n", invno);
1840      if (JUMP_P (BB_END (preheader)))
1841	preheader = split_edge (loop_preheader_edge (loop));
1842      reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1843      df_recompute_luids (preheader);
1844
1845      /* If there is a REG_EQUAL note on the insn we just moved, and the
1846	 insn is in a basic block that is not always executed or the note
1847	 contains something for which we don't know the invariant status,
1848	 the note may no longer be valid after we move the insn.  Note that
1849	 uses in REG_EQUAL notes are taken into account in the computation
1850	 of invariants, so it is safe to retain the note even if it contains
1851	 register references for which we know the invariant status.  */
1852      if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1853	  && (!inv->always_executed
1854	      || !check_maybe_invariant (XEXP (note, 0))))
1855	remove_note (inv->insn, note);
1856    }
1857  else
1858    {
1859      if (!move_invariant_reg (loop, repr->invno))
1860	goto fail;
1861      reg = repr->reg;
1862      regno = repr->orig_regno;
1863      if (!replace_uses (inv, reg, false))
1864	goto fail;
1865      set = single_set (inv->insn);
1866      emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1867      delete_insn (inv->insn);
1868    }
1869
1870  inv->reg = reg;
1871  inv->orig_regno = regno;
1872
1873  return true;
1874
1875fail:
1876  /* If we failed, clear move flag, so that we do not try to move inv
1877     again.  */
1878  if (dump_file)
1879    fprintf (dump_file, "Failed to move invariant %d\n", invno);
1880  inv->move = false;
1881  inv->reg = NULL_RTX;
1882  inv->orig_regno = -1;
1883
1884  return false;
1885}
1886
1887/* Move selected invariant out of the LOOP.  Newly created regs are marked
1888   in TEMPORARY_REGS.  */
1889
1890static void
1891move_invariants (class loop *loop)
1892{
1893  struct invariant *inv;
1894  unsigned i;
1895
1896  FOR_EACH_VEC_ELT (invariants, i, inv)
1897    move_invariant_reg (loop, i);
1898  if (flag_ira_loop_pressure && resize_reg_info ())
1899    {
1900      FOR_EACH_VEC_ELT (invariants, i, inv)
1901	if (inv->reg != NULL_RTX)
1902	  {
1903	    if (inv->orig_regno >= 0)
1904	      setup_reg_classes (REGNO (inv->reg),
1905				 reg_preferred_class (inv->orig_regno),
1906				 reg_alternate_class (inv->orig_regno),
1907				 reg_allocno_class (inv->orig_regno));
1908	    else
1909	      setup_reg_classes (REGNO (inv->reg),
1910				 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1911	  }
1912    }
1913  /* Remove the DF_UD_CHAIN problem added in find_defs before rescanning,
1914     to save a bit of compile time.  */
1915  df_remove_problem (df_chain);
1916  df_process_deferred_rescans ();
1917}
1918
1919/* Initializes invariant motion data.  */
1920
1921static void
1922init_inv_motion_data (void)
1923{
1924  actual_stamp = 1;
1925
1926  invariants.create (100);
1927}
1928
1929/* Frees the data allocated by invariant motion.  */
1930
1931static void
1932free_inv_motion_data (void)
1933{
1934  unsigned i;
1935  struct def *def;
1936  struct invariant *inv;
1937
1938  check_invariant_table_size ();
1939  for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1940    {
1941      inv = invariant_table[i];
1942      if (inv)
1943	{
1944	  def = inv->def;
1945	  gcc_assert (def != NULL);
1946
1947	  free_use_list (def->uses);
1948	  free (def);
1949	  invariant_table[i] = NULL;
1950	}
1951    }
1952
1953  FOR_EACH_VEC_ELT (invariants, i, inv)
1954    {
1955      BITMAP_FREE (inv->depends_on);
1956      free (inv);
1957    }
1958  invariants.release ();
1959}
1960
1961/* Move the invariants out of the LOOP.  */
1962
1963static void
1964move_single_loop_invariants (class loop *loop)
1965{
1966  init_inv_motion_data ();
1967
1968  find_invariants (loop);
1969  find_invariants_to_move (optimize_loop_for_speed_p (loop),
1970			   LOOP_DATA (loop)->has_call);
1971  move_invariants (loop);
1972
1973  free_inv_motion_data ();
1974}
1975
1976/* Releases the auxiliary data for LOOP.  */
1977
1978static void
1979free_loop_data (class loop *loop)
1980{
1981  class loop_data *data = LOOP_DATA (loop);
1982  if (!data)
1983    return;
1984
1985  bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1986  bitmap_clear (&LOOP_DATA (loop)->regs_live);
1987  free (data);
1988  loop->aux = NULL;
1989}
1990
1991
1992
1993/* Registers currently living.  */
1994static bitmap_head curr_regs_live;
1995
1996/* Current reg pressure for each pressure class.  */
1997static int curr_reg_pressure[N_REG_CLASSES];
1998
1999/* Record all regs that are set in any one insn.  Communication from
2000   mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
2001   all hard-registers.  */
2002static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
2003		     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
2004/* Number of regs stored in the previous array.  */
2005static int n_regs_set;
2006
2007/* Return pressure class and number of needed hard registers (through
2008   *NREGS) of register REGNO.  */
2009static enum reg_class
2010get_regno_pressure_class (int regno, int *nregs)
2011{
2012  if (regno >= FIRST_PSEUDO_REGISTER)
2013    {
2014      enum reg_class pressure_class;
2015
2016      pressure_class = reg_allocno_class (regno);
2017      pressure_class = ira_pressure_class_translate[pressure_class];
2018      *nregs
2019	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
2020      return pressure_class;
2021    }
2022  else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
2023	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
2024    {
2025      *nregs = 1;
2026      return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
2027    }
2028  else
2029    {
2030      *nregs = 0;
2031      return NO_REGS;
2032    }
2033}
2034
2035/* Increase (if INCR_P) or decrease current register pressure for
2036   register REGNO.  */
2037static void
2038change_pressure (int regno, bool incr_p)
2039{
2040  int nregs;
2041  enum reg_class pressure_class;
2042
2043  pressure_class = get_regno_pressure_class (regno, &nregs);
2044  if (! incr_p)
2045    curr_reg_pressure[pressure_class] -= nregs;
2046  else
2047    {
2048      curr_reg_pressure[pressure_class] += nregs;
2049      if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2050	  < curr_reg_pressure[pressure_class])
2051	LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2052	  = curr_reg_pressure[pressure_class];
2053    }
2054}
2055
2056/* Mark REGNO birth.  */
2057static void
2058mark_regno_live (int regno)
2059{
2060  class loop *loop;
2061
2062  for (loop = curr_loop;
2063       loop != current_loops->tree_root;
2064       loop = loop_outer (loop))
2065    bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
2066  if (!bitmap_set_bit (&curr_regs_live, regno))
2067    return;
2068  change_pressure (regno, true);
2069}
2070
2071/* Mark REGNO death.  */
2072static void
2073mark_regno_death (int regno)
2074{
2075  if (! bitmap_clear_bit (&curr_regs_live, regno))
2076    return;
2077  change_pressure (regno, false);
2078}
2079
2080/* Mark setting register REG.  */
2081static void
2082mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
2083		void *data ATTRIBUTE_UNUSED)
2084{
2085  if (GET_CODE (reg) == SUBREG)
2086    reg = SUBREG_REG (reg);
2087
2088  if (! REG_P (reg))
2089    return;
2090
2091  regs_set[n_regs_set++] = reg;
2092
2093  unsigned int end_regno = END_REGNO (reg);
2094  for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2095    mark_regno_live (regno);
2096}
2097
2098/* Mark clobbering register REG.  */
2099static void
2100mark_reg_clobber (rtx reg, const_rtx setter, void *data)
2101{
2102  if (GET_CODE (setter) == CLOBBER)
2103    mark_reg_store (reg, setter, data);
2104}
2105
2106/* Mark register REG death.  */
2107static void
2108mark_reg_death (rtx reg)
2109{
2110  unsigned int end_regno = END_REGNO (reg);
2111  for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2112    mark_regno_death (regno);
2113}
2114
2115/* Mark occurrence of registers in X for the current loop.  */
2116static void
2117mark_ref_regs (rtx x)
2118{
2119  RTX_CODE code;
2120  int i;
2121  const char *fmt;
2122
2123  if (!x)
2124    return;
2125
2126  code = GET_CODE (x);
2127  if (code == REG)
2128    {
2129      class loop *loop;
2130
2131      for (loop = curr_loop;
2132	   loop != current_loops->tree_root;
2133	   loop = loop_outer (loop))
2134	bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
2135      return;
2136    }
2137
2138  fmt = GET_RTX_FORMAT (code);
2139  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2140    if (fmt[i] == 'e')
2141      mark_ref_regs (XEXP (x, i));
2142    else if (fmt[i] == 'E')
2143      {
2144	int j;
2145
2146	for (j = 0; j < XVECLEN (x, i); j++)
2147	  mark_ref_regs (XVECEXP (x, i, j));
2148      }
2149}
2150
2151/* Calculate register pressure in the loops.  */
2152static void
2153calculate_loop_reg_pressure (void)
2154{
2155  int i;
2156  unsigned int j;
2157  bitmap_iterator bi;
2158  basic_block bb;
2159  rtx_insn *insn;
2160  rtx link;
2161  class loop *parent;
2162
2163  for (auto loop : loops_list (cfun, 0))
2164    if (loop->aux == NULL)
2165      {
2166	loop->aux = xcalloc (1, sizeof (class loop_data));
2167	bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
2168	bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
2169      }
2170  ira_setup_eliminable_regset ();
2171  bitmap_initialize (&curr_regs_live, &reg_obstack);
2172  FOR_EACH_BB_FN (bb, cfun)
2173    {
2174      curr_loop = bb->loop_father;
2175      if (curr_loop == current_loops->tree_root)
2176	continue;
2177
2178      for (class loop *loop = curr_loop;
2179	   loop != current_loops->tree_root;
2180	   loop = loop_outer (loop))
2181	bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
2182
2183      bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
2184      for (i = 0; i < ira_pressure_classes_num; i++)
2185	curr_reg_pressure[ira_pressure_classes[i]] = 0;
2186      EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
2187	change_pressure (j, true);
2188
2189      FOR_BB_INSNS (bb, insn)
2190	{
2191	  if (! NONDEBUG_INSN_P (insn))
2192	    continue;
2193
2194	  mark_ref_regs (PATTERN (insn));
2195	  n_regs_set = 0;
2196	  note_stores (insn, mark_reg_clobber, NULL);
2197
2198	  /* Mark any registers dead after INSN as dead now.  */
2199
2200	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2201	    if (REG_NOTE_KIND (link) == REG_DEAD)
2202	      mark_reg_death (XEXP (link, 0));
2203
2204	  /* Mark any registers set in INSN as live,
2205	     and mark them as conflicting with all other live regs.
2206	     Clobbers are processed again, so they conflict with
2207	     the registers that are set.  */
2208
2209	  note_stores (insn, mark_reg_store, NULL);
2210
2211	  if (AUTO_INC_DEC)
2212	    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2213	      if (REG_NOTE_KIND (link) == REG_INC)
2214		mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
2215
2216	  while (n_regs_set-- > 0)
2217	    {
2218	      rtx note = find_regno_note (insn, REG_UNUSED,
2219					  REGNO (regs_set[n_regs_set]));
2220	      if (! note)
2221		continue;
2222
2223	      mark_reg_death (XEXP (note, 0));
2224	    }
2225	}
2226    }
2227  bitmap_release (&curr_regs_live);
2228  if (flag_ira_region == IRA_REGION_MIXED
2229      || flag_ira_region == IRA_REGION_ALL)
2230    for (auto loop : loops_list (cfun, 0))
2231      {
2232	EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2233	  if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
2234	    {
2235	      enum reg_class pressure_class;
2236	      int nregs;
2237
2238	      pressure_class = get_regno_pressure_class (j, &nregs);
2239	      LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
2240	    }
2241      }
2242  if (dump_file == NULL)
2243    return;
2244  for (auto loop : loops_list (cfun, 0))
2245    {
2246      parent = loop_outer (loop);
2247      fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
2248	       loop->num, (parent == NULL ? -1 : parent->num),
2249	       loop->header->index, loop_depth (loop));
2250      fprintf (dump_file, "\n    ref. regnos:");
2251      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
2252	fprintf (dump_file, " %d", j);
2253      fprintf (dump_file, "\n    live regnos:");
2254      EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2255	fprintf (dump_file, " %d", j);
2256      fprintf (dump_file, "\n    Pressure:");
2257      for (i = 0; (int) i < ira_pressure_classes_num; i++)
2258	{
2259	  enum reg_class pressure_class;
2260
2261	  pressure_class = ira_pressure_classes[i];
2262	  if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
2263	    continue;
2264	  fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
2265		   LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
2266	}
2267      fprintf (dump_file, "\n");
2268    }
2269}
2270
2271
2272
2273/* Move the invariants out of the loops.  */
2274
2275void
2276move_loop_invariants (void)
2277{
2278  if (optimize == 1)
2279    df_live_add_problem ();
2280  /* ??? This is a hack.  We should only need to call df_live_set_all_dirty
2281     for optimize == 1, but can_move_invariant_reg relies on DF_INSN_LUID
2282     being up-to-date.  That isn't always true (even after df_analyze)
2283     because df_process_deferred_rescans doesn't necessarily cause
2284     blocks to be rescanned.  */
2285  df_live_set_all_dirty ();
2286  if (flag_ira_loop_pressure)
2287    {
2288      df_analyze ();
2289      regstat_init_n_sets_and_refs ();
2290      ira_set_pseudo_classes (true, dump_file);
2291      calculate_loop_reg_pressure ();
2292      regstat_free_n_sets_and_refs ();
2293    }
2294  df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
2295  /* Process the loops, innermost first.  */
2296  for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
2297    {
2298      curr_loop = loop;
2299      /* move_single_loop_invariants for very large loops is time consuming
2300	 and might need a lot of memory.  For -O1 only do loop invariant
2301	 motion for very small loops.  */
2302      unsigned max_bbs = param_loop_invariant_max_bbs_in_loop;
2303      if (optimize < 2)
2304	max_bbs /= 10;
2305      if (loop->num_nodes <= max_bbs)
2306	move_single_loop_invariants (loop);
2307    }
2308
2309  for (auto loop : loops_list (cfun, 0))
2310      free_loop_data (loop);
2311
2312  if (flag_ira_loop_pressure)
2313    /* There is no sense to keep this info because it was most
2314       probably outdated by subsequent passes.  */
2315    free_reg_info ();
2316  free (invariant_table);
2317  invariant_table = NULL;
2318  invariant_table_size = 0;
2319
2320  if (optimize == 1)
2321    df_remove_problem (df_live);
2322
2323  checking_verify_flow_info ();
2324}
2325