1@c Copyright (C) 1988-2022 Free Software Foundation, Inc.
2@c This is part of the GCC manual.
3@c For copying conditions, see the file gcc.texi.
4
5@ignore
6@c man begin INCLUDE
7@include gcc-vers.texi
8@c man end
9
10@c man begin COPYRIGHT
11Copyright @copyright{} 1988-2022 Free Software Foundation, Inc.
12
13Permission is granted to copy, distribute and/or modify this document
14under the terms of the GNU Free Documentation License, Version 1.3 or
15any later version published by the Free Software Foundation; with the
16Invariant Sections being ``GNU General Public License'' and ``Funding
17Free Software'', the Front-Cover texts being (a) (see below), and with
18the Back-Cover Texts being (b) (see below).  A copy of the license is
19included in the gfdl(7) man page.
20
21(a) The FSF's Front-Cover Text is:
22
23     A GNU Manual
24
25(b) The FSF's Back-Cover Text is:
26
27     You have freedom to copy and modify this GNU Manual, like GNU
28     software.  Copies published by the Free Software Foundation raise
29     funds for GNU development.
30@c man end
31@c Set file name and title for the man page.
32@setfilename gcc
33@settitle GNU project C and C++ compiler
34@c man begin SYNOPSIS
35gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36    [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37    [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39    [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43Only the most useful options are listed here; see below for the
44remainder.  @command{g++} accepts mostly the same options as @command{gcc}.
45@c man end
46@c man begin SEEALSO
47gpl(7), gfdl(7), fsf-funding(7),
48cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50@file{ld}, @file{binutils} and @file{gdb}.
51@c man end
52@c man begin BUGS
53For instructions on reporting bugs, see
54@w{@value{BUGURL}}.
55@c man end
56@c man begin AUTHOR
57See the Info entry for @command{gcc}, or
58@w{@uref{https://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59for contributors to GCC@.
60@c man end
61@end ignore
62
63@node Invoking GCC
64@chapter GCC Command Options
65@cindex GCC command options
66@cindex command options
67@cindex options, GCC command
68
69@c man begin DESCRIPTION
70When you invoke GCC, it normally does preprocessing, compilation,
71assembly and linking.  The ``overall options'' allow you to stop this
72process at an intermediate stage.  For example, the @option{-c} option
73says not to run the linker.  Then the output consists of object files
74output by the assembler.
75@xref{Overall Options,,Options Controlling the Kind of Output}.
76
77Other options are passed on to one or more stages of processing.  Some options
78control the preprocessor and others the compiler itself.  Yet other
79options control the assembler and linker; most of these are not
80documented here, since you rarely need to use any of them.
81
82@cindex C compilation options
83Most of the command-line options that you can use with GCC are useful
84for C programs; when an option is only useful with another language
85(usually C++), the explanation says so explicitly.  If the description
86for a particular option does not mention a source language, you can use
87that option with all supported languages.
88
89@cindex cross compiling
90@cindex specifying machine version
91@cindex specifying compiler version and target machine
92@cindex compiler version, specifying
93@cindex target machine, specifying
94The usual way to run GCC is to run the executable called @command{gcc}, or
95@command{@var{machine}-gcc} when cross-compiling, or
96@command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97When you compile C++ programs, you should invoke GCC as @command{g++} 
98instead.  @xref{Invoking G++,,Compiling C++ Programs}, 
99for information about the differences in behavior between @command{gcc} 
100and @command{g++} when compiling C++ programs.
101
102@cindex grouping options
103@cindex options, grouping
104The @command{gcc} program accepts options and file names as operands.  Many
105options have multi-letter names; therefore multiple single-letter options
106may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107-v}}.
108
109@cindex order of options
110@cindex options, order
111You can mix options and other arguments.  For the most part, the order
112you use doesn't matter.  Order does matter when you use several
113options of the same kind; for example, if you specify @option{-L} more
114than once, the directories are searched in the order specified.  Also,
115the placement of the @option{-l} option is significant.
116
117Many options have long names starting with @samp{-f} or with
118@samp{-W}---for example,
119@option{-fmove-loop-invariants}, @option{-Wformat} and so on.  Most of
120these have both positive and negative forms; the negative form of
121@option{-ffoo} is @option{-fno-foo}.  This manual documents
122only one of these two forms, whichever one is not the default.
123
124Some options take one or more arguments typically separated either
125by a space or by the equals sign (@samp{=}) from the option name.
126Unless documented otherwise, an argument can be either numeric or
127a string.  Numeric arguments must typically be small unsigned decimal
128or hexadecimal integers.  Hexadecimal arguments must begin with
129the @samp{0x} prefix.  Arguments to options that specify a size
130threshold of some sort may be arbitrarily large decimal or hexadecimal
131integers followed by a byte size suffix designating a multiple of bytes
132such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133@code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134@code{GiB} for gigabyte and gigibyte, and so on.  Such arguments are
135designated by @var{byte-size} in the following text.  Refer to the NIST,
136IEC, and other relevant national and international standards for the full
137listing and explanation of the binary and decimal byte size prefixes.
138
139@c man end
140
141@xref{Option Index}, for an index to GCC's options.
142
143@menu
144* Option Summary::      Brief list of all options, without explanations.
145* Overall Options::     Controlling the kind of output:
146                        an executable, object files, assembler files,
147                        or preprocessed source.
148* Invoking G++::        Compiling C++ programs.
149* C Dialect Options::   Controlling the variant of C language compiled.
150* C++ Dialect Options:: Variations on C++.
151* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152                        and Objective-C++.
153* Diagnostic Message Formatting Options:: Controlling how diagnostics should
154                        be formatted.
155* Warning Options::     How picky should the compiler be?
156* Static Analyzer Options:: More expensive warnings.
157* Debugging Options::   Producing debuggable code.
158* Optimize Options::    How much optimization?
159* Instrumentation Options:: Enabling profiling and extra run-time error checking.
160* Preprocessor Options:: Controlling header files and macro definitions.
161                         Also, getting dependency information for Make.
162* Assembler Options::   Passing options to the assembler.
163* Link Options::        Specifying libraries and so on.
164* Directory Options::   Where to find header files and libraries.
165                        Where to find the compiler executable files.
166* Code Gen Options::    Specifying conventions for function calls, data layout
167                        and register usage.
168* Developer Options::   Printing GCC configuration info, statistics, and
169                        debugging dumps.
170* Submodel Options::    Target-specific options, such as compiling for a
171                        specific processor variant.
172* Spec Files::          How to pass switches to sub-processes.
173* Environment Variables:: Env vars that affect GCC.
174* Precompiled Headers:: Compiling a header once, and using it many times.
175* C++ Modules::		Experimental C++20 module system.
176@end menu
177
178@c man begin OPTIONS
179
180@node Option Summary
181@section Option Summary
182
183Here is a summary of all the options, grouped by type.  Explanations are
184in the following sections.
185
186@table @emph
187@item Overall Options
188@xref{Overall Options,,Options Controlling the Kind of Output}.
189@gccoptlist{-c  -S  -E  -o @var{file} @gol
190-dumpbase @var{dumpbase}  -dumpbase-ext @var{auxdropsuf} @gol
191-dumpdir @var{dumppfx}  -x @var{language}  @gol
192-v  -###  --help@r{[}=@var{class}@r{[},@dots{}@r{]]}  --target-help  --version @gol
193-pass-exit-codes  -pipe  -specs=@var{file}  -wrapper  @gol
194@@@var{file}  -ffile-prefix-map=@var{old}=@var{new}  @gol
195-fplugin=@var{file}  -fplugin-arg-@var{name}=@var{arg}  @gol
196-fdump-ada-spec@r{[}-slim@r{]}  -fada-spec-parent=@var{unit}  -fdump-go-spec=@var{file}}
197
198@item C Language Options
199@xref{C Dialect Options,,Options Controlling C Dialect}.
200@gccoptlist{-ansi  -std=@var{standard}  -aux-info @var{filename} @gol
201-fallow-parameterless-variadic-functions  -fno-asm  @gol
202-fno-builtin  -fno-builtin-@var{function}  -fcond-mismatch @gol
203-ffreestanding  -fgimple  -fgnu-tm  -fgnu89-inline  -fhosted @gol
204-flax-vector-conversions  -fms-extensions @gol
205-foffload=@var{arg}  -foffload-options=@var{arg} @gol
206-fopenacc  -fopenacc-dim=@var{geom} @gol
207-fopenmp  -fopenmp-simd @gol
208-fpermitted-flt-eval-methods=@var{standard} @gol
209-fplan9-extensions  -fsigned-bitfields  -funsigned-bitfields @gol
210-fsigned-char  -funsigned-char  -fsso-struct=@var{endianness}}
211
212@item C++ Language Options
213@xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
214@gccoptlist{-fabi-version=@var{n}  -fno-access-control @gol
215-faligned-new=@var{n}  -fargs-in-order=@var{n}  -fchar8_t  -fcheck-new @gol
216-fconstexpr-depth=@var{n}  -fconstexpr-cache-depth=@var{n} @gol
217-fconstexpr-loop-limit=@var{n}  -fconstexpr-ops-limit=@var{n} @gol
218-fno-elide-constructors @gol
219-fno-enforce-eh-specs @gol
220-fno-gnu-keywords @gol
221-fno-implicit-templates @gol
222-fno-implicit-inline-templates @gol
223-fno-implement-inlines  @gol
224-fmodule-header@r{[}=@var{kind}@r{]} -fmodule-only -fmodules-ts @gol
225-fmodule-implicit-inline @gol
226-fno-module-lazy @gol
227-fmodule-mapper=@var{specification} @gol
228-fmodule-version-ignore @gol
229-fms-extensions @gol
230-fnew-inheriting-ctors @gol
231-fnew-ttp-matching @gol
232-fno-nonansi-builtins  -fnothrow-opt  -fno-operator-names @gol
233-fno-optional-diags  -fpermissive @gol
234-fno-pretty-templates @gol
235-fno-rtti  -fsized-deallocation @gol
236-ftemplate-backtrace-limit=@var{n} @gol
237-ftemplate-depth=@var{n} @gol
238-fno-threadsafe-statics  -fuse-cxa-atexit @gol
239-fno-weak  -nostdinc++ @gol
240-fvisibility-inlines-hidden @gol
241-fvisibility-ms-compat @gol
242-fext-numeric-literals @gol
243-flang-info-include-translate@r{[}=@var{header}@r{]} @gol
244-flang-info-include-translate-not @gol
245-flang-info-module-cmi@r{[}=@var{module}@r{]} @gol
246-stdlib=@var{libstdc++,libc++} @gol
247-Wabi-tag  -Wcatch-value  -Wcatch-value=@var{n} @gol
248-Wno-class-conversion  -Wclass-memaccess @gol
249-Wcomma-subscript  -Wconditionally-supported @gol
250-Wno-conversion-null  -Wctad-maybe-unsupported @gol
251-Wctor-dtor-privacy  -Wno-delete-incomplete @gol
252-Wdelete-non-virtual-dtor  -Wno-deprecated-array-compare @gol
253-Wdeprecated-copy -Wdeprecated-copy-dtor @gol
254-Wno-deprecated-enum-enum-conversion -Wno-deprecated-enum-float-conversion @gol
255-Weffc++  -Wno-exceptions -Wextra-semi  -Wno-inaccessible-base @gol
256-Wno-inherited-variadic-ctor  -Wno-init-list-lifetime @gol
257-Winvalid-imported-macros @gol
258-Wno-invalid-offsetof  -Wno-literal-suffix @gol
259-Wmismatched-new-delete -Wmismatched-tags @gol
260-Wmultiple-inheritance  -Wnamespaces  -Wnarrowing @gol
261-Wnoexcept  -Wnoexcept-type  -Wnon-virtual-dtor @gol
262-Wpessimizing-move  -Wno-placement-new  -Wplacement-new=@var{n} @gol
263-Wrange-loop-construct -Wredundant-move -Wredundant-tags @gol
264-Wreorder  -Wregister @gol
265-Wstrict-null-sentinel  -Wno-subobject-linkage  -Wtemplates @gol
266-Wno-non-template-friend  -Wold-style-cast @gol
267-Woverloaded-virtual  -Wno-pmf-conversions -Wsign-promo @gol
268-Wsized-deallocation  -Wsuggest-final-methods @gol
269-Wsuggest-final-types  -Wsuggest-override  @gol
270-Wno-terminate  -Wuseless-cast  -Wno-vexing-parse  @gol
271-Wvirtual-inheritance  @gol
272-Wno-virtual-move-assign  -Wvolatile  -Wzero-as-null-pointer-constant}
273
274@item Objective-C and Objective-C++ Language Options
275@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
276Objective-C and Objective-C++ Dialects}.
277@gccoptlist{-fconstant-string-class=@var{class-name} @gol
278-fgnu-runtime  -fnext-runtime @gol
279-fno-nil-receivers @gol
280-fobjc-abi-version=@var{n} @gol
281-fobjc-call-cxx-cdtors @gol
282-fobjc-direct-dispatch @gol
283-fobjc-exceptions @gol
284-fobjc-gc @gol
285-fobjc-nilcheck @gol
286-fobjc-std=objc1 @gol
287-fno-local-ivars @gol
288-fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
289-freplace-objc-classes @gol
290-fzero-link @gol
291-gen-decls @gol
292-Wassign-intercept  -Wno-property-assign-default @gol
293-Wno-protocol -Wobjc-root-class -Wselector @gol
294-Wstrict-selector-match @gol
295-Wundeclared-selector}
296
297@item Diagnostic Message Formatting Options
298@xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
299@gccoptlist{-fmessage-length=@var{n}  @gol
300-fdiagnostics-plain-output @gol
301-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]}  @gol
302-fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
303-fdiagnostics-urls=@r{[}auto@r{|}never@r{|}always@r{]}  @gol
304-fdiagnostics-format=@r{[}text@r{|}json@r{]}  @gol
305-fno-diagnostics-show-option  -fno-diagnostics-show-caret @gol
306-fno-diagnostics-show-labels  -fno-diagnostics-show-line-numbers @gol
307-fno-diagnostics-show-cwe  @gol
308-fdiagnostics-minimum-margin-width=@var{width} @gol
309-fdiagnostics-parseable-fixits  -fdiagnostics-generate-patch @gol
310-fdiagnostics-show-template-tree  -fno-elide-type @gol
311-fdiagnostics-path-format=@r{[}none@r{|}separate-events@r{|}inline-events@r{]} @gol
312-fdiagnostics-show-path-depths @gol
313-fno-show-column @gol
314-fdiagnostics-column-unit=@r{[}display@r{|}byte@r{]} @gol
315-fdiagnostics-column-origin=@var{origin} @gol
316-fdiagnostics-escape-format=@r{[}unicode@r{|}bytes@r{]}}
317
318@item Warning Options
319@xref{Warning Options,,Options to Request or Suppress Warnings}.
320@gccoptlist{-fsyntax-only  -fmax-errors=@var{n}  -Wpedantic @gol
321-pedantic-errors @gol
322-w  -Wextra  -Wall  -Wabi=@var{n} @gol
323-Waddress  -Wno-address-of-packed-member  -Waggregate-return @gol
324-Walloc-size-larger-than=@var{byte-size}  -Walloc-zero @gol
325-Walloca  -Walloca-larger-than=@var{byte-size} @gol
326-Wno-aggressive-loop-optimizations @gol
327-Warith-conversion @gol
328-Warray-bounds  -Warray-bounds=@var{n}  -Warray-compare @gol
329-Wno-attributes  -Wattribute-alias=@var{n} -Wno-attribute-alias @gol
330-Wno-attribute-warning  @gol
331-Wbidi-chars=@r{[}none@r{|}unpaired@r{|}any@r{|}ucn@r{]} @gol
332-Wbool-compare  -Wbool-operation @gol
333-Wno-builtin-declaration-mismatch @gol
334-Wno-builtin-macro-redefined  -Wc90-c99-compat  -Wc99-c11-compat @gol
335-Wc11-c2x-compat @gol
336-Wc++-compat  -Wc++11-compat  -Wc++14-compat  -Wc++17-compat  @gol
337-Wc++20-compat   @gol
338-Wno-c++11-extensions  -Wno-c++14-extensions -Wno-c++17-extensions  @gol
339-Wno-c++20-extensions  -Wno-c++23-extensions  @gol
340-Wcast-align  -Wcast-align=strict  -Wcast-function-type  -Wcast-qual  @gol
341-Wchar-subscripts @gol
342-Wclobbered  -Wcomment @gol
343-Wconversion  -Wno-coverage-mismatch  -Wno-cpp @gol
344-Wdangling-else  -Wdangling-pointer  -Wdangling-pointer=@var{n}  @gol
345-Wdate-time @gol
346-Wno-deprecated  -Wno-deprecated-declarations  -Wno-designated-init @gol
347-Wdisabled-optimization @gol
348-Wno-discarded-array-qualifiers  -Wno-discarded-qualifiers @gol
349-Wno-div-by-zero  -Wdouble-promotion @gol
350-Wduplicated-branches  -Wduplicated-cond @gol
351-Wempty-body  -Wno-endif-labels  -Wenum-compare  -Wenum-conversion @gol
352-Werror  -Werror=*  -Wexpansion-to-defined  -Wfatal-errors @gol
353-Wfloat-conversion  -Wfloat-equal  -Wformat  -Wformat=2 @gol
354-Wno-format-contains-nul  -Wno-format-extra-args  @gol
355-Wformat-nonliteral  -Wformat-overflow=@var{n} @gol
356-Wformat-security  -Wformat-signedness  -Wformat-truncation=@var{n} @gol
357-Wformat-y2k  -Wframe-address @gol
358-Wframe-larger-than=@var{byte-size}  -Wno-free-nonheap-object @gol
359-Wno-if-not-aligned  -Wno-ignored-attributes @gol
360-Wignored-qualifiers  -Wno-incompatible-pointer-types @gol
361-Wimplicit  -Wimplicit-fallthrough  -Wimplicit-fallthrough=@var{n} @gol
362-Wno-implicit-function-declaration  -Wno-implicit-int @gol
363-Winfinite-recursion @gol
364-Winit-self  -Winline  -Wno-int-conversion  -Wint-in-bool-context @gol
365-Wno-int-to-pointer-cast  -Wno-invalid-memory-model @gol
366-Winvalid-pch  -Wjump-misses-init  -Wlarger-than=@var{byte-size} @gol
367-Wlogical-not-parentheses  -Wlogical-op  -Wlong-long @gol
368-Wno-lto-type-mismatch -Wmain  -Wmaybe-uninitialized @gol
369-Wmemset-elt-size  -Wmemset-transposed-args @gol
370-Wmisleading-indentation  -Wmissing-attributes  -Wmissing-braces @gol
371-Wmissing-field-initializers  -Wmissing-format-attribute @gol
372-Wmissing-include-dirs  -Wmissing-noreturn  -Wno-missing-profile @gol
373-Wno-multichar  -Wmultistatement-macros  -Wnonnull  -Wnonnull-compare @gol
374-Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
375-Wnull-dereference  -Wno-odr  @gol
376-Wopenacc-parallelism  @gol
377-Wopenmp-simd  @gol
378-Wno-overflow  -Woverlength-strings  -Wno-override-init-side-effects @gol
379-Wpacked  -Wno-packed-bitfield-compat  -Wpacked-not-aligned  -Wpadded @gol
380-Wparentheses  -Wno-pedantic-ms-format @gol
381-Wpointer-arith  -Wno-pointer-compare  -Wno-pointer-to-int-cast @gol
382-Wno-pragmas  -Wno-prio-ctor-dtor  -Wredundant-decls @gol
383-Wrestrict  -Wno-return-local-addr  -Wreturn-type @gol
384-Wno-scalar-storage-order  -Wsequence-point @gol
385-Wshadow  -Wshadow=global  -Wshadow=local  -Wshadow=compatible-local @gol
386-Wno-shadow-ivar @gol
387-Wno-shift-count-negative  -Wno-shift-count-overflow  -Wshift-negative-value @gol
388-Wno-shift-overflow  -Wshift-overflow=@var{n} @gol
389-Wsign-compare  -Wsign-conversion @gol
390-Wno-sizeof-array-argument @gol
391-Wsizeof-array-div @gol
392-Wsizeof-pointer-div  -Wsizeof-pointer-memaccess @gol
393-Wstack-protector  -Wstack-usage=@var{byte-size}  -Wstrict-aliasing @gol
394-Wstrict-aliasing=n  -Wstrict-overflow  -Wstrict-overflow=@var{n} @gol
395-Wstring-compare @gol
396-Wno-stringop-overflow -Wno-stringop-overread @gol
397-Wno-stringop-truncation @gol
398-Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
399-Wswitch  -Wno-switch-bool  -Wswitch-default  -Wswitch-enum @gol
400-Wno-switch-outside-range  -Wno-switch-unreachable  -Wsync-nand @gol
401-Wsystem-headers  -Wtautological-compare  -Wtrampolines  -Wtrigraphs @gol
402-Wtrivial-auto-var-init -Wtsan -Wtype-limits  -Wundef @gol
403-Wuninitialized  -Wunknown-pragmas @gol
404-Wunsuffixed-float-constants  -Wunused @gol
405-Wunused-but-set-parameter  -Wunused-but-set-variable @gol
406-Wunused-const-variable  -Wunused-const-variable=@var{n} @gol
407-Wunused-function  -Wunused-label  -Wunused-local-typedefs @gol
408-Wunused-macros @gol
409-Wunused-parameter  -Wno-unused-result @gol
410-Wunused-value  -Wunused-variable @gol
411-Wno-varargs  -Wvariadic-macros @gol
412-Wvector-operation-performance @gol
413-Wvla  -Wvla-larger-than=@var{byte-size}  -Wno-vla-larger-than @gol
414-Wvolatile-register-var  -Wwrite-strings @gol
415-Wzero-length-bounds}
416
417@item Static Analyzer Options
418@gccoptlist{
419-fanalyzer @gol
420-fanalyzer-call-summaries @gol
421-fanalyzer-checker=@var{name} @gol
422-fno-analyzer-feasibility @gol
423-fanalyzer-fine-grained @gol
424-fno-analyzer-state-merge @gol
425-fno-analyzer-state-purge @gol
426-fanalyzer-transitivity @gol
427-fanalyzer-verbose-edges @gol
428-fanalyzer-verbose-state-changes @gol
429-fanalyzer-verbosity=@var{level} @gol
430-fdump-analyzer @gol
431-fdump-analyzer-callgraph @gol
432-fdump-analyzer-exploded-graph @gol
433-fdump-analyzer-exploded-nodes @gol
434-fdump-analyzer-exploded-nodes-2 @gol
435-fdump-analyzer-exploded-nodes-3 @gol
436-fdump-analyzer-exploded-paths @gol
437-fdump-analyzer-feasibility @gol
438-fdump-analyzer-json @gol
439-fdump-analyzer-state-purge @gol
440-fdump-analyzer-stderr @gol
441-fdump-analyzer-supergraph @gol
442-fdump-analyzer-untracked @gol
443-Wno-analyzer-double-fclose @gol
444-Wno-analyzer-double-free @gol
445-Wno-analyzer-exposure-through-output-file @gol
446-Wno-analyzer-file-leak @gol
447-Wno-analyzer-free-of-non-heap @gol
448-Wno-analyzer-malloc-leak @gol
449-Wno-analyzer-mismatching-deallocation @gol
450-Wno-analyzer-null-argument @gol
451-Wno-analyzer-null-dereference @gol
452-Wno-analyzer-possible-null-argument @gol
453-Wno-analyzer-possible-null-dereference @gol
454-Wno-analyzer-shift-count-negative @gol
455-Wno-analyzer-shift-count-overflow @gol
456-Wno-analyzer-stale-setjmp-buffer @gol
457-Wno-analyzer-tainted-allocation-size @gol
458-Wno-analyzer-tainted-array-index @gol
459-Wno-analyzer-tainted-divisor @gol
460-Wno-analyzer-tainted-offset @gol
461-Wno-analyzer-tainted-size @gol
462-Wanalyzer-too-complex @gol
463-Wno-analyzer-unsafe-call-within-signal-handler @gol
464-Wno-analyzer-use-after-free @gol
465-Wno-analyzer-use-of-pointer-in-stale-stack-frame @gol
466-Wno-analyzer-use-of-uninitialized-value @gol
467-Wno-analyzer-write-to-const @gol
468-Wno-analyzer-write-to-string-literal @gol
469}
470
471@item C and Objective-C-only Warning Options
472@gccoptlist{-Wbad-function-cast  -Wmissing-declarations @gol
473-Wmissing-parameter-type  -Wmissing-prototypes  -Wnested-externs @gol
474-Wold-style-declaration  -Wold-style-definition @gol
475-Wstrict-prototypes  -Wtraditional  -Wtraditional-conversion @gol
476-Wdeclaration-after-statement  -Wpointer-sign}
477
478@item Debugging Options
479@xref{Debugging Options,,Options for Debugging Your Program}.
480@gccoptlist{-g  -g@var{level}  -gdwarf  -gdwarf-@var{version} @gol
481-gbtf -gctf  -gctf@var{level} @gol
482-ggdb  -grecord-gcc-switches  -gno-record-gcc-switches @gol
483-gstabs  -gstabs+  -gstrict-dwarf  -gno-strict-dwarf @gol
484-gas-loc-support  -gno-as-loc-support @gol
485-gas-locview-support  -gno-as-locview-support @gol
486-gcolumn-info  -gno-column-info  -gdwarf32  -gdwarf64 @gol
487-gstatement-frontiers  -gno-statement-frontiers @gol
488-gvariable-location-views  -gno-variable-location-views @gol
489-ginternal-reset-location-views  -gno-internal-reset-location-views @gol
490-ginline-points  -gno-inline-points @gol
491-gvms  -gxcoff  -gxcoff+  -gz@r{[}=@var{type}@r{]} @gol
492-gsplit-dwarf  -gdescribe-dies  -gno-describe-dies @gol
493-fdebug-prefix-map=@var{old}=@var{new}  -fdebug-types-section @gol
494-fno-eliminate-unused-debug-types @gol
495-femit-struct-debug-baseonly  -femit-struct-debug-reduced @gol
496-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
497-fno-eliminate-unused-debug-symbols  -femit-class-debug-always @gol
498-fno-merge-debug-strings  -fno-dwarf2-cfi-asm @gol
499-fvar-tracking  -fvar-tracking-assignments}
500
501@item Optimization Options
502@xref{Optimize Options,,Options that Control Optimization}.
503@gccoptlist{-faggressive-loop-optimizations @gol
504-falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
505-falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
506-falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
507-falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
508-fno-allocation-dce -fallow-store-data-races @gol
509-fassociative-math  -fauto-profile  -fauto-profile[=@var{path}] @gol
510-fauto-inc-dec  -fbranch-probabilities @gol
511-fcaller-saves @gol
512-fcombine-stack-adjustments  -fconserve-stack @gol
513-fcompare-elim  -fcprop-registers  -fcrossjumping @gol
514-fcse-follow-jumps  -fcse-skip-blocks  -fcx-fortran-rules @gol
515-fcx-limited-range @gol
516-fdata-sections  -fdce  -fdelayed-branch @gol
517-fdelete-null-pointer-checks  -fdevirtualize  -fdevirtualize-speculatively @gol
518-fdevirtualize-at-ltrans  -fdse @gol
519-fearly-inlining  -fipa-sra  -fexpensive-optimizations  -ffat-lto-objects @gol
520-ffast-math  -ffinite-math-only  -ffloat-store  -fexcess-precision=@var{style} @gol
521-ffinite-loops @gol
522-fforward-propagate  -ffp-contract=@var{style}  -ffunction-sections @gol
523-fgcse  -fgcse-after-reload  -fgcse-las  -fgcse-lm  -fgraphite-identity @gol
524-fgcse-sm  -fhoist-adjacent-loads  -fif-conversion @gol
525-fif-conversion2  -findirect-inlining @gol
526-finline-functions  -finline-functions-called-once  -finline-limit=@var{n} @gol
527-finline-small-functions -fipa-modref -fipa-cp  -fipa-cp-clone @gol
528-fipa-bit-cp  -fipa-vrp  -fipa-pta  -fipa-profile  -fipa-pure-const @gol
529-fipa-reference  -fipa-reference-addressable @gol
530-fipa-stack-alignment  -fipa-icf  -fira-algorithm=@var{algorithm} @gol
531-flive-patching=@var{level} @gol
532-fira-region=@var{region}  -fira-hoist-pressure @gol
533-fira-loop-pressure  -fno-ira-share-save-slots @gol
534-fno-ira-share-spill-slots @gol
535-fisolate-erroneous-paths-dereference  -fisolate-erroneous-paths-attribute @gol
536-fivopts  -fkeep-inline-functions  -fkeep-static-functions @gol
537-fkeep-static-consts  -flimit-function-alignment  -flive-range-shrinkage @gol
538-floop-block  -floop-interchange  -floop-strip-mine @gol
539-floop-unroll-and-jam  -floop-nest-optimize @gol
540-floop-parallelize-all  -flra-remat  -flto  -flto-compression-level @gol
541-flto-partition=@var{alg}  -fmerge-all-constants @gol
542-fmerge-constants  -fmodulo-sched  -fmodulo-sched-allow-regmoves @gol
543-fmove-loop-invariants  -fmove-loop-stores  -fno-branch-count-reg @gol
544-fno-defer-pop  -fno-fp-int-builtin-inexact  -fno-function-cse @gol
545-fno-guess-branch-probability  -fno-inline  -fno-math-errno  -fno-peephole @gol
546-fno-peephole2  -fno-printf-return-value  -fno-sched-interblock @gol
547-fno-sched-spec  -fno-signed-zeros @gol
548-fno-toplevel-reorder  -fno-trapping-math  -fno-zero-initialized-in-bss @gol
549-fomit-frame-pointer  -foptimize-sibling-calls @gol
550-fpartial-inlining  -fpeel-loops  -fpredictive-commoning @gol
551-fprefetch-loop-arrays @gol
552-fprofile-correction @gol
553-fprofile-use  -fprofile-use=@var{path} -fprofile-partial-training @gol
554-fprofile-values -fprofile-reorder-functions @gol
555-freciprocal-math  -free  -frename-registers  -freorder-blocks @gol
556-freorder-blocks-algorithm=@var{algorithm} @gol
557-freorder-blocks-and-partition  -freorder-functions @gol
558-frerun-cse-after-loop  -freschedule-modulo-scheduled-loops @gol
559-frounding-math  -fsave-optimization-record @gol
560-fsched2-use-superblocks  -fsched-pressure @gol
561-fsched-spec-load  -fsched-spec-load-dangerous @gol
562-fsched-stalled-insns-dep[=@var{n}]  -fsched-stalled-insns[=@var{n}] @gol
563-fsched-group-heuristic  -fsched-critical-path-heuristic @gol
564-fsched-spec-insn-heuristic  -fsched-rank-heuristic @gol
565-fsched-last-insn-heuristic  -fsched-dep-count-heuristic @gol
566-fschedule-fusion @gol
567-fschedule-insns  -fschedule-insns2  -fsection-anchors @gol
568-fselective-scheduling  -fselective-scheduling2 @gol
569-fsel-sched-pipelining  -fsel-sched-pipelining-outer-loops @gol
570-fsemantic-interposition  -fshrink-wrap  -fshrink-wrap-separate @gol
571-fsignaling-nans @gol
572-fsingle-precision-constant  -fsplit-ivs-in-unroller  -fsplit-loops@gol
573-fsplit-paths @gol
574-fsplit-wide-types  -fsplit-wide-types-early  -fssa-backprop  -fssa-phiopt @gol
575-fstdarg-opt  -fstore-merging  -fstrict-aliasing -fipa-strict-aliasing @gol
576-fthread-jumps  -ftracer  -ftree-bit-ccp @gol
577-ftree-builtin-call-dce  -ftree-ccp  -ftree-ch @gol
578-ftree-coalesce-vars  -ftree-copy-prop  -ftree-dce  -ftree-dominator-opts @gol
579-ftree-dse  -ftree-forwprop  -ftree-fre  -fcode-hoisting @gol
580-ftree-loop-if-convert  -ftree-loop-im @gol
581-ftree-phiprop  -ftree-loop-distribution  -ftree-loop-distribute-patterns @gol
582-ftree-loop-ivcanon  -ftree-loop-linear  -ftree-loop-optimize @gol
583-ftree-loop-vectorize @gol
584-ftree-parallelize-loops=@var{n}  -ftree-pre  -ftree-partial-pre  -ftree-pta @gol
585-ftree-reassoc  -ftree-scev-cprop  -ftree-sink  -ftree-slsr  -ftree-sra @gol
586-ftree-switch-conversion  -ftree-tail-merge @gol
587-ftree-ter  -ftree-vectorize  -ftree-vrp  -ftrivial-auto-var-init @gol
588-funconstrained-commons -funit-at-a-time  -funroll-all-loops @gol
589-funroll-loops -funsafe-math-optimizations  -funswitch-loops @gol
590-fipa-ra  -fvariable-expansion-in-unroller  -fvect-cost-model  -fvpt @gol
591-fweb  -fwhole-program  -fwpa  -fuse-linker-plugin -fzero-call-used-regs @gol
592--param @var{name}=@var{value}
593-O  -O0  -O1  -O2  -O3  -Os  -Ofast  -Og  -Oz}
594
595@item Program Instrumentation Options
596@xref{Instrumentation Options,,Program Instrumentation Options}.
597@gccoptlist{-p  -pg  -fprofile-arcs  --coverage  -ftest-coverage @gol
598-fprofile-abs-path @gol
599-fprofile-dir=@var{path}  -fprofile-generate  -fprofile-generate=@var{path} @gol
600-fprofile-info-section  -fprofile-info-section=@var{name} @gol
601-fprofile-note=@var{path} -fprofile-prefix-path=@var{path} @gol
602-fprofile-update=@var{method} -fprofile-filter-files=@var{regex} @gol
603-fprofile-exclude-files=@var{regex} @gol
604-fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]} @gol
605-fsanitize=@var{style}  -fsanitize-recover  -fsanitize-recover=@var{style} @gol
606-fasan-shadow-offset=@var{number}  -fsanitize-sections=@var{s1},@var{s2},... @gol
607-fsanitize-undefined-trap-on-error  -fbounds-check @gol
608-fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]} @gol
609-fharden-compares -fharden-conditional-branches @gol
610-fstack-protector  -fstack-protector-all  -fstack-protector-strong @gol
611-fstack-protector-explicit  -fstack-check @gol
612-fstack-limit-register=@var{reg}  -fstack-limit-symbol=@var{sym} @gol
613-fno-stack-limit  -fsplit-stack @gol
614-fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
615-fvtv-counts  -fvtv-debug @gol
616-finstrument-functions @gol
617-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
618-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}} @gol
619-fprofile-prefix-map=@var{old}=@var{new}
620
621@item Preprocessor Options
622@xref{Preprocessor Options,,Options Controlling the Preprocessor}.
623@gccoptlist{-A@var{question}=@var{answer} @gol
624-A-@var{question}@r{[}=@var{answer}@r{]} @gol
625-C  -CC  -D@var{macro}@r{[}=@var{defn}@r{]} @gol
626-dD  -dI  -dM  -dN  -dU @gol
627-fdebug-cpp  -fdirectives-only  -fdollars-in-identifiers  @gol
628-fexec-charset=@var{charset}  -fextended-identifiers  @gol
629-finput-charset=@var{charset}  -flarge-source-files  @gol
630-fmacro-prefix-map=@var{old}=@var{new} -fmax-include-depth=@var{depth} @gol
631-fno-canonical-system-headers  -fpch-deps  -fpch-preprocess  @gol
632-fpreprocessed  -ftabstop=@var{width}  -ftrack-macro-expansion  @gol
633-fwide-exec-charset=@var{charset}  -fworking-directory @gol
634-H  -imacros @var{file}  -include @var{file} @gol
635-M  -MD  -MF  -MG  -MM  -MMD  -MP  -MQ  -MT -Mno-modules @gol
636-no-integrated-cpp  -P  -pthread  -remap @gol
637-iprefix @var{file}  -iwithprefix @var{dir} @gol
638-traditional  -traditional-cpp  -trigraphs @gol
639-U@var{macro}  -undef  @gol
640-Wp,@var{option}  -Xpreprocessor @var{option}}
641
642@item Assembler Options
643@xref{Assembler Options,,Passing Options to the Assembler}.
644@gccoptlist{-Wa,@var{option}  -Xassembler @var{option}}
645
646@item Linker Options
647@xref{Link Options,,Options for Linking}.
648@gccoptlist{@var{object-file-name}  -fuse-ld=@var{linker}  -l@var{library} @gol
649-nostartfiles  -nodefaultlibs  -nolibc  -nostdlib @gol
650-e @var{entry}  --entry=@var{entry} @gol
651-pie  -pthread  -r  -rdynamic @gol
652-s  -static  -static-pie  -static-libgcc  -static-libstdc++ @gol
653-static-libasan  -static-libtsan  -static-liblsan  -static-libubsan @gol
654-shared  -shared-libgcc  -symbolic @gol
655-T @var{script}  -Wl,@var{option}  -Xlinker @var{option} @gol
656-u @var{symbol}  -z @var{keyword}}
657
658@item Directory Options
659@xref{Directory Options,,Options for Directory Search}.
660@gccoptlist{-B@var{prefix}  -I@var{dir}  -I- @gol
661-idirafter @var{dir} @gol
662-imacros @var{file}  -imultilib @var{dir} @gol
663-iplugindir=@var{dir}  @gol
664-iquote @var{dir}  -isysroot @var{dir}  -isystem @var{dir} @gol
665-iremap@var{src}:@var{dst} -cxx-isystem=@var{dir} @gol
666-iwithprefix @var{dir}  -iwithprefixbefore @var{dir}  @gol
667-L@var{dir}  -no-canonical-prefixes  --no-sysroot-suffix @gol
668-nostdinc  -nostdinc++  --sysroot=@var{dir}}
669
670@item Code Generation Options
671@xref{Code Gen Options,,Options for Code Generation Conventions}.
672@gccoptlist{-fcall-saved-@var{reg}  -fcall-used-@var{reg} @gol
673-ffixed-@var{reg}  -fexceptions @gol
674-fnon-call-exceptions  -fdelete-dead-exceptions  -funwind-tables @gol
675-fasynchronous-unwind-tables @gol
676-fno-gnu-unique @gol
677-finhibit-size-directive  -fcommon  -fno-ident @gol
678-fpcc-struct-return  -fpic  -fPIC  -fpie  -fPIE  -fno-plt @gol
679-fno-jump-tables -fno-bit-tests @gol
680-frecord-gcc-switches @gol
681-freg-struct-return  -fshort-enums  -fshort-wchar @gol
682-fverbose-asm  -fpack-struct[=@var{n}]  @gol
683-fleading-underscore  -ftls-model=@var{model} @gol
684-fstack-reuse=@var{reuse_level} @gol
685-ftrampolines  -ftrapv  -fwrapv @gol
686-fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
687-fstrict-volatile-bitfields  -fsync-libcalls}
688
689@item Developer Options
690@xref{Developer Options,,GCC Developer Options}.
691@gccoptlist{-d@var{letters}  -dumpspecs  -dumpmachine  -dumpversion @gol
692-dumpfullversion  -fcallgraph-info@r{[}=su,da@r{]}
693-fchecking  -fchecking=@var{n}
694-fdbg-cnt-list @gol  -fdbg-cnt=@var{counter-value-list} @gol
695-fdisable-ipa-@var{pass_name} @gol
696-fdisable-rtl-@var{pass_name} @gol
697-fdisable-rtl-@var{pass-name}=@var{range-list} @gol
698-fdisable-tree-@var{pass_name} @gol
699-fdisable-tree-@var{pass-name}=@var{range-list} @gol
700-fdump-debug  -fdump-earlydebug @gol
701-fdump-noaddr  -fdump-unnumbered  -fdump-unnumbered-links @gol
702-fdump-final-insns@r{[}=@var{file}@r{]} @gol
703-fdump-ipa-all  -fdump-ipa-cgraph  -fdump-ipa-inline @gol
704-fdump-lang-all @gol
705-fdump-lang-@var{switch} @gol
706-fdump-lang-@var{switch}-@var{options} @gol
707-fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
708-fdump-passes @gol
709-fdump-rtl-@var{pass}  -fdump-rtl-@var{pass}=@var{filename} @gol
710-fdump-statistics @gol
711-fdump-tree-all @gol
712-fdump-tree-@var{switch} @gol
713-fdump-tree-@var{switch}-@var{options} @gol
714-fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
715-fcompare-debug@r{[}=@var{opts}@r{]}  -fcompare-debug-second @gol
716-fenable-@var{kind}-@var{pass} @gol
717-fenable-@var{kind}-@var{pass}=@var{range-list} @gol
718-fira-verbose=@var{n} @gol
719-flto-report  -flto-report-wpa  -fmem-report-wpa @gol
720-fmem-report  -fpre-ipa-mem-report  -fpost-ipa-mem-report @gol
721-fopt-info  -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
722-fprofile-report @gol
723-frandom-seed=@var{string}  -fsched-verbose=@var{n} @gol
724-fsel-sched-verbose  -fsel-sched-dump-cfg  -fsel-sched-pipelining-verbose @gol
725-fstats  -fstack-usage  -ftime-report  -ftime-report-details @gol
726-fvar-tracking-assignments-toggle  -gtoggle @gol
727-print-file-name=@var{library}  -print-libgcc-file-name @gol
728-print-multi-directory  -print-multi-lib  -print-multi-os-directory @gol
729-print-prog-name=@var{program}  -print-search-dirs  -Q @gol
730-print-sysroot  -print-sysroot-headers-suffix @gol
731-save-temps  -save-temps=cwd  -save-temps=obj  -time@r{[}=@var{file}@r{]}}
732
733@item Machine-Dependent Options
734@xref{Submodel Options,,Machine-Dependent Options}.
735@c This list is ordered alphanumerically by subsection name.
736@c Try and put the significant identifier (CPU or system) first,
737@c so users have a clue at guessing where the ones they want will be.
738
739@emph{AArch64 Options}
740@gccoptlist{-mabi=@var{name}  -mbig-endian  -mlittle-endian @gol
741-mgeneral-regs-only @gol
742-mcmodel=tiny  -mcmodel=small  -mcmodel=large @gol
743-mstrict-align  -mno-strict-align @gol
744-momit-leaf-frame-pointer @gol
745-mtls-dialect=desc  -mtls-dialect=traditional @gol
746-mtls-size=@var{size} @gol
747-mfix-cortex-a53-835769  -mfix-cortex-a53-843419 @gol
748-mlow-precision-recip-sqrt  -mlow-precision-sqrt  -mlow-precision-div @gol
749-mpc-relative-literal-loads @gol
750-msign-return-address=@var{scope} @gol
751-mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
752+@var{b-key}]|@var{bti} @gol
753-mharden-sls=@var{opts} @gol
754-march=@var{name}  -mcpu=@var{name}  -mtune=@var{name}  @gol
755-moverride=@var{string}  -mverbose-cost-dump @gol
756-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
757-mstack-protector-guard-offset=@var{offset} -mtrack-speculation @gol
758-moutline-atomics }
759
760@emph{Adapteva Epiphany Options}
761@gccoptlist{-mhalf-reg-file  -mprefer-short-insn-regs @gol
762-mbranch-cost=@var{num}  -mcmove  -mnops=@var{num}  -msoft-cmpsf @gol
763-msplit-lohi  -mpost-inc  -mpost-modify  -mstack-offset=@var{num} @gol
764-mround-nearest  -mlong-calls  -mshort-calls  -msmall16 @gol
765-mfp-mode=@var{mode}  -mvect-double  -max-vect-align=@var{num} @gol
766-msplit-vecmove-early  -m1reg-@var{reg}}
767
768@emph{AMD GCN Options}
769@gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
770
771@emph{ARC Options}
772@gccoptlist{-mbarrel-shifter  -mjli-always @gol
773-mcpu=@var{cpu}  -mA6  -mARC600  -mA7  -mARC700 @gol
774-mdpfp  -mdpfp-compact  -mdpfp-fast  -mno-dpfp-lrsr @gol
775-mea  -mno-mpy  -mmul32x16  -mmul64  -matomic @gol
776-mnorm  -mspfp  -mspfp-compact  -mspfp-fast  -msimd  -msoft-float  -mswap @gol
777-mcrc  -mdsp-packa  -mdvbf  -mlock  -mmac-d16  -mmac-24  -mrtsc  -mswape @gol
778-mtelephony  -mxy  -misize  -mannotate-align  -marclinux  -marclinux_prof @gol
779-mlong-calls  -mmedium-calls  -msdata  -mirq-ctrl-saved @gol
780-mrgf-banked-regs  -mlpc-width=@var{width}  -G @var{num} @gol
781-mvolatile-cache  -mtp-regno=@var{regno} @gol
782-malign-call  -mauto-modify-reg  -mbbit-peephole  -mno-brcc @gol
783-mcase-vector-pcrel  -mcompact-casesi  -mno-cond-exec  -mearly-cbranchsi @gol
784-mexpand-adddi  -mindexed-loads  -mlra  -mlra-priority-none @gol
785-mlra-priority-compact -mlra-priority-noncompact  -mmillicode @gol
786-mmixed-code  -mq-class  -mRcq  -mRcw  -msize-level=@var{level} @gol
787-mtune=@var{cpu}  -mmultcost=@var{num}  -mcode-density-frame @gol
788-munalign-prob-threshold=@var{probability}  -mmpy-option=@var{multo} @gol
789-mdiv-rem  -mcode-density  -mll64  -mfpu=@var{fpu}  -mrf16  -mbranch-index}
790
791@emph{ARM Options}
792@gccoptlist{-mapcs-frame  -mno-apcs-frame @gol
793-mabi=@var{name} @gol
794-mapcs-stack-check  -mno-apcs-stack-check @gol
795-mapcs-reentrant  -mno-apcs-reentrant @gol
796-mgeneral-regs-only @gol
797-msched-prolog  -mno-sched-prolog @gol
798-mlittle-endian  -mbig-endian @gol
799-mbe8  -mbe32 @gol
800-mfloat-abi=@var{name} @gol
801-mfp16-format=@var{name}
802-mthumb-interwork  -mno-thumb-interwork @gol
803-mcpu=@var{name}  -march=@var{name}  -mfpu=@var{name}  @gol
804-mtune=@var{name}  -mprint-tune-info @gol
805-mstructure-size-boundary=@var{n} @gol
806-mabort-on-noreturn @gol
807-mlong-calls  -mno-long-calls @gol
808-msingle-pic-base  -mno-single-pic-base @gol
809-mpic-register=@var{reg} @gol
810-mnop-fun-dllimport @gol
811-mpoke-function-name @gol
812-mthumb  -marm  -mflip-thumb @gol
813-mtpcs-frame  -mtpcs-leaf-frame @gol
814-mcaller-super-interworking  -mcallee-super-interworking @gol
815-mtp=@var{name}  -mtls-dialect=@var{dialect} @gol
816-mword-relocations @gol
817-mfix-cortex-m3-ldrd @gol
818-mfix-cortex-a57-aes-1742098 @gol
819-mfix-cortex-a72-aes-1655431 @gol
820-munaligned-access @gol
821-mneon-for-64bits @gol
822-mslow-flash-data @gol
823-masm-syntax-unified @gol
824-mrestrict-it @gol
825-mverbose-cost-dump @gol
826-mpure-code @gol
827-mcmse @gol
828-mfix-cmse-cve-2021-35465 @gol
829-mstack-protector-guard=@var{guard} -mstack-protector-guard-offset=@var{offset} @gol
830-mfdpic}
831
832@emph{AVR Options}
833@gccoptlist{-mmcu=@var{mcu}  -mabsdata  -maccumulate-args @gol
834-mbranch-cost=@var{cost} @gol
835-mcall-prologues  -mgas-isr-prologues  -mint8 @gol
836-mdouble=@var{bits} -mlong-double=@var{bits} @gol
837-mn_flash=@var{size}  -mno-interrupts @gol
838-mmain-is-OS_task  -mrelax  -mrmw  -mstrict-X  -mtiny-stack @gol
839-mfract-convert-truncate @gol
840-mshort-calls  -nodevicelib  -nodevicespecs @gol
841-Waddr-space-convert  -Wmisspelled-isr}
842
843@emph{Blackfin Options}
844@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
845-msim  -momit-leaf-frame-pointer  -mno-omit-leaf-frame-pointer @gol
846-mspecld-anomaly  -mno-specld-anomaly  -mcsync-anomaly  -mno-csync-anomaly @gol
847-mlow-64k  -mno-low64k  -mstack-check-l1  -mid-shared-library @gol
848-mno-id-shared-library  -mshared-library-id=@var{n} @gol
849-mleaf-id-shared-library  -mno-leaf-id-shared-library @gol
850-msep-data  -mno-sep-data  -mlong-calls  -mno-long-calls @gol
851-mfast-fp  -minline-plt  -mmulticore  -mcorea  -mcoreb  -msdram @gol
852-micplb}
853
854@emph{C6X Options}
855@gccoptlist{-mbig-endian  -mlittle-endian  -march=@var{cpu} @gol
856-msim  -msdata=@var{sdata-type}}
857
858@emph{CRIS Options}
859@gccoptlist{-mcpu=@var{cpu}  -march=@var{cpu}
860-mtune=@var{cpu} -mmax-stack-frame=@var{n} @gol
861-metrax4  -metrax100  -mpdebug  -mcc-init  -mno-side-effects @gol
862-mstack-align  -mdata-align  -mconst-align @gol
863-m32-bit  -m16-bit  -m8-bit  -mno-prologue-epilogue @gol
864-melf  -maout  -sim  -sim2 @gol
865-mmul-bug-workaround  -mno-mul-bug-workaround}
866
867@emph{CR16 Options}
868@gccoptlist{-mmac @gol
869-mcr16cplus  -mcr16c @gol
870-msim  -mint32  -mbit-ops
871-mdata-model=@var{model}}
872
873@emph{C-SKY Options}
874@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu} @gol
875-mbig-endian  -EB  -mlittle-endian  -EL @gol
876-mhard-float  -msoft-float  -mfpu=@var{fpu}  -mdouble-float  -mfdivdu @gol
877-mfloat-abi=@var{name} @gol
878-melrw  -mistack  -mmp  -mcp  -mcache  -msecurity  -mtrust @gol
879-mdsp  -medsp  -mvdsp @gol
880-mdiv  -msmart  -mhigh-registers  -manchor @gol
881-mpushpop  -mmultiple-stld  -mconstpool  -mstack-size  -mccrt @gol
882-mbranch-cost=@var{n}  -mcse-cc  -msched-prolog -msim}
883
884@emph{Darwin Options}
885@gccoptlist{-all_load  -allowable_client  -arch  -arch_errors_fatal @gol
886-arch_only  -bind_at_load  -bundle  -bundle_loader @gol
887-client_name  -compatibility_version  -current_version @gol
888-dead_strip @gol
889-dependency-file  -dylib_file  -dylinker_install_name @gol
890-dynamic  -dynamiclib  -exported_symbols_list @gol
891-filelist  -flat_namespace  -force_cpusubtype_ALL @gol
892-force_flat_namespace  -headerpad_max_install_names @gol
893-iframework @gol
894-image_base  -init  -install_name  -keep_private_externs @gol
895-multi_module  -multiply_defined  -multiply_defined_unused @gol
896-noall_load   -no_dead_strip_inits_and_terms @gol
897-nofixprebinding  -nomultidefs  -noprebind  -noseglinkedit @gol
898-pagezero_size  -prebind  -prebind_all_twolevel_modules @gol
899-private_bundle  -read_only_relocs  -sectalign @gol
900-sectobjectsymbols  -whyload  -seg1addr @gol
901-sectcreate  -sectobjectsymbols  -sectorder @gol
902-segaddr  -segs_read_only_addr  -segs_read_write_addr @gol
903-seg_addr_table  -seg_addr_table_filename  -seglinkedit @gol
904-segprot  -segs_read_only_addr  -segs_read_write_addr @gol
905-single_module  -static  -sub_library  -sub_umbrella @gol
906-twolevel_namespace  -umbrella  -undefined @gol
907-unexported_symbols_list  -weak_reference_mismatches @gol
908-whatsloaded  -F  -gused  -gfull  -mmacosx-version-min=@var{version} @gol
909-mkernel  -mone-byte-bool}
910
911@emph{DEC Alpha Options}
912@gccoptlist{-mno-fp-regs  -msoft-float @gol
913-mieee  -mieee-with-inexact  -mieee-conformant @gol
914-mfp-trap-mode=@var{mode}  -mfp-rounding-mode=@var{mode} @gol
915-mtrap-precision=@var{mode}  -mbuild-constants @gol
916-mcpu=@var{cpu-type}  -mtune=@var{cpu-type} @gol
917-mbwx  -mmax  -mfix  -mcix @gol
918-mfloat-vax  -mfloat-ieee @gol
919-mexplicit-relocs  -msmall-data  -mlarge-data @gol
920-msmall-text  -mlarge-text @gol
921-mmemory-latency=@var{time}}
922
923@emph{eBPF Options}
924@gccoptlist{-mbig-endian -mlittle-endian -mkernel=@var{version}
925-mframe-limit=@var{bytes} -mxbpf -mco-re -mno-co-re
926-mjmpext -mjmp32 -malu32 -mcpu=@var{version}}
927
928@emph{FR30 Options}
929@gccoptlist{-msmall-model  -mno-lsim}
930
931@emph{FT32 Options}
932@gccoptlist{-msim  -mlra  -mnodiv  -mft32b  -mcompress  -mnopm}
933
934@emph{FRV Options}
935@gccoptlist{-mgpr-32  -mgpr-64  -mfpr-32  -mfpr-64 @gol
936-mhard-float  -msoft-float @gol
937-malloc-cc  -mfixed-cc  -mdword  -mno-dword @gol
938-mdouble  -mno-double @gol
939-mmedia  -mno-media  -mmuladd  -mno-muladd @gol
940-mfdpic  -minline-plt  -mgprel-ro  -multilib-library-pic @gol
941-mlinked-fp  -mlong-calls  -malign-labels @gol
942-mlibrary-pic  -macc-4  -macc-8 @gol
943-mpack  -mno-pack  -mno-eflags  -mcond-move  -mno-cond-move @gol
944-moptimize-membar  -mno-optimize-membar @gol
945-mscc  -mno-scc  -mcond-exec  -mno-cond-exec @gol
946-mvliw-branch  -mno-vliw-branch @gol
947-mmulti-cond-exec  -mno-multi-cond-exec  -mnested-cond-exec @gol
948-mno-nested-cond-exec  -mtomcat-stats @gol
949-mTLS  -mtls @gol
950-mcpu=@var{cpu}}
951
952@emph{GNU/Linux Options}
953@gccoptlist{-mglibc  -muclibc  -mmusl  -mbionic  -mandroid @gol
954-tno-android-cc  -tno-android-ld}
955
956@emph{H8/300 Options}
957@gccoptlist{-mrelax  -mh  -ms  -mn  -mexr  -mno-exr  -mint32  -malign-300}
958
959@emph{HPPA Options}
960@gccoptlist{-march=@var{architecture-type} @gol
961-mcaller-copies  -mdisable-fpregs  -mdisable-indexing @gol
962-mfast-indirect-calls  -mgas  -mgnu-ld   -mhp-ld @gol
963-mfixed-range=@var{register-range} @gol
964-mjump-in-delay  -mlinker-opt  -mlong-calls @gol
965-mlong-load-store  -mno-disable-fpregs @gol
966-mno-disable-indexing  -mno-fast-indirect-calls  -mno-gas @gol
967-mno-jump-in-delay  -mno-long-load-store @gol
968-mno-portable-runtime  -mno-soft-float @gol
969-mno-space-regs  -msoft-float  -mpa-risc-1-0 @gol
970-mpa-risc-1-1  -mpa-risc-2-0  -mportable-runtime @gol
971-mschedule=@var{cpu-type}  -mspace-regs  -msio  -mwsio @gol
972-munix=@var{unix-std}  -nolibdld  -static  -threads}
973
974@emph{IA-64 Options}
975@gccoptlist{-mbig-endian  -mlittle-endian  -mgnu-as  -mgnu-ld  -mno-pic @gol
976-mvolatile-asm-stop  -mregister-names  -msdata  -mno-sdata @gol
977-mconstant-gp  -mauto-pic  -mfused-madd @gol
978-minline-float-divide-min-latency @gol
979-minline-float-divide-max-throughput @gol
980-mno-inline-float-divide @gol
981-minline-int-divide-min-latency @gol
982-minline-int-divide-max-throughput  @gol
983-mno-inline-int-divide @gol
984-minline-sqrt-min-latency  -minline-sqrt-max-throughput @gol
985-mno-inline-sqrt @gol
986-mdwarf2-asm  -mearly-stop-bits @gol
987-mfixed-range=@var{register-range}  -mtls-size=@var{tls-size} @gol
988-mtune=@var{cpu-type}  -milp32  -mlp64 @gol
989-msched-br-data-spec  -msched-ar-data-spec  -msched-control-spec @gol
990-msched-br-in-data-spec  -msched-ar-in-data-spec  -msched-in-control-spec @gol
991-msched-spec-ldc  -msched-spec-control-ldc @gol
992-msched-prefer-non-data-spec-insns  -msched-prefer-non-control-spec-insns @gol
993-msched-stop-bits-after-every-cycle  -msched-count-spec-in-critical-path @gol
994-msel-sched-dont-check-control-spec  -msched-fp-mem-deps-zero-cost @gol
995-msched-max-memory-insns-hard-limit  -msched-max-memory-insns=@var{max-insns}}
996
997@emph{LM32 Options}
998@gccoptlist{-mbarrel-shift-enabled  -mdivide-enabled  -mmultiply-enabled @gol
999-msign-extend-enabled  -muser-enabled}
1000
1001@emph{LoongArch Options}
1002@gccoptlist{-march=@var{cpu-type}  -mtune=@var{cpu-type} -mabi=@var{base-abi-type} @gol
1003-mfpu=@var{fpu-type} -msoft-float -msingle-float -mdouble-float @gol
1004-mbranch-cost=@var{n}  -mcheck-zero-division -mno-check-zero-division @gol
1005-mcond-move-int  -mno-cond-move-int @gol
1006-mcond-move-float  -mno-cond-move-float @gol
1007-memcpy  -mno-memcpy -mstrict-align -mno-strict-align @gol
1008-mmax-inline-memcpy-size=@var{n} @gol
1009-mcmodel=@var{code-model} -mrelax -mpass-mrelax-to-as}
1010
1011@emph{M32R/D Options}
1012@gccoptlist{-m32r2  -m32rx  -m32r @gol
1013-mdebug @gol
1014-malign-loops  -mno-align-loops @gol
1015-missue-rate=@var{number} @gol
1016-mbranch-cost=@var{number} @gol
1017-mmodel=@var{code-size-model-type} @gol
1018-msdata=@var{sdata-type} @gol
1019-mno-flush-func  -mflush-func=@var{name} @gol
1020-mno-flush-trap  -mflush-trap=@var{number} @gol
1021-G @var{num}}
1022
1023@emph{M32C Options}
1024@gccoptlist{-mcpu=@var{cpu}  -msim  -memregs=@var{number}}
1025
1026@emph{M680x0 Options}
1027@gccoptlist{-march=@var{arch}  -mcpu=@var{cpu}  -mtune=@var{tune} @gol
1028-m68000  -m68020  -m68020-40  -m68020-60  -m68030  -m68040 @gol
1029-m68060  -mcpu32  -m5200  -m5206e  -m528x  -m5307  -m5407 @gol
1030-mcfv4e  -mbitfield  -mno-bitfield  -mc68000  -mc68020 @gol
1031-mnobitfield  -mrtd  -mno-rtd  -mdiv  -mno-div  -mshort @gol
1032-mno-short  -mhard-float  -m68881  -msoft-float  -mpcrel @gol
1033-malign-int  -mstrict-align  -msep-data  -mno-sep-data @gol
1034-mshared-library-id=n  -mid-shared-library  -mno-id-shared-library @gol
1035-mxgot  -mno-xgot  -mlong-jump-table-offsets}
1036
1037@emph{MCore Options}
1038@gccoptlist{-mhardlit  -mno-hardlit  -mdiv  -mno-div  -mrelax-immediates @gol
1039-mno-relax-immediates  -mwide-bitfields  -mno-wide-bitfields @gol
1040-m4byte-functions  -mno-4byte-functions  -mcallgraph-data @gol
1041-mno-callgraph-data  -mslow-bytes  -mno-slow-bytes  -mno-lsim @gol
1042-mlittle-endian  -mbig-endian  -m210  -m340  -mstack-increment}
1043
1044@emph{MeP Options}
1045@gccoptlist{-mabsdiff  -mall-opts  -maverage  -mbased=@var{n}  -mbitops @gol
1046-mc=@var{n}  -mclip  -mconfig=@var{name}  -mcop  -mcop32  -mcop64  -mivc2 @gol
1047-mdc  -mdiv  -meb  -mel  -mio-volatile  -ml  -mleadz  -mm  -mminmax @gol
1048-mmult  -mno-opts  -mrepeat  -ms  -msatur  -msdram  -msim  -msimnovec  -mtf @gol
1049-mtiny=@var{n}}
1050
1051@emph{MicroBlaze Options}
1052@gccoptlist{-msoft-float  -mhard-float  -msmall-divides  -mcpu=@var{cpu} @gol
1053-mmemcpy  -mxl-soft-mul  -mxl-soft-div  -mxl-barrel-shift @gol
1054-mxl-pattern-compare  -mxl-stack-check  -mxl-gp-opt  -mno-clearbss @gol
1055-mxl-multiply-high  -mxl-float-convert  -mxl-float-sqrt @gol
1056-mbig-endian  -mlittle-endian  -mxl-reorder  -mxl-mode-@var{app-model} @gol
1057-mpic-data-is-text-relative}
1058
1059@emph{MIPS Options}
1060@gccoptlist{-EL  -EB  -march=@var{arch}  -mtune=@var{arch} @gol
1061-mips1  -mips2  -mips3  -mips4  -mips32  -mips32r2  -mips32r3  -mips32r5 @gol
1062-mips32r6  -mips64  -mips64r2  -mips64r3  -mips64r5  -mips64r6 @gol
1063-mips16  -mno-mips16  -mflip-mips16 @gol
1064-minterlink-compressed  -mno-interlink-compressed @gol
1065-minterlink-mips16  -mno-interlink-mips16 @gol
1066-mabi=@var{abi}  -mabicalls  -mno-abicalls @gol
1067-mshared  -mno-shared  -mplt  -mno-plt  -mxgot  -mno-xgot @gol
1068-mgp32  -mgp64  -mfp32  -mfpxx  -mfp64  -mhard-float  -msoft-float @gol
1069-mno-float  -msingle-float  -mdouble-float @gol
1070-modd-spreg  -mno-odd-spreg @gol
1071-mabs=@var{mode}  -mnan=@var{encoding} @gol
1072-mdsp  -mno-dsp  -mdspr2  -mno-dspr2 @gol
1073-mmcu  -mmno-mcu @gol
1074-meva  -mno-eva @gol
1075-mvirt  -mno-virt @gol
1076-mxpa  -mno-xpa @gol
1077-mcrc  -mno-crc @gol
1078-mginv  -mno-ginv @gol
1079-mmicromips  -mno-micromips @gol
1080-mmsa  -mno-msa @gol
1081-mloongson-mmi  -mno-loongson-mmi @gol
1082-mloongson-ext  -mno-loongson-ext @gol
1083-mloongson-ext2  -mno-loongson-ext2 @gol
1084-mfpu=@var{fpu-type} @gol
1085-msmartmips  -mno-smartmips @gol
1086-mpaired-single  -mno-paired-single  -mdmx  -mno-mdmx @gol
1087-mips3d  -mno-mips3d  -mmt  -mno-mt  -mllsc  -mno-llsc @gol
1088-mlong64  -mlong32  -msym32  -mno-sym32 @gol
1089-G@var{num}  -mlocal-sdata  -mno-local-sdata @gol
1090-mextern-sdata  -mno-extern-sdata  -mgpopt  -mno-gopt @gol
1091-membedded-data  -mno-embedded-data @gol
1092-muninit-const-in-rodata  -mno-uninit-const-in-rodata @gol
1093-mcode-readable=@var{setting} @gol
1094-msplit-addresses  -mno-split-addresses @gol
1095-mexplicit-relocs  -mno-explicit-relocs @gol
1096-mcheck-zero-division  -mno-check-zero-division @gol
1097-mdivide-traps  -mdivide-breaks @gol
1098-mload-store-pairs  -mno-load-store-pairs @gol
1099-munaligned-access  -mno-unaligned-access @gol
1100-mmemcpy  -mno-memcpy  -mlong-calls  -mno-long-calls @gol
1101-mmad  -mno-mad  -mimadd  -mno-imadd  -mfused-madd  -mno-fused-madd  -nocpp @gol
1102-mfix-24k  -mno-fix-24k @gol
1103-mfix-r4000  -mno-fix-r4000  -mfix-r4400  -mno-fix-r4400 @gol
1104-mfix-r5900  -mno-fix-r5900 @gol
1105-mfix-r10000  -mno-fix-r10000  -mfix-rm7000  -mno-fix-rm7000 @gol
1106-mfix-vr4120  -mno-fix-vr4120 @gol
1107-mfix-vr4130  -mno-fix-vr4130  -mfix-sb1  -mno-fix-sb1 @gol
1108-mflush-func=@var{func}  -mno-flush-func @gol
1109-mbranch-cost=@var{num}  -mbranch-likely  -mno-branch-likely @gol
1110-mcompact-branches=@var{policy} @gol
1111-mfp-exceptions  -mno-fp-exceptions @gol
1112-mvr4130-align  -mno-vr4130-align  -msynci  -mno-synci @gol
1113-mlxc1-sxc1  -mno-lxc1-sxc1  -mmadd4  -mno-madd4 @gol
1114-mrelax-pic-calls  -mno-relax-pic-calls  -mmcount-ra-address @gol
1115-mframe-header-opt  -mno-frame-header-opt}
1116
1117@emph{MMIX Options}
1118@gccoptlist{-mlibfuncs  -mno-libfuncs  -mepsilon  -mno-epsilon  -mabi=gnu @gol
1119-mabi=mmixware  -mzero-extend  -mknuthdiv  -mtoplevel-symbols @gol
1120-melf  -mbranch-predict  -mno-branch-predict  -mbase-addresses @gol
1121-mno-base-addresses  -msingle-exit  -mno-single-exit}
1122
1123@emph{MN10300 Options}
1124@gccoptlist{-mmult-bug  -mno-mult-bug @gol
1125-mno-am33  -mam33  -mam33-2  -mam34 @gol
1126-mtune=@var{cpu-type} @gol
1127-mreturn-pointer-on-d0 @gol
1128-mno-crt0  -mrelax  -mliw  -msetlb}
1129
1130@emph{Moxie Options}
1131@gccoptlist{-meb  -mel  -mmul.x  -mno-crt0}
1132
1133@emph{MSP430 Options}
1134@gccoptlist{-msim  -masm-hex  -mmcu=  -mcpu=  -mlarge  -msmall  -mrelax @gol
1135-mwarn-mcu @gol
1136-mcode-region=  -mdata-region= @gol
1137-msilicon-errata=  -msilicon-errata-warn= @gol
1138-mhwmult=  -minrt  -mtiny-printf  -mmax-inline-shift=}
1139
1140@emph{NDS32 Options}
1141@gccoptlist{-mbig-endian  -mlittle-endian @gol
1142-mreduced-regs  -mfull-regs @gol
1143-mcmov  -mno-cmov @gol
1144-mext-perf  -mno-ext-perf @gol
1145-mext-perf2  -mno-ext-perf2 @gol
1146-mext-string  -mno-ext-string @gol
1147-mv3push  -mno-v3push @gol
1148-m16bit  -mno-16bit @gol
1149-misr-vector-size=@var{num} @gol
1150-mcache-block-size=@var{num} @gol
1151-march=@var{arch} @gol
1152-mcmodel=@var{code-model} @gol
1153-mctor-dtor  -mrelax}
1154
1155@emph{Nios II Options}
1156@gccoptlist{-G @var{num}  -mgpopt=@var{option}  -mgpopt  -mno-gpopt @gol
1157-mgprel-sec=@var{regexp}  -mr0rel-sec=@var{regexp} @gol
1158-mel  -meb @gol
1159-mno-bypass-cache  -mbypass-cache @gol
1160-mno-cache-volatile  -mcache-volatile @gol
1161-mno-fast-sw-div  -mfast-sw-div @gol
1162-mhw-mul  -mno-hw-mul  -mhw-mulx  -mno-hw-mulx  -mno-hw-div  -mhw-div @gol
1163-mcustom-@var{insn}=@var{N}  -mno-custom-@var{insn} @gol
1164-mcustom-fpu-cfg=@var{name} @gol
1165-mhal  -msmallc  -msys-crt0=@var{name}  -msys-lib=@var{name} @gol
1166-march=@var{arch}  -mbmx  -mno-bmx  -mcdx  -mno-cdx}
1167
1168@emph{Nvidia PTX Options}
1169@gccoptlist{-m64  -mmainkernel  -moptimize}
1170
1171@emph{OpenRISC Options}
1172@gccoptlist{-mboard=@var{name}  -mnewlib  -mhard-mul  -mhard-div @gol
1173-msoft-mul  -msoft-div @gol
1174-msoft-float  -mhard-float  -mdouble-float -munordered-float @gol
1175-mcmov  -mror  -mrori  -msext  -msfimm  -mshftimm @gol
1176-mcmodel=@var{code-model}}
1177
1178@emph{PDP-11 Options}
1179@gccoptlist{-mfpu  -msoft-float  -mac0  -mno-ac0  -m40  -m45  -m10 @gol
1180-mint32  -mno-int16  -mint16  -mno-int32 @gol
1181-msplit  -munix-asm  -mdec-asm  -mgnu-asm  -mlra}
1182
1183@emph{picoChip Options}
1184@gccoptlist{-mae=@var{ae_type}  -mvliw-lookahead=@var{N} @gol
1185-msymbol-as-address  -mno-inefficient-warnings}
1186
1187@emph{PowerPC Options}
1188See RS/6000 and PowerPC Options.
1189
1190@emph{PRU Options}
1191@gccoptlist{-mmcu=@var{mcu}  -minrt  -mno-relax  -mloop @gol
1192-mabi=@var{variant} @gol}
1193
1194@emph{RISC-V Options}
1195@gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1196-mplt  -mno-plt @gol
1197-mabi=@var{ABI-string} @gol
1198-mfdiv  -mno-fdiv @gol
1199-mdiv  -mno-div @gol
1200-misa-spec=@var{ISA-spec-string} @gol
1201-march=@var{ISA-string} @gol
1202-mtune=@var{processor-string} @gol
1203-mpreferred-stack-boundary=@var{num} @gol
1204-msmall-data-limit=@var{N-bytes} @gol
1205-msave-restore  -mno-save-restore @gol
1206-mshorten-memrefs  -mno-shorten-memrefs @gol
1207-mstrict-align  -mno-strict-align @gol
1208-mcmodel=medlow  -mcmodel=medany @gol
1209-mexplicit-relocs  -mno-explicit-relocs @gol
1210-mrelax  -mno-relax @gol
1211-mriscv-attribute  -mmo-riscv-attribute @gol
1212-malign-data=@var{type} @gol
1213-mbig-endian  -mlittle-endian @gol
1214-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1215-mstack-protector-guard-offset=@var{offset}}
1216
1217@emph{RL78 Options}
1218@gccoptlist{-msim  -mmul=none  -mmul=g13  -mmul=g14  -mallregs @gol
1219-mcpu=g10  -mcpu=g13  -mcpu=g14  -mg10  -mg13  -mg14 @gol
1220-m64bit-doubles  -m32bit-doubles  -msave-mduc-in-interrupts}
1221
1222@emph{RS/6000 and PowerPC Options}
1223@gccoptlist{-mcpu=@var{cpu-type} @gol
1224-mtune=@var{cpu-type} @gol
1225-mcmodel=@var{code-model} @gol
1226-mpowerpc64 @gol
1227-maltivec  -mno-altivec @gol
1228-mpowerpc-gpopt  -mno-powerpc-gpopt @gol
1229-mpowerpc-gfxopt  -mno-powerpc-gfxopt @gol
1230-mmfcrf  -mno-mfcrf  -mpopcntb  -mno-popcntb  -mpopcntd  -mno-popcntd @gol
1231-mfprnd  -mno-fprnd @gol
1232-mcmpb  -mno-cmpb  -mhard-dfp  -mno-hard-dfp @gol
1233-mfull-toc   -mminimal-toc  -mno-fp-in-toc  -mno-sum-in-toc @gol
1234-m64  -m32  -mxl-compat  -mno-xl-compat  -mpe @gol
1235-malign-power  -malign-natural @gol
1236-msoft-float  -mhard-float  -mmultiple  -mno-multiple @gol
1237-mupdate  -mno-update @gol
1238-mavoid-indexed-addresses  -mno-avoid-indexed-addresses @gol
1239-mfused-madd  -mno-fused-madd  -mbit-align  -mno-bit-align @gol
1240-mstrict-align  -mno-strict-align  -mrelocatable @gol
1241-mno-relocatable  -mrelocatable-lib  -mno-relocatable-lib @gol
1242-mtoc  -mno-toc  -mlittle  -mlittle-endian  -mbig  -mbig-endian @gol
1243-mdynamic-no-pic  -mswdiv  -msingle-pic-base @gol
1244-mprioritize-restricted-insns=@var{priority} @gol
1245-msched-costly-dep=@var{dependence_type} @gol
1246-minsert-sched-nops=@var{scheme} @gol
1247-mcall-aixdesc  -mcall-eabi  -mcall-freebsd  @gol
1248-mcall-linux  -mcall-netbsd  -mcall-openbsd  @gol
1249-mcall-sysv  -mcall-sysv-eabi  -mcall-sysv-noeabi @gol
1250-mtraceback=@var{traceback_type} @gol
1251-maix-struct-return  -msvr4-struct-return @gol
1252-mabi=@var{abi-type}  -msecure-plt  -mbss-plt @gol
1253-mlongcall  -mno-longcall  -mpltseq  -mno-pltseq  @gol
1254-mblock-move-inline-limit=@var{num} @gol
1255-mblock-compare-inline-limit=@var{num} @gol
1256-mblock-compare-inline-loop-limit=@var{num} @gol
1257-mno-block-ops-unaligned-vsx @gol
1258-mstring-compare-inline-limit=@var{num} @gol
1259-misel  -mno-isel @gol
1260-mvrsave  -mno-vrsave @gol
1261-mmulhw  -mno-mulhw @gol
1262-mdlmzb  -mno-dlmzb @gol
1263-mprototype  -mno-prototype @gol
1264-msim  -mmvme  -mads  -myellowknife  -memb  -msdata @gol
1265-msdata=@var{opt}  -mreadonly-in-sdata  -mvxworks  -G @var{num} @gol
1266-mrecip  -mrecip=@var{opt}  -mno-recip  -mrecip-precision @gol
1267-mno-recip-precision @gol
1268-mveclibabi=@var{type}  -mfriz  -mno-friz @gol
1269-mpointers-to-nested-functions  -mno-pointers-to-nested-functions @gol
1270-msave-toc-indirect  -mno-save-toc-indirect @gol
1271-mpower8-fusion  -mno-mpower8-fusion  -mpower8-vector  -mno-power8-vector @gol
1272-mcrypto  -mno-crypto  -mhtm  -mno-htm @gol
1273-mquad-memory  -mno-quad-memory @gol
1274-mquad-memory-atomic  -mno-quad-memory-atomic @gol
1275-mcompat-align-parm  -mno-compat-align-parm @gol
1276-mfloat128  -mno-float128  -mfloat128-hardware  -mno-float128-hardware @gol
1277-mgnu-attribute  -mno-gnu-attribute @gol
1278-mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1279-mstack-protector-guard-offset=@var{offset} -mprefixed -mno-prefixed @gol
1280-mpcrel -mno-pcrel -mmma -mno-mmma -mrop-protect -mno-rop-protect @gol
1281-mprivileged -mno-privileged}
1282
1283@emph{RX Options}
1284@gccoptlist{-m64bit-doubles  -m32bit-doubles  -fpu  -nofpu@gol
1285-mcpu=@gol
1286-mbig-endian-data  -mlittle-endian-data @gol
1287-msmall-data @gol
1288-msim  -mno-sim@gol
1289-mas100-syntax  -mno-as100-syntax@gol
1290-mrelax@gol
1291-mmax-constant-size=@gol
1292-mint-register=@gol
1293-mpid@gol
1294-mallow-string-insns  -mno-allow-string-insns@gol
1295-mjsr@gol
1296-mno-warn-multiple-fast-interrupts@gol
1297-msave-acc-in-interrupts}
1298
1299@emph{S/390 and zSeries Options}
1300@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1301-mhard-float  -msoft-float  -mhard-dfp  -mno-hard-dfp @gol
1302-mlong-double-64  -mlong-double-128 @gol
1303-mbackchain  -mno-backchain  -mpacked-stack  -mno-packed-stack @gol
1304-msmall-exec  -mno-small-exec  -mmvcle  -mno-mvcle @gol
1305-m64  -m31  -mdebug  -mno-debug  -mesa  -mzarch @gol
1306-mhtm  -mvx  -mzvector @gol
1307-mtpf-trace  -mno-tpf-trace  -mtpf-trace-skip  -mno-tpf-trace-skip @gol
1308-mfused-madd  -mno-fused-madd @gol
1309-mwarn-framesize  -mwarn-dynamicstack  -mstack-size  -mstack-guard @gol
1310-mhotpatch=@var{halfwords},@var{halfwords}}
1311
1312@emph{Score Options}
1313@gccoptlist{-meb  -mel @gol
1314-mnhwloop @gol
1315-muls @gol
1316-mmac @gol
1317-mscore5  -mscore5u  -mscore7  -mscore7d}
1318
1319@emph{SH Options}
1320@gccoptlist{-m1  -m2  -m2e @gol
1321-m2a-nofpu  -m2a-single-only  -m2a-single  -m2a @gol
1322-m3  -m3e @gol
1323-m4-nofpu  -m4-single-only  -m4-single  -m4 @gol
1324-m4a-nofpu  -m4a-single-only  -m4a-single  -m4a  -m4al @gol
1325-mb  -ml  -mdalign  -mrelax @gol
1326-mbigtable  -mfmovd  -mrenesas  -mno-renesas  -mnomacsave @gol
1327-mieee  -mno-ieee  -mbitops  -misize  -minline-ic_invalidate  -mpadstruct @gol
1328-mprefergot  -musermode  -multcost=@var{number}  -mdiv=@var{strategy} @gol
1329-mdivsi3_libfunc=@var{name}  -mfixed-range=@var{register-range} @gol
1330-maccumulate-outgoing-args @gol
1331-matomic-model=@var{atomic-model} @gol
1332-mbranch-cost=@var{num}  -mzdcbranch  -mno-zdcbranch @gol
1333-mcbranch-force-delay-slot @gol
1334-mfused-madd  -mno-fused-madd  -mfsca  -mno-fsca  -mfsrra  -mno-fsrra @gol
1335-mpretend-cmove  -mtas}
1336
1337@emph{Solaris 2 Options}
1338@gccoptlist{-mclear-hwcap  -mno-clear-hwcap  -mimpure-text  -mno-impure-text @gol
1339-pthreads}
1340
1341@emph{SPARC Options}
1342@gccoptlist{-mcpu=@var{cpu-type} @gol
1343-mtune=@var{cpu-type} @gol
1344-mcmodel=@var{code-model} @gol
1345-mmemory-model=@var{mem-model} @gol
1346-m32  -m64  -mapp-regs  -mno-app-regs @gol
1347-mfaster-structs  -mno-faster-structs  -mflat  -mno-flat @gol
1348-mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1349-mhard-quad-float  -msoft-quad-float @gol
1350-mstack-bias  -mno-stack-bias @gol
1351-mstd-struct-return  -mno-std-struct-return @gol
1352-munaligned-doubles  -mno-unaligned-doubles @gol
1353-muser-mode  -mno-user-mode @gol
1354-mv8plus  -mno-v8plus  -mvis  -mno-vis @gol
1355-mvis2  -mno-vis2  -mvis3  -mno-vis3 @gol
1356-mvis4  -mno-vis4  -mvis4b  -mno-vis4b @gol
1357-mcbcond  -mno-cbcond  -mfmaf  -mno-fmaf  -mfsmuld  -mno-fsmuld  @gol
1358-mpopc  -mno-popc  -msubxc  -mno-subxc @gol
1359-mfix-at697f  -mfix-ut699  -mfix-ut700  -mfix-gr712rc @gol
1360-mlra  -mno-lra}
1361
1362@emph{System V Options}
1363@gccoptlist{-Qy  -Qn  -YP,@var{paths}  -Ym,@var{dir}}
1364
1365@emph{TILE-Gx Options}
1366@gccoptlist{-mcpu=CPU  -m32  -m64  -mbig-endian  -mlittle-endian @gol
1367-mcmodel=@var{code-model}}
1368
1369@emph{TILEPro Options}
1370@gccoptlist{-mcpu=@var{cpu}  -m32}
1371
1372@emph{V850 Options}
1373@gccoptlist{-mlong-calls  -mno-long-calls  -mep  -mno-ep @gol
1374-mprolog-function  -mno-prolog-function  -mspace @gol
1375-mtda=@var{n}  -msda=@var{n}  -mzda=@var{n} @gol
1376-mapp-regs  -mno-app-regs @gol
1377-mdisable-callt  -mno-disable-callt @gol
1378-mv850e2v3  -mv850e2  -mv850e1  -mv850es @gol
1379-mv850e  -mv850  -mv850e3v5 @gol
1380-mloop @gol
1381-mrelax @gol
1382-mlong-jumps @gol
1383-msoft-float @gol
1384-mhard-float @gol
1385-mgcc-abi @gol
1386-mrh850-abi @gol
1387-mbig-switch}
1388
1389@emph{VAX Options}
1390@gccoptlist{-mg  -mgnu  -munix  -mlra}
1391
1392@emph{Visium Options}
1393@gccoptlist{-mdebug  -msim  -mfpu  -mno-fpu  -mhard-float  -msoft-float @gol
1394-mcpu=@var{cpu-type}  -mtune=@var{cpu-type}  -msv-mode  -muser-mode}
1395
1396@emph{VMS Options}
1397@gccoptlist{-mvms-return-codes  -mdebug-main=@var{prefix}  -mmalloc64 @gol
1398-mpointer-size=@var{size}}
1399
1400@emph{VxWorks Options}
1401@gccoptlist{-mrtp  -non-static  -Bstatic  -Bdynamic @gol
1402-Xbind-lazy  -Xbind-now}
1403
1404@emph{x86 Options}
1405@gccoptlist{-mtune=@var{cpu-type}  -march=@var{cpu-type} @gol
1406-mtune-ctrl=@var{feature-list}  -mdump-tune-features  -mno-default @gol
1407-mfpmath=@var{unit} @gol
1408-masm=@var{dialect}  -mno-fancy-math-387 @gol
1409-mno-fp-ret-in-387  -m80387  -mhard-float  -msoft-float @gol
1410-mno-wide-multiply  -mrtd  -malign-double @gol
1411-mpreferred-stack-boundary=@var{num} @gol
1412-mincoming-stack-boundary=@var{num} @gol
1413-mcld  -mcx16  -msahf  -mmovbe  -mcrc32 -mmwait @gol
1414-mrecip  -mrecip=@var{opt} @gol
1415-mvzeroupper  -mprefer-avx128  -mprefer-vector-width=@var{opt} @gol
1416-mmove-max=@var{bits} -mstore-max=@var{bits} @gol
1417-mmmx  -msse  -msse2  -msse3  -mssse3  -msse4.1  -msse4.2  -msse4  -mavx @gol
1418-mavx2  -mavx512f  -mavx512pf  -mavx512er  -mavx512cd  -mavx512vl @gol
1419-mavx512bw  -mavx512dq  -mavx512ifma  -mavx512vbmi  -msha  -maes @gol
1420-mpclmul  -mfsgsbase  -mrdrnd  -mf16c  -mfma  -mpconfig  -mwbnoinvd  @gol
1421-mptwrite  -mprefetchwt1  -mclflushopt  -mclwb  -mxsavec  -mxsaves @gol
1422-msse4a  -m3dnow  -m3dnowa  -mpopcnt  -mabm  -mbmi  -mtbm  -mfma4  -mxop @gol
1423-madx  -mlzcnt  -mbmi2  -mfxsr  -mxsave  -mxsaveopt  -mrtm  -mhle  -mlwp @gol
1424-mmwaitx  -mclzero  -mpku  -mthreads  -mgfni  -mvaes  -mwaitpkg @gol
1425-mshstk -mmanual-endbr -mforce-indirect-call  -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1426-mvpclmulqdq  -mavx512bitalg  -mmovdiri  -mmovdir64b  -mavx512vpopcntdq @gol
1427-mavx5124fmaps  -mavx512vnni  -mavx5124vnniw  -mprfchw  -mrdpid @gol
1428-mrdseed  -msgx -mavx512vp2intersect -mserialize -mtsxldtrk@gol
1429-mamx-tile  -mamx-int8  -mamx-bf16 -muintr -mhreset -mavxvnni@gol
1430-mavx512fp16 @gol
1431-mcldemote  -mms-bitfields  -mno-align-stringops  -minline-all-stringops @gol
1432-minline-stringops-dynamically  -mstringop-strategy=@var{alg} @gol
1433-mkl -mwidekl @gol
1434-mmemcpy-strategy=@var{strategy}  -mmemset-strategy=@var{strategy} @gol
1435-mpush-args  -maccumulate-outgoing-args  -m128bit-long-double @gol
1436-m96bit-long-double  -mlong-double-64  -mlong-double-80  -mlong-double-128 @gol
1437-mregparm=@var{num}  -msseregparm @gol
1438-mveclibabi=@var{type}  -mvect8-ret-in-mem @gol
1439-mpc32  -mpc64  -mpc80 -mdaz-ftz -mstackrealign @gol
1440-momit-leaf-frame-pointer  -mno-red-zone  -mno-tls-direct-seg-refs @gol
1441-mcmodel=@var{code-model}  -mabi=@var{name}  -maddress-mode=@var{mode} @gol
1442-m32  -m64  -mx32  -m16  -miamcu  -mlarge-data-threshold=@var{num} @gol
1443-msse2avx  -mfentry  -mrecord-mcount  -mnop-mcount  -m8bit-idiv @gol
1444-minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1445-mavx256-split-unaligned-load  -mavx256-split-unaligned-store @gol
1446-malign-data=@var{type}  -mstack-protector-guard=@var{guard} @gol
1447-mstack-protector-guard-reg=@var{reg} @gol
1448-mstack-protector-guard-offset=@var{offset} @gol
1449-mstack-protector-guard-symbol=@var{symbol} @gol
1450-mgeneral-regs-only  -mcall-ms2sysv-xlogues -mrelax-cmpxchg-loop @gol
1451-mindirect-branch=@var{choice}  -mfunction-return=@var{choice} @gol
1452-mindirect-branch-register -mharden-sls=@var{choice} @gol
1453-mindirect-branch-cs-prefix -mneeded -mno-direct-extern-access}
1454
1455@emph{x86 Windows Options}
1456@gccoptlist{-mconsole  -mcygwin  -mno-cygwin  -mdll @gol
1457-mnop-fun-dllimport  -mthread @gol
1458-municode  -mwin32  -mwindows  -fno-set-stack-executable}
1459
1460@emph{Xstormy16 Options}
1461@gccoptlist{-msim}
1462
1463@emph{Xtensa Options}
1464@gccoptlist{-mconst16  -mno-const16 @gol
1465-mfused-madd  -mno-fused-madd @gol
1466-mforce-no-pic @gol
1467-mserialize-volatile  -mno-serialize-volatile @gol
1468-mtext-section-literals  -mno-text-section-literals @gol
1469-mauto-litpools  -mno-auto-litpools @gol
1470-mtarget-align  -mno-target-align @gol
1471-mlongcalls  -mno-longcalls @gol
1472-mabi=@var{abi-type}}
1473
1474@emph{zSeries Options}
1475See S/390 and zSeries Options.
1476@end table
1477
1478
1479@node Overall Options
1480@section Options Controlling the Kind of Output
1481
1482Compilation can involve up to four stages: preprocessing, compilation
1483proper, assembly and linking, always in that order.  GCC is capable of
1484preprocessing and compiling several files either into several
1485assembler input files, or into one assembler input file; then each
1486assembler input file produces an object file, and linking combines all
1487the object files (those newly compiled, and those specified as input)
1488into an executable file.
1489
1490@cindex file name suffix
1491For any given input file, the file name suffix determines what kind of
1492compilation is done:
1493
1494@table @gcctabopt
1495@item @var{file}.c
1496C source code that must be preprocessed.
1497
1498@item @var{file}.i
1499C source code that should not be preprocessed.
1500
1501@item @var{file}.ii
1502C++ source code that should not be preprocessed.
1503
1504@item @var{file}.m
1505Objective-C source code.  Note that you must link with the @file{libobjc}
1506library to make an Objective-C program work.
1507
1508@item @var{file}.mi
1509Objective-C source code that should not be preprocessed.
1510
1511@item @var{file}.mm
1512@itemx @var{file}.M
1513Objective-C++ source code.  Note that you must link with the @file{libobjc}
1514library to make an Objective-C++ program work.  Note that @samp{.M} refers
1515to a literal capital M@.
1516
1517@item @var{file}.mii
1518Objective-C++ source code that should not be preprocessed.
1519
1520@item @var{file}.h
1521C, C++, Objective-C or Objective-C++ header file to be turned into a
1522precompiled header (default), or C, C++ header file to be turned into an
1523Ada spec (via the @option{-fdump-ada-spec} switch).
1524
1525@item @var{file}.cc
1526@itemx @var{file}.cp
1527@itemx @var{file}.cxx
1528@itemx @var{file}.cpp
1529@itemx @var{file}.CPP
1530@itemx @var{file}.c++
1531@itemx @var{file}.C
1532C++ source code that must be preprocessed.  Note that in @samp{.cxx},
1533the last two letters must both be literally @samp{x}.  Likewise,
1534@samp{.C} refers to a literal capital C@.
1535
1536@item @var{file}.mm
1537@itemx @var{file}.M
1538Objective-C++ source code that must be preprocessed.
1539
1540@item @var{file}.mii
1541Objective-C++ source code that should not be preprocessed.
1542
1543@item @var{file}.hh
1544@itemx @var{file}.H
1545@itemx @var{file}.hp
1546@itemx @var{file}.hxx
1547@itemx @var{file}.hpp
1548@itemx @var{file}.HPP
1549@itemx @var{file}.h++
1550@itemx @var{file}.tcc
1551C++ header file to be turned into a precompiled header or Ada spec.
1552
1553@item @var{file}.f
1554@itemx @var{file}.for
1555@itemx @var{file}.ftn
1556Fixed form Fortran source code that should not be preprocessed.
1557
1558@item @var{file}.F
1559@itemx @var{file}.FOR
1560@itemx @var{file}.fpp
1561@itemx @var{file}.FPP
1562@itemx @var{file}.FTN
1563Fixed form Fortran source code that must be preprocessed (with the traditional
1564preprocessor).
1565
1566@item @var{file}.f90
1567@itemx @var{file}.f95
1568@itemx @var{file}.f03
1569@itemx @var{file}.f08
1570Free form Fortran source code that should not be preprocessed.
1571
1572@item @var{file}.F90
1573@itemx @var{file}.F95
1574@itemx @var{file}.F03
1575@itemx @var{file}.F08
1576Free form Fortran source code that must be preprocessed (with the
1577traditional preprocessor).
1578
1579@item @var{file}.go
1580Go source code.
1581
1582@item @var{file}.d
1583D source code.
1584
1585@item @var{file}.di
1586D interface file.
1587
1588@item @var{file}.dd
1589D documentation code (Ddoc).
1590
1591@item @var{file}.ads
1592Ada source code file that contains a library unit declaration (a
1593declaration of a package, subprogram, or generic, or a generic
1594instantiation), or a library unit renaming declaration (a package,
1595generic, or subprogram renaming declaration).  Such files are also
1596called @dfn{specs}.
1597
1598@item @var{file}.adb
1599Ada source code file containing a library unit body (a subprogram or
1600package body).  Such files are also called @dfn{bodies}.
1601
1602@c GCC also knows about some suffixes for languages not yet included:
1603@c Ratfor:
1604@c @var{file}.r
1605
1606@item @var{file}.s
1607Assembler code.
1608
1609@item @var{file}.S
1610@itemx @var{file}.sx
1611Assembler code that must be preprocessed.
1612
1613@item @var{other}
1614An object file to be fed straight into linking.
1615Any file name with no recognized suffix is treated this way.
1616@end table
1617
1618@opindex x
1619You can specify the input language explicitly with the @option{-x} option:
1620
1621@table @gcctabopt
1622@item -x @var{language}
1623Specify explicitly the @var{language} for the following input files
1624(rather than letting the compiler choose a default based on the file
1625name suffix).  This option applies to all following input files until
1626the next @option{-x} option.  Possible values for @var{language} are:
1627@smallexample
1628c  c-header  cpp-output
1629c++  c++-header  c++-system-header c++-user-header c++-cpp-output
1630objective-c  objective-c-header  objective-c-cpp-output
1631objective-c++ objective-c++-header objective-c++-cpp-output
1632assembler  assembler-with-cpp
1633ada
1634d
1635f77  f77-cpp-input f95  f95-cpp-input
1636go
1637@end smallexample
1638
1639@item -x none
1640Turn off any specification of a language, so that subsequent files are
1641handled according to their file name suffixes (as they are if @option{-x}
1642has not been used at all).
1643@end table
1644
1645If you only want some of the stages of compilation, you can use
1646@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1647one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1648@command{gcc} is to stop.  Note that some combinations (for example,
1649@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1650
1651@table @gcctabopt
1652@item -c
1653@opindex c
1654Compile or assemble the source files, but do not link.  The linking
1655stage simply is not done.  The ultimate output is in the form of an
1656object file for each source file.
1657
1658By default, the object file name for a source file is made by replacing
1659the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1660
1661Unrecognized input files, not requiring compilation or assembly, are
1662ignored.
1663
1664@item -S
1665@opindex S
1666Stop after the stage of compilation proper; do not assemble.  The output
1667is in the form of an assembler code file for each non-assembler input
1668file specified.
1669
1670By default, the assembler file name for a source file is made by
1671replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1672
1673Input files that don't require compilation are ignored.
1674
1675@item -E
1676@opindex E
1677Stop after the preprocessing stage; do not run the compiler proper.  The
1678output is in the form of preprocessed source code, which is sent to the
1679standard output.
1680
1681Input files that don't require preprocessing are ignored.
1682
1683@cindex output file option
1684@item -o @var{file}
1685@opindex o
1686Place the primary output in file @var{file}.  This applies to whatever
1687sort of output is being produced, whether it be an executable file, an
1688object file, an assembler file or preprocessed C code.
1689
1690If @option{-o} is not specified, the default is to put an executable
1691file in @file{a.out}, the object file for
1692@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1693assembler file in @file{@var{source}.s}, a precompiled header file in
1694@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1695standard output.
1696
1697Though @option{-o} names only the primary output, it also affects the
1698naming of auxiliary and dump outputs.  See the examples below.  Unless
1699overridden, both auxiliary outputs and dump outputs are placed in the
1700same directory as the primary output.  In auxiliary outputs, the suffix
1701of the input file is replaced with that of the auxiliary output file
1702type; in dump outputs, the suffix of the dump file is appended to the
1703input file suffix.  In compilation commands, the base name of both
1704auxiliary and dump outputs is that of the primary output; in compile and
1705link commands, the primary output name, minus the executable suffix, is
1706combined with the input file name.  If both share the same base name,
1707disregarding the suffix, the result of the combination is that base
1708name, otherwise, they are concatenated, separated by a dash.
1709
1710@smallexample
1711gcc -c foo.c ...
1712@end smallexample
1713
1714will use @file{foo.o} as the primary output, and place aux outputs and
1715dumps next to it, e.g., aux file @file{foo.dwo} for
1716@option{-gsplit-dwarf}, and dump file @file{foo.c.???r.final} for
1717@option{-fdump-rtl-final}.
1718
1719If a non-linker output file is explicitly specified, aux and dump files
1720by default take the same base name:
1721
1722@smallexample
1723gcc -c foo.c -o dir/foobar.o ...
1724@end smallexample
1725
1726will name aux outputs @file{dir/foobar.*} and dump outputs
1727@file{dir/foobar.c.*}.
1728
1729A linker output will instead prefix aux and dump outputs:
1730
1731@smallexample
1732gcc foo.c bar.c -o dir/foobar ...
1733@end smallexample
1734
1735will generally name aux outputs @file{dir/foobar-foo.*} and
1736@file{dir/foobar-bar.*}, and dump outputs @file{dir/foobar-foo.c.*} and
1737@file{dir/foobar-bar.c.*}.
1738
1739The one exception to the above is when the executable shares the base
1740name with the single input:
1741
1742@smallexample
1743gcc foo.c -o dir/foo ...
1744@end smallexample
1745
1746in which case aux outputs are named @file{dir/foo.*} and dump outputs
1747named @file{dir/foo.c.*}.
1748
1749The location and the names of auxiliary and dump outputs can be adjusted
1750by the options @option{-dumpbase}, @option{-dumpbase-ext},
1751@option{-dumpdir}, @option{-save-temps=cwd}, and
1752@option{-save-temps=obj}.
1753
1754
1755@item -dumpbase @var{dumpbase}
1756@opindex dumpbase
1757This option sets the base name for auxiliary and dump output files.  It
1758does not affect the name of the primary output file.  Intermediate
1759outputs, when preserved, are not regarded as primary outputs, but as
1760auxiliary outputs:
1761
1762@smallexample
1763gcc -save-temps -S foo.c
1764@end smallexample
1765
1766saves the (no longer) temporary preprocessed file in @file{foo.i}, and
1767then compiles to the (implied) output file @file{foo.s}, whereas:
1768
1769@smallexample
1770gcc -save-temps -dumpbase save-foo -c foo.c
1771@end smallexample
1772
1773preprocesses to in @file{save-foo.i}, compiles to @file{save-foo.s} (now
1774an intermediate, thus auxiliary output), and then assembles to the
1775(implied) output file @file{foo.o}.
1776
1777Absent this option, dump and aux files take their names from the input
1778file, or from the (non-linker) output file, if one is explicitly
1779specified: dump output files (e.g. those requested by @option{-fdump-*}
1780options) with the input name suffix, and aux output files (those
1781requested by other non-dump options, e.g. @code{-save-temps},
1782@code{-gsplit-dwarf}, @code{-fcallgraph-info}) without it.
1783
1784Similar suffix differentiation of dump and aux outputs can be attained
1785for explicitly-given @option{-dumpbase basename.suf} by also specifying
1786@option{-dumpbase-ext .suf}.
1787
1788If @var{dumpbase} is explicitly specified with any directory component,
1789any @var{dumppfx} specification (e.g. @option{-dumpdir} or
1790@option{-save-temps=*}) is ignored, and instead of appending to it,
1791@var{dumpbase} fully overrides it:
1792
1793@smallexample
1794gcc foo.c -c -o dir/foo.o -dumpbase alt/foo \
1795  -dumpdir pfx- -save-temps=cwd ...
1796@end smallexample
1797
1798creates auxiliary and dump outputs named @file{alt/foo.*}, disregarding
1799@file{dir/} in @option{-o}, the @file{./} prefix implied by
1800@option{-save-temps=cwd}, and @file{pfx-} in @option{-dumpdir}.
1801
1802When @option{-dumpbase} is specified in a command that compiles multiple
1803inputs, or that compiles and then links, it may be combined with
1804@var{dumppfx}, as specified under @option{-dumpdir}.  Then, each input
1805file is compiled using the combined @var{dumppfx}, and default values
1806for @var{dumpbase} and @var{auxdropsuf} are computed for each input
1807file:
1808
1809@smallexample
1810gcc foo.c bar.c -c -dumpbase main ...
1811@end smallexample
1812
1813creates @file{foo.o} and @file{bar.o} as primary outputs, and avoids
1814overwriting the auxiliary and dump outputs by using the @var{dumpbase}
1815as a prefix, creating auxiliary and dump outputs named @file{main-foo.*}
1816and @file{main-bar.*}.
1817
1818An empty string specified as @var{dumpbase} avoids the influence of the
1819output basename in the naming of auxiliary and dump outputs during
1820compilation, computing default values :
1821
1822@smallexample
1823gcc -c foo.c -o dir/foobar.o -dumpbase '' ...
1824@end smallexample
1825
1826will name aux outputs @file{dir/foo.*} and dump outputs
1827@file{dir/foo.c.*}.  Note how their basenames are taken from the input
1828name, but the directory still defaults to that of the output.
1829
1830The empty-string dumpbase does not prevent the use of the output
1831basename for outputs during linking:
1832
1833@smallexample
1834gcc foo.c bar.c -o dir/foobar -dumpbase '' -flto ...
1835@end smallexample
1836
1837The compilation of the source files will name auxiliary outputs
1838@file{dir/foo.*} and @file{dir/bar.*}, and dump outputs
1839@file{dir/foo.c.*} and @file{dir/bar.c.*}.  LTO recompilation during
1840linking will use @file{dir/foobar.} as the prefix for dumps and
1841auxiliary files.
1842
1843
1844@item -dumpbase-ext @var{auxdropsuf}
1845@opindex dumpbase-ext
1846When forming the name of an auxiliary (but not a dump) output file, drop
1847trailing @var{auxdropsuf} from @var{dumpbase} before appending any
1848suffixes.  If not specified, this option defaults to the suffix of a
1849default @var{dumpbase}, i.e., the suffix of the input file when
1850@option{-dumpbase} is not present in the command line, or @var{dumpbase}
1851is combined with @var{dumppfx}.
1852
1853@smallexample
1854gcc foo.c -c -o dir/foo.o -dumpbase x-foo.c -dumpbase-ext .c ...
1855@end smallexample
1856
1857creates @file{dir/foo.o} as the main output, and generates auxiliary
1858outputs in @file{dir/x-foo.*}, taking the location of the primary
1859output, and dropping the @file{.c} suffix from the @var{dumpbase}.  Dump
1860outputs retain the suffix: @file{dir/x-foo.c.*}.
1861
1862This option is disregarded if it does not match the suffix of a
1863specified @var{dumpbase}, except as an alternative to the executable
1864suffix when appending the linker output base name to @var{dumppfx}, as
1865specified below:
1866
1867@smallexample
1868gcc foo.c bar.c -o main.out -dumpbase-ext .out ...
1869@end smallexample
1870
1871creates @file{main.out} as the primary output, and avoids overwriting
1872the auxiliary and dump outputs by using the executable name minus
1873@var{auxdropsuf} as a prefix, creating auxiliary outputs named
1874@file{main-foo.*} and @file{main-bar.*} and dump outputs named
1875@file{main-foo.c.*} and @file{main-bar.c.*}.
1876
1877
1878@item -dumpdir @var{dumppfx}
1879@opindex dumpdir
1880When forming the name of an auxiliary or dump output file, use
1881@var{dumppfx} as a prefix:
1882
1883@smallexample
1884gcc -dumpdir pfx- -c foo.c ...
1885@end smallexample
1886
1887creates @file{foo.o} as the primary output, and auxiliary outputs named
1888@file{pfx-foo.*}, combining the given @var{dumppfx} with the default
1889@var{dumpbase} derived from the default primary output, derived in turn
1890from the input name.  Dump outputs also take the input name suffix:
1891@file{pfx-foo.c.*}.
1892
1893If @var{dumppfx} is to be used as a directory name, it must end with a
1894directory separator:
1895
1896@smallexample
1897gcc -dumpdir dir/ -c foo.c -o obj/bar.o ...
1898@end smallexample
1899
1900creates @file{obj/bar.o} as the primary output, and auxiliary outputs
1901named @file{dir/bar.*}, combining the given @var{dumppfx} with the
1902default @var{dumpbase} derived from the primary output name.  Dump
1903outputs also take the input name suffix: @file{dir/bar.c.*}.
1904
1905It defaults to the location of the output file, unless the output
1906file is a special file like @code{/dev/null}. Options
1907@option{-save-temps=cwd} and @option{-save-temps=obj} override this
1908default, just like an explicit @option{-dumpdir} option.  In case
1909multiple such options are given, the last one prevails:
1910
1911@smallexample
1912gcc -dumpdir pfx- -c foo.c -save-temps=obj ...
1913@end smallexample
1914
1915outputs @file{foo.o}, with auxiliary outputs named @file{foo.*} because
1916@option{-save-temps=*} overrides the @var{dumppfx} given by the earlier
1917@option{-dumpdir} option.  It does not matter that @option{=obj} is the
1918default for @option{-save-temps}, nor that the output directory is
1919implicitly the current directory.  Dump outputs are named
1920@file{foo.c.*}.
1921
1922When compiling from multiple input files, if @option{-dumpbase} is
1923specified, @var{dumpbase}, minus a @var{auxdropsuf} suffix, and a dash
1924are appended to (or override, if containing any directory components) an
1925explicit or defaulted @var{dumppfx}, so that each of the multiple
1926compilations gets differently-named aux and dump outputs.
1927
1928@smallexample
1929gcc foo.c bar.c -c -dumpdir dir/pfx- -dumpbase main ...
1930@end smallexample
1931
1932outputs auxiliary dumps to @file{dir/pfx-main-foo.*} and
1933@file{dir/pfx-main-bar.*}, appending @var{dumpbase}- to @var{dumppfx}.
1934Dump outputs retain the input file suffix: @file{dir/pfx-main-foo.c.*}
1935and @file{dir/pfx-main-bar.c.*}, respectively.  Contrast with the
1936single-input compilation:
1937
1938@smallexample
1939gcc foo.c -c -dumpdir dir/pfx- -dumpbase main ...
1940@end smallexample
1941
1942that, applying @option{-dumpbase} to a single source, does not compute
1943and append a separate @var{dumpbase} per input file.  Its auxiliary and
1944dump outputs go in @file{dir/pfx-main.*}.
1945
1946When compiling and then linking from multiple input files, a defaulted
1947or explicitly specified @var{dumppfx} also undergoes the @var{dumpbase}-
1948transformation above (e.g. the compilation of @file{foo.c} and
1949@file{bar.c} above, but without @option{-c}).  If neither
1950@option{-dumpdir} nor @option{-dumpbase} are given, the linker output
1951base name, minus @var{auxdropsuf}, if specified, or the executable
1952suffix otherwise, plus a dash is appended to the default @var{dumppfx}
1953instead.  Note, however, that unlike earlier cases of linking:
1954
1955@smallexample
1956gcc foo.c bar.c -dumpdir dir/pfx- -o main ...
1957@end smallexample
1958
1959does not append the output name @file{main} to @var{dumppfx}, because
1960@option{-dumpdir} is explicitly specified.  The goal is that the
1961explicitly-specified @var{dumppfx} may contain the specified output name
1962as part of the prefix, if desired; only an explicitly-specified
1963@option{-dumpbase} would be combined with it, in order to avoid simply
1964discarding a meaningful option.
1965
1966When compiling and then linking from a single input file, the linker
1967output base name will only be appended to the default @var{dumppfx} as
1968above if it does not share the base name with the single input file
1969name.  This has been covered in single-input linking cases above, but
1970not with an explicit @option{-dumpdir} that inhibits the combination,
1971even if overridden by @option{-save-temps=*}:
1972
1973@smallexample
1974gcc foo.c -dumpdir alt/pfx- -o dir/main.exe -save-temps=cwd ...
1975@end smallexample
1976
1977Auxiliary outputs are named @file{foo.*}, and dump outputs
1978@file{foo.c.*}, in the current working directory as ultimately requested
1979by @option{-save-temps=cwd}.
1980
1981Summing it all up for an intuitive though slightly imprecise data flow:
1982the primary output name is broken into a directory part and a basename
1983part; @var{dumppfx} is set to the former, unless overridden by
1984@option{-dumpdir} or @option{-save-temps=*}, and @var{dumpbase} is set
1985to the latter, unless overriden by @option{-dumpbase}.  If there are
1986multiple inputs or linking, this @var{dumpbase} may be combined with
1987@var{dumppfx} and taken from each input file.  Auxiliary output names
1988for each input are formed by combining @var{dumppfx}, @var{dumpbase}
1989minus suffix, and the auxiliary output suffix; dump output names are
1990only different in that the suffix from @var{dumpbase} is retained.
1991
1992When it comes to auxiliary and dump outputs created during LTO
1993recompilation, a combination of @var{dumppfx} and @var{dumpbase}, as
1994given or as derived from the linker output name but not from inputs,
1995even in cases in which this combination would not otherwise be used as
1996such, is passed down with a trailing period replacing the compiler-added
1997dash, if any, as a @option{-dumpdir} option to @command{lto-wrapper};
1998being involved in linking, this program does not normally get any
1999@option{-dumpbase} and @option{-dumpbase-ext}, and it ignores them.
2000
2001When running sub-compilers, @command{lto-wrapper} appends LTO stage
2002names to the received @var{dumppfx}, ensures it contains a directory
2003component so that it overrides any @option{-dumpdir}, and passes that as
2004@option{-dumpbase} to sub-compilers.
2005
2006@item -v
2007@opindex v
2008Print (on standard error output) the commands executed to run the stages
2009of compilation.  Also print the version number of the compiler driver
2010program and of the preprocessor and the compiler proper.
2011
2012@item -###
2013@opindex ###
2014Like @option{-v} except the commands are not executed and arguments
2015are quoted unless they contain only alphanumeric characters or @code{./-_}.
2016This is useful for shell scripts to capture the driver-generated command lines.
2017
2018@item --help
2019@opindex help
2020Print (on the standard output) a description of the command-line options
2021understood by @command{gcc}.  If the @option{-v} option is also specified
2022then @option{--help} is also passed on to the various processes
2023invoked by @command{gcc}, so that they can display the command-line options
2024they accept.  If the @option{-Wextra} option has also been specified
2025(prior to the @option{--help} option), then command-line options that
2026have no documentation associated with them are also displayed.
2027
2028@item --target-help
2029@opindex target-help
2030Print (on the standard output) a description of target-specific command-line
2031options for each tool.  For some targets extra target-specific
2032information may also be printed.
2033
2034@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
2035Print (on the standard output) a description of the command-line
2036options understood by the compiler that fit into all specified classes
2037and qualifiers.  These are the supported classes:
2038
2039@table @asis
2040@item @samp{optimizers}
2041Display all of the optimization options supported by the
2042compiler.
2043
2044@item @samp{warnings}
2045Display all of the options controlling warning messages
2046produced by the compiler.
2047
2048@item @samp{target}
2049Display target-specific options.  Unlike the
2050@option{--target-help} option however, target-specific options of the
2051linker and assembler are not displayed.  This is because those
2052tools do not currently support the extended @option{--help=} syntax.
2053
2054@item @samp{params}
2055Display the values recognized by the @option{--param}
2056option.
2057
2058@item @var{language}
2059Display the options supported for @var{language}, where
2060@var{language} is the name of one of the languages supported in this
2061version of GCC@.  If an option is supported by all languages, one needs
2062to select @samp{common} class.
2063
2064@item @samp{common}
2065Display the options that are common to all languages.
2066@end table
2067
2068These are the supported qualifiers:
2069
2070@table @asis
2071@item @samp{undocumented}
2072Display only those options that are undocumented.
2073
2074@item @samp{joined}
2075Display options taking an argument that appears after an equal
2076sign in the same continuous piece of text, such as:
2077@samp{--help=target}.
2078
2079@item @samp{separate}
2080Display options taking an argument that appears as a separate word
2081following the original option, such as: @samp{-o output-file}.
2082@end table
2083
2084Thus for example to display all the undocumented target-specific
2085switches supported by the compiler, use:
2086
2087@smallexample
2088--help=target,undocumented
2089@end smallexample
2090
2091The sense of a qualifier can be inverted by prefixing it with the
2092@samp{^} character, so for example to display all binary warning
2093options (i.e., ones that are either on or off and that do not take an
2094argument) that have a description, use:
2095
2096@smallexample
2097--help=warnings,^joined,^undocumented
2098@end smallexample
2099
2100The argument to @option{--help=} should not consist solely of inverted
2101qualifiers.
2102
2103Combining several classes is possible, although this usually
2104restricts the output so much that there is nothing to display.  One
2105case where it does work, however, is when one of the classes is
2106@var{target}.  For example, to display all the target-specific
2107optimization options, use:
2108
2109@smallexample
2110--help=target,optimizers
2111@end smallexample
2112
2113The @option{--help=} option can be repeated on the command line.  Each
2114successive use displays its requested class of options, skipping
2115those that have already been displayed.  If @option{--help} is also
2116specified anywhere on the command line then this takes precedence
2117over any @option{--help=} option.
2118
2119If the @option{-Q} option appears on the command line before the
2120@option{--help=} option, then the descriptive text displayed by
2121@option{--help=} is changed.  Instead of describing the displayed
2122options, an indication is given as to whether the option is enabled,
2123disabled or set to a specific value (assuming that the compiler
2124knows this at the point where the @option{--help=} option is used).
2125
2126Here is a truncated example from the ARM port of @command{gcc}:
2127
2128@smallexample
2129  % gcc -Q -mabi=2 --help=target -c
2130  The following options are target specific:
2131  -mabi=                                2
2132  -mabort-on-noreturn                   [disabled]
2133  -mapcs                                [disabled]
2134@end smallexample
2135
2136The output is sensitive to the effects of previous command-line
2137options, so for example it is possible to find out which optimizations
2138are enabled at @option{-O2} by using:
2139
2140@smallexample
2141-Q -O2 --help=optimizers
2142@end smallexample
2143
2144Alternatively you can discover which binary optimizations are enabled
2145by @option{-O3} by using:
2146
2147@smallexample
2148gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
2149gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
2150diff /tmp/O2-opts /tmp/O3-opts | grep enabled
2151@end smallexample
2152
2153@item --version
2154@opindex version
2155Display the version number and copyrights of the invoked GCC@.
2156
2157@item -pass-exit-codes
2158@opindex pass-exit-codes
2159Normally the @command{gcc} program exits with the code of 1 if any
2160phase of the compiler returns a non-success return code.  If you specify
2161@option{-pass-exit-codes}, the @command{gcc} program instead returns with
2162the numerically highest error produced by any phase returning an error
2163indication.  The C, C++, and Fortran front ends return 4 if an internal
2164compiler error is encountered.
2165
2166@item -pipe
2167@opindex pipe
2168Use pipes rather than temporary files for communication between the
2169various stages of compilation.  This fails to work on some systems where
2170the assembler is unable to read from a pipe; but the GNU assembler has
2171no trouble.
2172
2173@item -specs=@var{file}
2174@opindex specs
2175Process @var{file} after the compiler reads in the standard @file{specs}
2176file, in order to override the defaults which the @command{gcc} driver
2177program uses when determining what switches to pass to @command{cc1},
2178@command{cc1plus}, @command{as}, @command{ld}, etc.  More than one
2179@option{-specs=@var{file}} can be specified on the command line, and they
2180are processed in order, from left to right.  @xref{Spec Files}, for
2181information about the format of the @var{file}.
2182
2183@item -wrapper
2184@opindex wrapper
2185Invoke all subcommands under a wrapper program.  The name of the
2186wrapper program and its parameters are passed as a comma separated
2187list.
2188
2189@smallexample
2190gcc -c t.c -wrapper gdb,--args
2191@end smallexample
2192
2193@noindent
2194This invokes all subprograms of @command{gcc} under
2195@samp{gdb --args}, thus the invocation of @command{cc1} is
2196@samp{gdb --args cc1 @dots{}}.
2197
2198@item -ffile-prefix-map=@var{old}=@var{new}
2199@opindex ffile-prefix-map
2200When compiling files residing in directory @file{@var{old}}, record
2201any references to them in the result of the compilation as if the
2202files resided in directory @file{@var{new}} instead.  Specifying this
2203option is equivalent to specifying all the individual
2204@option{-f*-prefix-map} options.  This can be used to make reproducible
2205builds that are location independent.  See also
2206@option{-fmacro-prefix-map}, @option{-fdebug-prefix-map} and
2207@option{-fprofile-prefix-map}.
2208
2209@item -fplugin=@var{name}.so
2210@opindex fplugin
2211Load the plugin code in file @var{name}.so, assumed to be a
2212shared object to be dlopen'd by the compiler.  The base name of
2213the shared object file is used to identify the plugin for the
2214purposes of argument parsing (See
2215@option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
2216Each plugin should define the callback functions specified in the
2217Plugins API.
2218
2219@item -fplugin-arg-@var{name}-@var{key}=@var{value}
2220@opindex fplugin-arg
2221Define an argument called @var{key} with a value of @var{value}
2222for the plugin called @var{name}.
2223
2224@item -fdump-ada-spec@r{[}-slim@r{]}
2225@opindex fdump-ada-spec
2226For C and C++ source and include files, generate corresponding Ada specs.
2227@xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
2228GNAT User's Guide}, which provides detailed documentation on this feature.
2229
2230@item -fada-spec-parent=@var{unit}
2231@opindex fada-spec-parent
2232In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
2233Ada specs as child units of parent @var{unit}.
2234
2235@item -fdump-go-spec=@var{file}
2236@opindex fdump-go-spec
2237For input files in any language, generate corresponding Go
2238declarations in @var{file}.  This generates Go @code{const},
2239@code{type}, @code{var}, and @code{func} declarations which may be a
2240useful way to start writing a Go interface to code written in some
2241other language.
2242
2243@include @value{srcdir}/../libiberty/at-file.texi
2244@end table
2245
2246@node Invoking G++
2247@section Compiling C++ Programs
2248
2249@cindex suffixes for C++ source
2250@cindex C++ source file suffixes
2251C++ source files conventionally use one of the suffixes @samp{.C},
2252@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
2253@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
2254@samp{.H}, or (for shared template code) @samp{.tcc}; and
2255preprocessed C++ files use the suffix @samp{.ii}.  GCC recognizes
2256files with these names and compiles them as C++ programs even if you
2257call the compiler the same way as for compiling C programs (usually
2258with the name @command{gcc}).
2259
2260@findex g++
2261@findex c++
2262However, the use of @command{gcc} does not add the C++ library.
2263@command{g++} is a program that calls GCC and automatically specifies linking
2264against the C++ library.  It treats @samp{.c},
2265@samp{.h} and @samp{.i} files as C++ source files instead of C source
2266files unless @option{-x} is used.  This program is also useful when
2267precompiling a C header file with a @samp{.h} extension for use in C++
2268compilations.  On many systems, @command{g++} is also installed with
2269the name @command{c++}.
2270
2271@cindex invoking @command{g++}
2272When you compile C++ programs, you may specify many of the same
2273command-line options that you use for compiling programs in any
2274language; or command-line options meaningful for C and related
2275languages; or options that are meaningful only for C++ programs.
2276@xref{C Dialect Options,,Options Controlling C Dialect}, for
2277explanations of options for languages related to C@.
2278@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
2279explanations of options that are meaningful only for C++ programs.
2280
2281@node C Dialect Options
2282@section Options Controlling C Dialect
2283@cindex dialect options
2284@cindex language dialect options
2285@cindex options, dialect
2286
2287The following options control the dialect of C (or languages derived
2288from C, such as C++, Objective-C and Objective-C++) that the compiler
2289accepts:
2290
2291@table @gcctabopt
2292@cindex ANSI support
2293@cindex ISO support
2294@item -ansi
2295@opindex ansi
2296In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
2297equivalent to @option{-std=c++98}.
2298
2299This turns off certain features of GCC that are incompatible with ISO
2300C90 (when compiling C code), or of standard C++ (when compiling C++ code),
2301such as the @code{asm} and @code{typeof} keywords, and
2302predefined macros such as @code{unix} and @code{vax} that identify the
2303type of system you are using.  It also enables the undesirable and
2304rarely used ISO trigraph feature.  For the C compiler,
2305it disables recognition of C++ style @samp{//} comments as well as
2306the @code{inline} keyword.
2307
2308The alternate keywords @code{__asm__}, @code{__extension__},
2309@code{__inline__} and @code{__typeof__} continue to work despite
2310@option{-ansi}.  You would not want to use them in an ISO C program, of
2311course, but it is useful to put them in header files that might be included
2312in compilations done with @option{-ansi}.  Alternate predefined macros
2313such as @code{__unix__} and @code{__vax__} are also available, with or
2314without @option{-ansi}.
2315
2316The @option{-ansi} option does not cause non-ISO programs to be
2317rejected gratuitously.  For that, @option{-Wpedantic} is required in
2318addition to @option{-ansi}.  @xref{Warning Options}.
2319
2320The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
2321option is used.  Some header files may notice this macro and refrain
2322from declaring certain functions or defining certain macros that the
2323ISO standard doesn't call for; this is to avoid interfering with any
2324programs that might use these names for other things.
2325
2326Functions that are normally built in but do not have semantics
2327defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
2328functions when @option{-ansi} is used.  @xref{Other Builtins,,Other
2329built-in functions provided by GCC}, for details of the functions
2330affected.
2331
2332@item -std=
2333@opindex std
2334Determine the language standard. @xref{Standards,,Language Standards
2335Supported by GCC}, for details of these standard versions.  This option
2336is currently only supported when compiling C or C++.
2337
2338The compiler can accept several base standards, such as @samp{c90} or
2339@samp{c++98}, and GNU dialects of those standards, such as
2340@samp{gnu90} or @samp{gnu++98}.  When a base standard is specified, the
2341compiler accepts all programs following that standard plus those
2342using GNU extensions that do not contradict it.  For example,
2343@option{-std=c90} turns off certain features of GCC that are
2344incompatible with ISO C90, such as the @code{asm} and @code{typeof}
2345keywords, but not other GNU extensions that do not have a meaning in
2346ISO C90, such as omitting the middle term of a @code{?:}
2347expression. On the other hand, when a GNU dialect of a standard is
2348specified, all features supported by the compiler are enabled, even when
2349those features change the meaning of the base standard.  As a result, some
2350strict-conforming programs may be rejected.  The particular standard
2351is used by @option{-Wpedantic} to identify which features are GNU
2352extensions given that version of the standard. For example
2353@option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
2354comments, while @option{-std=gnu99 -Wpedantic} does not.
2355
2356A value for this option must be provided; possible values are
2357
2358@table @samp
2359@item c90
2360@itemx c89
2361@itemx iso9899:1990
2362Support all ISO C90 programs (certain GNU extensions that conflict
2363with ISO C90 are disabled). Same as @option{-ansi} for C code.
2364
2365@item iso9899:199409
2366ISO C90 as modified in amendment 1.
2367
2368@item c99
2369@itemx c9x
2370@itemx iso9899:1999
2371@itemx iso9899:199x
2372ISO C99.  This standard is substantially completely supported, modulo
2373bugs and floating-point issues
2374(mainly but not entirely relating to optional C99 features from
2375Annexes F and G).  See
2376@w{@uref{https://gcc.gnu.org/c99status.html}} for more information.  The
2377names @samp{c9x} and @samp{iso9899:199x} are deprecated.
2378
2379@item c11
2380@itemx c1x
2381@itemx iso9899:2011
2382ISO C11, the 2011 revision of the ISO C standard.  This standard is
2383substantially completely supported, modulo bugs, floating-point issues
2384(mainly but not entirely relating to optional C11 features from
2385Annexes F and G) and the optional Annexes K (Bounds-checking
2386interfaces) and L (Analyzability).  The name @samp{c1x} is deprecated.
2387
2388@item c17
2389@itemx c18
2390@itemx iso9899:2017
2391@itemx iso9899:2018
2392ISO C17, the 2017 revision of the ISO C standard
2393(published in 2018).  This standard is
2394same as C11 except for corrections of defects (all of which are also
2395applied with @option{-std=c11}) and a new value of
2396@code{__STDC_VERSION__}, and so is supported to the same extent as C11.
2397
2398@item c2x
2399The next version of the ISO C standard, still under development.  The
2400support for this version is experimental and incomplete.
2401
2402@item gnu90
2403@itemx gnu89
2404GNU dialect of ISO C90 (including some C99 features).
2405
2406@item gnu99
2407@itemx gnu9x
2408GNU dialect of ISO C99.  The name @samp{gnu9x} is deprecated.
2409
2410@item gnu11
2411@itemx gnu1x
2412GNU dialect of ISO C11.
2413The name @samp{gnu1x} is deprecated.
2414
2415@item gnu17
2416@itemx gnu18
2417GNU dialect of ISO C17.  This is the default for C code.
2418
2419@item gnu2x
2420The next version of the ISO C standard, still under development, plus
2421GNU extensions.  The support for this version is experimental and
2422incomplete.
2423
2424@item c++98
2425@itemx c++03
2426The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
2427additional defect reports. Same as @option{-ansi} for C++ code.
2428
2429@item gnu++98
2430@itemx gnu++03
2431GNU dialect of @option{-std=c++98}.
2432
2433@item c++11
2434@itemx c++0x
2435The 2011 ISO C++ standard plus amendments.
2436The name @samp{c++0x} is deprecated.
2437
2438@item gnu++11
2439@itemx gnu++0x
2440GNU dialect of @option{-std=c++11}.
2441The name @samp{gnu++0x} is deprecated.
2442
2443@item c++14
2444@itemx c++1y
2445The 2014 ISO C++ standard plus amendments.
2446The name @samp{c++1y} is deprecated.
2447
2448@item gnu++14
2449@itemx gnu++1y
2450GNU dialect of @option{-std=c++14}.
2451The name @samp{gnu++1y} is deprecated.
2452
2453@item c++17
2454@itemx c++1z
2455The 2017 ISO C++ standard plus amendments.
2456The name @samp{c++1z} is deprecated.
2457
2458@item gnu++17
2459@itemx gnu++1z
2460GNU dialect of @option{-std=c++17}.
2461This is the default for C++ code.
2462The name @samp{gnu++1z} is deprecated.
2463
2464@item c++20
2465@itemx c++2a
2466The 2020 ISO C++ standard plus amendments.
2467Support is experimental, and could change in incompatible ways in
2468future releases.
2469The name @samp{c++2a} is deprecated.
2470
2471@item gnu++20
2472@itemx gnu++2a
2473GNU dialect of @option{-std=c++20}.
2474Support is experimental, and could change in incompatible ways in
2475future releases.
2476The name @samp{gnu++2a} is deprecated.
2477
2478@item c++2b
2479@itemx c++23
2480The next revision of the ISO C++ standard, planned for
24812023.  Support is highly experimental, and will almost certainly
2482change in incompatible ways in future releases.
2483
2484@item gnu++2b
2485@itemx gnu++23
2486GNU dialect of @option{-std=c++2b}.  Support is highly experimental,
2487and will almost certainly change in incompatible ways in future
2488releases.
2489@end table
2490
2491@item -aux-info @var{filename}
2492@opindex aux-info
2493Output to the given filename prototyped declarations for all functions
2494declared and/or defined in a translation unit, including those in header
2495files.  This option is silently ignored in any language other than C@.
2496
2497Besides declarations, the file indicates, in comments, the origin of
2498each declaration (source file and line), whether the declaration was
2499implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2500@samp{O} for old, respectively, in the first character after the line
2501number and the colon), and whether it came from a declaration or a
2502definition (@samp{C} or @samp{F}, respectively, in the following
2503character).  In the case of function definitions, a K&R-style list of
2504arguments followed by their declarations is also provided, inside
2505comments, after the declaration.
2506
2507@item -fallow-parameterless-variadic-functions
2508@opindex fallow-parameterless-variadic-functions
2509Accept variadic functions without named parameters.
2510
2511Although it is possible to define such a function, this is not very
2512useful as it is not possible to read the arguments.  This is only
2513supported for C as this construct is allowed by C++.
2514
2515@item -fno-asm
2516@opindex fno-asm
2517@opindex fasm
2518Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2519keyword, so that code can use these words as identifiers.  You can use
2520the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2521instead.  In C, @option{-ansi} implies @option{-fno-asm}.
2522
2523In C++, @code{inline} is a standard keyword and is not affected by
2524this switch.  You may want to use the @option{-fno-gnu-keywords} flag
2525instead, which disables @code{typeof} but not @code{asm} and
2526@code{inline}.  In C99 mode (@option{-std=c99} or @option{-std=gnu99}),
2527this switch only affects the @code{asm} and @code{typeof} keywords,
2528since @code{inline} is a standard keyword in ISO C99.
2529
2530@item -fno-builtin
2531@itemx -fno-builtin-@var{function}
2532@opindex fno-builtin
2533@opindex fbuiltin
2534@cindex built-in functions
2535Don't recognize built-in functions that do not begin with
2536@samp{__builtin_} as prefix.  @xref{Other Builtins,,Other built-in
2537functions provided by GCC}, for details of the functions affected,
2538including those which are not built-in functions when @option{-ansi} or
2539@option{-std} options for strict ISO C conformance are used because they
2540do not have an ISO standard meaning.
2541
2542GCC normally generates special code to handle certain built-in functions
2543more efficiently; for instance, calls to @code{alloca} may become single
2544instructions which adjust the stack directly, and calls to @code{memcpy}
2545may become inline copy loops.  The resulting code is often both smaller
2546and faster, but since the function calls no longer appear as such, you
2547cannot set a breakpoint on those calls, nor can you change the behavior
2548of the functions by linking with a different library.  In addition,
2549when a function is recognized as a built-in function, GCC may use
2550information about that function to warn about problems with calls to
2551that function, or to generate more efficient code, even if the
2552resulting code still contains calls to that function.  For example,
2553warnings are given with @option{-Wformat} for bad calls to
2554@code{printf} when @code{printf} is built in and @code{strlen} is
2555known not to modify global memory.
2556
2557With the @option{-fno-builtin-@var{function}} option
2558only the built-in function @var{function} is
2559disabled.  @var{function} must not begin with @samp{__builtin_}.  If a
2560function is named that is not built-in in this version of GCC, this
2561option is ignored.  There is no corresponding
2562@option{-fbuiltin-@var{function}} option; if you wish to enable
2563built-in functions selectively when using @option{-fno-builtin} or
2564@option{-ffreestanding}, you may define macros such as:
2565
2566@smallexample
2567#define abs(n)          __builtin_abs ((n))
2568#define strcpy(d, s)    __builtin_strcpy ((d), (s))
2569@end smallexample
2570
2571@item -fcond-mismatch
2572@opindex fcond-mismatch
2573Allow conditional expressions with mismatched types in the second and
2574third arguments.  The value of such an expression is void.  This option
2575is not supported for C++.
2576
2577@item -ffreestanding
2578@opindex ffreestanding
2579@cindex hosted environment
2580
2581Assert that compilation targets a freestanding environment.  This
2582implies @option{-fno-builtin}.  A freestanding environment
2583is one in which the standard library may not exist, and program startup may
2584not necessarily be at @code{main}.  The most obvious example is an OS kernel.
2585This is equivalent to @option{-fno-hosted}.
2586
2587@xref{Standards,,Language Standards Supported by GCC}, for details of
2588freestanding and hosted environments.
2589
2590@item -fgimple
2591@opindex fgimple
2592
2593Enable parsing of function definitions marked with @code{__GIMPLE}.
2594This is an experimental feature that allows unit testing of GIMPLE
2595passes.
2596
2597@item -fgnu-tm
2598@opindex fgnu-tm
2599When the option @option{-fgnu-tm} is specified, the compiler
2600generates code for the Linux variant of Intel's current Transactional
2601Memory ABI specification document (Revision 1.1, May 6 2009).  This is
2602an experimental feature whose interface may change in future versions
2603of GCC, as the official specification changes.  Please note that not
2604all architectures are supported for this feature.
2605
2606For more information on GCC's support for transactional memory,
2607@xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2608Transactional Memory Library}.
2609
2610Note that the transactional memory feature is not supported with
2611non-call exceptions (@option{-fnon-call-exceptions}).
2612
2613@item -fgnu89-inline
2614@opindex fgnu89-inline
2615The option @option{-fgnu89-inline} tells GCC to use the traditional
2616GNU semantics for @code{inline} functions when in C99 mode.
2617@xref{Inline,,An Inline Function is As Fast As a Macro}.
2618Using this option is roughly equivalent to adding the
2619@code{gnu_inline} function attribute to all inline functions
2620(@pxref{Function Attributes}).
2621
2622The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2623C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2624specifies the default behavior).
2625This option is not supported in @option{-std=c90} or
2626@option{-std=gnu90} mode.
2627
2628The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2629@code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2630in effect for @code{inline} functions.  @xref{Common Predefined
2631Macros,,,cpp,The C Preprocessor}.
2632
2633@item -fhosted
2634@opindex fhosted
2635@cindex hosted environment
2636
2637Assert that compilation targets a hosted environment.  This implies
2638@option{-fbuiltin}.  A hosted environment is one in which the
2639entire standard library is available, and in which @code{main} has a return
2640type of @code{int}.  Examples are nearly everything except a kernel.
2641This is equivalent to @option{-fno-freestanding}.
2642
2643@item -flax-vector-conversions
2644@opindex flax-vector-conversions
2645Allow implicit conversions between vectors with differing numbers of
2646elements and/or incompatible element types.  This option should not be
2647used for new code.
2648
2649@item -fms-extensions
2650@opindex fms-extensions
2651Accept some non-standard constructs used in Microsoft header files.
2652
2653In C++ code, this allows member names in structures to be similar
2654to previous types declarations.
2655
2656@smallexample
2657typedef int UOW;
2658struct ABC @{
2659  UOW UOW;
2660@};
2661@end smallexample
2662
2663Some cases of unnamed fields in structures and unions are only
2664accepted with this option.  @xref{Unnamed Fields,,Unnamed struct/union
2665fields within structs/unions}, for details.
2666
2667Note that this option is off for all targets except for x86
2668targets using ms-abi.
2669
2670@item -foffload=disable
2671@itemx -foffload=default
2672@itemx -foffload=@var{target-list}
2673@opindex foffload
2674@cindex Offloading targets
2675@cindex OpenACC offloading targets
2676@cindex OpenMP offloading targets
2677Specify for which OpenMP and OpenACC offload targets code should be generated.
2678The default behavior, equivalent to @option{-foffload=default}, is to generate
2679code for all supported offload targets.  The @option{-foffload=disable} form
2680generates code only for the host fallback, while
2681@option{-foffload=@var{target-list}} generates code only for the specified
2682comma-separated list of offload targets.
2683
2684Offload targets are specified in GCC's internal target-triplet format. You can
2685run the compiler with @option{-v} to show the list of configured offload targets
2686under @code{OFFLOAD_TARGET_NAMES}.
2687
2688@item -foffload-options=@var{options}
2689@itemx -foffload-options=@var{target-triplet-list}=@var{options}
2690@opindex foffload-options
2691@cindex Offloading options
2692@cindex OpenACC offloading options
2693@cindex OpenMP offloading options
2694
2695With @option{-foffload-options=@var{options}}, GCC passes the specified
2696@var{options} to the compilers for all enabled offloading targets.  You can
2697specify options that apply only to a specific target or targets by using
2698the @option{-foffload-options=@var{target-list}=@var{options}} form.  The
2699@var{target-list} is a comma-separated list in the same format as for the
2700@option{-foffload=} option.
2701
2702Typical command lines are
2703
2704@smallexample
2705-foffload-options=-lgfortran -foffload-options=-lm
2706-foffload-options="-lgfortran -lm" -foffload-options=nvptx-none=-latomic
2707-foffload-options=amdgcn-amdhsa=-march=gfx906 -foffload-options=-lm
2708@end smallexample
2709
2710@item -fopenacc
2711@opindex fopenacc
2712@cindex OpenACC accelerator programming
2713Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2714@code{!$acc} in Fortran.  When @option{-fopenacc} is specified, the
2715compiler generates accelerated code according to the OpenACC Application
2716Programming Interface v2.6 @w{@uref{https://www.openacc.org}}.  This option
2717implies @option{-pthread}, and thus is only supported on targets that
2718have support for @option{-pthread}.
2719
2720@item -fopenacc-dim=@var{geom}
2721@opindex fopenacc-dim
2722@cindex OpenACC accelerator programming
2723Specify default compute dimensions for parallel offload regions that do
2724not explicitly specify.  The @var{geom} value is a triple of
2725':'-separated sizes, in order 'gang', 'worker' and, 'vector'.  A size
2726can be omitted, to use a target-specific default value.
2727
2728@item -fopenmp
2729@opindex fopenmp
2730@cindex OpenMP parallel
2731Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2732@code{!$omp} in Fortran.  When @option{-fopenmp} is specified, the
2733compiler generates parallel code according to the OpenMP Application
2734Program Interface v4.5 @w{@uref{https://www.openmp.org}}.  This option
2735implies @option{-pthread}, and thus is only supported on targets that
2736have support for @option{-pthread}. @option{-fopenmp} implies
2737@option{-fopenmp-simd}.
2738
2739@item -fopenmp-simd
2740@opindex fopenmp-simd
2741@cindex OpenMP SIMD
2742@cindex SIMD
2743Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2744in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2745are ignored.
2746
2747@item -fpermitted-flt-eval-methods=@var{style}
2748@opindex fpermitted-flt-eval-methods
2749@opindex fpermitted-flt-eval-methods=c11
2750@opindex fpermitted-flt-eval-methods=ts-18661-3
2751ISO/IEC TS 18661-3 defines new permissible values for
2752@code{FLT_EVAL_METHOD} that indicate that operations and constants with
2753a semantic type that is an interchange or extended format should be
2754evaluated to the precision and range of that type.  These new values are
2755a superset of those permitted under C99/C11, which does not specify the
2756meaning of other positive values of @code{FLT_EVAL_METHOD}.  As such, code
2757conforming to C11 may not have been written expecting the possibility of
2758the new values.
2759
2760@option{-fpermitted-flt-eval-methods} specifies whether the compiler
2761should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2762or the extended set of values specified in ISO/IEC TS 18661-3.
2763
2764@var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2765
2766The default when in a standards compliant mode (@option{-std=c11} or similar)
2767is @option{-fpermitted-flt-eval-methods=c11}.  The default when in a GNU
2768dialect (@option{-std=gnu11} or similar) is
2769@option{-fpermitted-flt-eval-methods=ts-18661-3}.
2770
2771@item -fplan9-extensions
2772@opindex fplan9-extensions
2773Accept some non-standard constructs used in Plan 9 code.
2774
2775This enables @option{-fms-extensions}, permits passing pointers to
2776structures with anonymous fields to functions that expect pointers to
2777elements of the type of the field, and permits referring to anonymous
2778fields declared using a typedef.  @xref{Unnamed Fields,,Unnamed
2779struct/union fields within structs/unions}, for details.  This is only
2780supported for C, not C++.
2781
2782@item -fsigned-bitfields
2783@itemx -funsigned-bitfields
2784@itemx -fno-signed-bitfields
2785@itemx -fno-unsigned-bitfields
2786@opindex fsigned-bitfields
2787@opindex funsigned-bitfields
2788@opindex fno-signed-bitfields
2789@opindex fno-unsigned-bitfields
2790These options control whether a bit-field is signed or unsigned, when the
2791declaration does not use either @code{signed} or @code{unsigned}.  By
2792default, such a bit-field is signed, because this is consistent: the
2793basic integer types such as @code{int} are signed types.
2794
2795@item -fsigned-char
2796@opindex fsigned-char
2797Let the type @code{char} be signed, like @code{signed char}.
2798
2799Note that this is equivalent to @option{-fno-unsigned-char}, which is
2800the negative form of @option{-funsigned-char}.  Likewise, the option
2801@option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2802
2803@item -funsigned-char
2804@opindex funsigned-char
2805Let the type @code{char} be unsigned, like @code{unsigned char}.
2806
2807Each kind of machine has a default for what @code{char} should
2808be.  It is either like @code{unsigned char} by default or like
2809@code{signed char} by default.
2810
2811Ideally, a portable program should always use @code{signed char} or
2812@code{unsigned char} when it depends on the signedness of an object.
2813But many programs have been written to use plain @code{char} and
2814expect it to be signed, or expect it to be unsigned, depending on the
2815machines they were written for.  This option, and its inverse, let you
2816make such a program work with the opposite default.
2817
2818The type @code{char} is always a distinct type from each of
2819@code{signed char} or @code{unsigned char}, even though its behavior
2820is always just like one of those two.
2821
2822@item -fsso-struct=@var{endianness}
2823@opindex fsso-struct
2824Set the default scalar storage order of structures and unions to the
2825specified endianness.  The accepted values are @samp{big-endian},
2826@samp{little-endian} and @samp{native} for the native endianness of
2827the target (the default).  This option is not supported for C++.
2828
2829@strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2830code that is not binary compatible with code generated without it if the
2831specified endianness is not the native endianness of the target.
2832@end table
2833
2834@node C++ Dialect Options
2835@section Options Controlling C++ Dialect
2836
2837@cindex compiler options, C++
2838@cindex C++ options, command-line
2839@cindex options, C++
2840This section describes the command-line options that are only meaningful
2841for C++ programs.  You can also use most of the GNU compiler options
2842regardless of what language your program is in.  For example, you
2843might compile a file @file{firstClass.C} like this:
2844
2845@smallexample
2846g++ -g -fstrict-enums -O -c firstClass.C
2847@end smallexample
2848
2849@noindent
2850In this example, only @option{-fstrict-enums} is an option meant
2851only for C++ programs; you can use the other options with any
2852language supported by GCC@.
2853
2854Some options for compiling C programs, such as @option{-std}, are also
2855relevant for C++ programs.
2856@xref{C Dialect Options,,Options Controlling C Dialect}.
2857
2858Here is a list of options that are @emph{only} for compiling C++ programs:
2859
2860@table @gcctabopt
2861
2862@item -fabi-version=@var{n}
2863@opindex fabi-version
2864Use version @var{n} of the C++ ABI@.  The default is version 0.
2865
2866Version 0 refers to the version conforming most closely to
2867the C++ ABI specification.  Therefore, the ABI obtained using version 0
2868will change in different versions of G++ as ABI bugs are fixed.
2869
2870Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2871
2872Version 2 is the version of the C++ ABI that first appeared in G++
28733.4, and was the default through G++ 4.9.
2874
2875Version 3 corrects an error in mangling a constant address as a
2876template argument.
2877
2878Version 4, which first appeared in G++ 4.5, implements a standard
2879mangling for vector types.
2880
2881Version 5, which first appeared in G++ 4.6, corrects the mangling of
2882attribute const/volatile on function pointer types, decltype of a
2883plain decl, and use of a function parameter in the declaration of
2884another parameter.
2885
2886Version 6, which first appeared in G++ 4.7, corrects the promotion
2887behavior of C++11 scoped enums and the mangling of template argument
2888packs, const/static_cast, prefix ++ and --, and a class scope function
2889used as a template argument.
2890
2891Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2892builtin type and corrects the mangling of lambdas in default argument
2893scope.
2894
2895Version 8, which first appeared in G++ 4.9, corrects the substitution
2896behavior of function types with function-cv-qualifiers.
2897
2898Version 9, which first appeared in G++ 5.2, corrects the alignment of
2899@code{nullptr_t}.
2900
2901Version 10, which first appeared in G++ 6.1, adds mangling of
2902attributes that affect type identity, such as ia32 calling convention
2903attributes (e.g.@: @samp{stdcall}).
2904
2905Version 11, which first appeared in G++ 7, corrects the mangling of
2906sizeof... expressions and operator names.  For multiple entities with
2907the same name within a function, that are declared in different scopes,
2908the mangling now changes starting with the twelfth occurrence.  It also
2909implies @option{-fnew-inheriting-ctors}.
2910
2911Version 12, which first appeared in G++ 8, corrects the calling
2912conventions for empty classes on the x86_64 target and for classes
2913with only deleted copy/move constructors.  It accidentally changes the
2914calling convention for classes with a deleted copy constructor and a
2915trivial move constructor.
2916
2917Version 13, which first appeared in G++ 8.2, fixes the accidental
2918change in version 12.
2919
2920Version 14, which first appeared in G++ 10, corrects the mangling of
2921the nullptr expression.
2922
2923Version 15, which first appeared in G++ 11, changes the mangling of
2924@code{__alignof__} to be distinct from that of @code{alignof}, and
2925dependent operator names.
2926
2927See also @option{-Wabi}.
2928
2929@item -fabi-compat-version=@var{n}
2930@opindex fabi-compat-version
2931On targets that support strong aliases, G++
2932works around mangling changes by creating an alias with the correct
2933mangled name when defining a symbol with an incorrect mangled name.
2934This switch specifies which ABI version to use for the alias.
2935
2936With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2937compatibility).  If another ABI version is explicitly selected, this
2938defaults to 0.  For compatibility with GCC versions 3.2 through 4.9,
2939use @option{-fabi-compat-version=2}.
2940
2941If this option is not provided but @option{-Wabi=@var{n}} is, that
2942version is used for compatibility aliases.  If this option is provided
2943along with @option{-Wabi} (without the version), the version from this
2944option is used for the warning.
2945
2946@item -fno-access-control
2947@opindex fno-access-control
2948@opindex faccess-control
2949Turn off all access checking.  This switch is mainly useful for working
2950around bugs in the access control code.
2951
2952@item -faligned-new
2953@opindex faligned-new
2954Enable support for C++17 @code{new} of types that require more
2955alignment than @code{void* ::operator new(std::size_t)} provides.  A
2956numeric argument such as @code{-faligned-new=32} can be used to
2957specify how much alignment (in bytes) is provided by that function,
2958but few users will need to override the default of
2959@code{alignof(std::max_align_t)}.
2960
2961This flag is enabled by default for @option{-std=c++17}.
2962
2963@item -fchar8_t
2964@itemx -fno-char8_t
2965@opindex fchar8_t
2966@opindex fno-char8_t
2967Enable support for @code{char8_t} as adopted for C++20.  This includes
2968the addition of a new @code{char8_t} fundamental type, changes to the
2969types of UTF-8 string and character literals, new signatures for
2970user-defined literals, associated standard library updates, and new
2971@code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2972
2973This option enables functions to be overloaded for ordinary and UTF-8
2974strings:
2975
2976@smallexample
2977int f(const char *);    // #1
2978int f(const char8_t *); // #2
2979int v1 = f("text");     // Calls #1
2980int v2 = f(u8"text");   // Calls #2
2981@end smallexample
2982
2983@noindent
2984and introduces new signatures for user-defined literals:
2985
2986@smallexample
2987int operator""_udl1(char8_t);
2988int v3 = u8'x'_udl1;
2989int operator""_udl2(const char8_t*, std::size_t);
2990int v4 = u8"text"_udl2;
2991template<typename T, T...> int operator""_udl3();
2992int v5 = u8"text"_udl3;
2993@end smallexample
2994
2995@noindent
2996The change to the types of UTF-8 string and character literals introduces
2997incompatibilities with ISO C++11 and later standards.  For example, the
2998following code is well-formed under ISO C++11, but is ill-formed when
2999@option{-fchar8_t} is specified.
3000
3001@smallexample
3002char ca[] = u8"xx";     // error: char-array initialized from wide
3003                        //        string
3004const char *cp = u8"xx";// error: invalid conversion from
3005                        //        `const char8_t*' to `const char*'
3006int f(const char*);
3007auto v = f(u8"xx");     // error: invalid conversion from
3008                        //        `const char8_t*' to `const char*'
3009std::string s@{u8"xx"@};  // error: no matching function for call to
3010                        //        `std::basic_string<char>::basic_string()'
3011using namespace std::literals;
3012s = u8"xx"s;            // error: conversion from
3013                        //        `basic_string<char8_t>' to non-scalar
3014                        //        type `basic_string<char>' requested
3015@end smallexample
3016
3017@item -fcheck-new
3018@opindex fcheck-new
3019Check that the pointer returned by @code{operator new} is non-null
3020before attempting to modify the storage allocated.  This check is
3021normally unnecessary because the C++ standard specifies that
3022@code{operator new} only returns @code{0} if it is declared
3023@code{throw()}, in which case the compiler always checks the
3024return value even without this option.  In all other cases, when
3025@code{operator new} has a non-empty exception specification, memory
3026exhaustion is signalled by throwing @code{std::bad_alloc}.  See also
3027@samp{new (nothrow)}.
3028
3029@item -fconcepts
3030@itemx -fconcepts-ts
3031@opindex fconcepts
3032@opindex fconcepts-ts
3033Below @option{-std=c++20}, @option{-fconcepts} enables support for the
3034C++ Extensions for Concepts Technical Specification, ISO 19217 (2015).
3035
3036With @option{-std=c++20} and above, Concepts are part of the language
3037standard, so @option{-fconcepts} defaults to on.  But the standard
3038specification of Concepts differs significantly from the TS, so some
3039constructs that were allowed in the TS but didn't make it into the
3040standard can still be enabled by @option{-fconcepts-ts}.
3041
3042@item -fconstexpr-depth=@var{n}
3043@opindex fconstexpr-depth
3044Set the maximum nested evaluation depth for C++11 constexpr functions
3045to @var{n}.  A limit is needed to detect endless recursion during
3046constant expression evaluation.  The minimum specified by the standard
3047is 512.
3048
3049@item -fconstexpr-cache-depth=@var{n}
3050@opindex fconstexpr-cache-depth
3051Set the maximum level of nested evaluation depth for C++11 constexpr
3052functions that will be cached to @var{n}.  This is a heuristic that
3053trades off compilation speed (when the cache avoids repeated
3054calculations) against memory consumption (when the cache grows very
3055large from highly recursive evaluations).  The default is 8.  Very few
3056users are likely to want to adjust it, but if your code does heavy
3057constexpr calculations you might want to experiment to find which
3058value works best for you.
3059
3060@item -fconstexpr-fp-except
3061@opindex fconstexpr-fp-except
3062Annex F of the C standard specifies that IEC559 floating point
3063exceptions encountered at compile time should not stop compilation.
3064C++ compilers have historically not followed this guidance, instead
3065treating floating point division by zero as non-constant even though
3066it has a well defined value.  This flag tells the compiler to give
3067Annex F priority over other rules saying that a particular operation
3068is undefined.
3069
3070@smallexample
3071constexpr float inf = 1./0.; // OK with -fconstexpr-fp-except
3072@end smallexample
3073
3074@item -fconstexpr-loop-limit=@var{n}
3075@opindex fconstexpr-loop-limit
3076Set the maximum number of iterations for a loop in C++14 constexpr functions
3077to @var{n}.  A limit is needed to detect infinite loops during
3078constant expression evaluation.  The default is 262144 (1<<18).
3079
3080@item -fconstexpr-ops-limit=@var{n}
3081@opindex fconstexpr-ops-limit
3082Set the maximum number of operations during a single constexpr evaluation.
3083Even when number of iterations of a single loop is limited with the above limit,
3084if there are several nested loops and each of them has many iterations but still
3085smaller than the above limit, or if in a body of some loop or even outside
3086of a loop too many expressions need to be evaluated, the resulting constexpr
3087evaluation might take too long.
3088The default is 33554432 (1<<25).
3089
3090@item -fcoroutines
3091@opindex fcoroutines
3092Enable support for the C++ coroutines extension (experimental).
3093
3094@item -fno-elide-constructors
3095@opindex fno-elide-constructors
3096@opindex felide-constructors
3097The C++ standard allows an implementation to omit creating a temporary
3098that is only used to initialize another object of the same type.
3099Specifying this option disables that optimization, and forces G++ to
3100call the copy constructor in all cases.  This option also causes G++
3101to call trivial member functions which otherwise would be expanded inline.
3102
3103In C++17, the compiler is required to omit these temporaries, but this
3104option still affects trivial member functions.
3105
3106@item -fno-enforce-eh-specs
3107@opindex fno-enforce-eh-specs
3108@opindex fenforce-eh-specs
3109Don't generate code to check for violation of exception specifications
3110at run time.  This option violates the C++ standard, but may be useful
3111for reducing code size in production builds, much like defining
3112@code{NDEBUG}.  This does not give user code permission to throw
3113exceptions in violation of the exception specifications; the compiler
3114still optimizes based on the specifications, so throwing an
3115unexpected exception results in undefined behavior at run time.
3116
3117@item -fextern-tls-init
3118@itemx -fno-extern-tls-init
3119@opindex fextern-tls-init
3120@opindex fno-extern-tls-init
3121The C++11 and OpenMP standards allow @code{thread_local} and
3122@code{threadprivate} variables to have dynamic (runtime)
3123initialization.  To support this, any use of such a variable goes
3124through a wrapper function that performs any necessary initialization.
3125When the use and definition of the variable are in the same
3126translation unit, this overhead can be optimized away, but when the
3127use is in a different translation unit there is significant overhead
3128even if the variable doesn't actually need dynamic initialization.  If
3129the programmer can be sure that no use of the variable in a
3130non-defining TU needs to trigger dynamic initialization (either
3131because the variable is statically initialized, or a use of the
3132variable in the defining TU will be executed before any uses in
3133another TU), they can avoid this overhead with the
3134@option{-fno-extern-tls-init} option.
3135
3136On targets that support symbol aliases, the default is
3137@option{-fextern-tls-init}.  On targets that do not support symbol
3138aliases, the default is @option{-fno-extern-tls-init}.
3139
3140@item -ffold-simple-inlines
3141@itemx -fno-fold-simple-inlines
3142@opindex ffold-simple-inlines
3143@opindex fno-fold-simple-inlines
3144Permit the C++ frontend to fold calls to @code{std::move}, @code{std::forward},
3145@code{std::addressof} and @code{std::as_const}.  In contrast to inlining, this
3146means no debug information will be generated for such calls.  Since these
3147functions are rarely interesting to debug, this flag is enabled by default
3148unless @option{-fno-inline} is active.
3149
3150@item -fno-gnu-keywords
3151@opindex fno-gnu-keywords
3152@opindex fgnu-keywords
3153Do not recognize @code{typeof} as a keyword, so that code can use this
3154word as an identifier.  You can use the keyword @code{__typeof__} instead.
3155This option is implied by the strict ISO C++ dialects: @option{-ansi},
3156@option{-std=c++98}, @option{-std=c++11}, etc.
3157
3158@item -fimplicit-constexpr
3159@opindex fimplicit-constexpr
3160Make inline functions implicitly constexpr, if they satisfy the
3161requirements for a constexpr function.  This option can be used in
3162C++14 mode or later.  This can result in initialization changing from
3163dynamic to static and other optimizations.
3164
3165@item -fno-implicit-templates
3166@opindex fno-implicit-templates
3167@opindex fimplicit-templates
3168Never emit code for non-inline templates that are instantiated
3169implicitly (i.e.@: by use); only emit code for explicit instantiations.
3170If you use this option, you must take care to structure your code to
3171include all the necessary explicit instantiations to avoid getting
3172undefined symbols at link time.
3173@xref{Template Instantiation}, for more information.
3174
3175@item -fno-implicit-inline-templates
3176@opindex fno-implicit-inline-templates
3177@opindex fimplicit-inline-templates
3178Don't emit code for implicit instantiations of inline templates, either.
3179The default is to handle inlines differently so that compiles with and
3180without optimization need the same set of explicit instantiations.
3181
3182@item -fno-implement-inlines
3183@opindex fno-implement-inlines
3184@opindex fimplement-inlines
3185To save space, do not emit out-of-line copies of inline functions
3186controlled by @code{#pragma implementation}.  This causes linker
3187errors if these functions are not inlined everywhere they are called.
3188
3189@item -fmodules-ts
3190@itemx -fno-modules-ts
3191@opindex fmodules-ts
3192@opindex fno-modules-ts
3193Enable support for C++20 modules (@pxref{C++ Modules}).  The
3194@option{-fno-modules-ts} is usually not needed, as that is the
3195default.  Even though this is a C++20 feature, it is not currently
3196implicitly enabled by selecting that standard version.
3197
3198@item -fmodule-header
3199@itemx -fmodule-header=user
3200@itemx -fmodule-header=system
3201@opindex fmodule-header
3202Compile a header file to create an importable header unit.
3203
3204@item -fmodule-implicit-inline
3205@opindex fmodule-implicit-inline
3206Member functions defined in their class definitions are not implicitly
3207inline for modular code.  This is different to traditional C++
3208behavior, for good reasons.  However, it may result in a difficulty
3209during code porting.  This option makes such function definitions
3210implicitly inline.  It does however generate an ABI incompatibility,
3211so you must use it everywhere or nowhere.  (Such definitions outside
3212of a named module remain implicitly inline, regardless.)
3213
3214@item -fno-module-lazy
3215@opindex fno-module-lazy
3216@opindex fmodule-lazy
3217Disable lazy module importing and module mapper creation.
3218
3219@item -fmodule-mapper=@r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
3220@itemx -fmodule-mapper=|@var{program}@r{[}?@var{ident}@r{]} @var{args...}
3221@itemx -fmodule-mapper==@var{socket}@r{[}?@var{ident}@r{]}
3222@itemx -fmodule-mapper=<>@r{[}@var{inout}@r{]}@r{[}?@var{ident}@r{]}
3223@itemx -fmodule-mapper=<@var{in}>@var{out}@r{[}?@var{ident}@r{]}
3224@itemx -fmodule-mapper=@var{file}@r{[}?@var{ident}@r{]}
3225@vindex CXX_MODULE_MAPPER @r{environment variable}
3226@opindex fmodule-mapper
3227An oracle to query for module name to filename mappings.  If
3228unspecified the @env{CXX_MODULE_MAPPER} environment variable is used,
3229and if that is unset, an in-process default is provided.
3230
3231@item -fmodule-only
3232@opindex fmodule-only
3233Only emit the Compiled Module Interface, inhibiting any object file.
3234
3235@item -fms-extensions
3236@opindex fms-extensions
3237Disable Wpedantic warnings about constructs used in MFC, such as implicit
3238int and getting a pointer to member function via non-standard syntax.
3239
3240@item -fnew-inheriting-ctors
3241@opindex fnew-inheriting-ctors
3242Enable the P0136 adjustment to the semantics of C++11 constructor
3243inheritance.  This is part of C++17 but also considered to be a Defect
3244Report against C++11 and C++14.  This flag is enabled by default
3245unless @option{-fabi-version=10} or lower is specified.
3246
3247@item -fnew-ttp-matching
3248@opindex fnew-ttp-matching
3249Enable the P0522 resolution to Core issue 150, template template
3250parameters and default arguments: this allows a template with default
3251template arguments as an argument for a template template parameter
3252with fewer template parameters.  This flag is enabled by default for
3253@option{-std=c++17}.
3254
3255@item -fno-nonansi-builtins
3256@opindex fno-nonansi-builtins
3257@opindex fnonansi-builtins
3258Disable built-in declarations of functions that are not mandated by
3259ANSI/ISO C@.  These include @code{ffs}, @code{alloca}, @code{_exit},
3260@code{index}, @code{bzero}, @code{conjf}, and other related functions.
3261
3262@item -fnothrow-opt
3263@opindex fnothrow-opt
3264Treat a @code{throw()} exception specification as if it were a
3265@code{noexcept} specification to reduce or eliminate the text size
3266overhead relative to a function with no exception specification.  If
3267the function has local variables of types with non-trivial
3268destructors, the exception specification actually makes the
3269function smaller because the EH cleanups for those variables can be
3270optimized away.  The semantic effect is that an exception thrown out of
3271a function with such an exception specification results in a call
3272to @code{terminate} rather than @code{unexpected}.
3273
3274@item -fno-operator-names
3275@opindex fno-operator-names
3276@opindex foperator-names
3277Do not treat the operator name keywords @code{and}, @code{bitand},
3278@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
3279synonyms as keywords.
3280
3281@item -fno-optional-diags
3282@opindex fno-optional-diags
3283@opindex foptional-diags
3284Disable diagnostics that the standard says a compiler does not need to
3285issue.  Currently, the only such diagnostic issued by G++ is the one for
3286a name having multiple meanings within a class.
3287
3288@item -fpermissive
3289@opindex fpermissive
3290Downgrade some diagnostics about nonconformant code from errors to
3291warnings.  Thus, using @option{-fpermissive} allows some
3292nonconforming code to compile.
3293
3294@item -fno-pretty-templates
3295@opindex fno-pretty-templates
3296@opindex fpretty-templates
3297When an error message refers to a specialization of a function
3298template, the compiler normally prints the signature of the
3299template followed by the template arguments and any typedefs or
3300typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
3301rather than @code{void f(int)}) so that it's clear which template is
3302involved.  When an error message refers to a specialization of a class
3303template, the compiler omits any template arguments that match
3304the default template arguments for that template.  If either of these
3305behaviors make it harder to understand the error message rather than
3306easier, you can use @option{-fno-pretty-templates} to disable them.
3307
3308@item -fno-rtti
3309@opindex fno-rtti
3310@opindex frtti
3311Disable generation of information about every class with virtual
3312functions for use by the C++ run-time type identification features
3313(@code{dynamic_cast} and @code{typeid}).  If you don't use those parts
3314of the language, you can save some space by using this flag.  Note that
3315exception handling uses the same information, but G++ generates it as
3316needed. The @code{dynamic_cast} operator can still be used for casts that
3317do not require run-time type information, i.e.@: casts to @code{void *} or to
3318unambiguous base classes.
3319
3320Mixing code compiled with @option{-frtti} with that compiled with
3321@option{-fno-rtti} may not work.  For example, programs may
3322fail to link if a class compiled with @option{-fno-rtti} is used as a base 
3323for a class compiled with @option{-frtti}.  
3324
3325@item -fsized-deallocation
3326@opindex fsized-deallocation
3327Enable the built-in global declarations
3328@smallexample
3329void operator delete (void *, std::size_t) noexcept;
3330void operator delete[] (void *, std::size_t) noexcept;
3331@end smallexample
3332as introduced in C++14.  This is useful for user-defined replacement
3333deallocation functions that, for example, use the size of the object
3334to make deallocation faster.  Enabled by default under
3335@option{-std=c++14} and above.  The flag @option{-Wsized-deallocation}
3336warns about places that might want to add a definition.
3337
3338@item -fstrict-enums
3339@opindex fstrict-enums
3340Allow the compiler to optimize using the assumption that a value of
3341enumerated type can only be one of the values of the enumeration (as
3342defined in the C++ standard; basically, a value that can be
3343represented in the minimum number of bits needed to represent all the
3344enumerators).  This assumption may not be valid if the program uses a
3345cast to convert an arbitrary integer value to the enumerated type.
3346
3347@item -fstrong-eval-order
3348@opindex fstrong-eval-order
3349Evaluate member access, array subscripting, and shift expressions in
3350left-to-right order, and evaluate assignment in right-to-left order,
3351as adopted for C++17.  Enabled by default with @option{-std=c++17}.
3352@option{-fstrong-eval-order=some} enables just the ordering of member
3353access and shift expressions, and is the default without
3354@option{-std=c++17}.
3355
3356@item -ftemplate-backtrace-limit=@var{n}
3357@opindex ftemplate-backtrace-limit
3358Set the maximum number of template instantiation notes for a single
3359warning or error to @var{n}.  The default value is 10.
3360
3361@item -ftemplate-depth=@var{n}
3362@opindex ftemplate-depth
3363Set the maximum instantiation depth for template classes to @var{n}.
3364A limit on the template instantiation depth is needed to detect
3365endless recursions during template class instantiation.  ANSI/ISO C++
3366conforming programs must not rely on a maximum depth greater than 17
3367(changed to 1024 in C++11).  The default value is 900, as the compiler
3368can run out of stack space before hitting 1024 in some situations.
3369
3370@item -fno-threadsafe-statics
3371@opindex fno-threadsafe-statics
3372@opindex fthreadsafe-statics
3373Do not emit the extra code to use the routines specified in the C++
3374ABI for thread-safe initialization of local statics.  You can use this
3375option to reduce code size slightly in code that doesn't need to be
3376thread-safe.
3377
3378@item -fuse-cxa-atexit
3379@opindex fuse-cxa-atexit
3380Register destructors for objects with static storage duration with the
3381@code{__cxa_atexit} function rather than the @code{atexit} function.
3382This option is required for fully standards-compliant handling of static
3383destructors, but only works if your C library supports
3384@code{__cxa_atexit}.
3385
3386@item -fno-use-cxa-get-exception-ptr
3387@opindex fno-use-cxa-get-exception-ptr
3388@opindex fuse-cxa-get-exception-ptr
3389Don't use the @code{__cxa_get_exception_ptr} runtime routine.  This
3390causes @code{std::uncaught_exception} to be incorrect, but is necessary
3391if the runtime routine is not available.
3392
3393@item -fvisibility-inlines-hidden
3394@opindex fvisibility-inlines-hidden
3395This switch declares that the user does not attempt to compare
3396pointers to inline functions or methods where the addresses of the two functions
3397are taken in different shared objects.
3398
3399The effect of this is that GCC may, effectively, mark inline methods with
3400@code{__attribute__ ((visibility ("hidden")))} so that they do not
3401appear in the export table of a DSO and do not require a PLT indirection
3402when used within the DSO@.  Enabling this option can have a dramatic effect
3403on load and link times of a DSO as it massively reduces the size of the
3404dynamic export table when the library makes heavy use of templates.
3405
3406The behavior of this switch is not quite the same as marking the
3407methods as hidden directly, because it does not affect static variables
3408local to the function or cause the compiler to deduce that
3409the function is defined in only one shared object.
3410
3411You may mark a method as having a visibility explicitly to negate the
3412effect of the switch for that method.  For example, if you do want to
3413compare pointers to a particular inline method, you might mark it as
3414having default visibility.  Marking the enclosing class with explicit
3415visibility has no effect.
3416
3417Explicitly instantiated inline methods are unaffected by this option
3418as their linkage might otherwise cross a shared library boundary.
3419@xref{Template Instantiation}.
3420
3421@item -fvisibility-ms-compat
3422@opindex fvisibility-ms-compat
3423This flag attempts to use visibility settings to make GCC's C++
3424linkage model compatible with that of Microsoft Visual Studio.
3425
3426The flag makes these changes to GCC's linkage model:
3427
3428@enumerate
3429@item
3430It sets the default visibility to @code{hidden}, like
3431@option{-fvisibility=hidden}.
3432
3433@item
3434Types, but not their members, are not hidden by default.
3435
3436@item
3437The One Definition Rule is relaxed for types without explicit
3438visibility specifications that are defined in more than one
3439shared object: those declarations are permitted if they are
3440permitted when this option is not used.
3441@end enumerate
3442
3443In new code it is better to use @option{-fvisibility=hidden} and
3444export those classes that are intended to be externally visible.
3445Unfortunately it is possible for code to rely, perhaps accidentally,
3446on the Visual Studio behavior.
3447
3448Among the consequences of these changes are that static data members
3449of the same type with the same name but defined in different shared
3450objects are different, so changing one does not change the other;
3451and that pointers to function members defined in different shared
3452objects may not compare equal.  When this flag is given, it is a
3453violation of the ODR to define types with the same name differently.
3454
3455@item -fno-weak
3456@opindex fno-weak
3457@opindex fweak
3458Do not use weak symbol support, even if it is provided by the linker.
3459By default, G++ uses weak symbols if they are available.  This
3460option exists only for testing, and should not be used by end-users;
3461it results in inferior code and has no benefits.  This option may
3462be removed in a future release of G++.
3463
3464@item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3465@opindex fext-numeric-literals
3466@opindex fno-ext-numeric-literals
3467Accept imaginary, fixed-point, or machine-defined
3468literal number suffixes as GNU extensions.
3469When this option is turned off these suffixes are treated
3470as C++11 user-defined literal numeric suffixes.
3471This is on by default for all pre-C++11 dialects and all GNU dialects:
3472@option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3473@option{-std=gnu++14}.
3474This option is off by default
3475for ISO C++11 onwards (@option{-std=c++11}, ...).
3476
3477@item -nostdinc++
3478@opindex nostdinc++
3479Do not search for header files in the standard directories specific to
3480C++, but do still search the other standard directories.  (This option
3481is used when building the C++ library.)
3482
3483@item -flang-info-include-translate
3484@itemx -flang-info-include-translate-not
3485@itemx -flang-info-include-translate=@var{header}
3486@opindex flang-info-include-translate
3487@opindex flang-info-include-translate-not
3488Inform of include translation events.  The first will note accepted
3489include translations, the second will note declined include
3490translations.  The @var{header} form will inform of include
3491translations relating to that specific header.  If @var{header} is of
3492the form @code{"user"} or @code{<system>} it will be resolved to a
3493specific user or system header using the include path.
3494
3495@item -flang-info-module-cmi
3496@itemx -flang-info-module-cmi=@var{module}
3497@opindex flang-info-module-cmi
3498Inform of Compiled Module Interface pathnames.  The first will note
3499all read CMI pathnames.  The @var{module} form will not reading a
3500specific module's CMI.  @var{module} may be a named module or a
3501header-unit (the latter indicated by either being a pathname containing
3502directory separators or enclosed in @code{<>} or @code{""}).
3503
3504@item -stdlib=@var{libstdc++,libc++}
3505@opindex stdlib
3506When G++ is configured to support this option, it allows specification of
3507alternate C++ runtime libraries.  Two options are available: @var{libstdc++}
3508(the default, native C++ runtime for G++) and @var{libc++} which is the
3509C++ runtime installed on some operating systems (e.g. Darwin versions from
3510Darwin11 onwards).  The option switches G++ to use the headers from the
3511specified library and to emit @code{-lstdc++} or @code{-lc++} respectively,
3512when a C++ runtime is required for linking.
3513@end table
3514
3515In addition, these warning options have meanings only for C++ programs:
3516
3517@table @gcctabopt
3518@item -Wabi-tag @r{(C++ and Objective-C++ only)}
3519@opindex Wabi-tag
3520Warn when a type with an ABI tag is used in a context that does not
3521have that ABI tag.  See @ref{C++ Attributes} for more information
3522about ABI tags.
3523
3524@item -Wcomma-subscript @r{(C++ and Objective-C++ only)}
3525@opindex Wcomma-subscript
3526@opindex Wno-comma-subscript
3527Warn about uses of a comma expression within a subscripting expression.
3528This usage was deprecated in C++20 and is going to be removed in C++23.
3529However, a comma expression wrapped in @code{( )} is not deprecated.  Example:
3530
3531@smallexample
3532@group
3533void f(int *a, int b, int c) @{
3534    a[b,c];     // deprecated in C++20, invalid in C++23
3535    a[(b,c)];   // OK
3536@}
3537@end group
3538@end smallexample
3539
3540In C++23 it is valid to have comma separated expressions in a subscript
3541when an overloaded subscript operator is found and supports the right
3542number and types of arguments.  G++ will accept the formerly valid syntax
3543for code that is not valid in C++23 but used to be valid but deprecated
3544in C++20 with a pedantic warning that can be disabled with
3545@option{-Wno-comma-subscript}.
3546
3547Enabled by default with @option{-std=c++20} unless @option{-Wno-deprecated},
3548and with @option{-std=c++23} regardless of @option{-Wno-deprecated}.
3549
3550@item -Wctad-maybe-unsupported @r{(C++ and Objective-C++ only)}
3551@opindex Wctad-maybe-unsupported
3552@opindex Wno-ctad-maybe-unsupported
3553Warn when performing class template argument deduction (CTAD) on a type with
3554no explicitly written deduction guides.  This warning will point out cases
3555where CTAD succeeded only because the compiler synthesized the implicit
3556deduction guides, which might not be what the programmer intended.  Certain
3557style guides allow CTAD only on types that specifically "opt-in"; i.e., on
3558types that are designed to support CTAD.  This warning can be suppressed with
3559the following pattern:
3560
3561@smallexample
3562struct allow_ctad_t; // any name works
3563template <typename T> struct S @{
3564  S(T) @{ @}
3565@};
3566S(allow_ctad_t) -> S<void>; // guide with incomplete parameter type will never be considered
3567@end smallexample
3568
3569@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3570@opindex Wctor-dtor-privacy
3571@opindex Wno-ctor-dtor-privacy
3572Warn when a class seems unusable because all the constructors or
3573destructors in that class are private, and it has neither friends nor
3574public static member functions.  Also warn if there are no non-private
3575methods, and there's at least one private member function that isn't
3576a constructor or destructor.
3577
3578@item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3579@opindex Wdelete-non-virtual-dtor
3580@opindex Wno-delete-non-virtual-dtor
3581Warn when @code{delete} is used to destroy an instance of a class that
3582has virtual functions and non-virtual destructor. It is unsafe to delete
3583an instance of a derived class through a pointer to a base class if the
3584base class does not have a virtual destructor.  This warning is enabled
3585by @option{-Wall}.
3586
3587@item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3588@opindex Wdeprecated-copy
3589@opindex Wno-deprecated-copy
3590Warn that the implicit declaration of a copy constructor or copy
3591assignment operator is deprecated if the class has a user-provided
3592copy constructor or copy assignment operator, in C++11 and up.  This
3593warning is enabled by @option{-Wextra}.  With
3594@option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3595user-provided destructor.
3596
3597@item -Wno-deprecated-enum-enum-conversion @r{(C++ and Objective-C++ only)}
3598@opindex Wdeprecated-enum-enum-conversion
3599@opindex Wno-deprecated-enum-enum-conversion
3600Disable the warning about the case when the usual arithmetic conversions
3601are applied on operands where one is of enumeration type and the other is
3602of a different enumeration type.  This conversion was deprecated in C++20.
3603For example:
3604
3605@smallexample
3606enum E1 @{ e @};
3607enum E2 @{ f @};
3608int k = f - e;
3609@end smallexample
3610
3611@option{-Wdeprecated-enum-enum-conversion} is enabled by default with
3612@option{-std=c++20}.  In pre-C++20 dialects, this warning can be enabled
3613by @option{-Wenum-conversion}.
3614
3615@item -Wno-deprecated-enum-float-conversion @r{(C++ and Objective-C++ only)}
3616@opindex Wdeprecated-enum-float-conversion
3617@opindex Wno-deprecated-enum-float-conversion
3618Disable the warning about the case when the usual arithmetic conversions
3619are applied on operands where one is of enumeration type and the other is
3620of a floating-point type.  This conversion was deprecated in C++20.  For
3621example:
3622
3623@smallexample
3624enum E1 @{ e @};
3625enum E2 @{ f @};
3626bool b = e <= 3.7;
3627@end smallexample
3628
3629@option{-Wdeprecated-enum-float-conversion} is enabled by default with
3630@option{-std=c++20}.  In pre-C++20 dialects, this warning can be enabled
3631by @option{-Wenum-conversion}.
3632
3633@item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3634@opindex Winit-list-lifetime
3635@opindex Wno-init-list-lifetime
3636Do not warn about uses of @code{std::initializer_list} that are likely
3637to result in dangling pointers.  Since the underlying array for an
3638@code{initializer_list} is handled like a normal C++ temporary object,
3639it is easy to inadvertently keep a pointer to the array past the end
3640of the array's lifetime.  For example:
3641
3642@itemize @bullet
3643@item
3644If a function returns a temporary @code{initializer_list}, or a local
3645@code{initializer_list} variable, the array's lifetime ends at the end
3646of the return statement, so the value returned has a dangling pointer.
3647
3648@item
3649If a new-expression creates an @code{initializer_list}, the array only
3650lives until the end of the enclosing full-expression, so the
3651@code{initializer_list} in the heap has a dangling pointer.
3652
3653@item
3654When an @code{initializer_list} variable is assigned from a
3655brace-enclosed initializer list, the temporary array created for the
3656right side of the assignment only lives until the end of the
3657full-expression, so at the next statement the @code{initializer_list}
3658variable has a dangling pointer.
3659
3660@smallexample
3661// li's initial underlying array lives as long as li
3662std::initializer_list<int> li = @{ 1,2,3 @};
3663// assignment changes li to point to a temporary array
3664li = @{ 4, 5 @};
3665// now the temporary is gone and li has a dangling pointer
3666int i = li.begin()[0] // undefined behavior
3667@end smallexample
3668
3669@item
3670When a list constructor stores the @code{begin} pointer from the
3671@code{initializer_list} argument, this doesn't extend the lifetime of
3672the array, so if a class variable is constructed from a temporary
3673@code{initializer_list}, the pointer is left dangling by the end of
3674the variable declaration statement.
3675
3676@end itemize
3677
3678@item -Winvalid-imported-macros
3679@opindex Winvalid-imported-macros
3680@opindex Wno-invalid-imported-macros
3681Verify all imported macro definitions are valid at the end of
3682compilation.  This is not enabled by default, as it requires
3683additional processing to determine.  It may be useful when preparing
3684sets of header-units to ensure consistent macros.
3685
3686@item -Wno-literal-suffix @r{(C++ and Objective-C++ only)}
3687@opindex Wliteral-suffix
3688@opindex Wno-literal-suffix
3689Do not warn when a string or character literal is followed by a
3690ud-suffix which does not begin with an underscore.  As a conforming
3691extension, GCC treats such suffixes as separate preprocessing tokens
3692in order to maintain backwards compatibility with code that uses
3693formatting macros from @code{<inttypes.h>}.  For example:
3694
3695@smallexample
3696#define __STDC_FORMAT_MACROS
3697#include <inttypes.h>
3698#include <stdio.h>
3699
3700int main() @{
3701  int64_t i64 = 123;
3702  printf("My int64: %" PRId64"\n", i64);
3703@}
3704@end smallexample
3705
3706In this case, @code{PRId64} is treated as a separate preprocessing token.
3707
3708This option also controls warnings when a user-defined literal
3709operator is declared with a literal suffix identifier that doesn't
3710begin with an underscore. Literal suffix identifiers that don't begin
3711with an underscore are reserved for future standardization.
3712
3713These warnings are enabled by default.
3714
3715@item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3716@opindex Wnarrowing
3717@opindex Wno-narrowing
3718For C++11 and later standards, narrowing conversions are diagnosed by default,
3719as required by the standard.  A narrowing conversion from a constant produces
3720an error, and a narrowing conversion from a non-constant produces a warning,
3721but @option{-Wno-narrowing} suppresses the diagnostic.
3722Note that this does not affect the meaning of well-formed code;
3723narrowing conversions are still considered ill-formed in SFINAE contexts.
3724
3725With @option{-Wnarrowing} in C++98, warn when a narrowing
3726conversion prohibited by C++11 occurs within
3727@samp{@{ @}}, e.g.
3728
3729@smallexample
3730int i = @{ 2.2 @}; // error: narrowing from double to int
3731@end smallexample
3732
3733This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3734
3735@item -Wnoexcept @r{(C++ and Objective-C++ only)}
3736@opindex Wnoexcept
3737@opindex Wno-noexcept
3738Warn when a noexcept-expression evaluates to false because of a call
3739to a function that does not have a non-throwing exception
3740specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3741the compiler to never throw an exception.
3742
3743@item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3744@opindex Wnoexcept-type
3745@opindex Wno-noexcept-type
3746Warn if the C++17 feature making @code{noexcept} part of a function
3747type changes the mangled name of a symbol relative to C++14.  Enabled
3748by @option{-Wabi} and @option{-Wc++17-compat}.
3749
3750As an example:
3751
3752@smallexample
3753template <class T> void f(T t) @{ t(); @};
3754void g() noexcept;
3755void h() @{ f(g); @} 
3756@end smallexample
3757
3758@noindent
3759In C++14, @code{f} calls @code{f<void(*)()>}, but in
3760C++17 it calls @code{f<void(*)()noexcept>}.
3761
3762@item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3763@opindex Wclass-memaccess
3764@opindex Wno-class-memaccess
3765Warn when the destination of a call to a raw memory function such as
3766@code{memset} or @code{memcpy} is an object of class type, and when writing
3767into such an object might bypass the class non-trivial or deleted constructor
3768or copy assignment, violate const-correctness or encapsulation, or corrupt
3769virtual table pointers.  Modifying the representation of such objects may
3770violate invariants maintained by member functions of the class.  For example,
3771the call to @code{memset} below is undefined because it modifies a non-trivial
3772class object and is, therefore, diagnosed.  The safe way to either initialize
3773or clear the storage of objects of such types is by using the appropriate
3774constructor or assignment operator, if one is available.
3775@smallexample
3776std::string str = "abc";
3777memset (&str, 0, sizeof str);
3778@end smallexample
3779The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3780Explicitly casting the pointer to the class object to @code{void *} or
3781to a type that can be safely accessed by the raw memory function suppresses
3782the warning.
3783
3784@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3785@opindex Wnon-virtual-dtor
3786@opindex Wno-non-virtual-dtor
3787Warn when a class has virtual functions and an accessible non-virtual
3788destructor itself or in an accessible polymorphic base class, in which
3789case it is possible but unsafe to delete an instance of a derived
3790class through a pointer to the class itself or base class.  This
3791warning is automatically enabled if @option{-Weffc++} is specified.
3792
3793@item -Wregister @r{(C++ and Objective-C++ only)}
3794@opindex Wregister
3795@opindex Wno-register
3796Warn on uses of the @code{register} storage class specifier, except
3797when it is part of the GNU @ref{Explicit Register Variables} extension.
3798The use of the @code{register} keyword as storage class specifier has
3799been deprecated in C++11 and removed in C++17.
3800Enabled by default with @option{-std=c++17}.
3801
3802@item -Wreorder @r{(C++ and Objective-C++ only)}
3803@opindex Wreorder
3804@opindex Wno-reorder
3805@cindex reordering, warning
3806@cindex warning for reordering of member initializers
3807Warn when the order of member initializers given in the code does not
3808match the order in which they must be executed.  For instance:
3809
3810@smallexample
3811struct A @{
3812  int i;
3813  int j;
3814  A(): j (0), i (1) @{ @}
3815@};
3816@end smallexample
3817
3818@noindent
3819The compiler rearranges the member initializers for @code{i}
3820and @code{j} to match the declaration order of the members, emitting
3821a warning to that effect.  This warning is enabled by @option{-Wall}.
3822
3823@item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3824@opindex Wpessimizing-move
3825@opindex Wno-pessimizing-move
3826This warning warns when a call to @code{std::move} prevents copy
3827elision.  A typical scenario when copy elision can occur is when returning in
3828a function with a class return type, when the expression being returned is the
3829name of a non-volatile automatic object, and is not a function parameter, and
3830has the same type as the function return type.
3831
3832@smallexample
3833struct T @{
3834@dots{}
3835@};
3836T fn()
3837@{
3838  T t;
3839  @dots{}
3840  return std::move (t);
3841@}
3842@end smallexample
3843
3844But in this example, the @code{std::move} call prevents copy elision.
3845
3846This warning is enabled by @option{-Wall}.
3847
3848@item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3849@opindex Wredundant-move
3850@opindex Wno-redundant-move
3851This warning warns about redundant calls to @code{std::move}; that is, when
3852a move operation would have been performed even without the @code{std::move}
3853call.  This happens because the compiler is forced to treat the object as if
3854it were an rvalue in certain situations such as returning a local variable,
3855where copy elision isn't applicable.  Consider:
3856
3857@smallexample
3858struct T @{
3859@dots{}
3860@};
3861T fn(T t)
3862@{
3863  @dots{}
3864  return std::move (t);
3865@}
3866@end smallexample
3867
3868Here, the @code{std::move} call is redundant.  Because G++ implements Core
3869Issue 1579, another example is:
3870
3871@smallexample
3872struct T @{ // convertible to U
3873@dots{}
3874@};
3875struct U @{
3876@dots{}
3877@};
3878U fn()
3879@{
3880  T t;
3881  @dots{}
3882  return std::move (t);
3883@}
3884@end smallexample
3885In this example, copy elision isn't applicable because the type of the
3886expression being returned and the function return type differ, yet G++
3887treats the return value as if it were designated by an rvalue.
3888
3889This warning is enabled by @option{-Wextra}.
3890
3891@item -Wrange-loop-construct @r{(C++ and Objective-C++ only)}
3892@opindex Wrange-loop-construct
3893@opindex Wno-range-loop-construct
3894This warning warns when a C++ range-based for-loop is creating an unnecessary
3895copy.  This can happen when the range declaration is not a reference, but
3896probably should be.  For example:
3897
3898@smallexample
3899struct S @{ char arr[128]; @};
3900void fn () @{
3901  S arr[5];
3902  for (const auto x : arr) @{ @dots{} @}
3903@}
3904@end smallexample
3905
3906It does not warn when the type being copied is a trivially-copyable type whose
3907size is less than 64 bytes.
3908
3909This warning also warns when a loop variable in a range-based for-loop is
3910initialized with a value of a different type resulting in a copy.  For example:
3911
3912@smallexample
3913void fn() @{
3914  int arr[10];
3915  for (const double &x : arr) @{ @dots{} @}
3916@}
3917@end smallexample
3918
3919In the example above, in every iteration of the loop a temporary value of
3920type @code{double} is created and destroyed, to which the reference
3921@code{const double &} is bound.
3922
3923This warning is enabled by @option{-Wall}.
3924
3925@item -Wredundant-tags @r{(C++ and Objective-C++ only)}
3926@opindex Wredundant-tags
3927@opindex Wno-redundant-tags
3928Warn about redundant class-key and enum-key in references to class types
3929and enumerated types in contexts where the key can be eliminated without
3930causing an ambiguity.  For example:
3931
3932@smallexample
3933struct foo;
3934struct foo *p;   // warn that keyword struct can be eliminated
3935@end smallexample
3936
3937@noindent
3938On the other hand, in this example there is no warning:
3939
3940@smallexample
3941struct foo;
3942void foo ();   // "hides" struct foo
3943void bar (struct foo&);  // no warning, keyword struct is necessary
3944@end smallexample
3945
3946@item -Wno-subobject-linkage @r{(C++ and Objective-C++ only)}
3947@opindex Wsubobject-linkage
3948@opindex Wno-subobject-linkage
3949Do not warn
3950if a class type has a base or a field whose type uses the anonymous
3951namespace or depends on a type with no linkage.  If a type A depends on
3952a type B with no or internal linkage, defining it in multiple
3953translation units would be an ODR violation because the meaning of B
3954is different in each translation unit.  If A only appears in a single
3955translation unit, the best way to silence the warning is to give it
3956internal linkage by putting it in an anonymous namespace as well.  The
3957compiler doesn't give this warning for types defined in the main .C
3958file, as those are unlikely to have multiple definitions.
3959@option{-Wsubobject-linkage} is enabled by default.
3960
3961@item -Weffc++ @r{(C++ and Objective-C++ only)}
3962@opindex Weffc++
3963@opindex Wno-effc++
3964Warn about violations of the following style guidelines from Scott Meyers'
3965@cite{Effective C++} series of books:
3966
3967@itemize @bullet
3968@item
3969Define a copy constructor and an assignment operator for classes
3970with dynamically-allocated memory.
3971
3972@item
3973Prefer initialization to assignment in constructors.
3974
3975@item
3976Have @code{operator=} return a reference to @code{*this}.
3977
3978@item
3979Don't try to return a reference when you must return an object.
3980
3981@item
3982Distinguish between prefix and postfix forms of increment and
3983decrement operators.
3984
3985@item
3986Never overload @code{&&}, @code{||}, or @code{,}.
3987
3988@end itemize
3989
3990This option also enables @option{-Wnon-virtual-dtor}, which is also
3991one of the effective C++ recommendations.  However, the check is
3992extended to warn about the lack of virtual destructor in accessible
3993non-polymorphic bases classes too.
3994
3995When selecting this option, be aware that the standard library
3996headers do not obey all of these guidelines; use @samp{grep -v}
3997to filter out those warnings.
3998
3999@item -Wno-exceptions @r{(C++ and Objective-C++ only)}
4000@opindex Wexceptions
4001@opindex Wno-exceptions
4002Disable the warning about the case when an exception handler is shadowed by
4003another handler, which can point out a wrong ordering of exception handlers.
4004
4005@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
4006@opindex Wstrict-null-sentinel
4007@opindex Wno-strict-null-sentinel
4008Warn about the use of an uncasted @code{NULL} as sentinel.  When
4009compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
4010to @code{__null}.  Although it is a null pointer constant rather than a
4011null pointer, it is guaranteed to be of the same size as a pointer.
4012But this use is not portable across different compilers.
4013
4014@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
4015@opindex Wno-non-template-friend
4016@opindex Wnon-template-friend
4017Disable warnings when non-template friend functions are declared
4018within a template.  In very old versions of GCC that predate implementation
4019of the ISO standard, declarations such as 
4020@samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
4021could be interpreted as a particular specialization of a template
4022function; the warning exists to diagnose compatibility problems, 
4023and is enabled by default.
4024
4025@item -Wold-style-cast @r{(C++ and Objective-C++ only)}
4026@opindex Wold-style-cast
4027@opindex Wno-old-style-cast
4028Warn if an old-style (C-style) cast to a non-void type is used within
4029a C++ program.  The new-style casts (@code{dynamic_cast},
4030@code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
4031less vulnerable to unintended effects and much easier to search for.
4032
4033@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
4034@opindex Woverloaded-virtual
4035@opindex Wno-overloaded-virtual
4036@cindex overloaded virtual function, warning
4037@cindex warning for overloaded virtual function
4038Warn when a function declaration hides virtual functions from a
4039base class.  For example, in:
4040
4041@smallexample
4042struct A @{
4043  virtual void f();
4044@};
4045
4046struct B: public A @{
4047  void f(int);
4048@};
4049@end smallexample
4050
4051the @code{A} class version of @code{f} is hidden in @code{B}, and code
4052like:
4053
4054@smallexample
4055B* b;
4056b->f();
4057@end smallexample
4058
4059@noindent
4060fails to compile.
4061
4062@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
4063@opindex Wno-pmf-conversions
4064@opindex Wpmf-conversions
4065Disable the diagnostic for converting a bound pointer to member function
4066to a plain pointer.
4067
4068@item -Wsign-promo @r{(C++ and Objective-C++ only)}
4069@opindex Wsign-promo
4070@opindex Wno-sign-promo
4071Warn when overload resolution chooses a promotion from unsigned or
4072enumerated type to a signed type, over a conversion to an unsigned type of
4073the same size.  Previous versions of G++ tried to preserve
4074unsignedness, but the standard mandates the current behavior.
4075
4076@item -Wtemplates @r{(C++ and Objective-C++ only)}
4077@opindex Wtemplates
4078@opindex Wno-templates
4079Warn when a primary template declaration is encountered.  Some coding
4080rules disallow templates, and this may be used to enforce that rule.
4081The warning is inactive inside a system header file, such as the STL, so
4082one can still use the STL.  One may also instantiate or specialize
4083templates.
4084
4085@item -Wmismatched-new-delete @r{(C++ and Objective-C++ only)}
4086@opindex Wmismatched-new-delete
4087@opindex Wno-mismatched-new-delete
4088Warn for mismatches between calls to @code{operator new} or @code{operator
4089delete} and the corresponding call to the allocation or deallocation function.
4090This includes invocations of C++ @code{operator delete} with pointers
4091returned from either mismatched forms of @code{operator new}, or from other
4092functions that allocate objects for which the @code{operator delete} isn't
4093a suitable deallocator, as well as calls to other deallocation functions
4094with pointers returned from @code{operator new} for which the deallocation
4095function isn't suitable.
4096
4097For example, the @code{delete} expression in the function below is diagnosed
4098because it doesn't match the array form of the @code{new} expression
4099the pointer argument was returned from.  Similarly, the call to @code{free}
4100is also diagnosed.
4101
4102@smallexample
4103void f ()
4104@{
4105  int *a = new int[n];
4106  delete a;   // warning: mismatch in array forms of expressions
4107
4108  char *p = new char[n];
4109  free (p);   // warning: mismatch between new and free
4110@}
4111@end smallexample
4112
4113The related option @option{-Wmismatched-dealloc} diagnoses mismatches
4114involving allocation and deallocation functions other than @code{operator
4115new} and @code{operator delete}.
4116
4117@option{-Wmismatched-new-delete} is included in @option{-Wall}.
4118
4119@item -Wmismatched-tags @r{(C++ and Objective-C++ only)}
4120@opindex Wmismatched-tags
4121@opindex Wno-mismatched-tags
4122Warn for declarations of structs, classes, and class templates and their
4123specializations with a class-key that does not match either the definition
4124or the first declaration if no definition is provided.
4125
4126For example, the declaration of @code{struct Object} in the argument list
4127of @code{draw} triggers the warning.  To avoid it, either remove the redundant
4128class-key @code{struct} or replace it with @code{class} to match its definition.
4129@smallexample
4130class Object @{
4131public:
4132  virtual ~Object () = 0;
4133@};
4134void draw (struct Object*);
4135@end smallexample
4136
4137It is not wrong to declare a class with the class-key @code{struct} as
4138the example above shows.  The @option{-Wmismatched-tags} option is intended
4139to help achieve a consistent style of class declarations.  In code that is
4140intended to be portable to Windows-based compilers the warning helps prevent
4141unresolved references due to the difference in the mangling of symbols
4142declared with different class-keys.  The option can be used either on its
4143own or in conjunction with @option{-Wredundant-tags}.
4144
4145@item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
4146@opindex Wmultiple-inheritance
4147@opindex Wno-multiple-inheritance
4148Warn when a class is defined with multiple direct base classes.  Some
4149coding rules disallow multiple inheritance, and this may be used to
4150enforce that rule.  The warning is inactive inside a system header file,
4151such as the STL, so one can still use the STL.  One may also define
4152classes that indirectly use multiple inheritance.
4153
4154@item -Wvirtual-inheritance
4155@opindex Wvirtual-inheritance
4156@opindex Wno-virtual-inheritance
4157Warn when a class is defined with a virtual direct base class.  Some
4158coding rules disallow multiple inheritance, and this may be used to
4159enforce that rule.  The warning is inactive inside a system header file,
4160such as the STL, so one can still use the STL.  One may also define
4161classes that indirectly use virtual inheritance.
4162
4163@item -Wno-virtual-move-assign
4164@opindex Wvirtual-move-assign
4165@opindex Wno-virtual-move-assign
4166Suppress warnings about inheriting from a virtual base with a
4167non-trivial C++11 move assignment operator.  This is dangerous because
4168if the virtual base is reachable along more than one path, it is
4169moved multiple times, which can mean both objects end up in the
4170moved-from state.  If the move assignment operator is written to avoid
4171moving from a moved-from object, this warning can be disabled.
4172
4173@item -Wnamespaces
4174@opindex Wnamespaces
4175@opindex Wno-namespaces
4176Warn when a namespace definition is opened.  Some coding rules disallow
4177namespaces, and this may be used to enforce that rule.  The warning is
4178inactive inside a system header file, such as the STL, so one can still
4179use the STL.  One may also use using directives and qualified names.
4180
4181@item -Wno-terminate @r{(C++ and Objective-C++ only)}
4182@opindex Wterminate
4183@opindex Wno-terminate
4184Disable the warning about a throw-expression that will immediately
4185result in a call to @code{terminate}.
4186
4187@item -Wno-vexing-parse @r{(C++ and Objective-C++ only)}
4188@opindex Wvexing-parse
4189@opindex Wno-vexing-parse
4190Warn about the most vexing parse syntactic ambiguity.  This warns about
4191the cases when a declaration looks like a variable definition, but the
4192C++ language requires it to be interpreted as a function declaration.
4193For instance:
4194
4195@smallexample
4196void f(double a) @{
4197  int i();        // extern int i (void);
4198  int n(int(a));  // extern int n (int);
4199@}
4200@end smallexample
4201
4202Another example:
4203
4204@smallexample
4205struct S @{ S(int); @};
4206void f(double a) @{
4207  S x(int(a));   // extern struct S x (int);
4208  S y(int());    // extern struct S y (int (*) (void));
4209  S z();         // extern struct S z (void);
4210@}
4211@end smallexample
4212
4213The warning will suggest options how to deal with such an ambiguity; e.g.,
4214it can suggest removing the parentheses or using braces instead.
4215
4216This warning is enabled by default.
4217
4218@item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
4219@opindex Wno-class-conversion
4220@opindex Wclass-conversion
4221Do not warn when a conversion function converts an
4222object to the same type, to a base class of that type, or to void; such
4223a conversion function will never be called.
4224
4225@item -Wvolatile @r{(C++ and Objective-C++ only)}
4226@opindex Wvolatile
4227@opindex Wno-volatile
4228Warn about deprecated uses of the @code{volatile} qualifier.  This includes
4229postfix and prefix @code{++} and @code{--} expressions of
4230@code{volatile}-qualified types, using simple assignments where the left
4231operand is a @code{volatile}-qualified non-class type for their value,
4232compound assignments where the left operand is a @code{volatile}-qualified
4233non-class type, @code{volatile}-qualified function return type,
4234@code{volatile}-qualified parameter type, and structured bindings of a
4235@code{volatile}-qualified type.  This usage was deprecated in C++20.
4236
4237Enabled by default with @option{-std=c++20}.
4238
4239@item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4240@opindex Wzero-as-null-pointer-constant
4241@opindex Wno-zero-as-null-pointer-constant
4242Warn when a literal @samp{0} is used as null pointer constant.  This can
4243be useful to facilitate the conversion to @code{nullptr} in C++11.
4244
4245@item -Waligned-new
4246@opindex Waligned-new
4247@opindex Wno-aligned-new
4248Warn about a new-expression of a type that requires greater alignment
4249than the @code{alignof(std::max_align_t)} but uses an allocation
4250function without an explicit alignment parameter. This option is
4251enabled by @option{-Wall}.
4252
4253Normally this only warns about global allocation functions, but
4254@option{-Waligned-new=all} also warns about class member allocation
4255functions.
4256
4257@item -Wno-placement-new
4258@itemx -Wplacement-new=@var{n}
4259@opindex Wplacement-new
4260@opindex Wno-placement-new
4261Warn about placement new expressions with undefined behavior, such as
4262constructing an object in a buffer that is smaller than the type of
4263the object.  For example, the placement new expression below is diagnosed
4264because it attempts to construct an array of 64 integers in a buffer only
426564 bytes large.
4266@smallexample
4267char buf [64];
4268new (buf) int[64];
4269@end smallexample
4270This warning is enabled by default.
4271
4272@table @gcctabopt
4273@item -Wplacement-new=1
4274This is the default warning level of @option{-Wplacement-new}.  At this
4275level the warning is not issued for some strictly undefined constructs that
4276GCC allows as extensions for compatibility with legacy code.  For example,
4277the following @code{new} expression is not diagnosed at this level even
4278though it has undefined behavior according to the C++ standard because
4279it writes past the end of the one-element array.
4280@smallexample
4281struct S @{ int n, a[1]; @};
4282S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
4283new (s->a)int [32]();
4284@end smallexample
4285
4286@item -Wplacement-new=2
4287At this level, in addition to diagnosing all the same constructs as at level
42881, a diagnostic is also issued for placement new expressions that construct
4289an object in the last member of structure whose type is an array of a single
4290element and whose size is less than the size of the object being constructed.
4291While the previous example would be diagnosed, the following construct makes
4292use of the flexible member array extension to avoid the warning at level 2.
4293@smallexample
4294struct S @{ int n, a[]; @};
4295S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
4296new (s->a)int [32]();
4297@end smallexample
4298
4299@end table
4300
4301@item -Wcatch-value
4302@itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
4303@opindex Wcatch-value
4304@opindex Wno-catch-value
4305Warn about catch handlers that do not catch via reference.
4306With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
4307warn about polymorphic class types that are caught by value.
4308With @option{-Wcatch-value=2} warn about all class types that are caught
4309by value. With @option{-Wcatch-value=3} warn about all types that are
4310not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
4311
4312@item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4313@opindex Wconditionally-supported
4314@opindex Wno-conditionally-supported
4315Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4316
4317@item -Wno-delete-incomplete @r{(C++ and Objective-C++ only)}
4318@opindex Wdelete-incomplete
4319@opindex Wno-delete-incomplete
4320Do not warn when deleting a pointer to incomplete type, which may cause
4321undefined behavior at runtime.  This warning is enabled by default.
4322
4323@item -Wextra-semi @r{(C++, Objective-C++ only)}
4324@opindex Wextra-semi
4325@opindex Wno-extra-semi
4326Warn about redundant semicolons after in-class function definitions.
4327
4328@item -Wno-inaccessible-base @r{(C++, Objective-C++ only)}
4329@opindex Winaccessible-base
4330@opindex Wno-inaccessible-base
4331This option controls warnings
4332when a base class is inaccessible in a class derived from it due to
4333ambiguity.  The warning is enabled by default.
4334Note that the warning for ambiguous virtual
4335bases is enabled by the @option{-Wextra} option.
4336@smallexample
4337@group
4338struct A @{ int a; @};
4339
4340struct B : A @{ @};
4341
4342struct C : B, A @{ @};
4343@end group
4344@end smallexample
4345
4346@item -Wno-inherited-variadic-ctor
4347@opindex Winherited-variadic-ctor
4348@opindex Wno-inherited-variadic-ctor
4349Suppress warnings about use of C++11 inheriting constructors when the
4350base class inherited from has a C variadic constructor; the warning is
4351on by default because the ellipsis is not inherited.
4352
4353@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
4354@opindex Wno-invalid-offsetof
4355@opindex Winvalid-offsetof
4356Suppress warnings from applying the @code{offsetof} macro to a non-POD
4357type.  According to the 2014 ISO C++ standard, applying @code{offsetof}
4358to a non-standard-layout type is undefined.  In existing C++ implementations,
4359however, @code{offsetof} typically gives meaningful results.
4360This flag is for users who are aware that they are
4361writing nonportable code and who have deliberately chosen to ignore the
4362warning about it.
4363
4364The restrictions on @code{offsetof} may be relaxed in a future version
4365of the C++ standard.
4366
4367@item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4368@opindex Wsized-deallocation
4369@opindex Wno-sized-deallocation
4370Warn about a definition of an unsized deallocation function
4371@smallexample
4372void operator delete (void *) noexcept;
4373void operator delete[] (void *) noexcept;
4374@end smallexample
4375without a definition of the corresponding sized deallocation function
4376@smallexample
4377void operator delete (void *, std::size_t) noexcept;
4378void operator delete[] (void *, std::size_t) noexcept;
4379@end smallexample
4380or vice versa.  Enabled by @option{-Wextra} along with
4381@option{-fsized-deallocation}.
4382
4383@item -Wsuggest-final-types
4384@opindex Wno-suggest-final-types
4385@opindex Wsuggest-final-types
4386Warn about types with virtual methods where code quality would be improved
4387if the type were declared with the C++11 @code{final} specifier,
4388or, if possible,
4389declared in an anonymous namespace. This allows GCC to more aggressively
4390devirtualize the polymorphic calls. This warning is more effective with
4391link-time optimization,
4392where the information about the class hierarchy graph is
4393more complete.
4394
4395@item -Wsuggest-final-methods
4396@opindex Wno-suggest-final-methods
4397@opindex Wsuggest-final-methods
4398Warn about virtual methods where code quality would be improved if the method
4399were declared with the C++11 @code{final} specifier,
4400or, if possible, its type were
4401declared in an anonymous namespace or with the @code{final} specifier.
4402This warning is
4403more effective with link-time optimization, where the information about the
4404class hierarchy graph is more complete. It is recommended to first consider
4405suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4406annotations.
4407
4408@item -Wsuggest-override
4409@opindex Wsuggest-override
4410@opindex Wno-suggest-override
4411Warn about overriding virtual functions that are not marked with the
4412@code{override} keyword.
4413
4414@item -Wuse-after-free
4415@itemx -Wuse-after-free=@var{n}
4416@opindex Wuse-after-free
4417@opindex Wno-use-after-free
4418Warn about uses of pointers to dynamically allocated objects that have
4419been rendered indeterminate by a call to a deallocation function.
4420The warning is enabled at all optimization levels but may yield different
4421results with optimization than without.
4422
4423@table @gcctabopt
4424@item -Wuse-after-free=1
4425At level 1 the warning attempts to diagnose only unconditional uses
4426of pointers made indeterminate by a deallocation call or a successful
4427call to @code{realloc}, regardless of whether or not the call resulted
4428in an actual reallocatio of memory.  This includes double-@code{free}
4429calls as well as uses in arithmetic and relational expressions.  Although
4430undefined, uses of indeterminate pointers in equality (or inequality)
4431expressions are not diagnosed at this level.
4432@item -Wuse-after-free=2
4433At level 2, in addition to unconditional uses, the warning also diagnoses
4434conditional uses of pointers made indeterminate by a deallocation call.
4435As at level 2, uses in equality (or inequality) expressions are not
4436diagnosed.  For example, the second call to @code{free} in the following
4437function is diagnosed at this level:
4438@smallexample
4439struct A @{ int refcount; void *data; @};
4440
4441void release (struct A *p)
4442@{
4443  int refcount = --p->refcount;
4444  free (p);
4445  if (refcount == 0)
4446    free (p->data);   // warning: p may be used after free
4447@}
4448@end smallexample
4449@item -Wuse-after-free=3
4450At level 3, the warning also diagnoses uses of indeterminate pointers in
4451equality expressions.  All uses of indeterminate pointers are undefined
4452but equality tests sometimes appear after calls to @code{realloc} as
4453an attempt to determine whether the call resulted in relocating the object
4454to a different address.  They are diagnosed at a separate level to aid
4455legacy code gradually transition to safe alternatives.  For example,
4456the equality test in the function below is diagnosed at this level:
4457@smallexample
4458void adjust_pointers (int**, int);
4459
4460void grow (int **p, int n)
4461@{
4462  int **q = (int**)realloc (p, n *= 2);
4463  if (q == p)
4464    return;
4465  adjust_pointers ((int**)q, n);
4466@}
4467@end smallexample
4468To avoid the warning at this level, store offsets into allocated memory
4469instead of pointers.  This approach obviates needing to adjust the stored
4470pointers after reallocation.
4471@end table
4472
4473@option{-Wuse-after-free=2} is included in @option{-Wall}.
4474
4475@item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4476@opindex Wuseless-cast
4477@opindex Wno-useless-cast
4478Warn when an expression is casted to its own type.
4479
4480@item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4481@opindex Wconversion-null
4482@opindex Wno-conversion-null
4483Do not warn for conversions between @code{NULL} and non-pointer
4484types. @option{-Wconversion-null} is enabled by default.
4485
4486@end table
4487
4488@node Objective-C and Objective-C++ Dialect Options
4489@section Options Controlling Objective-C and Objective-C++ Dialects
4490
4491@cindex compiler options, Objective-C and Objective-C++
4492@cindex Objective-C and Objective-C++ options, command-line
4493@cindex options, Objective-C and Objective-C++
4494(NOTE: This manual does not describe the Objective-C and Objective-C++
4495languages themselves.  @xref{Standards,,Language Standards
4496Supported by GCC}, for references.)
4497
4498This section describes the command-line options that are only meaningful
4499for Objective-C and Objective-C++ programs.  You can also use most of
4500the language-independent GNU compiler options.
4501For example, you might compile a file @file{some_class.m} like this:
4502
4503@smallexample
4504gcc -g -fgnu-runtime -O -c some_class.m
4505@end smallexample
4506
4507@noindent
4508In this example, @option{-fgnu-runtime} is an option meant only for
4509Objective-C and Objective-C++ programs; you can use the other options with
4510any language supported by GCC@.
4511
4512Note that since Objective-C is an extension of the C language, Objective-C
4513compilations may also use options specific to the C front-end (e.g.,
4514@option{-Wtraditional}).  Similarly, Objective-C++ compilations may use
4515C++-specific options (e.g., @option{-Wabi}).
4516
4517Here is a list of options that are @emph{only} for compiling Objective-C
4518and Objective-C++ programs:
4519
4520@table @gcctabopt
4521@item -fconstant-string-class=@var{class-name}
4522@opindex fconstant-string-class
4523Use @var{class-name} as the name of the class to instantiate for each
4524literal string specified with the syntax @code{@@"@dots{}"}.  The default
4525class name is @code{NXConstantString} if the GNU runtime is being used, and
4526@code{NSConstantString} if the NeXT runtime is being used (see below).  On
4527Darwin (macOS, MacOS X) platforms, the @option{-fconstant-cfstrings} option, if
4528also present, overrides the @option{-fconstant-string-class} setting and cause
4529@code{@@"@dots{}"} literals to be laid out as constant CoreFoundation strings.
4530Note that @option{-fconstant-cfstrings} is an alias for the target-specific
4531@option{-mconstant-cfstrings} equivalent.
4532
4533@item -fgnu-runtime
4534@opindex fgnu-runtime
4535Generate object code compatible with the standard GNU Objective-C
4536runtime.  This is the default for most types of systems.
4537
4538@item -fnext-runtime
4539@opindex fnext-runtime
4540Generate output compatible with the NeXT runtime.  This is the default
4541for NeXT-based systems, including Darwin and Mac OS X@.  The macro
4542@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
4543used.
4544
4545@item -fno-nil-receivers
4546@opindex fno-nil-receivers
4547@opindex fnil-receivers
4548Assume that all Objective-C message dispatches (@code{[receiver
4549message:arg]}) in this translation unit ensure that the receiver is
4550not @code{nil}.  This allows for more efficient entry points in the
4551runtime to be used.  This option is only available in conjunction with
4552the NeXT runtime and ABI version 0 or 1.
4553
4554@item -fobjc-abi-version=@var{n}
4555@opindex fobjc-abi-version
4556Use version @var{n} of the Objective-C ABI for the selected runtime.
4557This option is currently supported only for the NeXT runtime.  In that
4558case, Version 0 is the traditional (32-bit) ABI without support for
4559properties and other Objective-C 2.0 additions.  Version 1 is the
4560traditional (32-bit) ABI with support for properties and other
4561Objective-C 2.0 additions.  Version 2 is the modern (64-bit) ABI.  If
4562nothing is specified, the default is Version 0 on 32-bit target
4563machines, and Version 2 on 64-bit target machines.
4564
4565@item -fobjc-call-cxx-cdtors
4566@opindex fobjc-call-cxx-cdtors
4567For each Objective-C class, check if any of its instance variables is a
4568C++ object with a non-trivial default constructor.  If so, synthesize a
4569special @code{- (id) .cxx_construct} instance method which runs
4570non-trivial default constructors on any such instance variables, in order,
4571and then return @code{self}.  Similarly, check if any instance variable
4572is a C++ object with a non-trivial destructor, and if so, synthesize a
4573special @code{- (void) .cxx_destruct} method which runs
4574all such default destructors, in reverse order.
4575
4576The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
4577methods thusly generated only operate on instance variables
4578declared in the current Objective-C class, and not those inherited
4579from superclasses.  It is the responsibility of the Objective-C
4580runtime to invoke all such methods in an object's inheritance
4581hierarchy.  The @code{- (id) .cxx_construct} methods are invoked
4582by the runtime immediately after a new object instance is allocated;
4583the @code{- (void) .cxx_destruct} methods are invoked immediately
4584before the runtime deallocates an object instance.
4585
4586As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
4587support for invoking the @code{- (id) .cxx_construct} and
4588@code{- (void) .cxx_destruct} methods.
4589
4590@item -fobjc-direct-dispatch
4591@opindex fobjc-direct-dispatch
4592Allow fast jumps to the message dispatcher.  On Darwin this is
4593accomplished via the comm page.
4594
4595@item -fobjc-exceptions
4596@opindex fobjc-exceptions
4597Enable syntactic support for structured exception handling in
4598Objective-C, similar to what is offered by C++.  This option
4599is required to use the Objective-C keywords @code{@@try},
4600@code{@@throw}, @code{@@catch}, @code{@@finally} and
4601@code{@@synchronized}.  This option is available with both the GNU
4602runtime and the NeXT runtime (but not available in conjunction with
4603the NeXT runtime on Mac OS X 10.2 and earlier).
4604
4605@item -fobjc-gc
4606@opindex fobjc-gc
4607Enable garbage collection (GC) in Objective-C and Objective-C++
4608programs.  This option is only available with the NeXT runtime; the
4609GNU runtime has a different garbage collection implementation that
4610does not require special compiler flags.
4611
4612@item -fobjc-nilcheck
4613@opindex fobjc-nilcheck
4614For the NeXT runtime with version 2 of the ABI, check for a nil
4615receiver in method invocations before doing the actual method call.
4616This is the default and can be disabled using
4617@option{-fno-objc-nilcheck}.  Class methods and super calls are never
4618checked for nil in this way no matter what this flag is set to.
4619Currently this flag does nothing when the GNU runtime, or an older
4620version of the NeXT runtime ABI, is used.
4621
4622@item -fobjc-std=objc1
4623@opindex fobjc-std
4624Conform to the language syntax of Objective-C 1.0, the language
4625recognized by GCC 4.0.  This only affects the Objective-C additions to
4626the C/C++ language; it does not affect conformance to C/C++ standards,
4627which is controlled by the separate C/C++ dialect option flags.  When
4628this option is used with the Objective-C or Objective-C++ compiler,
4629any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
4630This is useful if you need to make sure that your Objective-C code can
4631be compiled with older versions of GCC@.
4632
4633@item -freplace-objc-classes
4634@opindex freplace-objc-classes
4635Emit a special marker instructing @command{ld(1)} not to statically link in
4636the resulting object file, and allow @command{dyld(1)} to load it in at
4637run time instead.  This is used in conjunction with the Fix-and-Continue
4638debugging mode, where the object file in question may be recompiled and
4639dynamically reloaded in the course of program execution, without the need
4640to restart the program itself.  Currently, Fix-and-Continue functionality
4641is only available in conjunction with the NeXT runtime on Mac OS X 10.3
4642and later.
4643
4644@item -fzero-link
4645@opindex fzero-link
4646When compiling for the NeXT runtime, the compiler ordinarily replaces calls
4647to @code{objc_getClass("@dots{}")} (when the name of the class is known at
4648compile time) with static class references that get initialized at load time,
4649which improves run-time performance.  Specifying the @option{-fzero-link} flag
4650suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
4651to be retained.  This is useful in Zero-Link debugging mode, since it allows
4652for individual class implementations to be modified during program execution.
4653The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
4654regardless of command-line options.
4655
4656@item -fno-local-ivars
4657@opindex fno-local-ivars
4658@opindex flocal-ivars
4659By default instance variables in Objective-C can be accessed as if
4660they were local variables from within the methods of the class they're
4661declared in.  This can lead to shadowing between instance variables
4662and other variables declared either locally inside a class method or
4663globally with the same name.  Specifying the @option{-fno-local-ivars}
4664flag disables this behavior thus avoiding variable shadowing issues.
4665
4666@item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
4667@opindex fivar-visibility
4668Set the default instance variable visibility to the specified option
4669so that instance variables declared outside the scope of any access
4670modifier directives default to the specified visibility.
4671
4672@item -gen-decls
4673@opindex gen-decls
4674Dump interface declarations for all classes seen in the source file to a
4675file named @file{@var{sourcename}.decl}.
4676
4677@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
4678@opindex Wassign-intercept
4679@opindex Wno-assign-intercept
4680Warn whenever an Objective-C assignment is being intercepted by the
4681garbage collector.
4682
4683@item -Wno-property-assign-default @r{(Objective-C and Objective-C++ only)}
4684@opindex Wproperty-assign-default
4685@opindex Wno-property-assign-default
4686Do not warn if a property for an Objective-C object has no assign
4687semantics specified.
4688
4689@item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
4690@opindex Wno-protocol
4691@opindex Wprotocol
4692If a class is declared to implement a protocol, a warning is issued for
4693every method in the protocol that is not implemented by the class.  The
4694default behavior is to issue a warning for every method not explicitly
4695implemented in the class, even if a method implementation is inherited
4696from the superclass.  If you use the @option{-Wno-protocol} option, then
4697methods inherited from the superclass are considered to be implemented,
4698and no warning is issued for them.
4699
4700@item -Wobjc-root-class @r{(Objective-C and Objective-C++ only)}
4701@opindex Wobjc-root-class
4702Warn if a class interface lacks a superclass. Most classes will inherit
4703from @code{NSObject} (or @code{Object}) for example.  When declaring
4704classes intended to be root classes, the warning can be suppressed by
4705marking their interfaces with @code{__attribute__((objc_root_class))}.
4706
4707@item -Wselector @r{(Objective-C and Objective-C++ only)}
4708@opindex Wselector
4709@opindex Wno-selector
4710Warn if multiple methods of different types for the same selector are
4711found during compilation.  The check is performed on the list of methods
4712in the final stage of compilation.  Additionally, a check is performed
4713for each selector appearing in a @code{@@selector(@dots{})}
4714expression, and a corresponding method for that selector has been found
4715during compilation.  Because these checks scan the method table only at
4716the end of compilation, these warnings are not produced if the final
4717stage of compilation is not reached, for example because an error is
4718found during compilation, or because the @option{-fsyntax-only} option is
4719being used.
4720
4721@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
4722@opindex Wstrict-selector-match
4723@opindex Wno-strict-selector-match
4724Warn if multiple methods with differing argument and/or return types are
4725found for a given selector when attempting to send a message using this
4726selector to a receiver of type @code{id} or @code{Class}.  When this flag
4727is off (which is the default behavior), the compiler omits such warnings
4728if any differences found are confined to types that share the same size
4729and alignment.
4730
4731@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
4732@opindex Wundeclared-selector
4733@opindex Wno-undeclared-selector
4734Warn if a @code{@@selector(@dots{})} expression referring to an
4735undeclared selector is found.  A selector is considered undeclared if no
4736method with that name has been declared before the
4737@code{@@selector(@dots{})} expression, either explicitly in an
4738@code{@@interface} or @code{@@protocol} declaration, or implicitly in
4739an @code{@@implementation} section.  This option always performs its
4740checks as soon as a @code{@@selector(@dots{})} expression is found,
4741while @option{-Wselector} only performs its checks in the final stage of
4742compilation.  This also enforces the coding style convention
4743that methods and selectors must be declared before being used.
4744
4745@item -print-objc-runtime-info
4746@opindex print-objc-runtime-info
4747Generate C header describing the largest structure that is passed by
4748value, if any.
4749
4750@end table
4751
4752@node Diagnostic Message Formatting Options
4753@section Options to Control Diagnostic Messages Formatting
4754@cindex options to control diagnostics formatting
4755@cindex diagnostic messages
4756@cindex message formatting
4757
4758Traditionally, diagnostic messages have been formatted irrespective of
4759the output device's aspect (e.g.@: its width, @dots{}).  You can use the
4760options described below
4761to control the formatting algorithm for diagnostic messages, 
4762e.g.@: how many characters per line, how often source location
4763information should be reported.  Note that some language front ends may not
4764honor these options.
4765
4766@table @gcctabopt
4767@item -fmessage-length=@var{n}
4768@opindex fmessage-length
4769Try to format error messages so that they fit on lines of about
4770@var{n} characters.  If @var{n} is zero, then no line-wrapping is
4771done; each error message appears on a single line.  This is the
4772default for all front ends.
4773
4774Note - this option also affects the display of the @samp{#error} and
4775@samp{#warning} pre-processor directives, and the @samp{deprecated}
4776function/type/variable attribute.  It does not however affect the
4777@samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
4778
4779@item -fdiagnostics-plain-output
4780This option requests that diagnostic output look as plain as possible, which
4781may be useful when running @command{dejagnu} or other utilities that need to
4782parse diagnostics output and prefer that it remain more stable over time.
4783@option{-fdiagnostics-plain-output} is currently equivalent to the following
4784options:
4785@gccoptlist{-fno-diagnostics-show-caret @gol
4786-fno-diagnostics-show-line-numbers @gol
4787-fdiagnostics-color=never @gol
4788-fdiagnostics-urls=never @gol
4789-fdiagnostics-path-format=separate-events}
4790In the future, if GCC changes the default appearance of its diagnostics, the
4791corresponding option to disable the new behavior will be added to this list.
4792
4793@item -fdiagnostics-show-location=once
4794@opindex fdiagnostics-show-location
4795Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
4796reporter to emit source location information @emph{once}; that is, in
4797case the message is too long to fit on a single physical line and has to
4798be wrapped, the source location won't be emitted (as prefix) again,
4799over and over, in subsequent continuation lines.  This is the default
4800behavior.
4801
4802@item -fdiagnostics-show-location=every-line
4803Only meaningful in line-wrapping mode.  Instructs the diagnostic
4804messages reporter to emit the same source location information (as
4805prefix) for physical lines that result from the process of breaking
4806a message which is too long to fit on a single line.
4807
4808@item -fdiagnostics-color[=@var{WHEN}]
4809@itemx -fno-diagnostics-color
4810@opindex fdiagnostics-color
4811@cindex highlight, color
4812@vindex GCC_COLORS @r{environment variable}
4813Use color in diagnostics.  @var{WHEN} is @samp{never}, @samp{always},
4814or @samp{auto}.  The default depends on how the compiler has been configured,
4815it can be any of the above @var{WHEN} options or also @samp{never}
4816if @env{GCC_COLORS} environment variable isn't present in the environment,
4817and @samp{auto} otherwise.
4818@samp{auto} makes GCC use color only when the standard error is a terminal,
4819and when not executing in an emacs shell.
4820The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
4821aliases for @option{-fdiagnostics-color=always} and
4822@option{-fdiagnostics-color=never}, respectively.
4823
4824The colors are defined by the environment variable @env{GCC_COLORS}.
4825Its value is a colon-separated list of capabilities and Select Graphic
4826Rendition (SGR) substrings. SGR commands are interpreted by the
4827terminal or terminal emulator.  (See the section in the documentation
4828of your text terminal for permitted values and their meanings as
4829character attributes.)  These substring values are integers in decimal
4830representation and can be concatenated with semicolons.
4831Common values to concatenate include
4832@samp{1} for bold,
4833@samp{4} for underline,
4834@samp{5} for blink,
4835@samp{7} for inverse,
4836@samp{39} for default foreground color,
4837@samp{30} to @samp{37} for foreground colors,
4838@samp{90} to @samp{97} for 16-color mode foreground colors,
4839@samp{38;5;0} to @samp{38;5;255}
4840for 88-color and 256-color modes foreground colors,
4841@samp{49} for default background color,
4842@samp{40} to @samp{47} for background colors,
4843@samp{100} to @samp{107} for 16-color mode background colors,
4844and @samp{48;5;0} to @samp{48;5;255}
4845for 88-color and 256-color modes background colors.
4846
4847The default @env{GCC_COLORS} is
4848@smallexample
4849error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
4850quote=01:path=01;36:fixit-insert=32:fixit-delete=31:\
4851diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
4852type-diff=01;32
4853@end smallexample
4854@noindent
4855where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
4856@samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
4857@samp{01} is bold, and @samp{31} is red.
4858Setting @env{GCC_COLORS} to the empty string disables colors.
4859Supported capabilities are as follows.
4860
4861@table @code
4862@item error=
4863@vindex error GCC_COLORS @r{capability}
4864SGR substring for error: markers.
4865
4866@item warning=
4867@vindex warning GCC_COLORS @r{capability}
4868SGR substring for warning: markers.
4869
4870@item note=
4871@vindex note GCC_COLORS @r{capability}
4872SGR substring for note: markers.
4873
4874@item path=
4875@vindex path GCC_COLORS @r{capability}
4876SGR substring for colorizing paths of control-flow events as printed
4877via @option{-fdiagnostics-path-format=}, such as the identifiers of
4878individual events and lines indicating interprocedural calls and returns.
4879
4880@item range1=
4881@vindex range1 GCC_COLORS @r{capability}
4882SGR substring for first additional range.
4883
4884@item range2=
4885@vindex range2 GCC_COLORS @r{capability}
4886SGR substring for second additional range.
4887
4888@item locus=
4889@vindex locus GCC_COLORS @r{capability}
4890SGR substring for location information, @samp{file:line} or
4891@samp{file:line:column} etc.
4892
4893@item quote=
4894@vindex quote GCC_COLORS @r{capability}
4895SGR substring for information printed within quotes.
4896
4897@item fixit-insert=
4898@vindex fixit-insert GCC_COLORS @r{capability}
4899SGR substring for fix-it hints suggesting text to
4900be inserted or replaced.
4901
4902@item fixit-delete=
4903@vindex fixit-delete GCC_COLORS @r{capability}
4904SGR substring for fix-it hints suggesting text to
4905be deleted.
4906
4907@item diff-filename=
4908@vindex diff-filename GCC_COLORS @r{capability}
4909SGR substring for filename headers within generated patches.
4910
4911@item diff-hunk=
4912@vindex diff-hunk GCC_COLORS @r{capability}
4913SGR substring for the starts of hunks within generated patches.
4914
4915@item diff-delete=
4916@vindex diff-delete GCC_COLORS @r{capability}
4917SGR substring for deleted lines within generated patches.
4918
4919@item diff-insert=
4920@vindex diff-insert GCC_COLORS @r{capability}
4921SGR substring for inserted lines within generated patches.
4922
4923@item type-diff=
4924@vindex type-diff GCC_COLORS @r{capability}
4925SGR substring for highlighting mismatching types within template
4926arguments in the C++ frontend.
4927@end table
4928
4929@item -fdiagnostics-urls[=@var{WHEN}]
4930@opindex fdiagnostics-urls
4931@cindex urls
4932@vindex GCC_URLS @r{environment variable}
4933@vindex TERM_URLS @r{environment variable}
4934Use escape sequences to embed URLs in diagnostics.  For example, when
4935@option{-fdiagnostics-show-option} emits text showing the command-line
4936option controlling a diagnostic, embed a URL for documentation of that
4937option.
4938
4939@var{WHEN} is @samp{never}, @samp{always}, or @samp{auto}.
4940@samp{auto} makes GCC use URL escape sequences only when the standard error
4941is a terminal, and when not executing in an emacs shell or any graphical
4942terminal which is known to be incompatible with this feature, see below.
4943
4944The default depends on how the compiler has been configured.
4945It can be any of the above @var{WHEN} options.
4946
4947GCC can also be configured (via the
4948@option{--with-diagnostics-urls=auto-if-env} configure-time option)
4949so that the default is affected by environment variables.
4950Under such a configuration, GCC defaults to using @samp{auto}
4951if either @env{GCC_URLS} or @env{TERM_URLS} environment variables are
4952present and non-empty in the environment of the compiler, or @samp{never}
4953if neither are.
4954
4955However, even with @option{-fdiagnostics-urls=always} the behavior is
4956dependent on those environment variables:
4957If @env{GCC_URLS} is set to empty or @samp{no}, do not embed URLs in
4958diagnostics.  If set to @samp{st}, URLs use ST escape sequences.
4959If set to @samp{bel}, the default, URLs use BEL escape sequences.
4960Any other non-empty value enables the feature.
4961If @env{GCC_URLS} is not set, use @env{TERM_URLS} as a fallback.
4962Note: ST is an ANSI escape sequence, string terminator @samp{ESC \},
4963BEL is an ASCII character, CTRL-G that usually sounds like a beep.
4964
4965At this time GCC tries to detect also a few terminals that are known to
4966not implement the URL feature, and have bugs or at least had bugs in
4967some versions that are still in use, where the URL escapes are likely
4968to misbehave, i.e. print garbage on the screen.
4969That list is currently xfce4-terminal, certain known to be buggy
4970gnome-terminal versions, the linux console, and mingw.
4971This check can be skipped with the @option{-fdiagnostics-urls=always}.
4972
4973@item -fno-diagnostics-show-option
4974@opindex fno-diagnostics-show-option
4975@opindex fdiagnostics-show-option
4976By default, each diagnostic emitted includes text indicating the
4977command-line option that directly controls the diagnostic (if such an
4978option is known to the diagnostic machinery).  Specifying the
4979@option{-fno-diagnostics-show-option} flag suppresses that behavior.
4980
4981@item -fno-diagnostics-show-caret
4982@opindex fno-diagnostics-show-caret
4983@opindex fdiagnostics-show-caret
4984By default, each diagnostic emitted includes the original source line
4985and a caret @samp{^} indicating the column.  This option suppresses this
4986information.  The source line is truncated to @var{n} characters, if
4987the @option{-fmessage-length=n} option is given.  When the output is done
4988to the terminal, the width is limited to the width given by the
4989@env{COLUMNS} environment variable or, if not set, to the terminal width.
4990
4991@item -fno-diagnostics-show-labels
4992@opindex fno-diagnostics-show-labels
4993@opindex fdiagnostics-show-labels
4994By default, when printing source code (via @option{-fdiagnostics-show-caret}),
4995diagnostics can label ranges of source code with pertinent information, such
4996as the types of expressions:
4997
4998@smallexample
4999    printf ("foo %s bar", long_i + long_j);
5000                 ~^       ~~~~~~~~~~~~~~~
5001                  |              |
5002                  char *         long int
5003@end smallexample
5004
5005This option suppresses the printing of these labels (in the example above,
5006the vertical bars and the ``char *'' and ``long int'' text).
5007
5008@item -fno-diagnostics-show-cwe
5009@opindex fno-diagnostics-show-cwe
5010@opindex fdiagnostics-show-cwe
5011Diagnostic messages can optionally have an associated
5012@url{https://cwe.mitre.org/index.html, CWE} identifier.
5013GCC itself only provides such metadata for some of the @option{-fanalyzer}
5014diagnostics.  GCC plugins may also provide diagnostics with such metadata.
5015By default, if this information is present, it will be printed with
5016the diagnostic.  This option suppresses the printing of this metadata.
5017
5018@item -fno-diagnostics-show-line-numbers
5019@opindex fno-diagnostics-show-line-numbers
5020@opindex fdiagnostics-show-line-numbers
5021By default, when printing source code (via @option{-fdiagnostics-show-caret}),
5022a left margin is printed, showing line numbers.  This option suppresses this
5023left margin.
5024
5025@item -fdiagnostics-minimum-margin-width=@var{width}
5026@opindex fdiagnostics-minimum-margin-width
5027This option controls the minimum width of the left margin printed by
5028@option{-fdiagnostics-show-line-numbers}.  It defaults to 6.
5029
5030@item -fdiagnostics-parseable-fixits
5031@opindex fdiagnostics-parseable-fixits
5032Emit fix-it hints in a machine-parseable format, suitable for consumption
5033by IDEs.  For each fix-it, a line will be printed after the relevant
5034diagnostic, starting with the string ``fix-it:''.  For example:
5035
5036@smallexample
5037fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
5038@end smallexample
5039
5040The location is expressed as a half-open range, expressed as a count of
5041bytes, starting at byte 1 for the initial column.  In the above example,
5042bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
5043given string:
5044
5045@smallexample
504600000000011111111112222222222
504712345678901234567890123456789
5048  gtk_widget_showall (dlg);
5049  ^^^^^^^^^^^^^^^^^^
5050  gtk_widget_show_all
5051@end smallexample
5052
5053The filename and replacement string escape backslash as ``\\", tab as ``\t'',
5054newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
5055(e.g. vertical tab as ``\013'').
5056
5057An empty replacement string indicates that the given range is to be removed.
5058An empty range (e.g. ``45:3-45:3'') indicates that the string is to
5059be inserted at the given position.
5060
5061@item -fdiagnostics-generate-patch
5062@opindex fdiagnostics-generate-patch
5063Print fix-it hints to stderr in unified diff format, after any diagnostics
5064are printed.  For example:
5065
5066@smallexample
5067--- test.c
5068+++ test.c
5069@@ -42,5 +42,5 @@
5070
5071 void show_cb(GtkDialog *dlg)
5072 @{
5073-  gtk_widget_showall(dlg);
5074+  gtk_widget_show_all(dlg);
5075 @}
5076
5077@end smallexample
5078
5079The diff may or may not be colorized, following the same rules
5080as for diagnostics (see @option{-fdiagnostics-color}).
5081
5082@item -fdiagnostics-show-template-tree
5083@opindex fdiagnostics-show-template-tree
5084
5085In the C++ frontend, when printing diagnostics showing mismatching
5086template types, such as:
5087
5088@smallexample
5089  could not convert 'std::map<int, std::vector<double> >()'
5090    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
5091@end smallexample
5092
5093the @option{-fdiagnostics-show-template-tree} flag enables printing a
5094tree-like structure showing the common and differing parts of the types,
5095such as:
5096
5097@smallexample
5098  map<
5099    [...],
5100    vector<
5101      [double != float]>>
5102@end smallexample
5103
5104The parts that differ are highlighted with color (``double'' and
5105``float'' in this case).
5106
5107@item -fno-elide-type
5108@opindex fno-elide-type
5109@opindex felide-type
5110By default when the C++ frontend prints diagnostics showing mismatching
5111template types, common parts of the types are printed as ``[...]'' to
5112simplify the error message.  For example:
5113
5114@smallexample
5115  could not convert 'std::map<int, std::vector<double> >()'
5116    from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
5117@end smallexample
5118
5119Specifying the @option{-fno-elide-type} flag suppresses that behavior.
5120This flag also affects the output of the
5121@option{-fdiagnostics-show-template-tree} flag.
5122
5123@item -fdiagnostics-path-format=@var{KIND}
5124@opindex fdiagnostics-path-format
5125Specify how to print paths of control-flow events for diagnostics that
5126have such a path associated with them.
5127
5128@var{KIND} is @samp{none}, @samp{separate-events}, or @samp{inline-events},
5129the default.
5130
5131@samp{none} means to not print diagnostic paths.
5132
5133@samp{separate-events} means to print a separate ``note'' diagnostic for
5134each event within the diagnostic.  For example:
5135
5136@smallexample
5137test.c:29:5: error: passing NULL as argument 1 to 'PyList_Append' which requires a non-NULL parameter
5138test.c:25:10: note: (1) when 'PyList_New' fails, returning NULL
5139test.c:27:3: note: (2) when 'i < count'
5140test.c:29:5: note: (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
5141@end smallexample
5142
5143@samp{inline-events} means to print the events ``inline'' within the source
5144code.  This view attempts to consolidate the events into runs of
5145sufficiently-close events, printing them as labelled ranges within the source.
5146
5147For example, the same events as above might be printed as:
5148
5149@smallexample
5150  'test': events 1-3
5151    |
5152    |   25 |   list = PyList_New(0);
5153    |      |          ^~~~~~~~~~~~~
5154    |      |          |
5155    |      |          (1) when 'PyList_New' fails, returning NULL
5156    |   26 |
5157    |   27 |   for (i = 0; i < count; i++) @{
5158    |      |   ~~~
5159    |      |   |
5160    |      |   (2) when 'i < count'
5161    |   28 |     item = PyLong_FromLong(random());
5162    |   29 |     PyList_Append(list, item);
5163    |      |     ~~~~~~~~~~~~~~~~~~~~~~~~~
5164    |      |     |
5165    |      |     (3) when calling 'PyList_Append', passing NULL from (1) as argument 1
5166    |
5167@end smallexample
5168
5169Interprocedural control flow is shown by grouping the events by stack frame,
5170and using indentation to show how stack frames are nested, pushed, and popped.
5171
5172For example:
5173
5174@smallexample
5175  'test': events 1-2
5176    |
5177    |  133 | @{
5178    |      | ^
5179    |      | |
5180    |      | (1) entering 'test'
5181    |  134 |   boxed_int *obj = make_boxed_int (i);
5182    |      |                    ~~~~~~~~~~~~~~~~~~
5183    |      |                    |
5184    |      |                    (2) calling 'make_boxed_int'
5185    |
5186    +--> 'make_boxed_int': events 3-4
5187           |
5188           |  120 | @{
5189           |      | ^
5190           |      | |
5191           |      | (3) entering 'make_boxed_int'
5192           |  121 |   boxed_int *result = (boxed_int *)wrapped_malloc (sizeof (boxed_int));
5193           |      |                                    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5194           |      |                                    |
5195           |      |                                    (4) calling 'wrapped_malloc'
5196           |
5197           +--> 'wrapped_malloc': events 5-6
5198                  |
5199                  |    7 | @{
5200                  |      | ^
5201                  |      | |
5202                  |      | (5) entering 'wrapped_malloc'
5203                  |    8 |   return malloc (size);
5204                  |      |          ~~~~~~~~~~~~~
5205                  |      |          |
5206                  |      |          (6) calling 'malloc'
5207                  |
5208    <-------------+
5209    |
5210 'test': event 7
5211    |
5212    |  138 |   free_boxed_int (obj);
5213    |      |   ^~~~~~~~~~~~~~~~~~~~
5214    |      |   |
5215    |      |   (7) calling 'free_boxed_int'
5216    |
5217(etc)
5218@end smallexample
5219
5220@item -fdiagnostics-show-path-depths
5221@opindex fdiagnostics-show-path-depths
5222This option provides additional information when printing control-flow paths
5223associated with a diagnostic.
5224
5225If this is option is provided then the stack depth will be printed for
5226each run of events within @option{-fdiagnostics-path-format=separate-events}.
5227
5228This is intended for use by GCC developers and plugin developers when
5229debugging diagnostics that report interprocedural control flow.
5230
5231@item -fno-show-column
5232@opindex fno-show-column
5233@opindex fshow-column
5234Do not print column numbers in diagnostics.  This may be necessary if
5235diagnostics are being scanned by a program that does not understand the
5236column numbers, such as @command{dejagnu}.
5237
5238@item -fdiagnostics-column-unit=@var{UNIT}
5239@opindex fdiagnostics-column-unit
5240Select the units for the column number.  This affects traditional diagnostics
5241(in the absence of @option{-fno-show-column}), as well as JSON format
5242diagnostics if requested.
5243
5244The default @var{UNIT}, @samp{display}, considers the number of display
5245columns occupied by each character.  This may be larger than the number
5246of bytes required to encode the character, in the case of tab
5247characters, or it may be smaller, in the case of multibyte characters.
5248For example, the character ``GREEK SMALL LETTER PI (U+03C0)'' occupies one
5249display column, and its UTF-8 encoding requires two bytes; the character
5250``SLIGHTLY SMILING FACE (U+1F642)'' occupies two display columns, and
5251its UTF-8 encoding requires four bytes.
5252
5253Setting @var{UNIT} to @samp{byte} changes the column number to the raw byte
5254count in all cases, as was traditionally output by GCC prior to version 11.1.0.
5255
5256@item -fdiagnostics-column-origin=@var{ORIGIN}
5257@opindex fdiagnostics-column-origin
5258Select the origin for column numbers, i.e. the column number assigned to the
5259first column.  The default value of 1 corresponds to traditional GCC
5260behavior and to the GNU style guide.  Some utilities may perform better with an
5261origin of 0; any non-negative value may be specified.
5262
5263@item -fdiagnostics-escape-format=@var{FORMAT}
5264@opindex fdiagnostics-escape-format
5265When GCC prints pertinent source lines for a diagnostic it normally attempts
5266to print the source bytes directly.  However, some diagnostics relate to encoding
5267issues in the source file, such as malformed UTF-8, or issues with Unicode
5268normalization.  These diagnostics are flagged so that GCC will escape bytes
5269that are not printable ASCII when printing their pertinent source lines.
5270
5271This option controls how such bytes should be escaped.
5272
5273The default @var{FORMAT}, @samp{unicode} displays Unicode characters that
5274are not printable ASCII in the form @samp{<U+XXXX>}, and bytes that do not
5275correspond to a Unicode character validly-encoded in UTF-8-encoded will be
5276displayed as hexadecimal in the form @samp{<XX>}.
5277
5278For example, a source line containing the string @samp{before} followed by the
5279Unicode character U+03C0 (``GREEK SMALL LETTER PI'', with UTF-8 encoding
52800xCF 0x80) followed by the byte 0xBF (a stray UTF-8 trailing byte), followed by
5281the string @samp{after} will be printed for such a diagnostic as:
5282
5283@smallexample
5284 before<U+03C0><BF>after
5285@end smallexample
5286
5287Setting @var{FORMAT} to @samp{bytes} will display all non-printable-ASCII bytes
5288in the form @samp{<XX>}, thus showing the underlying encoding of non-ASCII
5289Unicode characters.  For the example above, the following will be printed:
5290
5291@smallexample
5292 before<CF><80><BF>after
5293@end smallexample
5294
5295@item -fdiagnostics-format=@var{FORMAT}
5296@opindex fdiagnostics-format
5297Select a different format for printing diagnostics.
5298@var{FORMAT} is @samp{text} or @samp{json}.
5299The default is @samp{text}.
5300
5301The @samp{json} format consists of a top-level JSON array containing JSON
5302objects representing the diagnostics.
5303
5304The JSON is emitted as one line, without formatting; the examples below
5305have been formatted for clarity.
5306
5307Diagnostics can have child diagnostics.  For example, this error and note:
5308
5309@smallexample
5310misleading-indentation.c:15:3: warning: this 'if' clause does not
5311  guard... [-Wmisleading-indentation]
5312   15 |   if (flag)
5313      |   ^~
5314misleading-indentation.c:17:5: note: ...this statement, but the latter
5315  is misleadingly indented as if it were guarded by the 'if'
5316   17 |     y = 2;
5317      |     ^
5318@end smallexample
5319
5320@noindent
5321might be printed in JSON form (after formatting) like this:
5322
5323@smallexample
5324[
5325    @{
5326        "kind": "warning",
5327        "locations": [
5328            @{
5329                "caret": @{
5330		    "display-column": 3,
5331		    "byte-column": 3,
5332                    "column": 3,
5333                    "file": "misleading-indentation.c",
5334                    "line": 15
5335                @},
5336                "finish": @{
5337		    "display-column": 4,
5338		    "byte-column": 4,
5339                    "column": 4,
5340                    "file": "misleading-indentation.c",
5341                    "line": 15
5342                @}
5343            @}
5344        ],
5345        "message": "this \u2018if\u2019 clause does not guard...",
5346        "option": "-Wmisleading-indentation",
5347        "option_url": "https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmisleading-indentation",
5348        "children": [
5349            @{
5350                "kind": "note",
5351                "locations": [
5352                    @{
5353                        "caret": @{
5354			    "display-column": 5,
5355			    "byte-column": 5,
5356                            "column": 5,
5357                            "file": "misleading-indentation.c",
5358                            "line": 17
5359                        @}
5360                    @}
5361                ],
5362                "escape-source": false,
5363                "message": "...this statement, but the latter is @dots{}"
5364            @}
5365        ]
5366	"escape-source": false,
5367	"column-origin": 1,
5368    @}
5369]
5370@end smallexample
5371
5372@noindent
5373where the @code{note} is a child of the @code{warning}.
5374
5375A diagnostic has a @code{kind}.  If this is @code{warning}, then there is
5376an @code{option} key describing the command-line option controlling the
5377warning.
5378
5379A diagnostic can contain zero or more locations.  Each location has an
5380optional @code{label} string and up to three positions within it: a
5381@code{caret} position and optional @code{start} and @code{finish} positions.
5382A position is described by a @code{file} name, a @code{line} number, and
5383three numbers indicating a column position:
5384@itemize @bullet
5385
5386@item
5387@code{display-column} counts display columns, accounting for tabs and
5388multibyte characters.
5389
5390@item
5391@code{byte-column} counts raw bytes.
5392
5393@item
5394@code{column} is equal to one of
5395the previous two, as dictated by the @option{-fdiagnostics-column-unit}
5396option.
5397
5398@end itemize
5399All three columns are relative to the origin specified by
5400@option{-fdiagnostics-column-origin}, which is typically equal to 1 but may
5401be set, for instance, to 0 for compatibility with other utilities that
5402number columns from 0.  The column origin is recorded in the JSON output in
5403the @code{column-origin} tag.  In the remaining examples below, the extra
5404column number outputs have been omitted for brevity.
5405
5406For example, this error:
5407
5408@smallexample
5409bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
5410   'struct s'@} and 'T' @{aka 'struct t'@})
5411   64 |   return callee_4a () + callee_4b ();
5412      |          ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
5413      |          |              |
5414      |          |              T @{aka struct t@}
5415      |          S @{aka struct s@}
5416@end smallexample
5417
5418@noindent
5419has three locations.  Its primary location is at the ``+'' token at column
542023.  It has two secondary locations, describing the left and right-hand sides
5421of the expression, which have labels.  It might be printed in JSON form as:
5422
5423@smallexample
5424    @{
5425        "children": [],
5426        "kind": "error",
5427        "locations": [
5428            @{
5429                "caret": @{
5430                    "column": 23, "file": "bad-binary-ops.c", "line": 64
5431                @}
5432            @},
5433            @{
5434                "caret": @{
5435                    "column": 10, "file": "bad-binary-ops.c", "line": 64
5436                @},
5437                "finish": @{
5438                    "column": 21, "file": "bad-binary-ops.c", "line": 64
5439                @},
5440                "label": "S @{aka struct s@}"
5441            @},
5442            @{
5443                "caret": @{
5444                    "column": 25, "file": "bad-binary-ops.c", "line": 64
5445                @},
5446                "finish": @{
5447                    "column": 36, "file": "bad-binary-ops.c", "line": 64
5448                @},
5449                "label": "T @{aka struct t@}"
5450            @}
5451        ],
5452        "escape-source": false,
5453        "message": "invalid operands to binary + @dots{}"
5454    @}
5455@end smallexample
5456
5457If a diagnostic contains fix-it hints, it has a @code{fixits} array,
5458consisting of half-open intervals, similar to the output of
5459@option{-fdiagnostics-parseable-fixits}.  For example, this diagnostic
5460with a replacement fix-it hint:
5461
5462@smallexample
5463demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
5464  mean 'color'?
5465    8 |   return ptr->colour;
5466      |               ^~~~~~
5467      |               color
5468@end smallexample
5469
5470@noindent
5471might be printed in JSON form as:
5472
5473@smallexample
5474    @{
5475        "children": [],
5476        "fixits": [
5477            @{
5478                "next": @{
5479                    "column": 21,
5480                    "file": "demo.c",
5481                    "line": 8
5482                @},
5483                "start": @{
5484                    "column": 15,
5485                    "file": "demo.c",
5486                    "line": 8
5487                @},
5488                "string": "color"
5489            @}
5490        ],
5491        "kind": "error",
5492        "locations": [
5493            @{
5494                "caret": @{
5495                    "column": 15,
5496                    "file": "demo.c",
5497                    "line": 8
5498                @},
5499                "finish": @{
5500                    "column": 20,
5501                    "file": "demo.c",
5502                    "line": 8
5503                @}
5504            @}
5505        ],
5506        "escape-source": false,
5507        "message": "\u2018struct s\u2019 has no member named @dots{}"
5508    @}
5509@end smallexample
5510
5511@noindent
5512where the fix-it hint suggests replacing the text from @code{start} up
5513to but not including @code{next} with @code{string}'s value.  Deletions
5514are expressed via an empty value for @code{string}, insertions by
5515having @code{start} equal @code{next}.
5516
5517If the diagnostic has a path of control-flow events associated with it,
5518it has a @code{path} array of objects representing the events.  Each
5519event object has a @code{description} string, a @code{location} object,
5520along with a @code{function} string and a @code{depth} number for
5521representing interprocedural paths.  The @code{function} represents the
5522current function at that event, and the @code{depth} represents the
5523stack depth relative to some baseline: the higher, the more frames are
5524within the stack.
5525
5526For example, the intraprocedural example shown for
5527@option{-fdiagnostics-path-format=} might have this JSON for its path:
5528
5529@smallexample
5530    "path": [
5531        @{
5532            "depth": 0,
5533            "description": "when 'PyList_New' fails, returning NULL",
5534            "function": "test",
5535            "location": @{
5536                "column": 10,
5537                "file": "test.c",
5538                "line": 25
5539            @}
5540        @},
5541        @{
5542            "depth": 0,
5543            "description": "when 'i < count'",
5544            "function": "test",
5545            "location": @{
5546                "column": 3,
5547                "file": "test.c",
5548                "line": 27
5549            @}
5550        @},
5551        @{
5552            "depth": 0,
5553            "description": "when calling 'PyList_Append', passing NULL from (1) as argument 1",
5554            "function": "test",
5555            "location": @{
5556                "column": 5,
5557                "file": "test.c",
5558                "line": 29
5559            @}
5560        @}
5561    ]
5562@end smallexample
5563
5564Diagnostics have a boolean attribute @code{escape-source}, hinting whether
5565non-ASCII bytes should be escaped when printing the pertinent lines of
5566source code (@code{true} for diagnostics involving source encoding issues).
5567
5568@end table
5569
5570@node Warning Options
5571@section Options to Request or Suppress Warnings
5572@cindex options to control warnings
5573@cindex warning messages
5574@cindex messages, warning
5575@cindex suppressing warnings
5576
5577Warnings are diagnostic messages that report constructions that
5578are not inherently erroneous but that are risky or suggest there
5579may have been an error.
5580
5581The following language-independent options do not enable specific
5582warnings but control the kinds of diagnostics produced by GCC@.
5583
5584@table @gcctabopt
5585@cindex syntax checking
5586@item -fsyntax-only
5587@opindex fsyntax-only
5588Check the code for syntax errors, but don't do anything beyond that.
5589
5590@item -fmax-errors=@var{n}
5591@opindex fmax-errors
5592Limits the maximum number of error messages to @var{n}, at which point
5593GCC bails out rather than attempting to continue processing the source
5594code.  If @var{n} is 0 (the default), there is no limit on the number
5595of error messages produced.  If @option{-Wfatal-errors} is also
5596specified, then @option{-Wfatal-errors} takes precedence over this
5597option.
5598
5599@item -w
5600@opindex w
5601Inhibit all warning messages.
5602
5603@item -Werror
5604@opindex Werror
5605@opindex Wno-error
5606Make all warnings into errors.
5607
5608@item -Werror=
5609@opindex Werror=
5610@opindex Wno-error=
5611Make the specified warning into an error.  The specifier for a warning
5612is appended; for example @option{-Werror=switch} turns the warnings
5613controlled by @option{-Wswitch} into errors.  This switch takes a
5614negative form, to be used to negate @option{-Werror} for specific
5615warnings; for example @option{-Wno-error=switch} makes
5616@option{-Wswitch} warnings not be errors, even when @option{-Werror}
5617is in effect.
5618
5619The warning message for each controllable warning includes the
5620option that controls the warning.  That option can then be used with
5621@option{-Werror=} and @option{-Wno-error=} as described above.
5622(Printing of the option in the warning message can be disabled using the
5623@option{-fno-diagnostics-show-option} flag.)
5624
5625Note that specifying @option{-Werror=}@var{foo} automatically implies
5626@option{-W}@var{foo}.  However, @option{-Wno-error=}@var{foo} does not
5627imply anything.
5628
5629@item -Wfatal-errors
5630@opindex Wfatal-errors
5631@opindex Wno-fatal-errors
5632This option causes the compiler to abort compilation on the first error
5633occurred rather than trying to keep going and printing further error
5634messages.
5635
5636@end table
5637
5638You can request many specific warnings with options beginning with
5639@samp{-W}, for example @option{-Wimplicit} to request warnings on
5640implicit declarations.  Each of these specific warning options also
5641has a negative form beginning @samp{-Wno-} to turn off warnings; for
5642example, @option{-Wno-implicit}.  This manual lists only one of the
5643two forms, whichever is not the default.  For further
5644language-specific options also refer to @ref{C++ Dialect Options} and
5645@ref{Objective-C and Objective-C++ Dialect Options}.
5646Additional warnings can be produced by enabling the static analyzer;
5647@xref{Static Analyzer Options}.
5648
5649Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
5650options, such as @option{-Wunused}, which may turn on further options,
5651such as @option{-Wunused-value}. The combined effect of positive and
5652negative forms is that more specific options have priority over less
5653specific ones, independently of their position in the command-line. For
5654options of the same specificity, the last one takes effect. Options
5655enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
5656as if they appeared at the end of the command-line.
5657
5658When an unrecognized warning option is requested (e.g.,
5659@option{-Wunknown-warning}), GCC emits a diagnostic stating
5660that the option is not recognized.  However, if the @option{-Wno-} form
5661is used, the behavior is slightly different: no diagnostic is
5662produced for @option{-Wno-unknown-warning} unless other diagnostics
5663are being produced.  This allows the use of new @option{-Wno-} options
5664with old compilers, but if something goes wrong, the compiler
5665warns that an unrecognized option is present.
5666
5667The effectiveness of some warnings depends on optimizations also being
5668enabled. For example @option{-Wsuggest-final-types} is more effective
5669with link-time optimization and some instances of other warnings may
5670not be issued at all unless optimization is enabled.  While optimization
5671in general improves the efficacy of control and data flow sensitive
5672warnings, in some cases it may also cause false positives.
5673
5674@table @gcctabopt
5675@item -Wpedantic
5676@itemx -pedantic
5677@opindex pedantic
5678@opindex Wpedantic
5679@opindex Wno-pedantic
5680Issue all the warnings demanded by strict ISO C and ISO C++;
5681reject all programs that use forbidden extensions, and some other
5682programs that do not follow ISO C and ISO C++.  For ISO C, follows the
5683version of the ISO C standard specified by any @option{-std} option used.
5684
5685Valid ISO C and ISO C++ programs should compile properly with or without
5686this option (though a rare few require @option{-ansi} or a
5687@option{-std} option specifying the required version of ISO C)@.  However,
5688without this option, certain GNU extensions and traditional C and C++
5689features are supported as well.  With this option, they are rejected.
5690
5691@option{-Wpedantic} does not cause warning messages for use of the
5692alternate keywords whose names begin and end with @samp{__}.  This alternate
5693format can also be used to disable warnings for non-ISO @samp{__intN} types,
5694i.e. @samp{__intN__}.
5695Pedantic warnings are also disabled in the expression that follows
5696@code{__extension__}.  However, only system header files should use
5697these escape routes; application programs should avoid them.
5698@xref{Alternate Keywords}.
5699
5700Some users try to use @option{-Wpedantic} to check programs for strict ISO
5701C conformance.  They soon find that it does not do quite what they want:
5702it finds some non-ISO practices, but not all---only those for which
5703ISO C @emph{requires} a diagnostic, and some others for which
5704diagnostics have been added.
5705
5706A feature to report any failure to conform to ISO C might be useful in
5707some instances, but would require considerable additional work and would
5708be quite different from @option{-Wpedantic}.  We don't have plans to
5709support such a feature in the near future.
5710
5711Where the standard specified with @option{-std} represents a GNU
5712extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
5713corresponding @dfn{base standard}, the version of ISO C on which the GNU
5714extended dialect is based.  Warnings from @option{-Wpedantic} are given
5715where they are required by the base standard.  (It does not make sense
5716for such warnings to be given only for features not in the specified GNU
5717C dialect, since by definition the GNU dialects of C include all
5718features the compiler supports with the given option, and there would be
5719nothing to warn about.)
5720
5721@item -pedantic-errors
5722@opindex pedantic-errors
5723Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
5724requires a diagnostic, in some cases where there is undefined behavior
5725at compile-time and in some other cases that do not prevent compilation
5726of programs that are valid according to the standard. This is not
5727equivalent to @option{-Werror=pedantic}, since there are errors enabled
5728by this option and not enabled by the latter and vice versa.
5729
5730@item -Wall
5731@opindex Wall
5732@opindex Wno-all
5733This enables all the warnings about constructions that some users
5734consider questionable, and that are easy to avoid (or modify to
5735prevent the warning), even in conjunction with macros.  This also
5736enables some language-specific warnings described in @ref{C++ Dialect
5737Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
5738
5739@option{-Wall} turns on the following warning flags:
5740
5741@gccoptlist{-Waddress   @gol
5742-Warray-bounds=1 @r{(only with} @option{-O2}@r{)}  @gol
5743-Warray-compare @gol
5744-Warray-parameter=2 @r{(C and Objective-C only)} @gol
5745-Wbool-compare  @gol
5746-Wbool-operation  @gol
5747-Wc++11-compat  -Wc++14-compat  @gol
5748-Wcatch-value @r{(C++ and Objective-C++ only)}  @gol
5749-Wchar-subscripts  @gol
5750-Wcomment  @gol
5751-Wdangling-pointer=2  @gol
5752-Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
5753-Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
5754-Wformat   @gol
5755-Wformat-overflow  @gol
5756-Wformat-truncation  @gol
5757-Wint-in-bool-context  @gol
5758-Wimplicit @r{(C and Objective-C only)} @gol
5759-Wimplicit-int @r{(C and Objective-C only)} @gol
5760-Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
5761-Winit-self @r{(only for C++)} @gol
5762-Wlogical-not-parentheses @gol
5763-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)}  @gol
5764-Wmaybe-uninitialized @gol
5765-Wmemset-elt-size @gol
5766-Wmemset-transposed-args @gol
5767-Wmisleading-indentation @r{(only for C/C++)} @gol
5768-Wmismatched-dealloc @gol
5769-Wmismatched-new-delete @r{(only for C/C++)} @gol
5770-Wmissing-attributes @gol
5771-Wmissing-braces @r{(only for C/ObjC)} @gol
5772-Wmultistatement-macros  @gol
5773-Wnarrowing @r{(only for C++)}  @gol
5774-Wnonnull  @gol
5775-Wnonnull-compare  @gol
5776-Wopenmp-simd @gol
5777-Wparentheses  @gol
5778-Wpessimizing-move @r{(only for C++)}  @gol
5779-Wpointer-sign  @gol
5780-Wrange-loop-construct @r{(only for C++)}  @gol
5781-Wreorder   @gol
5782-Wrestrict   @gol
5783-Wreturn-type  @gol
5784-Wsequence-point  @gol
5785-Wsign-compare @r{(only in C++)}  @gol
5786-Wsizeof-array-div @gol
5787-Wsizeof-pointer-div @gol
5788-Wsizeof-pointer-memaccess @gol
5789-Wstrict-aliasing  @gol
5790-Wstrict-overflow=1  @gol
5791-Wswitch  @gol
5792-Wtautological-compare  @gol
5793-Wtrigraphs  @gol
5794-Wuninitialized  @gol
5795-Wunknown-pragmas  @gol
5796-Wunused-function  @gol
5797-Wunused-label     @gol
5798-Wunused-value     @gol
5799-Wunused-variable  @gol
5800-Wuse-after-free=3  @gol
5801-Wvla-parameter @r{(C and Objective-C only)} @gol
5802-Wvolatile-register-var  @gol
5803-Wzero-length-bounds}
5804
5805Note that some warning flags are not implied by @option{-Wall}.  Some of
5806them warn about constructions that users generally do not consider
5807questionable, but which occasionally you might wish to check for;
5808others warn about constructions that are necessary or hard to avoid in
5809some cases, and there is no simple way to modify the code to suppress
5810the warning. Some of them are enabled by @option{-Wextra} but many of
5811them must be enabled individually.
5812
5813@item -Wextra
5814@opindex W
5815@opindex Wextra
5816@opindex Wno-extra
5817This enables some extra warning flags that are not enabled by
5818@option{-Wall}. (This option used to be called @option{-W}.  The older
5819name is still supported, but the newer name is more descriptive.)
5820
5821@gccoptlist{-Wclobbered  @gol
5822-Wcast-function-type  @gol
5823-Wdeprecated-copy @r{(C++ only)} @gol
5824-Wempty-body  @gol
5825-Wenum-conversion @r{(C only)} @gol
5826-Wignored-qualifiers @gol
5827-Wimplicit-fallthrough=3 @gol
5828-Wmissing-field-initializers  @gol
5829-Wmissing-parameter-type @r{(C only)}  @gol
5830-Wold-style-declaration @r{(C only)}  @gol
5831-Woverride-init  @gol
5832-Wsign-compare @r{(C only)} @gol
5833-Wstring-compare @gol
5834-Wredundant-move @r{(only for C++)}  @gol
5835-Wtype-limits  @gol
5836-Wuninitialized  @gol
5837-Wshift-negative-value @r{(in C++11 to C++17 and in C99 and newer)}  @gol
5838-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
5839-Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
5840
5841
5842The option @option{-Wextra} also prints warning messages for the
5843following cases:
5844
5845@itemize @bullet
5846
5847@item
5848A pointer is compared against integer zero with @code{<}, @code{<=},
5849@code{>}, or @code{>=}.
5850
5851@item
5852(C++ only) An enumerator and a non-enumerator both appear in a
5853conditional expression.
5854
5855@item
5856(C++ only) Ambiguous virtual bases.
5857
5858@item
5859(C++ only) Subscripting an array that has been declared @code{register}.
5860
5861@item
5862(C++ only) Taking the address of a variable that has been declared
5863@code{register}.
5864
5865@item
5866(C++ only) A base class is not initialized in the copy constructor
5867of a derived class.
5868
5869@end itemize
5870
5871@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
5872@opindex Wabi
5873@opindex Wno-abi
5874
5875Warn about code affected by ABI changes.  This includes code that may
5876not be compatible with the vendor-neutral C++ ABI as well as the psABI
5877for the particular target.
5878
5879Since G++ now defaults to updating the ABI with each major release,
5880normally @option{-Wabi} warns only about C++ ABI compatibility
5881problems if there is a check added later in a release series for an
5882ABI issue discovered since the initial release.  @option{-Wabi} warns
5883about more things if an older ABI version is selected (with
5884@option{-fabi-version=@var{n}}).
5885
5886@option{-Wabi} can also be used with an explicit version number to
5887warn about C++ ABI compatibility with a particular @option{-fabi-version}
5888level, e.g.@: @option{-Wabi=2} to warn about changes relative to
5889@option{-fabi-version=2}.
5890
5891If an explicit version number is provided and
5892@option{-fabi-compat-version} is not specified, the version number
5893from this option is used for compatibility aliases.  If no explicit
5894version number is provided with this option, but
5895@option{-fabi-compat-version} is specified, that version number is
5896used for C++ ABI warnings.
5897
5898Although an effort has been made to warn about
5899all such cases, there are probably some cases that are not warned about,
5900even though G++ is generating incompatible code.  There may also be
5901cases where warnings are emitted even though the code that is generated
5902is compatible.
5903
5904You should rewrite your code to avoid these warnings if you are
5905concerned about the fact that code generated by G++ may not be binary
5906compatible with code generated by other compilers.
5907
5908Known incompatibilities in @option{-fabi-version=2} (which was the
5909default from GCC 3.4 to 4.9) include:
5910
5911@itemize @bullet
5912
5913@item
5914A template with a non-type template parameter of reference type was
5915mangled incorrectly:
5916@smallexample
5917extern int N;
5918template <int &> struct S @{@};
5919void n (S<N>) @{2@}
5920@end smallexample
5921
5922This was fixed in @option{-fabi-version=3}.
5923
5924@item
5925SIMD vector types declared using @code{__attribute ((vector_size))} were
5926mangled in a non-standard way that does not allow for overloading of
5927functions taking vectors of different sizes.
5928
5929The mangling was changed in @option{-fabi-version=4}.
5930
5931@item
5932@code{__attribute ((const))} and @code{noreturn} were mangled as type
5933qualifiers, and @code{decltype} of a plain declaration was folded away.
5934
5935These mangling issues were fixed in @option{-fabi-version=5}.
5936
5937@item
5938Scoped enumerators passed as arguments to a variadic function are
5939promoted like unscoped enumerators, causing @code{va_arg} to complain.
5940On most targets this does not actually affect the parameter passing
5941ABI, as there is no way to pass an argument smaller than @code{int}.
5942
5943Also, the ABI changed the mangling of template argument packs,
5944@code{const_cast}, @code{static_cast}, prefix increment/decrement, and
5945a class scope function used as a template argument.
5946
5947These issues were corrected in @option{-fabi-version=6}.
5948
5949@item
5950Lambdas in default argument scope were mangled incorrectly, and the
5951ABI changed the mangling of @code{nullptr_t}.
5952
5953These issues were corrected in @option{-fabi-version=7}.
5954
5955@item
5956When mangling a function type with function-cv-qualifiers, the
5957un-qualified function type was incorrectly treated as a substitution
5958candidate.
5959
5960This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
5961
5962@item
5963@code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
5964unaligned accesses.  Note that this did not affect the ABI of a
5965function with a @code{nullptr_t} parameter, as parameters have a
5966minimum alignment.
5967
5968This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
5969
5970@item
5971Target-specific attributes that affect the identity of a type, such as
5972ia32 calling conventions on a function type (stdcall, regparm, etc.),
5973did not affect the mangled name, leading to name collisions when
5974function pointers were used as template arguments.
5975
5976This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
5977
5978@end itemize
5979
5980This option also enables warnings about psABI-related changes.
5981The known psABI changes at this point include:
5982
5983@itemize @bullet
5984
5985@item
5986For SysV/x86-64, unions with @code{long double} members are
5987passed in memory as specified in psABI.  Prior to GCC 4.4, this was not
5988the case.  For example:
5989
5990@smallexample
5991union U @{
5992  long double ld;
5993  int i;
5994@};
5995@end smallexample
5996
5997@noindent
5998@code{union U} is now always passed in memory.
5999
6000@end itemize
6001
6002@item -Wchar-subscripts
6003@opindex Wchar-subscripts
6004@opindex Wno-char-subscripts
6005Warn if an array subscript has type @code{char}.  This is a common cause
6006of error, as programmers often forget that this type is signed on some
6007machines.
6008This warning is enabled by @option{-Wall}.
6009
6010@item -Wno-coverage-mismatch
6011@opindex Wno-coverage-mismatch
6012@opindex Wcoverage-mismatch
6013Warn if feedback profiles do not match when using the
6014@option{-fprofile-use} option.
6015If a source file is changed between compiling with @option{-fprofile-generate}
6016and with @option{-fprofile-use}, the files with the profile feedback can fail
6017to match the source file and GCC cannot use the profile feedback
6018information.  By default, this warning is enabled and is treated as an
6019error.  @option{-Wno-coverage-mismatch} can be used to disable the
6020warning or @option{-Wno-error=coverage-mismatch} can be used to
6021disable the error.  Disabling the error for this warning can result in
6022poorly optimized code and is useful only in the
6023case of very minor changes such as bug fixes to an existing code-base.
6024Completely disabling the warning is not recommended.
6025
6026@item -Wno-coverage-invalid-line-number
6027@opindex Wno-coverage-invalid-line-number
6028@opindex Wcoverage-invalid-line-number
6029Warn in case a function ends earlier than it begins due
6030to an invalid linenum macros.  The warning is emitted only
6031with @option{--coverage} enabled.
6032
6033By default, this warning is enabled and is treated as an
6034error.  @option{-Wno-coverage-invalid-line-number} can be used to disable the
6035warning or @option{-Wno-error=coverage-invalid-line-number} can be used to
6036disable the error.
6037
6038@item -Wno-cpp @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
6039@opindex Wno-cpp
6040@opindex Wcpp
6041Suppress warning messages emitted by @code{#warning} directives.
6042
6043@item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
6044@opindex Wdouble-promotion
6045@opindex Wno-double-promotion
6046Give a warning when a value of type @code{float} is implicitly
6047promoted to @code{double}.  CPUs with a 32-bit ``single-precision''
6048floating-point unit implement @code{float} in hardware, but emulate
6049@code{double} in software.  On such a machine, doing computations
6050using @code{double} values is much more expensive because of the
6051overhead required for software emulation.
6052
6053It is easy to accidentally do computations with @code{double} because
6054floating-point literals are implicitly of type @code{double}.  For
6055example, in:
6056@smallexample
6057@group
6058float area(float radius)
6059@{
6060   return 3.14159 * radius * radius;
6061@}
6062@end group
6063@end smallexample
6064the compiler performs the entire computation with @code{double}
6065because the floating-point literal is a @code{double}.
6066
6067@item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
6068@opindex Wduplicate-decl-specifier
6069@opindex Wno-duplicate-decl-specifier
6070Warn if a declaration has duplicate @code{const}, @code{volatile},
6071@code{restrict} or @code{_Atomic} specifier.  This warning is enabled by
6072@option{-Wall}.
6073
6074@item -Wformat
6075@itemx -Wformat=@var{n}
6076@opindex Wformat
6077@opindex Wno-format
6078@opindex ffreestanding
6079@opindex fno-builtin
6080@opindex Wformat=
6081Check calls to @code{printf} and @code{scanf}, etc., to make sure that
6082the arguments supplied have types appropriate to the format string
6083specified, and that the conversions specified in the format string make
6084sense.  This includes standard functions, and others specified by format
6085attributes (@pxref{Function Attributes}), in the @code{printf},
6086@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
6087not in the C standard) families (or other target-specific families).
6088Which functions are checked without format attributes having been
6089specified depends on the standard version selected, and such checks of
6090functions without the attribute specified are disabled by
6091@option{-ffreestanding} or @option{-fno-builtin}.
6092
6093The formats are checked against the format features supported by GNU
6094libc version 2.2.  These include all ISO C90 and C99 features, as well
6095as features from the Single Unix Specification and some BSD and GNU
6096extensions.  Other library implementations may not support all these
6097features; GCC does not support warning about features that go beyond a
6098particular library's limitations.  However, if @option{-Wpedantic} is used
6099with @option{-Wformat}, warnings are given about format features not
6100in the selected standard version (but not for @code{strfmon} formats,
6101since those are not in any version of the C standard).  @xref{C Dialect
6102Options,,Options Controlling C Dialect}.
6103
6104@table @gcctabopt
6105@item -Wformat=1
6106@itemx -Wformat
6107@opindex Wformat
6108@opindex Wformat=1
6109Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
6110@option{-Wno-format} is equivalent to @option{-Wformat=0}.  Since
6111@option{-Wformat} also checks for null format arguments for several
6112functions, @option{-Wformat} also implies @option{-Wnonnull}.  Some
6113aspects of this level of format checking can be disabled by the
6114options: @option{-Wno-format-contains-nul},
6115@option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
6116@option{-Wformat} is enabled by @option{-Wall}.
6117
6118@item -Wformat=2
6119@opindex Wformat=2
6120Enable @option{-Wformat} plus additional format checks.  Currently
6121equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
6122-Wformat-y2k}.
6123@end table
6124
6125@item -Wno-format-contains-nul
6126@opindex Wno-format-contains-nul
6127@opindex Wformat-contains-nul
6128If @option{-Wformat} is specified, do not warn about format strings that
6129contain NUL bytes.
6130
6131@item -Wno-format-extra-args
6132@opindex Wno-format-extra-args
6133@opindex Wformat-extra-args
6134If @option{-Wformat} is specified, do not warn about excess arguments to a
6135@code{printf} or @code{scanf} format function.  The C standard specifies
6136that such arguments are ignored.
6137
6138Where the unused arguments lie between used arguments that are
6139specified with @samp{$} operand number specifications, normally
6140warnings are still given, since the implementation could not know what
6141type to pass to @code{va_arg} to skip the unused arguments.  However,
6142in the case of @code{scanf} formats, this option suppresses the
6143warning if the unused arguments are all pointers, since the Single
6144Unix Specification says that such unused arguments are allowed.
6145
6146@item -Wformat-overflow
6147@itemx -Wformat-overflow=@var{level}
6148@opindex Wformat-overflow
6149@opindex Wno-format-overflow
6150Warn about calls to formatted input/output functions such as @code{sprintf}
6151and @code{vsprintf} that might overflow the destination buffer.  When the
6152exact number of bytes written by a format directive cannot be determined
6153at compile-time it is estimated based on heuristics that depend on the
6154@var{level} argument and on optimization.  While enabling optimization
6155will in most cases improve the accuracy of the warning, it may also
6156result in false positives.
6157
6158@table @gcctabopt
6159@item -Wformat-overflow
6160@itemx -Wformat-overflow=1
6161@opindex Wformat-overflow
6162@opindex Wno-format-overflow
6163Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
6164employs a conservative approach that warns only about calls that most
6165likely overflow the buffer.  At this level, numeric arguments to format
6166directives with unknown values are assumed to have the value of one, and
6167strings of unknown length to be empty.  Numeric arguments that are known
6168to be bounded to a subrange of their type, or string arguments whose output
6169is bounded either by their directive's precision or by a finite set of
6170string literals, are assumed to take on the value within the range that
6171results in the most bytes on output.  For example, the call to @code{sprintf}
6172below is diagnosed because even with both @var{a} and @var{b} equal to zero,
6173the terminating NUL character (@code{'\0'}) appended by the function
6174to the destination buffer will be written past its end.  Increasing
6175the size of the buffer by a single byte is sufficient to avoid the
6176warning, though it may not be sufficient to avoid the overflow.
6177
6178@smallexample
6179void f (int a, int b)
6180@{
6181  char buf [13];
6182  sprintf (buf, "a = %i, b = %i\n", a, b);
6183@}
6184@end smallexample
6185
6186@item -Wformat-overflow=2
6187Level @var{2} warns also about calls that might overflow the destination
6188buffer given an argument of sufficient length or magnitude.  At level
6189@var{2}, unknown numeric arguments are assumed to have the minimum
6190representable value for signed types with a precision greater than 1, and
6191the maximum representable value otherwise.  Unknown string arguments whose
6192length cannot be assumed to be bounded either by the directive's precision,
6193or by a finite set of string literals they may evaluate to, or the character
6194array they may point to, are assumed to be 1 character long.
6195
6196At level @var{2}, the call in the example above is again diagnosed, but
6197this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
6198@code{%i} directive will write some of its digits beyond the end of
6199the destination buffer.  To make the call safe regardless of the values
6200of the two variables, the size of the destination buffer must be increased
6201to at least 34 bytes.  GCC includes the minimum size of the buffer in
6202an informational note following the warning.
6203
6204An alternative to increasing the size of the destination buffer is to
6205constrain the range of formatted values.  The maximum length of string
6206arguments can be bounded by specifying the precision in the format
6207directive.  When numeric arguments of format directives can be assumed
6208to be bounded by less than the precision of their type, choosing
6209an appropriate length modifier to the format specifier will reduce
6210the required buffer size.  For example, if @var{a} and @var{b} in the
6211example above can be assumed to be within the precision of
6212the @code{short int} type then using either the @code{%hi} format
6213directive or casting the argument to @code{short} reduces the maximum
6214required size of the buffer to 24 bytes.
6215
6216@smallexample
6217void f (int a, int b)
6218@{
6219  char buf [23];
6220  sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
6221@}
6222@end smallexample
6223@end table
6224
6225@item -Wno-format-zero-length
6226@opindex Wno-format-zero-length
6227@opindex Wformat-zero-length
6228If @option{-Wformat} is specified, do not warn about zero-length formats.
6229The C standard specifies that zero-length formats are allowed.
6230
6231@item -Wformat-nonliteral
6232@opindex Wformat-nonliteral
6233@opindex Wno-format-nonliteral
6234If @option{-Wformat} is specified, also warn if the format string is not a
6235string literal and so cannot be checked, unless the format function
6236takes its format arguments as a @code{va_list}.
6237
6238@item -Wformat-security
6239@opindex Wformat-security
6240@opindex Wno-format-security
6241If @option{-Wformat} is specified, also warn about uses of format
6242functions that represent possible security problems.  At present, this
6243warns about calls to @code{printf} and @code{scanf} functions where the
6244format string is not a string literal and there are no format arguments,
6245as in @code{printf (foo);}.  This may be a security hole if the format
6246string came from untrusted input and contains @samp{%n}.  (This is
6247currently a subset of what @option{-Wformat-nonliteral} warns about, but
6248in future warnings may be added to @option{-Wformat-security} that are not
6249included in @option{-Wformat-nonliteral}.)
6250
6251@item -Wformat-signedness
6252@opindex Wformat-signedness
6253@opindex Wno-format-signedness
6254If @option{-Wformat} is specified, also warn if the format string
6255requires an unsigned argument and the argument is signed and vice versa.
6256
6257@item -Wformat-truncation
6258@itemx -Wformat-truncation=@var{level}
6259@opindex Wformat-truncation
6260@opindex Wno-format-truncation
6261Warn about calls to formatted input/output functions such as @code{snprintf}
6262and @code{vsnprintf} that might result in output truncation.  When the exact
6263number of bytes written by a format directive cannot be determined at
6264compile-time it is estimated based on heuristics that depend on
6265the @var{level} argument and on optimization.  While enabling optimization
6266will in most cases improve the accuracy of the warning, it may also result
6267in false positives.  Except as noted otherwise, the option uses the same
6268logic @option{-Wformat-overflow}.
6269
6270@table @gcctabopt
6271@item -Wformat-truncation
6272@itemx -Wformat-truncation=1
6273@opindex Wformat-truncation
6274@opindex Wno-format-truncation
6275Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
6276employs a conservative approach that warns only about calls to bounded
6277functions whose return value is unused and that will most likely result
6278in output truncation.
6279
6280@item -Wformat-truncation=2
6281Level @var{2} warns also about calls to bounded functions whose return
6282value is used and that might result in truncation given an argument of
6283sufficient length or magnitude.
6284@end table
6285
6286@item -Wformat-y2k
6287@opindex Wformat-y2k
6288@opindex Wno-format-y2k
6289If @option{-Wformat} is specified, also warn about @code{strftime}
6290formats that may yield only a two-digit year.
6291
6292@item -Wnonnull
6293@opindex Wnonnull
6294@opindex Wno-nonnull
6295Warn about passing a null pointer for arguments marked as
6296requiring a non-null value by the @code{nonnull} function attribute.
6297
6298@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}.  It
6299can be disabled with the @option{-Wno-nonnull} option.
6300
6301@item -Wnonnull-compare
6302@opindex Wnonnull-compare
6303@opindex Wno-nonnull-compare
6304Warn when comparing an argument marked with the @code{nonnull}
6305function attribute against null inside the function.
6306
6307@option{-Wnonnull-compare} is included in @option{-Wall}.  It
6308can be disabled with the @option{-Wno-nonnull-compare} option.
6309
6310@item -Wnull-dereference
6311@opindex Wnull-dereference
6312@opindex Wno-null-dereference
6313Warn if the compiler detects paths that trigger erroneous or
6314undefined behavior due to dereferencing a null pointer.  This option
6315is only active when @option{-fdelete-null-pointer-checks} is active,
6316which is enabled by optimizations in most targets.  The precision of
6317the warnings depends on the optimization options used.
6318
6319@item -Winfinite-recursion
6320@opindex Winfinite-recursion
6321@opindex Wno-infinite-recursion
6322Warn about infinitely recursive calls.  The warning is effective at all
6323optimization levels but requires optimization in order to detect infinite
6324recursion in calls between two or more functions.
6325@option{-Winfinite-recursion} is included in @option{-Wall}.
6326
6327@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
6328@opindex Winit-self
6329@opindex Wno-init-self
6330Warn about uninitialized variables that are initialized with themselves.
6331Note this option can only be used with the @option{-Wuninitialized} option.
6332
6333For example, GCC warns about @code{i} being uninitialized in the
6334following snippet only when @option{-Winit-self} has been specified:
6335@smallexample
6336@group
6337int f()
6338@{
6339  int i = i;
6340  return i;
6341@}
6342@end group
6343@end smallexample
6344
6345This warning is enabled by @option{-Wall} in C++.
6346
6347@item -Wno-implicit-int @r{(C and Objective-C only)}
6348@opindex Wimplicit-int
6349@opindex Wno-implicit-int
6350This option controls warnings when a declaration does not specify a type.
6351This warning is enabled by default in C99 and later dialects of C,
6352and also by @option{-Wall}.
6353
6354@item -Wno-implicit-function-declaration @r{(C and Objective-C only)}
6355@opindex Wimplicit-function-declaration
6356@opindex Wno-implicit-function-declaration
6357This option controls warnings when a function is used before being declared.
6358This warning is enabled by default in C99 and later dialects of C,
6359and also by @option{-Wall}.
6360The warning is made into an error by @option{-pedantic-errors}.
6361
6362@item -Wimplicit @r{(C and Objective-C only)}
6363@opindex Wimplicit
6364@opindex Wno-implicit
6365Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
6366This warning is enabled by @option{-Wall}.
6367
6368@item -Wimplicit-fallthrough
6369@opindex Wimplicit-fallthrough
6370@opindex Wno-implicit-fallthrough
6371@option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
6372and @option{-Wno-implicit-fallthrough} is the same as
6373@option{-Wimplicit-fallthrough=0}.
6374
6375@item -Wimplicit-fallthrough=@var{n}
6376@opindex Wimplicit-fallthrough=
6377Warn when a switch case falls through.  For example:
6378
6379@smallexample
6380@group
6381switch (cond)
6382  @{
6383  case 1:
6384    a = 1;
6385    break;
6386  case 2:
6387    a = 2;
6388  case 3:
6389    a = 3;
6390    break;
6391  @}
6392@end group
6393@end smallexample
6394
6395This warning does not warn when the last statement of a case cannot
6396fall through, e.g. when there is a return statement or a call to function
6397declared with the noreturn attribute.  @option{-Wimplicit-fallthrough=}
6398also takes into account control flow statements, such as ifs, and only
6399warns when appropriate.  E.g.@:
6400
6401@smallexample
6402@group
6403switch (cond)
6404  @{
6405  case 1:
6406    if (i > 3) @{
6407      bar (5);
6408      break;
6409    @} else if (i < 1) @{
6410      bar (0);
6411    @} else
6412      return;
6413  default:
6414    @dots{}
6415  @}
6416@end group
6417@end smallexample
6418
6419Since there are occasions where a switch case fall through is desirable,
6420GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
6421to be used along with a null statement to suppress this warning that
6422would normally occur:
6423
6424@smallexample
6425@group
6426switch (cond)
6427  @{
6428  case 1:
6429    bar (0);
6430    __attribute__ ((fallthrough));
6431  default:
6432    @dots{}
6433  @}
6434@end group
6435@end smallexample
6436
6437C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
6438warning using @code{[[fallthrough]];} instead of the GNU attribute.  In C++11
6439or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
6440Instead of these attributes, it is also possible to add a fallthrough comment
6441to silence the warning.  The whole body of the C or C++ style comment should
6442match the given regular expressions listed below.  The option argument @var{n}
6443specifies what kind of comments are accepted:
6444
6445@itemize @bullet
6446
6447@item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
6448
6449@item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
6450expression, any comment is used as fallthrough comment.
6451
6452@item @option{-Wimplicit-fallthrough=2} case insensitively matches
6453@code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
6454
6455@item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
6456following regular expressions:
6457
6458@itemize @bullet
6459
6460@item @code{-fallthrough}
6461
6462@item @code{@@fallthrough@@}
6463
6464@item @code{lint -fallthrough[ \t]*}
6465
6466@item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
6467
6468@item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
6469
6470@item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
6471
6472@end itemize
6473
6474@item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
6475following regular expressions:
6476
6477@itemize @bullet
6478
6479@item @code{-fallthrough}
6480
6481@item @code{@@fallthrough@@}
6482
6483@item @code{lint -fallthrough[ \t]*}
6484
6485@item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
6486
6487@end itemize
6488
6489@item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
6490fallthrough comments, only attributes disable the warning.
6491
6492@end itemize
6493
6494The comment needs to be followed after optional whitespace and other comments
6495by @code{case} or @code{default} keywords or by a user label that precedes some
6496@code{case} or @code{default} label.
6497
6498@smallexample
6499@group
6500switch (cond)
6501  @{
6502  case 1:
6503    bar (0);
6504    /* FALLTHRU */
6505  default:
6506    @dots{}
6507  @}
6508@end group
6509@end smallexample
6510
6511The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
6512
6513@item -Wno-if-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6514@opindex Wif-not-aligned
6515@opindex Wno-if-not-aligned
6516Control if warnings triggered by the @code{warn_if_not_aligned} attribute
6517should be issued.  These warnings are enabled by default.
6518
6519@item -Wignored-qualifiers @r{(C and C++ only)}
6520@opindex Wignored-qualifiers
6521@opindex Wno-ignored-qualifiers
6522Warn if the return type of a function has a type qualifier
6523such as @code{const}.  For ISO C such a type qualifier has no effect,
6524since the value returned by a function is not an lvalue.
6525For C++, the warning is only emitted for scalar types or @code{void}.
6526ISO C prohibits qualified @code{void} return types on function
6527definitions, so such return types always receive a warning
6528even without this option.
6529
6530This warning is also enabled by @option{-Wextra}.
6531
6532@item -Wno-ignored-attributes @r{(C and C++ only)}
6533@opindex Wignored-attributes
6534@opindex Wno-ignored-attributes
6535This option controls warnings when an attribute is ignored.
6536This is different from the
6537@option{-Wattributes} option in that it warns whenever the compiler decides
6538to drop an attribute, not that the attribute is either unknown, used in a
6539wrong place, etc.  This warning is enabled by default.
6540
6541@item -Wmain
6542@opindex Wmain
6543@opindex Wno-main
6544Warn if the type of @code{main} is suspicious.  @code{main} should be
6545a function with external linkage, returning int, taking either zero
6546arguments, two, or three arguments of appropriate types.  This warning
6547is enabled by default in C++ and is enabled by either @option{-Wall}
6548or @option{-Wpedantic}.
6549
6550@item -Wmisleading-indentation @r{(C and C++ only)}
6551@opindex Wmisleading-indentation
6552@opindex Wno-misleading-indentation
6553Warn when the indentation of the code does not reflect the block structure.
6554Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
6555@code{for} clauses with a guarded statement that does not use braces,
6556followed by an unguarded statement with the same indentation.
6557
6558In the following example, the call to ``bar'' is misleadingly indented as
6559if it were guarded by the ``if'' conditional.
6560
6561@smallexample
6562  if (some_condition ())
6563    foo ();
6564    bar ();  /* Gotcha: this is not guarded by the "if".  */
6565@end smallexample
6566
6567In the case of mixed tabs and spaces, the warning uses the
6568@option{-ftabstop=} option to determine if the statements line up
6569(defaulting to 8).
6570
6571The warning is not issued for code involving multiline preprocessor logic
6572such as the following example.
6573
6574@smallexample
6575  if (flagA)
6576    foo (0);
6577#if SOME_CONDITION_THAT_DOES_NOT_HOLD
6578  if (flagB)
6579#endif
6580    foo (1);
6581@end smallexample
6582
6583The warning is not issued after a @code{#line} directive, since this
6584typically indicates autogenerated code, and no assumptions can be made
6585about the layout of the file that the directive references.
6586
6587This warning is enabled by @option{-Wall} in C and C++.
6588
6589@item -Wmissing-attributes
6590@opindex Wmissing-attributes
6591@opindex Wno-missing-attributes
6592Warn when a declaration of a function is missing one or more attributes
6593that a related function is declared with and whose absence may adversely
6594affect the correctness or efficiency of generated code.  For example,
6595the warning is issued for declarations of aliases that use attributes
6596to specify less restrictive requirements than those of their targets.
6597This typically represents a potential optimization opportunity.
6598By contrast, the @option{-Wattribute-alias=2} option controls warnings
6599issued when the alias is more restrictive than the target, which could
6600lead to incorrect code generation.
6601Attributes considered include @code{alloc_align}, @code{alloc_size},
6602@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6603@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6604@code{returns_nonnull}, and @code{returns_twice}.
6605
6606In C++, the warning is issued when an explicit specialization of a primary
6607template declared with attribute @code{alloc_align}, @code{alloc_size},
6608@code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
6609or @code{nonnull} is declared without it.  Attributes @code{deprecated},
6610@code{error}, and @code{warning} suppress the warning.
6611(@pxref{Function Attributes}).
6612
6613You can use the @code{copy} attribute to apply the same
6614set of attributes to a declaration as that on another declaration without
6615explicitly enumerating the attributes. This attribute can be applied
6616to declarations of functions (@pxref{Common Function Attributes}),
6617variables (@pxref{Common Variable Attributes}), or types
6618(@pxref{Common Type Attributes}).
6619
6620@option{-Wmissing-attributes} is enabled by @option{-Wall}.
6621
6622For example, since the declaration of the primary function template
6623below makes use of both attribute @code{malloc} and @code{alloc_size}
6624the declaration of the explicit specialization of the template is
6625diagnosed because it is missing one of the attributes.
6626
6627@smallexample
6628template <class T>
6629T* __attribute__ ((malloc, alloc_size (1)))
6630allocate (size_t);
6631
6632template <>
6633void* __attribute__ ((malloc))   // missing alloc_size
6634allocate<void> (size_t);
6635@end smallexample
6636
6637@item -Wmissing-braces
6638@opindex Wmissing-braces
6639@opindex Wno-missing-braces
6640Warn if an aggregate or union initializer is not fully bracketed.  In
6641the following example, the initializer for @code{a} is not fully
6642bracketed, but that for @code{b} is fully bracketed.
6643
6644@smallexample
6645int a[2][2] = @{ 0, 1, 2, 3 @};
6646int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
6647@end smallexample
6648
6649This warning is enabled by @option{-Wall}.
6650
6651@item -Wmissing-include-dirs @r{(C, C++, Objective-C, Objective-C++ and Fortran only)}
6652@opindex Wmissing-include-dirs
6653@opindex Wno-missing-include-dirs
6654Warn if a user-supplied include directory does not exist. This option is disabled
6655by default for C, C++, Objective-C and Objective-C++. For Fortran, it is partially
6656enabled by default by warning for -I and -J, only.
6657
6658@item -Wno-missing-profile
6659@opindex Wmissing-profile
6660@opindex Wno-missing-profile
6661This option controls warnings if feedback profiles are missing when using the
6662@option{-fprofile-use} option.
6663This option diagnoses those cases where a new function or a new file is added
6664between compiling with @option{-fprofile-generate} and with
6665@option{-fprofile-use}, without regenerating the profiles.
6666In these cases, the profile feedback data files do not contain any
6667profile feedback information for
6668the newly added function or file respectively.  Also, in the case when profile
6669count data (.gcda) files are removed, GCC cannot use any profile feedback
6670information.  In all these cases, warnings are issued to inform you that a
6671profile generation step is due.
6672Ignoring the warning can result in poorly optimized code.
6673@option{-Wno-missing-profile} can be used to
6674disable the warning, but this is not recommended and should be done only
6675when non-existent profile data is justified.
6676
6677@item -Wmismatched-dealloc
6678@opindex Wmismatched-dealloc
6679@opindex Wno-mismatched-dealloc
6680
6681Warn for calls to deallocation functions with pointer arguments returned
6682from from allocations functions for which the former isn't a suitable
6683deallocator.  A pair of functions can be associated as matching allocators
6684and deallocators by use of attribute @code{malloc}.  Unless disabled by
6685the @option{-fno-builtin} option the standard functions @code{calloc},
6686@code{malloc}, @code{realloc}, and @code{free}, as well as the corresponding
6687forms of C++ @code{operator new} and @code{operator delete} are implicitly
6688associated as matching allocators and deallocators.  In the following
6689example @code{mydealloc} is the deallocator for pointers returned from
6690@code{myalloc}.
6691
6692@smallexample
6693void mydealloc (void*);
6694
6695__attribute__ ((malloc (mydealloc, 1))) void*
6696myalloc (size_t);
6697
6698void f (void)
6699@{
6700  void *p = myalloc (32);
6701  // @dots{}use p@dots{}
6702  free (p);   // warning: not a matching deallocator for myalloc
6703  mydealloc (p);   // ok
6704@}
6705@end smallexample
6706
6707In C++, the related option @option{-Wmismatched-new-delete} diagnoses
6708mismatches involving either @code{operator new} or @code{operator delete}.
6709
6710Option @option{-Wmismatched-dealloc} is included in @option{-Wall}.
6711
6712@item -Wmultistatement-macros
6713@opindex Wmultistatement-macros
6714@opindex Wno-multistatement-macros
6715Warn about unsafe multiple statement macros that appear to be guarded
6716by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
6717@code{while}, in which only the first statement is actually guarded after
6718the macro is expanded.
6719
6720For example:
6721
6722@smallexample
6723#define DOIT x++; y++
6724if (c)
6725  DOIT;
6726@end smallexample
6727
6728will increment @code{y} unconditionally, not just when @code{c} holds.
6729The can usually be fixed by wrapping the macro in a do-while loop:
6730@smallexample
6731#define DOIT do @{ x++; y++; @} while (0)
6732if (c)
6733  DOIT;
6734@end smallexample
6735
6736This warning is enabled by @option{-Wall} in C and C++.
6737
6738@item -Wparentheses
6739@opindex Wparentheses
6740@opindex Wno-parentheses
6741Warn if parentheses are omitted in certain contexts, such
6742as when there is an assignment in a context where a truth value
6743is expected, or when operators are nested whose precedence people
6744often get confused about.
6745
6746Also warn if a comparison like @code{x<=y<=z} appears; this is
6747equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
6748interpretation from that of ordinary mathematical notation.
6749
6750Also warn for dangerous uses of the GNU extension to
6751@code{?:} with omitted middle operand. When the condition
6752in the @code{?}: operator is a boolean expression, the omitted value is
6753always 1.  Often programmers expect it to be a value computed
6754inside the conditional expression instead.
6755
6756For C++ this also warns for some cases of unnecessary parentheses in
6757declarations, which can indicate an attempt at a function call instead
6758of a declaration:
6759@smallexample
6760@{
6761  // Declares a local variable called mymutex.
6762  std::unique_lock<std::mutex> (mymutex);
6763  // User meant std::unique_lock<std::mutex> lock (mymutex);
6764@}
6765@end smallexample
6766
6767This warning is enabled by @option{-Wall}.
6768
6769@item -Wsequence-point
6770@opindex Wsequence-point
6771@opindex Wno-sequence-point
6772Warn about code that may have undefined semantics because of violations
6773of sequence point rules in the C and C++ standards.
6774
6775The C and C++ standards define the order in which expressions in a C/C++
6776program are evaluated in terms of @dfn{sequence points}, which represent
6777a partial ordering between the execution of parts of the program: those
6778executed before the sequence point, and those executed after it.  These
6779occur after the evaluation of a full expression (one which is not part
6780of a larger expression), after the evaluation of the first operand of a
6781@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
6782function is called (but after the evaluation of its arguments and the
6783expression denoting the called function), and in certain other places.
6784Other than as expressed by the sequence point rules, the order of
6785evaluation of subexpressions of an expression is not specified.  All
6786these rules describe only a partial order rather than a total order,
6787since, for example, if two functions are called within one expression
6788with no sequence point between them, the order in which the functions
6789are called is not specified.  However, the standards committee have
6790ruled that function calls do not overlap.
6791
6792It is not specified when between sequence points modifications to the
6793values of objects take effect.  Programs whose behavior depends on this
6794have undefined behavior; the C and C++ standards specify that ``Between
6795the previous and next sequence point an object shall have its stored
6796value modified at most once by the evaluation of an expression.
6797Furthermore, the prior value shall be read only to determine the value
6798to be stored.''.  If a program breaks these rules, the results on any
6799particular implementation are entirely unpredictable.
6800
6801Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
6802= b[n++]} and @code{a[i++] = i;}.  Some more complicated cases are not
6803diagnosed by this option, and it may give an occasional false positive
6804result, but in general it has been found fairly effective at detecting
6805this sort of problem in programs.
6806
6807The C++17 standard will define the order of evaluation of operands in
6808more cases: in particular it requires that the right-hand side of an
6809assignment be evaluated before the left-hand side, so the above
6810examples are no longer undefined.  But this option will still warn
6811about them, to help people avoid writing code that is undefined in C
6812and earlier revisions of C++.
6813
6814The standard is worded confusingly, therefore there is some debate
6815over the precise meaning of the sequence point rules in subtle cases.
6816Links to discussions of the problem, including proposed formal
6817definitions, may be found on the GCC readings page, at
6818@uref{https://gcc.gnu.org/@/readings.html}.
6819
6820This warning is enabled by @option{-Wall} for C and C++.
6821
6822@item -Wno-return-local-addr
6823@opindex Wno-return-local-addr
6824@opindex Wreturn-local-addr
6825Do not warn about returning a pointer (or in C++, a reference) to a
6826variable that goes out of scope after the function returns.
6827
6828@item -Wreturn-type
6829@opindex Wreturn-type
6830@opindex Wno-return-type
6831Warn whenever a function is defined with a return type that defaults
6832to @code{int}.  Also warn about any @code{return} statement with no
6833return value in a function whose return type is not @code{void}
6834(falling off the end of the function body is considered returning
6835without a value).
6836
6837For C only, warn about a @code{return} statement with an expression in a
6838function whose return type is @code{void}, unless the expression type is
6839also @code{void}.  As a GNU extension, the latter case is accepted
6840without a warning unless @option{-Wpedantic} is used.  Attempting
6841to use the return value of a non-@code{void} function other than @code{main}
6842that flows off the end by reaching the closing curly brace that terminates
6843the function is undefined.
6844
6845Unlike in C, in C++, flowing off the end of a non-@code{void} function other
6846than @code{main} results in undefined behavior even when the value of
6847the function is not used.
6848
6849This warning is enabled by default in C++ and by @option{-Wall} otherwise.
6850
6851@item -Wno-shift-count-negative
6852@opindex Wshift-count-negative
6853@opindex Wno-shift-count-negative
6854Controls warnings if a shift count is negative.
6855This warning is enabled by default.
6856
6857@item -Wno-shift-count-overflow
6858@opindex Wshift-count-overflow
6859@opindex Wno-shift-count-overflow
6860Controls warnings if a shift count is greater than or equal to the bit width
6861of the type.  This warning is enabled by default.
6862
6863@item -Wshift-negative-value
6864@opindex Wshift-negative-value
6865@opindex Wno-shift-negative-value
6866Warn if left shifting a negative value.  This warning is enabled by
6867@option{-Wextra} in C99 (and newer) and C++11 to C++17 modes.
6868
6869@item -Wno-shift-overflow
6870@itemx -Wshift-overflow=@var{n}
6871@opindex Wshift-overflow
6872@opindex Wno-shift-overflow
6873These options control warnings about left shift overflows.
6874
6875@table @gcctabopt
6876@item -Wshift-overflow=1
6877This is the warning level of @option{-Wshift-overflow} and is enabled
6878by default in C99 and C++11 modes (and newer).  This warning level does
6879not warn about left-shifting 1 into the sign bit.  (However, in C, such
6880an overflow is still rejected in contexts where an integer constant expression
6881is required.)  No warning is emitted in C++20 mode (and newer), as signed left
6882shifts always wrap.
6883
6884@item -Wshift-overflow=2
6885This warning level also warns about left-shifting 1 into the sign bit,
6886unless C++14 mode (or newer) is active.
6887@end table
6888
6889@item -Wswitch
6890@opindex Wswitch
6891@opindex Wno-switch
6892Warn whenever a @code{switch} statement has an index of enumerated type
6893and lacks a @code{case} for one or more of the named codes of that
6894enumeration.  (The presence of a @code{default} label prevents this
6895warning.)  @code{case} labels outside the enumeration range also
6896provoke warnings when this option is used (even if there is a
6897@code{default} label).
6898This warning is enabled by @option{-Wall}.
6899
6900@item -Wswitch-default
6901@opindex Wswitch-default
6902@opindex Wno-switch-default
6903Warn whenever a @code{switch} statement does not have a @code{default}
6904case.
6905
6906@item -Wswitch-enum
6907@opindex Wswitch-enum
6908@opindex Wno-switch-enum
6909Warn whenever a @code{switch} statement has an index of enumerated type
6910and lacks a @code{case} for one or more of the named codes of that
6911enumeration.  @code{case} labels outside the enumeration range also
6912provoke warnings when this option is used.  The only difference
6913between @option{-Wswitch} and this option is that this option gives a
6914warning about an omitted enumeration code even if there is a
6915@code{default} label.
6916
6917@item -Wno-switch-bool
6918@opindex Wswitch-bool
6919@opindex Wno-switch-bool
6920Do not warn when a @code{switch} statement has an index of boolean type
6921and the case values are outside the range of a boolean type.
6922It is possible to suppress this warning by casting the controlling
6923expression to a type other than @code{bool}.  For example:
6924@smallexample
6925@group
6926switch ((int) (a == 4))
6927  @{
6928  @dots{}
6929  @}
6930@end group
6931@end smallexample
6932This warning is enabled by default for C and C++ programs.
6933
6934@item -Wno-switch-outside-range
6935@opindex Wswitch-outside-range
6936@opindex Wno-switch-outside-range
6937This option controls warnings when a @code{switch} case has a value
6938that is outside of its
6939respective type range.  This warning is enabled by default for
6940C and C++ programs.
6941
6942@item -Wno-switch-unreachable
6943@opindex Wswitch-unreachable
6944@opindex Wno-switch-unreachable
6945Do not warn when a @code{switch} statement contains statements between the
6946controlling expression and the first case label, which will never be
6947executed.  For example:
6948@smallexample
6949@group
6950switch (cond)
6951  @{
6952   i = 15;
6953  @dots{}
6954   case 5:
6955  @dots{}
6956  @}
6957@end group
6958@end smallexample
6959@option{-Wswitch-unreachable} does not warn if the statement between the
6960controlling expression and the first case label is just a declaration:
6961@smallexample
6962@group
6963switch (cond)
6964  @{
6965   int i;
6966  @dots{}
6967   case 5:
6968   i = 5;
6969  @dots{}
6970  @}
6971@end group
6972@end smallexample
6973This warning is enabled by default for C and C++ programs.
6974
6975@item -Wsync-nand @r{(C and C++ only)}
6976@opindex Wsync-nand
6977@opindex Wno-sync-nand
6978Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
6979built-in functions are used.  These functions changed semantics in GCC 4.4.
6980
6981@item -Wtrivial-auto-var-init
6982@opindex Wtrivial-auto-var-init
6983@opindex Wno-trivial-auto-var-init
6984Warn when @code{-ftrivial-auto-var-init} cannot initialize the automatic
6985variable.  A common situation is an automatic variable that is declared
6986between the controlling expression and the first case label of a @code{switch}
6987statement.
6988
6989@item -Wunused-but-set-parameter
6990@opindex Wunused-but-set-parameter
6991@opindex Wno-unused-but-set-parameter
6992Warn whenever a function parameter is assigned to, but otherwise unused
6993(aside from its declaration).
6994
6995To suppress this warning use the @code{unused} attribute
6996(@pxref{Variable Attributes}).
6997
6998This warning is also enabled by @option{-Wunused} together with
6999@option{-Wextra}.
7000
7001@item -Wunused-but-set-variable
7002@opindex Wunused-but-set-variable
7003@opindex Wno-unused-but-set-variable
7004Warn whenever a local variable is assigned to, but otherwise unused
7005(aside from its declaration).
7006This warning is enabled by @option{-Wall}.
7007
7008To suppress this warning use the @code{unused} attribute
7009(@pxref{Variable Attributes}).
7010
7011This warning is also enabled by @option{-Wunused}, which is enabled
7012by @option{-Wall}.
7013
7014@item -Wunused-function
7015@opindex Wunused-function
7016@opindex Wno-unused-function
7017Warn whenever a static function is declared but not defined or a
7018non-inline static function is unused.
7019This warning is enabled by @option{-Wall}.
7020
7021@item -Wunused-label
7022@opindex Wunused-label
7023@opindex Wno-unused-label
7024Warn whenever a label is declared but not used.
7025This warning is enabled by @option{-Wall}.
7026
7027To suppress this warning use the @code{unused} attribute
7028(@pxref{Variable Attributes}).
7029
7030@item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
7031@opindex Wunused-local-typedefs
7032@opindex Wno-unused-local-typedefs
7033Warn when a typedef locally defined in a function is not used.
7034This warning is enabled by @option{-Wall}.
7035
7036@item -Wunused-parameter
7037@opindex Wunused-parameter
7038@opindex Wno-unused-parameter
7039Warn whenever a function parameter is unused aside from its declaration.
7040
7041To suppress this warning use the @code{unused} attribute
7042(@pxref{Variable Attributes}).
7043
7044@item -Wno-unused-result
7045@opindex Wunused-result
7046@opindex Wno-unused-result
7047Do not warn if a caller of a function marked with attribute
7048@code{warn_unused_result} (@pxref{Function Attributes}) does not use
7049its return value. The default is @option{-Wunused-result}.
7050
7051@item -Wunused-variable
7052@opindex Wunused-variable
7053@opindex Wno-unused-variable
7054Warn whenever a local or static variable is unused aside from its
7055declaration. This option implies @option{-Wunused-const-variable=1} for C,
7056but not for C++. This warning is enabled by @option{-Wall}.
7057
7058To suppress this warning use the @code{unused} attribute
7059(@pxref{Variable Attributes}).
7060
7061@item -Wunused-const-variable
7062@itemx -Wunused-const-variable=@var{n}
7063@opindex Wunused-const-variable
7064@opindex Wno-unused-const-variable
7065Warn whenever a constant static variable is unused aside from its declaration.
7066@option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
7067for C, but not for C++. In C this declares variable storage, but in C++ this
7068is not an error since const variables take the place of @code{#define}s.
7069
7070To suppress this warning use the @code{unused} attribute
7071(@pxref{Variable Attributes}).
7072
7073@table @gcctabopt
7074@item -Wunused-const-variable=1
7075This is the warning level that is enabled by @option{-Wunused-variable} for
7076C.  It warns only about unused static const variables defined in the main
7077compilation unit, but not about static const variables declared in any
7078header included.
7079
7080@item -Wunused-const-variable=2
7081This warning level also warns for unused constant static variables in
7082headers (excluding system headers).  This is the warning level of
7083@option{-Wunused-const-variable} and must be explicitly requested since
7084in C++ this isn't an error and in C it might be harder to clean up all
7085headers included.
7086@end table
7087
7088@item -Wunused-value
7089@opindex Wunused-value
7090@opindex Wno-unused-value
7091Warn whenever a statement computes a result that is explicitly not
7092used. To suppress this warning cast the unused expression to
7093@code{void}. This includes an expression-statement or the left-hand
7094side of a comma expression that contains no side effects. For example,
7095an expression such as @code{x[i,j]} causes a warning, while
7096@code{x[(void)i,j]} does not.
7097
7098This warning is enabled by @option{-Wall}.
7099
7100@item -Wunused
7101@opindex Wunused
7102@opindex Wno-unused
7103All the above @option{-Wunused} options combined.
7104
7105In order to get a warning about an unused function parameter, you must
7106either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
7107@option{-Wunused}), or separately specify @option{-Wunused-parameter}.
7108
7109@item -Wuninitialized
7110@opindex Wuninitialized
7111@opindex Wno-uninitialized
7112Warn if an object with automatic or allocated storage duration is used
7113without having been initialized.  In C++, also warn if a non-static
7114reference or non-static @code{const} member appears in a class without
7115constructors.
7116
7117In addition, passing a pointer (or in C++, a reference) to an uninitialized
7118object to a @code{const}-qualified argument of a built-in function known to
7119read the object is also diagnosed by this warning.
7120(@option{-Wmaybe-uninitialized} is issued for ordinary functions.)
7121
7122If you want to warn about code that uses the uninitialized value of the
7123variable in its own initializer, use the @option{-Winit-self} option.
7124
7125These warnings occur for individual uninitialized elements of
7126structure, union or array variables as well as for variables that are
7127uninitialized as a whole.  They do not occur for variables or elements
7128declared @code{volatile}.  Because these warnings depend on
7129optimization, the exact variables or elements for which there are
7130warnings depend on the precise optimization options and version of GCC
7131used.
7132
7133Note that there may be no warning about a variable that is used only
7134to compute a value that itself is never used, because such
7135computations may be deleted by data flow analysis before the warnings
7136are printed.
7137
7138In C++, this warning also warns about using uninitialized objects in
7139member-initializer-lists.  For example, GCC warns about @code{b} being
7140uninitialized in the following snippet:
7141
7142@smallexample
7143struct A @{
7144  int a;
7145  int b;
7146  A() : a(b) @{ @}
7147@};
7148@end smallexample
7149
7150@item -Wno-invalid-memory-model
7151@opindex Winvalid-memory-model
7152@opindex Wno-invalid-memory-model
7153This option controls warnings
7154for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
7155and the C11 atomic generic functions with a memory consistency argument
7156that is either invalid for the operation or outside the range of values
7157of the @code{memory_order} enumeration.  For example, since the
7158@code{__atomic_store} and @code{__atomic_store_n} built-ins are only
7159defined for the relaxed, release, and sequentially consistent memory
7160orders the following code is diagnosed:
7161
7162@smallexample
7163void store (int *i)
7164@{
7165  __atomic_store_n (i, 0, memory_order_consume);
7166@}
7167@end smallexample
7168
7169@option{-Winvalid-memory-model} is enabled by default.
7170
7171@item -Wmaybe-uninitialized
7172@opindex Wmaybe-uninitialized
7173@opindex Wno-maybe-uninitialized
7174For an object with automatic or allocated storage duration, if there exists
7175a path from the function entry to a use of the object that is initialized,
7176but there exist some other paths for which the object is not initialized,
7177the compiler emits a warning if it cannot prove the uninitialized paths
7178are not executed at run time.
7179
7180In addition, passing a pointer (or in C++, a reference) to an uninitialized
7181object to a @code{const}-qualified function argument is also diagnosed by
7182this warning.  (@option{-Wuninitialized} is issued for built-in functions
7183known to read the object.)  Annotating the function with attribute
7184@code{access (none)} indicates that the argument isn't used to access
7185the object and avoids the warning (@pxref{Common Function Attributes}).
7186
7187These warnings are only possible in optimizing compilation, because otherwise
7188GCC does not keep track of the state of variables.
7189
7190These warnings are made optional because GCC may not be able to determine when
7191the code is correct in spite of appearing to have an error.  Here is one
7192example of how this can happen:
7193
7194@smallexample
7195@group
7196@{
7197  int x;
7198  switch (y)
7199    @{
7200    case 1: x = 1;
7201      break;
7202    case 2: x = 4;
7203      break;
7204    case 3: x = 5;
7205    @}
7206  foo (x);
7207@}
7208@end group
7209@end smallexample
7210
7211@noindent
7212If the value of @code{y} is always 1, 2 or 3, then @code{x} is
7213always initialized, but GCC doesn't know this. To suppress the
7214warning, you need to provide a default case with assert(0) or
7215similar code.
7216
7217@cindex @code{longjmp} warnings
7218This option also warns when a non-volatile automatic variable might be
7219changed by a call to @code{longjmp}.
7220The compiler sees only the calls to @code{setjmp}.  It cannot know
7221where @code{longjmp} will be called; in fact, a signal handler could
7222call it at any point in the code.  As a result, you may get a warning
7223even when there is in fact no problem because @code{longjmp} cannot
7224in fact be called at the place that would cause a problem.
7225
7226Some spurious warnings can be avoided if you declare all the functions
7227you use that never return as @code{noreturn}.  @xref{Function
7228Attributes}.
7229
7230This warning is enabled by @option{-Wall} or @option{-Wextra}.
7231
7232@item -Wunknown-pragmas
7233@opindex Wunknown-pragmas
7234@opindex Wno-unknown-pragmas
7235@cindex warning for unknown pragmas
7236@cindex unknown pragmas, warning
7237@cindex pragmas, warning of unknown
7238Warn when a @code{#pragma} directive is encountered that is not understood by 
7239GCC@.  If this command-line option is used, warnings are even issued
7240for unknown pragmas in system header files.  This is not the case if
7241the warnings are only enabled by the @option{-Wall} command-line option.
7242
7243@item -Wno-pragmas
7244@opindex Wno-pragmas
7245@opindex Wpragmas
7246Do not warn about misuses of pragmas, such as incorrect parameters,
7247invalid syntax, or conflicts between pragmas.  See also
7248@option{-Wunknown-pragmas}.
7249
7250@item -Wno-prio-ctor-dtor
7251@opindex Wno-prio-ctor-dtor
7252@opindex Wprio-ctor-dtor
7253Do not warn if a priority from 0 to 100 is used for constructor or destructor.
7254The use of constructor and destructor attributes allow you to assign a
7255priority to the constructor/destructor to control its order of execution
7256before @code{main} is called or after it returns.  The priority values must be
7257greater than 100 as the compiler reserves priority values between 0--100 for
7258the implementation.
7259
7260@item -Wstrict-aliasing
7261@opindex Wstrict-aliasing
7262@opindex Wno-strict-aliasing
7263This option is only active when @option{-fstrict-aliasing} is active.
7264It warns about code that might break the strict aliasing rules that the
7265compiler is using for optimization.  The warning does not catch all
7266cases, but does attempt to catch the more common pitfalls.  It is
7267included in @option{-Wall}.
7268It is equivalent to @option{-Wstrict-aliasing=3}
7269
7270@item -Wstrict-aliasing=n
7271@opindex Wstrict-aliasing=n
7272This option is only active when @option{-fstrict-aliasing} is active.
7273It warns about code that might break the strict aliasing rules that the
7274compiler is using for optimization.
7275Higher levels correspond to higher accuracy (fewer false positives).
7276Higher levels also correspond to more effort, similar to the way @option{-O} 
7277works.
7278@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
7279
7280Level 1: Most aggressive, quick, least accurate.
7281Possibly useful when higher levels
7282do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
7283false negatives.  However, it has many false positives.
7284Warns for all pointer conversions between possibly incompatible types,
7285even if never dereferenced.  Runs in the front end only.
7286
7287Level 2: Aggressive, quick, not too precise.
7288May still have many false positives (not as many as level 1 though),
7289and few false negatives (but possibly more than level 1).
7290Unlike level 1, it only warns when an address is taken.  Warns about
7291incomplete types.  Runs in the front end only.
7292
7293Level 3 (default for @option{-Wstrict-aliasing}):
7294Should have very few false positives and few false
7295negatives.  Slightly slower than levels 1 or 2 when optimization is enabled.
7296Takes care of the common pun+dereference pattern in the front end:
7297@code{*(int*)&some_float}.
7298If optimization is enabled, it also runs in the back end, where it deals
7299with multiple statement cases using flow-sensitive points-to information.
7300Only warns when the converted pointer is dereferenced.
7301Does not warn about incomplete types.
7302
7303@item -Wstrict-overflow
7304@itemx -Wstrict-overflow=@var{n}
7305@opindex Wstrict-overflow
7306@opindex Wno-strict-overflow
7307This option is only active when signed overflow is undefined.
7308It warns about cases where the compiler optimizes based on the
7309assumption that signed overflow does not occur.  Note that it does not
7310warn about all cases where the code might overflow: it only warns
7311about cases where the compiler implements some optimization.  Thus
7312this warning depends on the optimization level.
7313
7314An optimization that assumes that signed overflow does not occur is
7315perfectly safe if the values of the variables involved are such that
7316overflow never does, in fact, occur.  Therefore this warning can
7317easily give a false positive: a warning about code that is not
7318actually a problem.  To help focus on important issues, several
7319warning levels are defined.  No warnings are issued for the use of
7320undefined signed overflow when estimating how many iterations a loop
7321requires, in particular when determining whether a loop will be
7322executed at all.
7323
7324@table @gcctabopt
7325@item -Wstrict-overflow=1
7326Warn about cases that are both questionable and easy to avoid.  For
7327example the compiler simplifies
7328@code{x + 1 > x} to @code{1}.  This level of
7329@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
7330are not, and must be explicitly requested.
7331
7332@item -Wstrict-overflow=2
7333Also warn about other cases where a comparison is simplified to a
7334constant.  For example: @code{abs (x) >= 0}.  This can only be
7335simplified when signed integer overflow is undefined, because
7336@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
7337zero.  @option{-Wstrict-overflow} (with no level) is the same as
7338@option{-Wstrict-overflow=2}.
7339
7340@item -Wstrict-overflow=3
7341Also warn about other cases where a comparison is simplified.  For
7342example: @code{x + 1 > 1} is simplified to @code{x > 0}.
7343
7344@item -Wstrict-overflow=4
7345Also warn about other simplifications not covered by the above cases.
7346For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
7347
7348@item -Wstrict-overflow=5
7349Also warn about cases where the compiler reduces the magnitude of a
7350constant involved in a comparison.  For example: @code{x + 2 > y} is
7351simplified to @code{x + 1 >= y}.  This is reported only at the
7352highest warning level because this simplification applies to many
7353comparisons, so this warning level gives a very large number of
7354false positives.
7355@end table
7356
7357@item -Wstring-compare
7358@opindex Wstring-compare
7359@opindex Wno-string-compare
7360Warn for calls to @code{strcmp} and @code{strncmp} whose result is
7361determined to be either zero or non-zero in tests for such equality
7362owing to the length of one argument being greater than the size of
7363the array the other argument is stored in (or the bound in the case
7364of @code{strncmp}).  Such calls could be mistakes.  For example,
7365the call to @code{strcmp} below is diagnosed because its result is
7366necessarily non-zero irrespective of the contents of the array @code{a}.
7367
7368@smallexample
7369extern char a[4];
7370void f (char *d)
7371@{
7372  strcpy (d, "string");
7373  @dots{}
7374  if (0 == strcmp (a, d))   // cannot be true
7375    puts ("a and d are the same");
7376@}
7377@end smallexample
7378
7379@option{-Wstring-compare} is enabled by @option{-Wextra}.
7380
7381@item -Wno-stringop-overflow
7382@item -Wstringop-overflow
7383@itemx -Wstringop-overflow=@var{type}
7384@opindex Wstringop-overflow
7385@opindex Wno-stringop-overflow
7386Warn for calls to string manipulation functions such as @code{memcpy} and
7387@code{strcpy} that are determined to overflow the destination buffer.  The
7388optional argument is one greater than the type of Object Size Checking to
7389perform to determine the size of the destination.  @xref{Object Size Checking}.
7390The argument is meaningful only for functions that operate on character arrays
7391but not for raw memory functions like @code{memcpy} which always make use
7392of Object Size type-0.  The option also warns for calls that specify a size
7393in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
7394The option produces the best results with optimization enabled but can detect
7395a small subset of simple buffer overflows even without optimization in
7396calls to the GCC built-in functions like @code{__builtin_memcpy} that
7397correspond to the standard functions.  In any case, the option warns about
7398just a subset of buffer overflows detected by the corresponding overflow
7399checking built-ins.  For example, the option issues a warning for
7400the @code{strcpy} call below because it copies at least 5 characters
7401(the string @code{"blue"} including the terminating NUL) into the buffer
7402of size 4.
7403
7404@smallexample
7405enum Color @{ blue, purple, yellow @};
7406const char* f (enum Color clr)
7407@{
7408  static char buf [4];
7409  const char *str;
7410  switch (clr)
7411    @{
7412      case blue: str = "blue"; break;
7413      case purple: str = "purple"; break;
7414      case yellow: str = "yellow"; break;
7415    @}
7416
7417  return strcpy (buf, str);   // warning here
7418@}
7419@end smallexample
7420
7421Option @option{-Wstringop-overflow=2} is enabled by default.
7422
7423@table @gcctabopt
7424@item -Wstringop-overflow
7425@itemx -Wstringop-overflow=1
7426@opindex Wstringop-overflow
7427@opindex Wno-stringop-overflow
7428The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
7429to determine the sizes of destination objects.  At this setting the option
7430does not warn for writes past the end of subobjects of larger objects accessed
7431by pointers unless the size of the largest surrounding object is known.  When
7432the destination may be one of several objects it is assumed to be the largest
7433one of them.  On Linux systems, when optimization is enabled at this setting
7434the option warns for the same code as when the @code{_FORTIFY_SOURCE} macro
7435is defined to a non-zero value.
7436
7437@item -Wstringop-overflow=2
7438The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
7439to determine the sizes of destination objects.  At this setting the option
7440warns about overflows when writing to members of the largest complete
7441objects whose exact size is known.  However, it does not warn for excessive
7442writes to the same members of unknown objects referenced by pointers since
7443they may point to arrays containing unknown numbers of elements.  This is
7444the default setting of the option.
7445
7446@item -Wstringop-overflow=3
7447The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
7448to determine the sizes of destination objects.  At this setting the option
7449warns about overflowing the smallest object or data member.  This is the
7450most restrictive setting of the option that may result in warnings for safe
7451code.
7452
7453@item -Wstringop-overflow=4
7454The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
7455to determine the sizes of destination objects.  At this setting the option
7456warns about overflowing any data members, and when the destination is
7457one of several objects it uses the size of the largest of them to decide
7458whether to issue a warning.  Similarly to @option{-Wstringop-overflow=3} this
7459setting of the option may result in warnings for benign code.
7460@end table
7461
7462@item -Wno-stringop-overread
7463@opindex Wstringop-overread
7464@opindex Wno-stringop-overread
7465Warn for calls to string manipulation functions such as @code{memchr}, or
7466@code{strcpy} that are determined to read past the end of the source
7467sequence.
7468
7469Option @option{-Wstringop-overread} is enabled by default.
7470
7471@item -Wno-stringop-truncation
7472@opindex Wstringop-truncation
7473@opindex Wno-stringop-truncation
7474Do not warn for calls to bounded string manipulation functions
7475such as @code{strncat},
7476@code{strncpy}, and @code{stpncpy} that may either truncate the copied string
7477or leave the destination unchanged.
7478
7479In the following example, the call to @code{strncat} specifies a bound that
7480is less than the length of the source string.  As a result, the copy of
7481the source will be truncated and so the call is diagnosed.  To avoid the
7482warning use @code{bufsize - strlen (buf) - 1)} as the bound.
7483
7484@smallexample
7485void append (char *buf, size_t bufsize)
7486@{
7487  strncat (buf, ".txt", 3);
7488@}
7489@end smallexample
7490
7491As another example, the following call to @code{strncpy} results in copying
7492to @code{d} just the characters preceding the terminating NUL, without
7493appending the NUL to the end.  Assuming the result of @code{strncpy} is
7494necessarily a NUL-terminated string is a common mistake, and so the call
7495is diagnosed.  To avoid the warning when the result is not expected to be
7496NUL-terminated, call @code{memcpy} instead.
7497
7498@smallexample
7499void copy (char *d, const char *s)
7500@{
7501  strncpy (d, s, strlen (s));
7502@}
7503@end smallexample
7504
7505In the following example, the call to @code{strncpy} specifies the size
7506of the destination buffer as the bound.  If the length of the source
7507string is equal to or greater than this size the result of the copy will
7508not be NUL-terminated.  Therefore, the call is also diagnosed.  To avoid
7509the warning, specify @code{sizeof buf - 1} as the bound and set the last
7510element of the buffer to @code{NUL}.
7511
7512@smallexample
7513void copy (const char *s)
7514@{
7515  char buf[80];
7516  strncpy (buf, s, sizeof buf);
7517  @dots{}
7518@}
7519@end smallexample
7520
7521In situations where a character array is intended to store a sequence
7522of bytes with no terminating @code{NUL} such an array may be annotated
7523with attribute @code{nonstring} to avoid this warning.  Such arrays,
7524however, are not suitable arguments to functions that expect
7525@code{NUL}-terminated strings.  To help detect accidental misuses of
7526such arrays GCC issues warnings unless it can prove that the use is
7527safe.  @xref{Common Variable Attributes}.
7528
7529@item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
7530@opindex Wsuggest-attribute=
7531@opindex Wno-suggest-attribute=
7532Warn for cases where adding an attribute may be beneficial. The
7533attributes currently supported are listed below.
7534
7535@table @gcctabopt
7536@item -Wsuggest-attribute=pure
7537@itemx -Wsuggest-attribute=const
7538@itemx -Wsuggest-attribute=noreturn
7539@itemx -Wmissing-noreturn
7540@itemx -Wsuggest-attribute=malloc
7541@opindex Wsuggest-attribute=pure
7542@opindex Wno-suggest-attribute=pure
7543@opindex Wsuggest-attribute=const
7544@opindex Wno-suggest-attribute=const
7545@opindex Wsuggest-attribute=noreturn
7546@opindex Wno-suggest-attribute=noreturn
7547@opindex Wmissing-noreturn
7548@opindex Wno-missing-noreturn
7549@opindex Wsuggest-attribute=malloc
7550@opindex Wno-suggest-attribute=malloc
7551
7552Warn about functions that might be candidates for attributes
7553@code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
7554only warns for functions visible in other compilation units or (in the case of
7555@code{pure} and @code{const}) if it cannot prove that the function returns
7556normally. A function returns normally if it doesn't contain an infinite loop or
7557return abnormally by throwing, calling @code{abort} or trapping.  This analysis
7558requires option @option{-fipa-pure-const}, which is enabled by default at
7559@option{-O} and higher.  Higher optimization levels improve the accuracy
7560of the analysis.
7561
7562@item -Wsuggest-attribute=format
7563@itemx -Wmissing-format-attribute
7564@opindex Wsuggest-attribute=format
7565@opindex Wmissing-format-attribute
7566@opindex Wno-suggest-attribute=format
7567@opindex Wno-missing-format-attribute
7568@opindex Wformat
7569@opindex Wno-format
7570
7571Warn about function pointers that might be candidates for @code{format}
7572attributes.  Note these are only possible candidates, not absolute ones.
7573GCC guesses that function pointers with @code{format} attributes that
7574are used in assignment, initialization, parameter passing or return
7575statements should have a corresponding @code{format} attribute in the
7576resulting type.  I.e.@: the left-hand side of the assignment or
7577initialization, the type of the parameter variable, or the return type
7578of the containing function respectively should also have a @code{format}
7579attribute to avoid the warning.
7580
7581GCC also warns about function definitions that might be
7582candidates for @code{format} attributes.  Again, these are only
7583possible candidates.  GCC guesses that @code{format} attributes
7584might be appropriate for any function that calls a function like
7585@code{vprintf} or @code{vscanf}, but this might not always be the
7586case, and some functions for which @code{format} attributes are
7587appropriate may not be detected.
7588
7589@item -Wsuggest-attribute=cold
7590@opindex Wsuggest-attribute=cold
7591@opindex Wno-suggest-attribute=cold
7592
7593Warn about functions that might be candidates for @code{cold} attribute.  This
7594is based on static detection and generally only warns about functions which
7595always leads to a call to another @code{cold} function such as wrappers of
7596C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
7597@end table
7598
7599@item -Walloc-zero
7600@opindex Wno-alloc-zero
7601@opindex Walloc-zero
7602Warn about calls to allocation functions decorated with attribute
7603@code{alloc_size} that specify zero bytes, including those to the built-in
7604forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
7605@code{malloc}, and @code{realloc}.  Because the behavior of these functions
7606when called with a zero size differs among implementations (and in the case
7607of @code{realloc} has been deprecated) relying on it may result in subtle
7608portability bugs and should be avoided.
7609
7610@item -Walloc-size-larger-than=@var{byte-size}
7611@opindex Walloc-size-larger-than=
7612@opindex Wno-alloc-size-larger-than
7613Warn about calls to functions decorated with attribute @code{alloc_size}
7614that attempt to allocate objects larger than the specified number of bytes,
7615or where the result of the size computation in an integer type with infinite
7616precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
7617@option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
7618Warnings controlled by the option can be disabled either by specifying
7619@var{byte-size} of @samp{SIZE_MAX} or more or by
7620@option{-Wno-alloc-size-larger-than}.
7621@xref{Function Attributes}.
7622
7623@item -Wno-alloc-size-larger-than
7624@opindex Wno-alloc-size-larger-than
7625Disable @option{-Walloc-size-larger-than=} warnings.  The option is
7626equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
7627larger.
7628
7629@item -Walloca
7630@opindex Wno-alloca
7631@opindex Walloca
7632This option warns on all uses of @code{alloca} in the source.
7633
7634@item -Walloca-larger-than=@var{byte-size}
7635@opindex Walloca-larger-than=
7636@opindex Wno-alloca-larger-than
7637This option warns on calls to @code{alloca} with an integer argument whose
7638value is either zero, or that is not bounded by a controlling predicate
7639that limits its value to at most @var{byte-size}.  It also warns for calls
7640to @code{alloca} where the bound value is unknown.  Arguments of non-integer
7641types are considered unbounded even if they appear to be constrained to
7642the expected range.
7643
7644For example, a bounded case of @code{alloca} could be:
7645
7646@smallexample
7647void func (size_t n)
7648@{
7649  void *p;
7650  if (n <= 1000)
7651    p = alloca (n);
7652  else
7653    p = malloc (n);
7654  f (p);
7655@}
7656@end smallexample
7657
7658In the above example, passing @code{-Walloca-larger-than=1000} would not
7659issue a warning because the call to @code{alloca} is known to be at most
76601000 bytes.  However, if @code{-Walloca-larger-than=500} were passed,
7661the compiler would emit a warning.
7662
7663Unbounded uses, on the other hand, are uses of @code{alloca} with no
7664controlling predicate constraining its integer argument.  For example:
7665
7666@smallexample
7667void func ()
7668@{
7669  void *p = alloca (n);
7670  f (p);
7671@}
7672@end smallexample
7673
7674If @code{-Walloca-larger-than=500} were passed, the above would trigger
7675a warning, but this time because of the lack of bounds checking.
7676
7677Note, that even seemingly correct code involving signed integers could
7678cause a warning:
7679
7680@smallexample
7681void func (signed int n)
7682@{
7683  if (n < 500)
7684    @{
7685      p = alloca (n);
7686      f (p);
7687    @}
7688@}
7689@end smallexample
7690
7691In the above example, @var{n} could be negative, causing a larger than
7692expected argument to be implicitly cast into the @code{alloca} call.
7693
7694This option also warns when @code{alloca} is used in a loop.
7695
7696@option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
7697but is usually only effective  when @option{-ftree-vrp} is active (default
7698for @option{-O2} and above).
7699
7700See also @option{-Wvla-larger-than=}@samp{byte-size}.
7701
7702@item -Wno-alloca-larger-than
7703@opindex Wno-alloca-larger-than
7704Disable @option{-Walloca-larger-than=} warnings.  The option is
7705equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
7706
7707@item -Warith-conversion
7708@opindex Warith-conversion
7709@opindex Wno-arith-conversion
7710Do warn about implicit conversions from arithmetic operations even
7711when conversion of the operands to the same type cannot change their
7712values.  This affects warnings from @option{-Wconversion},
7713@option{-Wfloat-conversion}, and @option{-Wsign-conversion}.
7714
7715@smallexample
7716@group
7717void f (char c, int i)
7718@{
7719  c = c + i; // warns with @option{-Wconversion}
7720  c = c + 1; // only warns with @option{-Warith-conversion}
7721@}
7722@end group
7723@end smallexample
7724
7725@item -Warray-bounds
7726@itemx -Warray-bounds=@var{n}
7727@opindex Wno-array-bounds
7728@opindex Warray-bounds
7729Warn about out of bounds subscripts or offsets into arrays.  This warning
7730is enabled by @option{-Wall}.  It is more effective when @option{-ftree-vrp}
7731is active (the default for @option{-O2} and above) but a subset of instances
7732are issued even without optimization.
7733
7734@table @gcctabopt
7735@item -Warray-bounds=1
7736This is the default warning level of @option{-Warray-bounds} and is enabled
7737by @option{-Wall}; higher levels are not, and must be explicitly requested.
7738
7739@item -Warray-bounds=2
7740This warning level also warns about out of bounds accesses to trailing
7741struct members of one-element array types (@pxref{Zero Length}) and about
7742the intermediate results of pointer arithmetic that may yield out of bounds
7743values.  This warning level may give a larger number of false positives and
7744is deactivated by default.
7745@end table
7746
7747@item -Warray-compare
7748@opindex Warray-compare
7749@opindex Wno-array-compare
7750Warn about equality and relational comparisons between two operands of array
7751type.  This comparison was deprecated in C++20.  For example:
7752
7753@smallexample
7754int arr1[5];
7755int arr2[5];
7756bool same = arr1 == arr2;
7757@end smallexample
7758
7759@option{-Warray-compare} is enabled by @option{-Wall}.
7760
7761@item -Warray-parameter
7762@itemx -Warray-parameter=@var{n}
7763@opindex Wno-array-parameter
7764Warn about redeclarations of functions involving arguments of array or
7765pointer types of inconsistent kinds or forms, and enable the detection
7766of out-of-bounds accesses to such parameters by warnings such as
7767@option{-Warray-bounds}.
7768
7769If the first function declaration uses the array form the bound specified
7770in the array is assumed to be the minimum number of elements expected to
7771be provided in calls to the function and the maximum number of elements
7772accessed by it.  Failing to provide arguments of sufficient size or accessing
7773more than the maximum number of elements may be diagnosed by warnings such
7774as @option{-Warray-bounds}.  At level 1 the warning diagnoses inconsistencies
7775involving array parameters declared using the @code{T[static N]} form.
7776
7777For example, the warning triggers for the following redeclarations because
7778the first one allows an array of any size to be passed to @code{f} while
7779the second one with the keyword @code{static} specifies that the array
7780argument must have at least four elements.
7781
7782@smallexample
7783void f (int[static 4]);
7784void f (int[]);           // warning (inconsistent array form)
7785
7786void g (void)
7787@{
7788  int *p = (int *)malloc (4);
7789  f (p);                  // warning (array too small)
7790  @dots{}
7791@}
7792@end smallexample
7793
7794At level 2 the warning also triggers for redeclarations involving any other
7795inconsistency in array or pointer argument forms denoting array sizes.
7796Pointers and arrays of unspecified bound are considered equivalent and do
7797not trigger a warning.
7798
7799@smallexample
7800void g (int*);
7801void g (int[]);     // no warning
7802void g (int[8]);    // warning (inconsistent array bound)
7803@end smallexample
7804
7805@option{-Warray-parameter=2} is included in @option{-Wall}.  The
7806@option{-Wvla-parameter} option triggers warnings for similar inconsistencies
7807involving Variable Length Array arguments.
7808
7809@item -Wattribute-alias=@var{n}
7810@itemx -Wno-attribute-alias
7811@opindex Wattribute-alias
7812@opindex Wno-attribute-alias
7813Warn about declarations using the @code{alias} and similar attributes whose
7814target is incompatible with the type of the alias.
7815@xref{Function Attributes,,Declaring Attributes of Functions}.
7816
7817@table @gcctabopt
7818@item -Wattribute-alias=1
7819The default warning level of the @option{-Wattribute-alias} option diagnoses
7820incompatibilities between the type of the alias declaration and that of its
7821target.  Such incompatibilities are typically indicative of bugs.
7822
7823@item -Wattribute-alias=2
7824
7825At this level @option{-Wattribute-alias} also diagnoses cases where
7826the attributes of the alias declaration are more restrictive than the
7827attributes applied to its target.  These mismatches can potentially
7828result in incorrect code generation.  In other cases they may be
7829benign and could be resolved simply by adding the missing attribute to
7830the target.  For comparison, see the @option{-Wmissing-attributes}
7831option, which controls diagnostics when the alias declaration is less
7832restrictive than the target, rather than more restrictive.
7833
7834Attributes considered include @code{alloc_align}, @code{alloc_size},
7835@code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
7836@code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
7837@code{returns_nonnull}, and @code{returns_twice}.
7838@end table
7839
7840@option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
7841This is the default.  You can disable these warnings with either
7842@option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
7843
7844@item -Wbidi-chars=@r{[}none@r{|}unpaired@r{|}any@r{|}ucn@r{]}
7845@opindex Wbidi-chars=
7846@opindex Wbidi-chars
7847@opindex Wno-bidi-chars
7848Warn about possibly misleading UTF-8 bidirectional control characters in
7849comments, string literals, character constants, and identifiers.  Such
7850characters can change left-to-right writing direction into right-to-left
7851(and vice versa), which can cause confusion between the logical order and
7852visual order.  This may be dangerous; for instance, it may seem that a piece
7853of code is not commented out, whereas it in fact is.
7854
7855There are three levels of warning supported by GCC@.  The default is
7856@option{-Wbidi-chars=unpaired}, which warns about improperly terminated
7857bidi contexts.  @option{-Wbidi-chars=none} turns the warning off.
7858@option{-Wbidi-chars=any} warns about any use of bidirectional control
7859characters.
7860
7861By default, this warning does not warn about UCNs.  It is, however, possible
7862to turn on such checking by using @option{-Wbidi-chars=unpaired,ucn} or
7863@option{-Wbidi-chars=any,ucn}.  Using @option{-Wbidi-chars=ucn} is valid,
7864and is equivalent to @option{-Wbidi-chars=unpaired,ucn}, if no previous
7865@option{-Wbidi-chars=any} was specified.
7866
7867@item -Wbool-compare
7868@opindex Wno-bool-compare
7869@opindex Wbool-compare
7870Warn about boolean expression compared with an integer value different from
7871@code{true}/@code{false}.  For instance, the following comparison is
7872always false:
7873@smallexample
7874int n = 5;
7875@dots{}
7876if ((n > 1) == 2) @{ @dots{} @}
7877@end smallexample
7878This warning is enabled by @option{-Wall}.
7879
7880@item -Wbool-operation
7881@opindex Wno-bool-operation
7882@opindex Wbool-operation
7883Warn about suspicious operations on expressions of a boolean type.  For
7884instance, bitwise negation of a boolean is very likely a bug in the program.
7885For C, this warning also warns about incrementing or decrementing a boolean,
7886which rarely makes sense.  (In C++, decrementing a boolean is always invalid.
7887Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
7888
7889This warning is enabled by @option{-Wall}.
7890
7891@item -Wduplicated-branches
7892@opindex Wno-duplicated-branches
7893@opindex Wduplicated-branches
7894Warn when an if-else has identical branches.  This warning detects cases like
7895@smallexample
7896if (p != NULL)
7897  return 0;
7898else
7899  return 0;
7900@end smallexample
7901It doesn't warn when both branches contain just a null statement.  This warning
7902also warn for conditional operators:
7903@smallexample
7904  int i = x ? *p : *p;
7905@end smallexample
7906
7907@item -Wduplicated-cond
7908@opindex Wno-duplicated-cond
7909@opindex Wduplicated-cond
7910Warn about duplicated conditions in an if-else-if chain.  For instance,
7911warn for the following code:
7912@smallexample
7913if (p->q != NULL) @{ @dots{} @}
7914else if (p->q != NULL) @{ @dots{} @}
7915@end smallexample
7916
7917@item -Wframe-address
7918@opindex Wno-frame-address
7919@opindex Wframe-address
7920Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
7921is called with an argument greater than 0.  Such calls may return indeterminate
7922values or crash the program.  The warning is included in @option{-Wall}.
7923
7924@item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
7925@opindex Wno-discarded-qualifiers
7926@opindex Wdiscarded-qualifiers
7927Do not warn if type qualifiers on pointers are being discarded.
7928Typically, the compiler warns if a @code{const char *} variable is
7929passed to a function that takes a @code{char *} parameter.  This option
7930can be used to suppress such a warning.
7931
7932@item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
7933@opindex Wno-discarded-array-qualifiers
7934@opindex Wdiscarded-array-qualifiers
7935Do not warn if type qualifiers on arrays which are pointer targets
7936are being discarded.  Typically, the compiler warns if a
7937@code{const int (*)[]} variable is passed to a function that
7938takes a @code{int (*)[]} parameter.  This option can be used to
7939suppress such a warning.
7940
7941@item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
7942@opindex Wno-incompatible-pointer-types
7943@opindex Wincompatible-pointer-types
7944Do not warn when there is a conversion between pointers that have incompatible
7945types.  This warning is for cases not covered by @option{-Wno-pointer-sign},
7946which warns for pointer argument passing or assignment with different
7947signedness.
7948
7949@item -Wno-int-conversion @r{(C and Objective-C only)}
7950@opindex Wno-int-conversion
7951@opindex Wint-conversion
7952Do not warn about incompatible integer to pointer and pointer to integer
7953conversions.  This warning is about implicit conversions; for explicit
7954conversions the warnings @option{-Wno-int-to-pointer-cast} and
7955@option{-Wno-pointer-to-int-cast} may be used.
7956
7957@item -Wzero-length-bounds
7958@opindex Wzero-length-bounds
7959@opindex Wzero-length-bounds
7960Warn about accesses to elements of zero-length array members that might
7961overlap other members of the same object.  Declaring interior zero-length
7962arrays is discouraged because accesses to them are undefined.  See
7963@xref{Zero Length}.
7964
7965For example, the first two stores in function @code{bad} are diagnosed
7966because the array elements overlap the subsequent members @code{b} and
7967@code{c}.  The third store is diagnosed by @option{-Warray-bounds}
7968because it is beyond the bounds of the enclosing object.
7969
7970@smallexample
7971struct X @{ int a[0]; int b, c; @};
7972struct X x;
7973
7974void bad (void)
7975@{
7976  x.a[0] = 0;   // -Wzero-length-bounds
7977  x.a[1] = 1;   // -Wzero-length-bounds
7978  x.a[2] = 2;   // -Warray-bounds
7979@}
7980@end smallexample
7981
7982Option @option{-Wzero-length-bounds} is enabled by @option{-Warray-bounds}.
7983
7984@item -Wno-div-by-zero
7985@opindex Wno-div-by-zero
7986@opindex Wdiv-by-zero
7987Do not warn about compile-time integer division by zero.  Floating-point
7988division by zero is not warned about, as it can be a legitimate way of
7989obtaining infinities and NaNs.
7990
7991@item -Wsystem-headers
7992@opindex Wsystem-headers
7993@opindex Wno-system-headers
7994@cindex warnings from system headers
7995@cindex system headers, warnings from
7996Print warning messages for constructs found in system header files.
7997Warnings from system headers are normally suppressed, on the assumption
7998that they usually do not indicate real problems and would only make the
7999compiler output harder to read.  Using this command-line option tells
8000GCC to emit warnings from system headers as if they occurred in user
8001code.  However, note that using @option{-Wall} in conjunction with this
8002option does @emph{not} warn about unknown pragmas in system
8003headers---for that, @option{-Wunknown-pragmas} must also be used.
8004
8005@item -Wtautological-compare
8006@opindex Wtautological-compare
8007@opindex Wno-tautological-compare
8008Warn if a self-comparison always evaluates to true or false.  This
8009warning detects various mistakes such as:
8010@smallexample
8011int i = 1;
8012@dots{}
8013if (i > i) @{ @dots{} @}
8014@end smallexample
8015
8016This warning also warns about bitwise comparisons that always evaluate
8017to true or false, for instance:
8018@smallexample
8019if ((a & 16) == 10) @{ @dots{} @}
8020@end smallexample
8021will always be false.
8022
8023This warning is enabled by @option{-Wall}.
8024
8025@item -Wtrampolines
8026@opindex Wtrampolines
8027@opindex Wno-trampolines
8028Warn about trampolines generated for pointers to nested functions.
8029A trampoline is a small piece of data or code that is created at run
8030time on the stack when the address of a nested function is taken, and is
8031used to call the nested function indirectly.  For some targets, it is
8032made up of data only and thus requires no special treatment.  But, for
8033most targets, it is made up of code and thus requires the stack to be
8034made executable in order for the program to work properly.
8035
8036@item -Wfloat-equal
8037@opindex Wfloat-equal
8038@opindex Wno-float-equal
8039Warn if floating-point values are used in equality comparisons.
8040
8041The idea behind this is that sometimes it is convenient (for the
8042programmer) to consider floating-point values as approximations to
8043infinitely precise real numbers.  If you are doing this, then you need
8044to compute (by analyzing the code, or in some other way) the maximum or
8045likely maximum error that the computation introduces, and allow for it
8046when performing comparisons (and when producing output, but that's a
8047different problem).  In particular, instead of testing for equality, you
8048should check to see whether the two values have ranges that overlap; and
8049this is done with the relational operators, so equality comparisons are
8050probably mistaken.
8051
8052@item -Wtraditional @r{(C and Objective-C only)}
8053@opindex Wtraditional
8054@opindex Wno-traditional
8055Warn about certain constructs that behave differently in traditional and
8056ISO C@.  Also warn about ISO C constructs that have no traditional C
8057equivalent, and/or problematic constructs that should be avoided.
8058
8059@itemize @bullet
8060@item
8061Macro parameters that appear within string literals in the macro body.
8062In traditional C macro replacement takes place within string literals,
8063but in ISO C it does not.
8064
8065@item
8066In traditional C, some preprocessor directives did not exist.
8067Traditional preprocessors only considered a line to be a directive
8068if the @samp{#} appeared in column 1 on the line.  Therefore
8069@option{-Wtraditional} warns about directives that traditional C
8070understands but ignores because the @samp{#} does not appear as the
8071first character on the line.  It also suggests you hide directives like
8072@code{#pragma} not understood by traditional C by indenting them.  Some
8073traditional implementations do not recognize @code{#elif}, so this option
8074suggests avoiding it altogether.
8075
8076@item
8077A function-like macro that appears without arguments.
8078
8079@item
8080The unary plus operator.
8081
8082@item
8083The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
8084constant suffixes.  (Traditional C does support the @samp{L} suffix on integer
8085constants.)  Note, these suffixes appear in macros defined in the system
8086headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
8087Use of these macros in user code might normally lead to spurious
8088warnings, however GCC's integrated preprocessor has enough context to
8089avoid warning in these cases.
8090
8091@item
8092A function declared external in one block and then used after the end of
8093the block.
8094
8095@item
8096A @code{switch} statement has an operand of type @code{long}.
8097
8098@item
8099A non-@code{static} function declaration follows a @code{static} one.
8100This construct is not accepted by some traditional C compilers.
8101
8102@item
8103The ISO type of an integer constant has a different width or
8104signedness from its traditional type.  This warning is only issued if
8105the base of the constant is ten.  I.e.@: hexadecimal or octal values, which
8106typically represent bit patterns, are not warned about.
8107
8108@item
8109Usage of ISO string concatenation is detected.
8110
8111@item
8112Initialization of automatic aggregates.
8113
8114@item
8115Identifier conflicts with labels.  Traditional C lacks a separate
8116namespace for labels.
8117
8118@item
8119Initialization of unions.  If the initializer is zero, the warning is
8120omitted.  This is done under the assumption that the zero initializer in
8121user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
8122initializer warnings and relies on default initialization to zero in the
8123traditional C case.
8124
8125@item
8126Conversions by prototypes between fixed/floating-point values and vice
8127versa.  The absence of these prototypes when compiling with traditional
8128C causes serious problems.  This is a subset of the possible
8129conversion warnings; for the full set use @option{-Wtraditional-conversion}.
8130
8131@item
8132Use of ISO C style function definitions.  This warning intentionally is
8133@emph{not} issued for prototype declarations or variadic functions
8134because these ISO C features appear in your code when using
8135libiberty's traditional C compatibility macros, @code{PARAMS} and
8136@code{VPARAMS}.  This warning is also bypassed for nested functions
8137because that feature is already a GCC extension and thus not relevant to
8138traditional C compatibility.
8139@end itemize
8140
8141@item -Wtraditional-conversion @r{(C and Objective-C only)}
8142@opindex Wtraditional-conversion
8143@opindex Wno-traditional-conversion
8144Warn if a prototype causes a type conversion that is different from what
8145would happen to the same argument in the absence of a prototype.  This
8146includes conversions of fixed point to floating and vice versa, and
8147conversions changing the width or signedness of a fixed-point argument
8148except when the same as the default promotion.
8149
8150@item -Wdeclaration-after-statement @r{(C and Objective-C only)}
8151@opindex Wdeclaration-after-statement
8152@opindex Wno-declaration-after-statement
8153Warn when a declaration is found after a statement in a block.  This
8154construct, known from C++, was introduced with ISO C99 and is by default
8155allowed in GCC@.  It is not supported by ISO C90.  @xref{Mixed Labels and Declarations}.
8156
8157@item -Wshadow
8158@opindex Wshadow
8159@opindex Wno-shadow
8160Warn whenever a local variable or type declaration shadows another
8161variable, parameter, type, class member (in C++), or instance variable
8162(in Objective-C) or whenever a built-in function is shadowed.  Note
8163that in C++, the compiler warns if a local variable shadows an
8164explicit typedef, but not if it shadows a struct/class/enum.
8165If this warning is enabled, it includes also all instances of
8166local shadowing.  This means that @option{-Wno-shadow=local}
8167and @option{-Wno-shadow=compatible-local} are ignored when
8168@option{-Wshadow} is used.
8169Same as @option{-Wshadow=global}.
8170
8171@item -Wno-shadow-ivar @r{(Objective-C only)}
8172@opindex Wno-shadow-ivar
8173@opindex Wshadow-ivar
8174Do not warn whenever a local variable shadows an instance variable in an
8175Objective-C method.
8176
8177@item -Wshadow=global
8178@opindex Wshadow=global
8179Warn for any shadowing.
8180Same as @option{-Wshadow}.
8181
8182@item -Wshadow=local
8183@opindex Wshadow=local
8184Warn when a local variable shadows another local variable or parameter.
8185
8186@item -Wshadow=compatible-local
8187@opindex Wshadow=compatible-local
8188Warn when a local variable shadows another local variable or parameter
8189whose type is compatible with that of the shadowing variable.  In C++,
8190type compatibility here means the type of the shadowing variable can be
8191converted to that of the shadowed variable.  The creation of this flag
8192(in addition to @option{-Wshadow=local}) is based on the idea that when
8193a local variable shadows another one of incompatible type, it is most
8194likely intentional, not a bug or typo, as shown in the following example:
8195
8196@smallexample
8197@group
8198for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
8199@{
8200  for (int i = 0; i < N; ++i)
8201  @{
8202    ...
8203  @}
8204  ...
8205@}
8206@end group
8207@end smallexample
8208
8209Since the two variable @code{i} in the example above have incompatible types,
8210enabling only @option{-Wshadow=compatible-local} does not emit a warning.
8211Because their types are incompatible, if a programmer accidentally uses one
8212in place of the other, type checking is expected to catch that and emit an
8213error or warning.  Use of this flag instead of @option{-Wshadow=local} can
8214possibly reduce the number of warnings triggered by intentional shadowing.
8215Note that this also means that shadowing @code{const char *i} by
8216@code{char *i} does not emit a warning.
8217
8218This warning is also enabled by @option{-Wshadow=local}.
8219
8220@item -Wlarger-than=@var{byte-size}
8221@opindex Wlarger-than=
8222@opindex Wlarger-than-@var{byte-size}
8223Warn whenever an object is defined whose size exceeds @var{byte-size}.
8224@option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
8225Warnings controlled by the option can be disabled either by specifying
8226@var{byte-size} of @samp{SIZE_MAX} or more or by @option{-Wno-larger-than}.
8227
8228Also warn for calls to bounded functions such as @code{memchr} or
8229@code{strnlen} that specify a bound greater than the largest possible
8230object, which is @samp{PTRDIFF_MAX} bytes by default.  These warnings
8231can only be disabled by @option{-Wno-larger-than}.
8232
8233@item -Wno-larger-than
8234@opindex Wno-larger-than
8235Disable @option{-Wlarger-than=} warnings.  The option is equivalent
8236to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
8237
8238@item -Wframe-larger-than=@var{byte-size}
8239@opindex Wframe-larger-than=
8240@opindex Wno-frame-larger-than
8241Warn if the size of a function frame exceeds @var{byte-size}.
8242The computation done to determine the stack frame size is approximate
8243and not conservative.
8244The actual requirements may be somewhat greater than @var{byte-size}
8245even if you do not get a warning.  In addition, any space allocated
8246via @code{alloca}, variable-length arrays, or related constructs
8247is not included by the compiler when determining
8248whether or not to issue a warning.
8249@option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
8250Warnings controlled by the option can be disabled either by specifying
8251@var{byte-size} of @samp{SIZE_MAX} or more or by
8252@option{-Wno-frame-larger-than}.
8253
8254@item -Wno-frame-larger-than
8255@opindex Wno-frame-larger-than
8256Disable @option{-Wframe-larger-than=} warnings.  The option is equivalent
8257to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
8258
8259@item -Wfree-nonheap-object
8260@opindex Wfree-nonheap-object
8261@opindex Wno-free-nonheap-object
8262Warn when attempting to deallocate an object that was either not allocated
8263on the heap, or by using a pointer that was not returned from a prior call
8264to the corresponding allocation function.  For example, because the call
8265to @code{stpcpy} returns a pointer to the terminating nul character and
8266not to the beginning of the object, the call to @code{free} below is
8267diagnosed.
8268
8269@smallexample
8270void f (char *p)
8271@{
8272  p = stpcpy (p, "abc");
8273  // ...
8274  free (p);   // warning
8275@}
8276@end smallexample
8277
8278@option{-Wfree-nonheap-object} is included in @option{-Wall}.
8279
8280@item -Wstack-usage=@var{byte-size}
8281@opindex Wstack-usage
8282@opindex Wno-stack-usage
8283Warn if the stack usage of a function might exceed @var{byte-size}.
8284The computation done to determine the stack usage is conservative.
8285Any space allocated via @code{alloca}, variable-length arrays, or related
8286constructs is included by the compiler when determining whether or not to
8287issue a warning.
8288
8289The message is in keeping with the output of @option{-fstack-usage}.
8290
8291@itemize
8292@item
8293If the stack usage is fully static but exceeds the specified amount, it's:
8294
8295@smallexample
8296  warning: stack usage is 1120 bytes
8297@end smallexample
8298@item
8299If the stack usage is (partly) dynamic but bounded, it's:
8300
8301@smallexample
8302  warning: stack usage might be 1648 bytes
8303@end smallexample
8304@item
8305If the stack usage is (partly) dynamic and not bounded, it's:
8306
8307@smallexample
8308  warning: stack usage might be unbounded
8309@end smallexample
8310@end itemize
8311
8312@option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
8313Warnings controlled by the option can be disabled either by specifying
8314@var{byte-size} of @samp{SIZE_MAX} or more or by
8315@option{-Wno-stack-usage}.
8316
8317@item -Wno-stack-usage
8318@opindex Wno-stack-usage
8319Disable @option{-Wstack-usage=} warnings.  The option is equivalent
8320to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
8321
8322@item -Wunsafe-loop-optimizations
8323@opindex Wunsafe-loop-optimizations
8324@opindex Wno-unsafe-loop-optimizations
8325Warn if the loop cannot be optimized because the compiler cannot
8326assume anything on the bounds of the loop indices.  With
8327@option{-funsafe-loop-optimizations} warn if the compiler makes
8328such assumptions.
8329
8330@item -Wno-pedantic-ms-format @r{(MinGW targets only)}
8331@opindex Wno-pedantic-ms-format
8332@opindex Wpedantic-ms-format
8333When used in combination with @option{-Wformat}
8334and @option{-pedantic} without GNU extensions, this option
8335disables the warnings about non-ISO @code{printf} / @code{scanf} format
8336width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
8337which depend on the MS runtime.
8338
8339@item -Wpointer-arith
8340@opindex Wpointer-arith
8341@opindex Wno-pointer-arith
8342Warn about anything that depends on the ``size of'' a function type or
8343of @code{void}.  GNU C assigns these types a size of 1, for
8344convenience in calculations with @code{void *} pointers and pointers
8345to functions.  In C++, warn also when an arithmetic operation involves
8346@code{NULL}.  This warning is also enabled by @option{-Wpedantic}.
8347
8348@item -Wno-pointer-compare
8349@opindex Wpointer-compare
8350@opindex Wno-pointer-compare
8351Do not warn if a pointer is compared with a zero character constant.
8352This usually
8353means that the pointer was meant to be dereferenced.  For example:
8354
8355@smallexample
8356const char *p = foo ();
8357if (p == '\0')
8358  return 42;
8359@end smallexample
8360
8361Note that the code above is invalid in C++11.
8362
8363This warning is enabled by default.
8364
8365@item -Wtsan
8366@opindex Wtsan
8367@opindex Wno-tsan
8368Warn about unsupported features in ThreadSanitizer.
8369
8370ThreadSanitizer does not support @code{std::atomic_thread_fence} and
8371can report false positives.
8372
8373This warning is enabled by default.
8374
8375@item -Wtype-limits
8376@opindex Wtype-limits
8377@opindex Wno-type-limits
8378Warn if a comparison is always true or always false due to the limited
8379range of the data type, but do not warn for constant expressions.  For
8380example, warn if an unsigned variable is compared against zero with
8381@code{<} or @code{>=}.  This warning is also enabled by
8382@option{-Wextra}.
8383
8384@item -Wabsolute-value @r{(C and Objective-C only)}
8385@opindex Wabsolute-value
8386@opindex Wno-absolute-value
8387Warn for calls to standard functions that compute the absolute value
8388of an argument when a more appropriate standard function is available.
8389For example, calling @code{abs(3.14)} triggers the warning because the
8390appropriate function to call to compute the absolute value of a double
8391argument is @code{fabs}.  The option also triggers warnings when the
8392argument in a call to such a function has an unsigned type.  This
8393warning can be suppressed with an explicit type cast and it is also
8394enabled by @option{-Wextra}.
8395
8396@include cppwarnopts.texi
8397
8398@item -Wbad-function-cast @r{(C and Objective-C only)}
8399@opindex Wbad-function-cast
8400@opindex Wno-bad-function-cast
8401Warn when a function call is cast to a non-matching type.
8402For example, warn if a call to a function returning an integer type 
8403is cast to a pointer type.
8404
8405@item -Wc90-c99-compat @r{(C and Objective-C only)}
8406@opindex Wc90-c99-compat
8407@opindex Wno-c90-c99-compat
8408Warn about features not present in ISO C90, but present in ISO C99.
8409For instance, warn about use of variable length arrays, @code{long long}
8410type, @code{bool} type, compound literals, designated initializers, and so
8411on.  This option is independent of the standards mode.  Warnings are disabled
8412in the expression that follows @code{__extension__}.
8413
8414@item -Wc99-c11-compat @r{(C and Objective-C only)}
8415@opindex Wc99-c11-compat
8416@opindex Wno-c99-c11-compat
8417Warn about features not present in ISO C99, but present in ISO C11.
8418For instance, warn about use of anonymous structures and unions,
8419@code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
8420@code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
8421and so on.  This option is independent of the standards mode.  Warnings are
8422disabled in the expression that follows @code{__extension__}.
8423
8424@item -Wc11-c2x-compat @r{(C and Objective-C only)}
8425@opindex Wc11-c2x-compat
8426@opindex Wno-c11-c2x-compat
8427Warn about features not present in ISO C11, but present in ISO C2X.
8428For instance, warn about omitting the string in @code{_Static_assert},
8429use of @samp{[[]]} syntax for attributes, use of decimal
8430floating-point types, and so on.  This option is independent of the
8431standards mode.  Warnings are disabled in the expression that follows
8432@code{__extension__}.
8433
8434@item -Wc++-compat @r{(C and Objective-C only)}
8435@opindex Wc++-compat
8436@opindex Wno-c++-compat
8437Warn about ISO C constructs that are outside of the common subset of
8438ISO C and ISO C++, e.g.@: request for implicit conversion from
8439@code{void *} to a pointer to non-@code{void} type.
8440
8441@item -Wc++11-compat @r{(C++ and Objective-C++ only)}
8442@opindex Wc++11-compat
8443@opindex Wno-c++11-compat
8444Warn about C++ constructs whose meaning differs between ISO C++ 1998
8445and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
8446in ISO C++ 2011.  This warning turns on @option{-Wnarrowing} and is
8447enabled by @option{-Wall}.
8448
8449@item -Wc++14-compat @r{(C++ and Objective-C++ only)}
8450@opindex Wc++14-compat
8451@opindex Wno-c++14-compat
8452Warn about C++ constructs whose meaning differs between ISO C++ 2011
8453and ISO C++ 2014.  This warning is enabled by @option{-Wall}.
8454
8455@item -Wc++17-compat @r{(C++ and Objective-C++ only)}
8456@opindex Wc++17-compat
8457@opindex Wno-c++17-compat
8458Warn about C++ constructs whose meaning differs between ISO C++ 2014
8459and ISO C++ 2017.  This warning is enabled by @option{-Wall}.
8460
8461@item -Wc++20-compat @r{(C++ and Objective-C++ only)}
8462@opindex Wc++20-compat
8463@opindex Wno-c++20-compat
8464Warn about C++ constructs whose meaning differs between ISO C++ 2017
8465and ISO C++ 2020.  This warning is enabled by @option{-Wall}.
8466
8467@item -Wno-c++11-extensions @r{(C++ and Objective-C++ only)}
8468@opindex Wc++11-extensions
8469@opindex Wno-c++11-extensions
8470Do not warn about C++11 constructs in code being compiled using
8471an older C++ standard.  Even without this option, some C++11 constructs
8472will only be diagnosed if @option{-Wpedantic} is used.
8473
8474@item -Wno-c++14-extensions @r{(C++ and Objective-C++ only)}
8475@opindex Wc++14-extensions
8476@opindex Wno-c++14-extensions
8477Do not warn about C++14 constructs in code being compiled using
8478an older C++ standard.  Even without this option, some C++14 constructs
8479will only be diagnosed if @option{-Wpedantic} is used.
8480
8481@item -Wno-c++17-extensions @r{(C++ and Objective-C++ only)}
8482@opindex Wc++17-extensions
8483@opindex Wno-c++17-extensions
8484Do not warn about C++17 constructs in code being compiled using
8485an older C++ standard.  Even without this option, some C++17 constructs
8486will only be diagnosed if @option{-Wpedantic} is used.
8487
8488@item -Wno-c++20-extensions @r{(C++ and Objective-C++ only)}
8489@opindex Wc++20-extensions
8490@opindex Wno-c++20-extensions
8491Do not warn about C++20 constructs in code being compiled using
8492an older C++ standard.  Even without this option, some C++20 constructs
8493will only be diagnosed if @option{-Wpedantic} is used.
8494
8495@item -Wno-c++23-extensions @r{(C++ and Objective-C++ only)}
8496@opindex Wc++23-extensions
8497@opindex Wno-c++23-extensions
8498Do not warn about C++23 constructs in code being compiled using
8499an older C++ standard.  Even without this option, some C++23 constructs
8500will only be diagnosed if @option{-Wpedantic} is used.
8501
8502@item -Wcast-qual
8503@opindex Wcast-qual
8504@opindex Wno-cast-qual
8505Warn whenever a pointer is cast so as to remove a type qualifier from
8506the target type.  For example, warn if a @code{const char *} is cast
8507to an ordinary @code{char *}.
8508
8509Also warn when making a cast that introduces a type qualifier in an
8510unsafe way.  For example, casting @code{char **} to @code{const char **}
8511is unsafe, as in this example:
8512
8513@smallexample
8514  /* p is char ** value.  */
8515  const char **q = (const char **) p;
8516  /* Assignment of readonly string to const char * is OK.  */
8517  *q = "string";
8518  /* Now char** pointer points to read-only memory.  */
8519  **p = 'b';
8520@end smallexample
8521
8522@item -Wcast-align
8523@opindex Wcast-align
8524@opindex Wno-cast-align
8525Warn whenever a pointer is cast such that the required alignment of the
8526target is increased.  For example, warn if a @code{char *} is cast to
8527an @code{int *} on machines where integers can only be accessed at
8528two- or four-byte boundaries.
8529
8530@item -Wcast-align=strict
8531@opindex Wcast-align=strict
8532Warn whenever a pointer is cast such that the required alignment of the
8533target is increased.  For example, warn if a @code{char *} is cast to
8534an @code{int *} regardless of the target machine.
8535
8536@item -Wcast-function-type
8537@opindex Wcast-function-type
8538@opindex Wno-cast-function-type
8539Warn when a function pointer is cast to an incompatible function pointer.
8540In a cast involving function types with a variable argument list only
8541the types of initial arguments that are provided are considered.
8542Any parameter of pointer-type matches any other pointer-type.  Any benign
8543differences in integral types are ignored, like @code{int} vs.@: @code{long}
8544on ILP32 targets.  Likewise type qualifiers are ignored.  The function
8545type @code{void (*) (void)} is special and matches everything, which can
8546be used to suppress this warning.
8547In a cast involving pointer to member types this warning warns whenever
8548the type cast is changing the pointer to member type.
8549This warning is enabled by @option{-Wextra}.
8550
8551@item -Wwrite-strings
8552@opindex Wwrite-strings
8553@opindex Wno-write-strings
8554When compiling C, give string constants the type @code{const
8555char[@var{length}]} so that copying the address of one into a
8556non-@code{const} @code{char *} pointer produces a warning.  These
8557warnings help you find at compile time code that can try to write
8558into a string constant, but only if you have been very careful about
8559using @code{const} in declarations and prototypes.  Otherwise, it is
8560just a nuisance. This is why we did not make @option{-Wall} request
8561these warnings.
8562
8563When compiling C++, warn about the deprecated conversion from string
8564literals to @code{char *}.  This warning is enabled by default for C++
8565programs.
8566
8567@item -Wclobbered
8568@opindex Wclobbered
8569@opindex Wno-clobbered
8570Warn for variables that might be changed by @code{longjmp} or
8571@code{vfork}.  This warning is also enabled by @option{-Wextra}.
8572
8573@item -Wconversion
8574@opindex Wconversion
8575@opindex Wno-conversion
8576Warn for implicit conversions that may alter a value. This includes
8577conversions between real and integer, like @code{abs (x)} when
8578@code{x} is @code{double}; conversions between signed and unsigned,
8579like @code{unsigned ui = -1}; and conversions to smaller types, like
8580@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
8581((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
8582changed by the conversion like in @code{abs (2.0)}.  Warnings about
8583conversions between signed and unsigned integers can be disabled by
8584using @option{-Wno-sign-conversion}.
8585
8586For C++, also warn for confusing overload resolution for user-defined
8587conversions; and conversions that never use a type conversion
8588operator: conversions to @code{void}, the same type, a base class or a
8589reference to them. Warnings about conversions between signed and
8590unsigned integers are disabled by default in C++ unless
8591@option{-Wsign-conversion} is explicitly enabled.
8592
8593Warnings about conversion from arithmetic on a small type back to that
8594type are only given with @option{-Warith-conversion}.
8595
8596@item -Wdangling-else
8597@opindex Wdangling-else
8598@opindex Wno-dangling-else
8599Warn about constructions where there may be confusion to which
8600@code{if} statement an @code{else} branch belongs.  Here is an example of
8601such a case:
8602
8603@smallexample
8604@group
8605@{
8606  if (a)
8607    if (b)
8608      foo ();
8609  else
8610    bar ();
8611@}
8612@end group
8613@end smallexample
8614
8615In C/C++, every @code{else} branch belongs to the innermost possible
8616@code{if} statement, which in this example is @code{if (b)}.  This is
8617often not what the programmer expected, as illustrated in the above
8618example by indentation the programmer chose.  When there is the
8619potential for this confusion, GCC issues a warning when this flag
8620is specified.  To eliminate the warning, add explicit braces around
8621the innermost @code{if} statement so there is no way the @code{else}
8622can belong to the enclosing @code{if}.  The resulting code
8623looks like this:
8624
8625@smallexample
8626@group
8627@{
8628  if (a)
8629    @{
8630      if (b)
8631        foo ();
8632      else
8633        bar ();
8634    @}
8635@}
8636@end group
8637@end smallexample
8638
8639This warning is enabled by @option{-Wparentheses}.
8640
8641@item -Wdangling-pointer
8642@itemx -Wdangling-pointer=@var{n}
8643@opindex Wdangling-pointer
8644@opindex Wno-dangling-pointer
8645Warn about uses of pointers (or C++ references) to objects with automatic
8646storage duration after their lifetime has ended.  This includes local
8647variables declared in nested blocks, compound literals and other unnamed
8648temporary objects.  In addition, warn about storing the address of such
8649objects in escaped pointers.  The warning is enabled at all optimization
8650levels but may yield different results with optimization than without.
8651
8652@table @gcctabopt
8653@item -Wdangling-pointer=1
8654At level 1 the warning diagnoses only unconditional uses of dangling pointers.
8655For example
8656@smallexample
8657int f (int c1, int c2, x)
8658@{
8659  char *p = strchr ((char[])@{ c1, c2 @}, c3);
8660  return p ? *p : 'x';   // warning: dangling pointer to a compound literal
8661@}
8662@end smallexample
8663In the following function the store of the address of the local variable
8664@code{x} in the escaped pointer @code{*p} also triggers the warning.
8665@smallexample
8666void g (int **p)
8667@{
8668  int x = 7;
8669  *p = &x;   // warning: storing the address of a local variable in *p
8670@}
8671@end smallexample
8672
8673@item -Wdangling-pointer=2
8674At level 2, in addition to unconditional uses the warning also diagnoses
8675conditional uses of dangling pointers.
8676
8677For example, because the array @var{a} in the following function is out of
8678scope when the pointer @var{s} that was set to point is used, the warning
8679triggers at this level.
8680
8681@smallexample
8682void f (char *s)
8683@{
8684  if (!s)
8685    @{
8686      char a[12] = "tmpname";
8687      s = a;
8688    @}
8689  strcat (s, ".tmp");   // warning: dangling pointer to a may be used
8690  ...
8691@}
8692@end smallexample
8693@end table
8694
8695@option{-Wdangling-pointer=2} is included in @option{-Wall}.
8696
8697@item -Wdate-time
8698@opindex Wdate-time
8699@opindex Wno-date-time
8700Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
8701are encountered as they might prevent bit-wise-identical reproducible
8702compilations.
8703
8704@item -Wempty-body
8705@opindex Wempty-body
8706@opindex Wno-empty-body
8707Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
8708while} statement.  This warning is also enabled by @option{-Wextra}.
8709
8710@item -Wno-endif-labels
8711@opindex Wendif-labels
8712@opindex Wno-endif-labels
8713Do not warn about stray tokens after @code{#else} and @code{#endif}.
8714
8715@item -Wenum-compare
8716@opindex Wenum-compare
8717@opindex Wno-enum-compare
8718Warn about a comparison between values of different enumerated types.
8719In C++ enumerated type mismatches in conditional expressions are also
8720diagnosed and the warning is enabled by default.  In C this warning is 
8721enabled by @option{-Wall}.
8722
8723@item -Wenum-conversion
8724@opindex Wenum-conversion
8725@opindex Wno-enum-conversion
8726Warn when a value of enumerated type is implicitly converted to a 
8727different enumerated type.  This warning is enabled by @option{-Wextra}
8728in C@.
8729
8730@item -Wjump-misses-init @r{(C, Objective-C only)}
8731@opindex Wjump-misses-init
8732@opindex Wno-jump-misses-init
8733Warn if a @code{goto} statement or a @code{switch} statement jumps
8734forward across the initialization of a variable, or jumps backward to a
8735label after the variable has been initialized.  This only warns about
8736variables that are initialized when they are declared.  This warning is
8737only supported for C and Objective-C; in C++ this sort of branch is an
8738error in any case.
8739
8740@option{-Wjump-misses-init} is included in @option{-Wc++-compat}.  It
8741can be disabled with the @option{-Wno-jump-misses-init} option.
8742
8743@item -Wsign-compare
8744@opindex Wsign-compare
8745@opindex Wno-sign-compare
8746@cindex warning for comparison of signed and unsigned values
8747@cindex comparison of signed and unsigned values, warning
8748@cindex signed and unsigned values, comparison warning
8749Warn when a comparison between signed and unsigned values could produce
8750an incorrect result when the signed value is converted to unsigned.
8751In C++, this warning is also enabled by @option{-Wall}.  In C, it is
8752also enabled by @option{-Wextra}.
8753
8754@item -Wsign-conversion
8755@opindex Wsign-conversion
8756@opindex Wno-sign-conversion
8757Warn for implicit conversions that may change the sign of an integer
8758value, like assigning a signed integer expression to an unsigned
8759integer variable. An explicit cast silences the warning. In C, this
8760option is enabled also by @option{-Wconversion}.
8761
8762@item -Wfloat-conversion
8763@opindex Wfloat-conversion
8764@opindex Wno-float-conversion
8765Warn for implicit conversions that reduce the precision of a real value.
8766This includes conversions from real to integer, and from higher precision
8767real to lower precision real values.  This option is also enabled by
8768@option{-Wconversion}.
8769
8770@item -Wno-scalar-storage-order
8771@opindex Wno-scalar-storage-order
8772@opindex Wscalar-storage-order
8773Do not warn on suspicious constructs involving reverse scalar storage order.
8774
8775@item -Wsizeof-array-div
8776@opindex Wsizeof-array-div
8777@opindex Wno-sizeof-array-div
8778Warn about divisions of two sizeof operators when the first one is applied
8779to an array and the divisor does not equal the size of the array element.
8780In such a case, the computation will not yield the number of elements in the
8781array, which is likely what the user intended.  This warning warns e.g. about
8782@smallexample
8783int fn ()
8784@{
8785  int arr[10];
8786  return sizeof (arr) / sizeof (short);
8787@}
8788@end smallexample
8789
8790This warning is enabled by @option{-Wall}.
8791
8792@item -Wsizeof-pointer-div
8793@opindex Wsizeof-pointer-div
8794@opindex Wno-sizeof-pointer-div
8795Warn for suspicious divisions of two sizeof expressions that divide
8796the pointer size by the element size, which is the usual way to compute
8797the array size but won't work out correctly with pointers.  This warning
8798warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
8799not an array, but a pointer.  This warning is enabled by @option{-Wall}.
8800
8801@item -Wsizeof-pointer-memaccess
8802@opindex Wsizeof-pointer-memaccess
8803@opindex Wno-sizeof-pointer-memaccess
8804Warn for suspicious length parameters to certain string and memory built-in
8805functions if the argument uses @code{sizeof}.  This warning triggers for
8806example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
8807an array, but a pointer, and suggests a possible fix, or about
8808@code{memcpy (&foo, ptr, sizeof (&foo));}.  @option{-Wsizeof-pointer-memaccess}
8809also warns about calls to bounded string copy functions like @code{strncat}
8810or @code{strncpy} that specify as the bound a @code{sizeof} expression of
8811the source array.  For example, in the following function the call to
8812@code{strncat} specifies the size of the source string as the bound.  That
8813is almost certainly a mistake and so the call is diagnosed.
8814@smallexample
8815void make_file (const char *name)
8816@{
8817  char path[PATH_MAX];
8818  strncpy (path, name, sizeof path - 1);
8819  strncat (path, ".text", sizeof ".text");
8820  @dots{}
8821@}
8822@end smallexample
8823
8824The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
8825
8826@item -Wno-sizeof-array-argument
8827@opindex Wsizeof-array-argument
8828@opindex Wno-sizeof-array-argument
8829Do not warn when the @code{sizeof} operator is applied to a parameter that is
8830declared as an array in a function definition.  This warning is enabled by
8831default for C and C++ programs.
8832
8833@item -Wmemset-elt-size
8834@opindex Wmemset-elt-size
8835@opindex Wno-memset-elt-size
8836Warn for suspicious calls to the @code{memset} built-in function, if the
8837first argument references an array, and the third argument is a number
8838equal to the number of elements, but not equal to the size of the array
8839in memory.  This indicates that the user has omitted a multiplication by
8840the element size.  This warning is enabled by @option{-Wall}.
8841
8842@item -Wmemset-transposed-args
8843@opindex Wmemset-transposed-args
8844@opindex Wno-memset-transposed-args
8845Warn for suspicious calls to the @code{memset} built-in function where
8846the second argument is not zero and the third argument is zero.  For
8847example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
8848@code{memset (buf, 0, sizeof buf)} was meant instead.  The diagnostic
8849is only emitted if the third argument is a literal zero.  Otherwise, if
8850it is an expression that is folded to zero, or a cast of zero to some
8851type, it is far less likely that the arguments have been mistakenly
8852transposed and no warning is emitted.  This warning is enabled
8853by @option{-Wall}.
8854
8855@item -Waddress
8856@opindex Waddress
8857@opindex Wno-address
8858Warn about suspicious uses of address expressions. These include comparing
8859the address of a function or a declared object to the null pointer constant
8860such as in
8861@smallexample
8862void f (void);
8863void g (void)
8864@{
8865  if (!func)   // warning: expression evaluates to false
8866    abort ();
8867@}
8868@end smallexample
8869comparisons of a pointer to a string literal, such as in
8870@smallexample
8871void f (const char *x)
8872@{
8873  if (x == "abc")   // warning: expression evaluates to false
8874    puts ("equal");
8875@}
8876@end smallexample
8877and tests of the results of pointer addition or subtraction for equality
8878to null, such as in
8879@smallexample
8880void f (const int *p, int i)
8881@{
8882  return p + i == NULL;
8883@}
8884@end smallexample
8885Such uses typically indicate a programmer error: the address of most
8886functions and objects necessarily evaluates to true (the exception are
8887weak symbols), so their use in a conditional might indicate missing
8888parentheses in a function call or a missing dereference in an array
8889expression.  The subset of the warning for object pointers can be
8890suppressed by casting the pointer operand to an integer type such
8891as @code{inptr_t} or @code{uinptr_t}.
8892Comparisons against string literals result in unspecified behavior
8893and are not portable, and suggest the intent was to call @code{strcmp}.
8894The warning is suppressed if the suspicious expression is the result
8895of macro expansion.
8896@option{-Waddress} warning is enabled by @option{-Wall}.
8897
8898@item -Wno-address-of-packed-member
8899@opindex Waddress-of-packed-member
8900@opindex Wno-address-of-packed-member
8901Do not warn when the address of packed member of struct or union is taken,
8902which usually results in an unaligned pointer value.  This is
8903enabled by default.
8904
8905@item -Wlogical-op
8906@opindex Wlogical-op
8907@opindex Wno-logical-op
8908Warn about suspicious uses of logical operators in expressions.
8909This includes using logical operators in contexts where a
8910bit-wise operator is likely to be expected.  Also warns when
8911the operands of a logical operator are the same:
8912@smallexample
8913extern int a;
8914if (a < 0 && a < 0) @{ @dots{} @}
8915@end smallexample
8916
8917@item -Wlogical-not-parentheses
8918@opindex Wlogical-not-parentheses
8919@opindex Wno-logical-not-parentheses
8920Warn about logical not used on the left hand side operand of a comparison.
8921This option does not warn if the right operand is considered to be a boolean
8922expression.  Its purpose is to detect suspicious code like the following:
8923@smallexample
8924int a;
8925@dots{}
8926if (!a > 1) @{ @dots{} @}
8927@end smallexample
8928
8929It is possible to suppress the warning by wrapping the LHS into
8930parentheses:
8931@smallexample
8932if ((!a) > 1) @{ @dots{} @}
8933@end smallexample
8934
8935This warning is enabled by @option{-Wall}.
8936
8937@item -Waggregate-return
8938@opindex Waggregate-return
8939@opindex Wno-aggregate-return
8940Warn if any functions that return structures or unions are defined or
8941called.  (In languages where you can return an array, this also elicits
8942a warning.)
8943
8944@item -Wno-aggressive-loop-optimizations
8945@opindex Wno-aggressive-loop-optimizations
8946@opindex Waggressive-loop-optimizations
8947Warn if in a loop with constant number of iterations the compiler detects
8948undefined behavior in some statement during one or more of the iterations.
8949
8950@item -Wno-attributes
8951@opindex Wno-attributes
8952@opindex Wattributes
8953Do not warn if an unexpected @code{__attribute__} is used, such as
8954unrecognized attributes, function attributes applied to variables,
8955etc.  This does not stop errors for incorrect use of supported
8956attributes.
8957
8958Additionally, using @option{-Wno-attributes=}, it is possible to suppress
8959warnings about unknown scoped attributes (in C++11 and C2X).  For example,
8960@option{-Wno-attributes=vendor::attr} disables warning about the following
8961declaration:
8962
8963@smallexample
8964[[vendor::attr]] void f();
8965@end smallexample
8966
8967It is also possible to disable warning about all attributes in a namespace
8968using @option{-Wno-attributes=vendor::} which prevents warning about both
8969of these declarations:
8970
8971@smallexample
8972[[vendor::safe]] void f();
8973[[vendor::unsafe]] void f2();
8974@end smallexample
8975
8976Note that @option{-Wno-attributes=} does not imply @option{-Wno-attributes}.
8977
8978@item -Wno-builtin-declaration-mismatch
8979@opindex Wno-builtin-declaration-mismatch
8980@opindex Wbuiltin-declaration-mismatch
8981Warn if a built-in function is declared with an incompatible signature
8982or as a non-function, or when a built-in function declared with a type
8983that does not include a prototype is called with arguments whose promoted
8984types do not match those expected by the function.  When @option{-Wextra}
8985is specified, also warn when a built-in function that takes arguments is
8986declared without a prototype.  The @option{-Wbuiltin-declaration-mismatch}
8987warning is enabled by default.  To avoid the warning include the appropriate
8988header to bring the prototypes of built-in functions into scope.
8989
8990For example, the call to @code{memset} below is diagnosed by the warning
8991because the function expects a value of type @code{size_t} as its argument
8992but the type of @code{32} is @code{int}.  With @option{-Wextra},
8993the declaration of the function is diagnosed as well.
8994@smallexample
8995extern void* memset ();
8996void f (void *d)
8997@{
8998  memset (d, '\0', 32);
8999@}
9000@end smallexample
9001
9002@item -Wno-builtin-macro-redefined
9003@opindex Wno-builtin-macro-redefined
9004@opindex Wbuiltin-macro-redefined
9005Do not warn if certain built-in macros are redefined.  This suppresses
9006warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
9007@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
9008
9009@item -Wstrict-prototypes @r{(C and Objective-C only)}
9010@opindex Wstrict-prototypes
9011@opindex Wno-strict-prototypes
9012Warn if a function is declared or defined without specifying the
9013argument types.  (An old-style function definition is permitted without
9014a warning if preceded by a declaration that specifies the argument
9015types.)
9016
9017@item -Wold-style-declaration @r{(C and Objective-C only)}
9018@opindex Wold-style-declaration
9019@opindex Wno-old-style-declaration
9020Warn for obsolescent usages, according to the C Standard, in a
9021declaration. For example, warn if storage-class specifiers like
9022@code{static} are not the first things in a declaration.  This warning
9023is also enabled by @option{-Wextra}.
9024
9025@item -Wold-style-definition @r{(C and Objective-C only)}
9026@opindex Wold-style-definition
9027@opindex Wno-old-style-definition
9028Warn if an old-style function definition is used.  A warning is given
9029even if there is a previous prototype.  A definition using @samp{()}
9030is not considered an old-style definition in C2X mode, because it is
9031equivalent to @samp{(void)} in that case, but is considered an
9032old-style definition for older standards.
9033
9034@item -Wmissing-parameter-type @r{(C and Objective-C only)}
9035@opindex Wmissing-parameter-type
9036@opindex Wno-missing-parameter-type
9037A function parameter is declared without a type specifier in K&R-style
9038functions:
9039
9040@smallexample
9041void foo(bar) @{ @}
9042@end smallexample
9043
9044This warning is also enabled by @option{-Wextra}.
9045
9046@item -Wmissing-prototypes @r{(C and Objective-C only)}
9047@opindex Wmissing-prototypes
9048@opindex Wno-missing-prototypes
9049Warn if a global function is defined without a previous prototype
9050declaration.  This warning is issued even if the definition itself
9051provides a prototype.  Use this option to detect global functions
9052that do not have a matching prototype declaration in a header file.
9053This option is not valid for C++ because all function declarations
9054provide prototypes and a non-matching declaration declares an
9055overload rather than conflict with an earlier declaration.
9056Use @option{-Wmissing-declarations} to detect missing declarations in C++.
9057
9058@item -Wmissing-declarations
9059@opindex Wmissing-declarations
9060@opindex Wno-missing-declarations
9061Warn if a global function is defined without a previous declaration.
9062Do so even if the definition itself provides a prototype.
9063Use this option to detect global functions that are not declared in
9064header files.  In C, no warnings are issued for functions with previous
9065non-prototype declarations; use @option{-Wmissing-prototypes} to detect
9066missing prototypes.  In C++, no warnings are issued for function templates,
9067or for inline functions, or for functions in anonymous namespaces.
9068
9069@item -Wmissing-field-initializers
9070@opindex Wmissing-field-initializers
9071@opindex Wno-missing-field-initializers
9072@opindex W
9073@opindex Wextra
9074@opindex Wno-extra
9075Warn if a structure's initializer has some fields missing.  For
9076example, the following code causes such a warning, because
9077@code{x.h} is implicitly zero:
9078
9079@smallexample
9080struct s @{ int f, g, h; @};
9081struct s x = @{ 3, 4 @};
9082@end smallexample
9083
9084This option does not warn about designated initializers, so the following
9085modification does not trigger a warning:
9086
9087@smallexample
9088struct s @{ int f, g, h; @};
9089struct s x = @{ .f = 3, .g = 4 @};
9090@end smallexample
9091
9092In C this option does not warn about the universal zero initializer
9093@samp{@{ 0 @}}:
9094
9095@smallexample
9096struct s @{ int f, g, h; @};
9097struct s x = @{ 0 @};
9098@end smallexample
9099
9100Likewise, in C++ this option does not warn about the empty @{ @}
9101initializer, for example:
9102
9103@smallexample
9104struct s @{ int f, g, h; @};
9105s x = @{ @};
9106@end smallexample
9107
9108This warning is included in @option{-Wextra}.  To get other @option{-Wextra}
9109warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
9110
9111@item -Wno-missing-requires
9112@opindex Wmissing-requires
9113@opindex Wno-missing-requires
9114
9115By default, the compiler warns about a concept-id appearing as a C++20 simple-requirement:
9116
9117@smallexample
9118bool satisfied = requires @{ C<T> @};
9119@end smallexample
9120
9121Here @samp{satisfied} will be true if @samp{C<T>} is a valid
9122expression, which it is for all T.  Presumably the user meant to write
9123
9124@smallexample
9125bool satisfied = requires @{ requires C<T> @};
9126@end smallexample
9127
9128so @samp{satisfied} is only true if concept @samp{C} is satisfied for
9129type @samp{T}.
9130
9131This warning can be disabled with @option{-Wno-missing-requires}.
9132
9133@item -Wno-missing-template-keyword
9134@opindex Wmissing-template-keyword
9135@opindex Wno-missing-template-keyword
9136
9137The member access tokens ., -> and :: must be followed by the @code{template}
9138keyword if the parent object is dependent and the member being named is a
9139template.
9140
9141@smallexample
9142template <class X>
9143void DoStuff (X x)
9144@{
9145  x.template DoSomeOtherStuff<X>(); // Good.
9146  x.DoMoreStuff<X>(); // Warning, x is dependent.
9147@}
9148@end smallexample
9149
9150In rare cases it is possible to get false positives. To silence this, wrap
9151the expression in parentheses. For example, the following is treated as a
9152template, even where m and N are integers:
9153
9154@smallexample
9155void NotATemplate (my_class t)
9156@{
9157  int N = 5;
9158
9159  bool test = t.m < N > (0); // Treated as a template.
9160  test = (t.m < N) > (0); // Same meaning, but not treated as a template.
9161@}
9162@end smallexample
9163
9164This warning can be disabled with @option{-Wno-missing-template-keyword}.
9165
9166@item -Wno-multichar
9167@opindex Wno-multichar
9168@opindex Wmultichar
9169Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
9170Usually they indicate a typo in the user's code, as they have
9171implementation-defined values, and should not be used in portable code.
9172
9173@item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
9174@opindex Wnormalized=
9175@opindex Wnormalized
9176@opindex Wno-normalized
9177@cindex NFC
9178@cindex NFKC
9179@cindex character set, input normalization
9180In ISO C and ISO C++, two identifiers are different if they are
9181different sequences of characters.  However, sometimes when characters
9182outside the basic ASCII character set are used, you can have two
9183different character sequences that look the same.  To avoid confusion,
9184the ISO 10646 standard sets out some @dfn{normalization rules} which
9185when applied ensure that two sequences that look the same are turned into
9186the same sequence.  GCC can warn you if you are using identifiers that
9187have not been normalized; this option controls that warning.
9188
9189There are four levels of warning supported by GCC@.  The default is
9190@option{-Wnormalized=nfc}, which warns about any identifier that is
9191not in the ISO 10646 ``C'' normalized form, @dfn{NFC}.  NFC is the
9192recommended form for most uses.  It is equivalent to
9193@option{-Wnormalized}.
9194
9195Unfortunately, there are some characters allowed in identifiers by
9196ISO C and ISO C++ that, when turned into NFC, are not allowed in 
9197identifiers.  That is, there's no way to use these symbols in portable
9198ISO C or C++ and have all your identifiers in NFC@.
9199@option{-Wnormalized=id} suppresses the warning for these characters.
9200It is hoped that future versions of the standards involved will correct
9201this, which is why this option is not the default.
9202
9203You can switch the warning off for all characters by writing
9204@option{-Wnormalized=none} or @option{-Wno-normalized}.  You should
9205only do this if you are using some other normalization scheme (like
9206``D''), because otherwise you can easily create bugs that are
9207literally impossible to see.
9208
9209Some characters in ISO 10646 have distinct meanings but look identical
9210in some fonts or display methodologies, especially once formatting has
9211been applied.  For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
9212LETTER N'', displays just like a regular @code{n} that has been
9213placed in a superscript.  ISO 10646 defines the @dfn{NFKC}
9214normalization scheme to convert all these into a standard form as
9215well, and GCC warns if your code is not in NFKC if you use
9216@option{-Wnormalized=nfkc}.  This warning is comparable to warning
9217about every identifier that contains the letter O because it might be
9218confused with the digit 0, and so is not the default, but may be
9219useful as a local coding convention if the programming environment 
9220cannot be fixed to display these characters distinctly.
9221
9222@item -Wno-attribute-warning
9223@opindex Wno-attribute-warning
9224@opindex Wattribute-warning
9225Do not warn about usage of functions (@pxref{Function Attributes})
9226declared with @code{warning} attribute.  By default, this warning is
9227enabled.  @option{-Wno-attribute-warning} can be used to disable the
9228warning or @option{-Wno-error=attribute-warning} can be used to
9229disable the error when compiled with @option{-Werror} flag.
9230
9231@item -Wno-deprecated
9232@opindex Wno-deprecated
9233@opindex Wdeprecated
9234Do not warn about usage of deprecated features.  @xref{Deprecated Features}.
9235
9236@item -Wno-deprecated-declarations
9237@opindex Wno-deprecated-declarations
9238@opindex Wdeprecated-declarations
9239Do not warn about uses of functions (@pxref{Function Attributes}),
9240variables (@pxref{Variable Attributes}), and types (@pxref{Type
9241Attributes}) marked as deprecated by using the @code{deprecated}
9242attribute.
9243
9244@item -Wno-overflow
9245@opindex Wno-overflow
9246@opindex Woverflow
9247Do not warn about compile-time overflow in constant expressions.
9248
9249@item -Wno-odr
9250@opindex Wno-odr
9251@opindex Wodr
9252Warn about One Definition Rule violations during link-time optimization.
9253Enabled by default.
9254
9255@item -Wopenacc-parallelism
9256@opindex Wopenacc-parallelism
9257@opindex Wno-openacc-parallelism
9258@cindex OpenACC accelerator programming
9259Warn about potentially suboptimal choices related to OpenACC parallelism.
9260
9261@item -Wopenmp-simd
9262@opindex Wopenmp-simd
9263@opindex Wno-openmp-simd
9264Warn if the vectorizer cost model overrides the OpenMP
9265simd directive set by user.  The @option{-fsimd-cost-model=unlimited}
9266option can be used to relax the cost model.
9267
9268@item -Woverride-init @r{(C and Objective-C only)}
9269@opindex Woverride-init
9270@opindex Wno-override-init
9271@opindex W
9272@opindex Wextra
9273@opindex Wno-extra
9274Warn if an initialized field without side effects is overridden when
9275using designated initializers (@pxref{Designated Inits, , Designated
9276Initializers}).
9277
9278This warning is included in @option{-Wextra}.  To get other
9279@option{-Wextra} warnings without this one, use @option{-Wextra
9280-Wno-override-init}.
9281
9282@item -Wno-override-init-side-effects @r{(C and Objective-C only)}
9283@opindex Woverride-init-side-effects
9284@opindex Wno-override-init-side-effects
9285Do not warn if an initialized field with side effects is overridden when
9286using designated initializers (@pxref{Designated Inits, , Designated
9287Initializers}).  This warning is enabled by default.
9288
9289@item -Wpacked
9290@opindex Wpacked
9291@opindex Wno-packed
9292Warn if a structure is given the packed attribute, but the packed
9293attribute has no effect on the layout or size of the structure.
9294Such structures may be mis-aligned for little benefit.  For
9295instance, in this code, the variable @code{f.x} in @code{struct bar}
9296is misaligned even though @code{struct bar} does not itself
9297have the packed attribute:
9298
9299@smallexample
9300@group
9301struct foo @{
9302  int x;
9303  char a, b, c, d;
9304@} __attribute__((packed));
9305struct bar @{
9306  char z;
9307  struct foo f;
9308@};
9309@end group
9310@end smallexample
9311
9312@item -Wnopacked-bitfield-compat
9313@opindex Wpacked-bitfield-compat
9314@opindex Wno-packed-bitfield-compat
9315The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
9316on bit-fields of type @code{char}.  This was fixed in GCC 4.4 but
9317the change can lead to differences in the structure layout.  GCC
9318informs you when the offset of such a field has changed in GCC 4.4.
9319For example there is no longer a 4-bit padding between field @code{a}
9320and @code{b} in this structure:
9321
9322@smallexample
9323struct foo
9324@{
9325  char a:4;
9326  char b:8;
9327@} __attribute__ ((packed));
9328@end smallexample
9329
9330This warning is enabled by default.  Use
9331@option{-Wno-packed-bitfield-compat} to disable this warning.
9332
9333@item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
9334@opindex Wpacked-not-aligned
9335@opindex Wno-packed-not-aligned
9336Warn if a structure field with explicitly specified alignment in a
9337packed struct or union is misaligned.  For example, a warning will
9338be issued on @code{struct S}, like, @code{warning: alignment 1 of
9339'struct S' is less than 8}, in this code:
9340
9341@smallexample
9342@group
9343struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
9344struct __attribute__ ((packed)) S @{
9345  struct S8 s8;
9346@};
9347@end group
9348@end smallexample
9349
9350This warning is enabled by @option{-Wall}.
9351
9352@item -Wpadded
9353@opindex Wpadded
9354@opindex Wno-padded
9355Warn if padding is included in a structure, either to align an element
9356of the structure or to align the whole structure.  Sometimes when this
9357happens it is possible to rearrange the fields of the structure to
9358reduce the padding and so make the structure smaller.
9359
9360@item -Wredundant-decls
9361@opindex Wredundant-decls
9362@opindex Wno-redundant-decls
9363Warn if anything is declared more than once in the same scope, even in
9364cases where multiple declaration is valid and changes nothing.
9365
9366@item -Wrestrict
9367@opindex Wrestrict
9368@opindex Wno-restrict
9369Warn when an object referenced by a @code{restrict}-qualified parameter
9370(or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
9371argument, or when copies between such objects overlap.  For example,
9372the call to the @code{strcpy} function below attempts to truncate the string
9373by replacing its initial characters with the last four.  However, because
9374the call writes the terminating NUL into @code{a[4]}, the copies overlap and
9375the call is diagnosed.
9376
9377@smallexample
9378void foo (void)
9379@{
9380  char a[] = "abcd1234";
9381  strcpy (a, a + 4);
9382  @dots{}
9383@}
9384@end smallexample
9385The @option{-Wrestrict} option detects some instances of simple overlap
9386even without optimization but works best at @option{-O2} and above.  It
9387is included in @option{-Wall}.
9388
9389@item -Wnested-externs @r{(C and Objective-C only)}
9390@opindex Wnested-externs
9391@opindex Wno-nested-externs
9392Warn if an @code{extern} declaration is encountered within a function.
9393
9394@item -Winline
9395@opindex Winline
9396@opindex Wno-inline
9397Warn if a function that is declared as inline cannot be inlined.
9398Even with this option, the compiler does not warn about failures to
9399inline functions declared in system headers.
9400
9401The compiler uses a variety of heuristics to determine whether or not
9402to inline a function.  For example, the compiler takes into account
9403the size of the function being inlined and the amount of inlining
9404that has already been done in the current function.  Therefore,
9405seemingly insignificant changes in the source program can cause the
9406warnings produced by @option{-Winline} to appear or disappear.
9407
9408@item -Winterference-size
9409@opindex Winterference-size
9410Warn about use of C++17 @code{std::hardware_destructive_interference_size}
9411without specifying its value with @option{--param destructive-interference-size}.
9412Also warn about questionable values for that option.
9413
9414This variable is intended to be used for controlling class layout, to
9415avoid false sharing in concurrent code:
9416
9417@smallexample
9418struct independent_fields @{
9419  alignas(std::hardware_destructive_interference_size) std::atomic<int> one;
9420  alignas(std::hardware_destructive_interference_size) std::atomic<int> two;
9421@};
9422@end smallexample
9423
9424Here @samp{one} and @samp{two} are intended to be far enough apart
9425that stores to one won't require accesses to the other to reload the
9426cache line.
9427
9428By default, @option{--param destructive-interference-size} and
9429@option{--param constructive-interference-size} are set based on the
9430current @option{-mtune} option, typically to the L1 cache line size
9431for the particular target CPU, sometimes to a range if tuning for a
9432generic target.  So all translation units that depend on ABI
9433compatibility for the use of these variables must be compiled with
9434the same @option{-mtune} (or @option{-mcpu}).
9435
9436If ABI stability is important, such as if the use is in a header for a
9437library, you should probably not use the hardware interference size
9438variables at all.  Alternatively, you can force a particular value
9439with @option{--param}.
9440
9441If you are confident that your use of the variable does not affect ABI
9442outside a single build of your project, you can turn off the warning
9443with @option{-Wno-interference-size}.
9444
9445@item -Wint-in-bool-context
9446@opindex Wint-in-bool-context
9447@opindex Wno-int-in-bool-context
9448Warn for suspicious use of integer values where boolean values are expected,
9449such as conditional expressions (?:) using non-boolean integer constants in
9450boolean context, like @code{if (a <= b ? 2 : 3)}.  Or left shifting of signed
9451integers in boolean context, like @code{for (a = 0; 1 << a; a++);}.  Likewise
9452for all kinds of multiplications regardless of the data type.
9453This warning is enabled by @option{-Wall}.
9454
9455@item -Wno-int-to-pointer-cast
9456@opindex Wno-int-to-pointer-cast
9457@opindex Wint-to-pointer-cast
9458Suppress warnings from casts to pointer type of an integer of a
9459different size. In C++, casting to a pointer type of smaller size is
9460an error. @option{Wint-to-pointer-cast} is enabled by default.
9461
9462
9463@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
9464@opindex Wno-pointer-to-int-cast
9465@opindex Wpointer-to-int-cast
9466Suppress warnings from casts from a pointer to an integer type of a
9467different size.
9468
9469@item -Winvalid-pch
9470@opindex Winvalid-pch
9471@opindex Wno-invalid-pch
9472Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
9473the search path but cannot be used.
9474
9475@item -Wlong-long
9476@opindex Wlong-long
9477@opindex Wno-long-long
9478Warn if @code{long long} type is used.  This is enabled by either
9479@option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
9480modes.  To inhibit the warning messages, use @option{-Wno-long-long}.
9481
9482@item -Wvariadic-macros
9483@opindex Wvariadic-macros
9484@opindex Wno-variadic-macros
9485Warn if variadic macros are used in ISO C90 mode, or if the GNU
9486alternate syntax is used in ISO C99 mode.  This is enabled by either
9487@option{-Wpedantic} or @option{-Wtraditional}.  To inhibit the warning
9488messages, use @option{-Wno-variadic-macros}.
9489
9490@item -Wno-varargs
9491@opindex Wvarargs
9492@opindex Wno-varargs
9493Do not warn upon questionable usage of the macros used to handle variable
9494arguments like @code{va_start}.  These warnings are enabled by default.
9495
9496@item -Wvector-operation-performance
9497@opindex Wvector-operation-performance
9498@opindex Wno-vector-operation-performance
9499Warn if vector operation is not implemented via SIMD capabilities of the
9500architecture.  Mainly useful for the performance tuning.
9501Vector operation can be implemented @code{piecewise}, which means that the
9502scalar operation is performed on every vector element; 
9503@code{in parallel}, which means that the vector operation is implemented
9504using scalars of wider type, which normally is more performance efficient;
9505and @code{as a single scalar}, which means that vector fits into a
9506scalar type.
9507
9508@item -Wvla
9509@opindex Wvla
9510@opindex Wno-vla
9511Warn if a variable-length array is used in the code.
9512@option{-Wno-vla} prevents the @option{-Wpedantic} warning of
9513the variable-length array.
9514
9515@item -Wvla-larger-than=@var{byte-size}
9516@opindex Wvla-larger-than=
9517@opindex Wno-vla-larger-than
9518If this option is used, the compiler warns for declarations of
9519variable-length arrays whose size is either unbounded, or bounded
9520by an argument that allows the array size to exceed @var{byte-size}
9521bytes.  This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
9522works, but with variable-length arrays.
9523
9524Note that GCC may optimize small variable-length arrays of a known
9525value into plain arrays, so this warning may not get triggered for
9526such arrays.
9527
9528@option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
9529is typically only effective when @option{-ftree-vrp} is active (default
9530for @option{-O2} and above).
9531
9532See also @option{-Walloca-larger-than=@var{byte-size}}.
9533
9534@item -Wno-vla-larger-than
9535@opindex Wno-vla-larger-than
9536Disable @option{-Wvla-larger-than=} warnings.  The option is equivalent
9537to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
9538
9539@item -Wvla-parameter
9540@opindex Wno-vla-parameter
9541Warn about redeclarations of functions involving arguments of Variable
9542Length Array types of inconsistent kinds or forms, and enable the detection
9543of out-of-bounds accesses to such parameters by warnings such as
9544@option{-Warray-bounds}.
9545
9546If the first function declaration uses the VLA form the bound specified
9547in the array is assumed to be the minimum number of elements expected to
9548be provided in calls to the function and the maximum number of elements
9549accessed by it.  Failing to provide arguments of sufficient size or
9550accessing more than the maximum number of elements may be diagnosed.
9551
9552For example, the warning triggers for the following redeclarations because
9553the first one allows an array of any size to be passed to @code{f} while
9554the second one specifies that the array argument must have at least @code{n}
9555elements.  In addition, calling @code{f} with the associated VLA bound
9556parameter in excess of the actual VLA bound triggers a warning as well.
9557
9558@smallexample
9559void f (int n, int[n]);
9560void f (int, int[]);     // warning: argument 2 previously declared as a VLA
9561
9562void g (int n)
9563@{
9564    if (n > 4)
9565      return;
9566    int a[n];
9567    f (sizeof a, a);     // warning: access to a by f may be out of bounds
9568  @dots{}
9569@}
9570
9571@end smallexample
9572
9573@option{-Wvla-parameter} is included in @option{-Wall}.  The
9574@option{-Warray-parameter} option triggers warnings for similar problems
9575involving ordinary array arguments.
9576
9577@item -Wvolatile-register-var
9578@opindex Wvolatile-register-var
9579@opindex Wno-volatile-register-var
9580Warn if a register variable is declared volatile.  The volatile
9581modifier does not inhibit all optimizations that may eliminate reads
9582and/or writes to register variables.  This warning is enabled by
9583@option{-Wall}.
9584
9585@item -Wdisabled-optimization
9586@opindex Wdisabled-optimization
9587@opindex Wno-disabled-optimization
9588Warn if a requested optimization pass is disabled.  This warning does
9589not generally indicate that there is anything wrong with your code; it
9590merely indicates that GCC's optimizers are unable to handle the code
9591effectively.  Often, the problem is that your code is too big or too
9592complex; GCC refuses to optimize programs when the optimization
9593itself is likely to take inordinate amounts of time.
9594
9595@item -Wpointer-sign @r{(C and Objective-C only)}
9596@opindex Wpointer-sign
9597@opindex Wno-pointer-sign
9598Warn for pointer argument passing or assignment with different signedness.
9599This option is only supported for C and Objective-C@.  It is implied by
9600@option{-Wall} and by @option{-Wpedantic}, which can be disabled with
9601@option{-Wno-pointer-sign}.
9602
9603@item -Wstack-protector
9604@opindex Wstack-protector
9605@opindex Wno-stack-protector
9606This option is only active when @option{-fstack-protector} is active.  It
9607warns about functions that are not protected against stack smashing.
9608
9609@item -Woverlength-strings
9610@opindex Woverlength-strings
9611@opindex Wno-overlength-strings
9612Warn about string constants that are longer than the ``minimum
9613maximum'' length specified in the C standard.  Modern compilers
9614generally allow string constants that are much longer than the
9615standard's minimum limit, but very portable programs should avoid
9616using longer strings.
9617
9618The limit applies @emph{after} string constant concatenation, and does
9619not count the trailing NUL@.  In C90, the limit was 509 characters; in
9620C99, it was raised to 4095.  C++98 does not specify a normative
9621minimum maximum, so we do not diagnose overlength strings in C++@.
9622
9623This option is implied by @option{-Wpedantic}, and can be disabled with
9624@option{-Wno-overlength-strings}.
9625
9626@item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
9627@opindex Wunsuffixed-float-constants
9628@opindex Wno-unsuffixed-float-constants
9629
9630Issue a warning for any floating constant that does not have
9631a suffix.  When used together with @option{-Wsystem-headers} it
9632warns about such constants in system header files.  This can be useful
9633when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
9634from the decimal floating-point extension to C99.
9635
9636@item -Wno-lto-type-mismatch
9637@opindex Wlto-type-mismatch
9638@opindex Wno-lto-type-mismatch
9639
9640During the link-time optimization, do not warn about type mismatches in
9641global declarations from different compilation units.
9642Requires @option{-flto} to be enabled.  Enabled by default.
9643
9644@item -Wno-designated-init @r{(C and Objective-C only)}
9645@opindex Wdesignated-init
9646@opindex Wno-designated-init
9647Suppress warnings when a positional initializer is used to initialize
9648a structure that has been marked with the @code{designated_init}
9649attribute.
9650
9651@end table
9652
9653@node Static Analyzer Options
9654@section Options That Control Static Analysis
9655
9656@table @gcctabopt
9657@item -fanalyzer
9658@opindex analyzer
9659@opindex fanalyzer
9660@opindex fno-analyzer
9661This option enables an static analysis of program flow which looks
9662for ``interesting'' interprocedural paths through the
9663code, and issues warnings for problems found on them.
9664
9665This analysis is much more expensive than other GCC warnings.
9666
9667In technical terms, it performs coverage-guided symbolic execution of
9668the code being compiled.  It is neither sound nor complete: it can
9669have false positives and false negatives.  It is a bug-finding tool,
9670rather than a tool for proving program correctness.
9671
9672The analyzer is only suitable for use on C code in this release.
9673
9674Enabling this option effectively enables the following warnings:
9675
9676@gccoptlist{ @gol
9677-Wanalyzer-double-fclose @gol
9678-Wanalyzer-double-free @gol
9679-Wanalyzer-exposure-through-output-file @gol
9680-Wanalyzer-file-leak @gol
9681-Wanalyzer-free-of-non-heap @gol
9682-Wanalyzer-malloc-leak @gol
9683-Wanalyzer-mismatching-deallocation @gol
9684-Wanalyzer-null-argument @gol
9685-Wanalyzer-null-dereference @gol
9686-Wanalyzer-possible-null-argument @gol
9687-Wanalyzer-possible-null-dereference @gol
9688-Wanalyzer-shift-count-negative @gol
9689-Wanalyzer-shift-count-overflow @gol
9690-Wanalyzer-stale-setjmp-buffer @gol
9691-Wanalyzer-unsafe-call-within-signal-handler @gol
9692-Wanalyzer-use-after-free @gol
9693-Wanalyzer-use-of-pointer-in-stale-stack-frame @gol
9694-Wanalyzer-use-of-uninitialized-value @gol
9695-Wanalyzer-write-to-const @gol
9696-Wanalyzer-write-to-string-literal @gol
9697}
9698@ignore
9699-Wanalyzer-tainted-allocation-size @gol
9700-Wanalyzer-tainted-array-index @gol
9701-Wanalyzer-tainted-divisor @gol
9702-Wanalyzer-tainted-offset @gol
9703-Wanalyzer-tainted-size @gol
9704@end ignore
9705
9706This option is only available if GCC was configured with analyzer
9707support enabled.
9708
9709@item -Wanalyzer-too-complex
9710@opindex Wanalyzer-too-complex
9711@opindex Wno-analyzer-too-complex
9712If @option{-fanalyzer} is enabled, the analyzer uses various heuristics
9713to attempt to explore the control flow and data flow in the program,
9714but these can be defeated by sufficiently complicated code.
9715
9716By default, the analysis silently stops if the code is too
9717complicated for the analyzer to fully explore and it reaches an internal
9718limit.  The @option{-Wanalyzer-too-complex} option warns if this occurs.
9719
9720@item -Wno-analyzer-double-fclose
9721@opindex Wanalyzer-double-fclose
9722@opindex Wno-analyzer-double-fclose
9723This warning requires @option{-fanalyzer}, which enables it; use
9724@option{-Wno-analyzer-double-fclose} to disable it.
9725
9726This diagnostic warns for paths through the code in which a @code{FILE *}
9727can have @code{fclose} called on it more than once.
9728
9729@item -Wno-analyzer-double-free
9730@opindex Wanalyzer-double-free
9731@opindex Wno-analyzer-double-free
9732This warning requires @option{-fanalyzer}, which enables it; use
9733@option{-Wno-analyzer-double-free} to disable it.
9734
9735This diagnostic warns for paths through the code in which a pointer
9736can have a deallocator called on it more than once, either @code{free},
9737or a deallocator referenced by attribute @code{malloc}.
9738
9739@item -Wno-analyzer-exposure-through-output-file
9740@opindex Wanalyzer-exposure-through-output-file
9741@opindex Wno-analyzer-exposure-through-output-file
9742This warning requires @option{-fanalyzer}, which enables it; use
9743@option{-Wno-analyzer-exposure-through-output-file}
9744to disable it.
9745
9746This diagnostic warns for paths through the code in which a
9747security-sensitive value is written to an output file
9748(such as writing a password to a log file).
9749
9750@item -Wno-analyzer-file-leak
9751@opindex Wanalyzer-file-leak
9752@opindex Wno-analyzer-file-leak
9753This warning requires @option{-fanalyzer}, which enables it; use
9754@option{-Wno-analyzer-file-leak}
9755to disable it.
9756
9757This diagnostic warns for paths through the code in which a
9758@code{<stdio.h>} @code{FILE *} stream object is leaked.
9759
9760@item -Wno-analyzer-free-of-non-heap
9761@opindex Wanalyzer-free-of-non-heap
9762@opindex Wno-analyzer-free-of-non-heap
9763This warning requires @option{-fanalyzer}, which enables it; use
9764@option{-Wno-analyzer-free-of-non-heap}
9765to disable it.
9766
9767This diagnostic warns for paths through the code in which @code{free}
9768is called on a non-heap pointer (e.g. an on-stack buffer, or a global).
9769
9770@item -Wno-analyzer-malloc-leak
9771@opindex Wanalyzer-malloc-leak
9772@opindex Wno-analyzer-malloc-leak
9773This warning requires @option{-fanalyzer}, which enables it; use
9774@option{-Wno-analyzer-malloc-leak}
9775to disable it.
9776
9777This diagnostic warns for paths through the code in which a
9778pointer allocated via an allocator is leaked: either @code{malloc},
9779or a function marked with attribute @code{malloc}.
9780
9781@item -Wno-analyzer-mismatching-deallocation
9782@opindex Wanalyzer-mismatching-deallocation
9783@opindex Wno-analyzer-mismatching-deallocation
9784This warning requires @option{-fanalyzer}, which enables it; use
9785@option{-Wno-analyzer-mismatching-deallocation}
9786to disable it.
9787
9788This diagnostic warns for paths through the code in which the
9789wrong deallocation function is called on a pointer value, based on
9790which function was used to allocate the pointer value.  The diagnostic
9791will warn about mismatches between @code{free}, scalar @code{delete}
9792and vector @code{delete[]}, and those marked as allocator/deallocator
9793pairs using attribute @code{malloc}.
9794
9795@item -Wno-analyzer-possible-null-argument
9796@opindex Wanalyzer-possible-null-argument
9797@opindex Wno-analyzer-possible-null-argument
9798This warning requires @option{-fanalyzer}, which enables it; use
9799@option{-Wno-analyzer-possible-null-argument} to disable it.
9800
9801This diagnostic warns for paths through the code in which a
9802possibly-NULL value is passed to a function argument marked
9803with @code{__attribute__((nonnull))} as requiring a non-NULL
9804value.
9805
9806@item -Wno-analyzer-possible-null-dereference
9807@opindex Wanalyzer-possible-null-dereference
9808@opindex Wno-analyzer-possible-null-dereference
9809This warning requires @option{-fanalyzer}, which enables it; use
9810@option{-Wno-analyzer-possible-null-dereference} to disable it.
9811
9812This diagnostic warns for paths through the code in which a
9813possibly-NULL value is dereferenced.
9814
9815@item -Wno-analyzer-null-argument
9816@opindex Wanalyzer-null-argument
9817@opindex Wno-analyzer-null-argument
9818This warning requires @option{-fanalyzer}, which enables it; use
9819@option{-Wno-analyzer-null-argument} to disable it.
9820
9821This diagnostic warns for paths through the code in which a
9822value known to be NULL is passed to a function argument marked
9823with @code{__attribute__((nonnull))} as requiring a non-NULL
9824value.
9825
9826@item -Wno-analyzer-null-dereference
9827@opindex Wanalyzer-null-dereference
9828@opindex Wno-analyzer-null-dereference
9829This warning requires @option{-fanalyzer}, which enables it; use
9830@option{-Wno-analyzer-null-dereference} to disable it.
9831
9832This diagnostic warns for paths through the code in which a
9833value known to be NULL is dereferenced.
9834
9835@item -Wno-analyzer-shift-count-negative
9836@opindex Wanalyzer-shift-count-negative
9837@opindex Wno-analyzer-shift-count-negative
9838This warning requires @option{-fanalyzer}, which enables it; use
9839@option{-Wno-analyzer-shift-count-negative} to disable it.
9840
9841This diagnostic warns for paths through the code in which a
9842shift is attempted with a negative count.  It is analogous to
9843the @option{-Wshift-count-negative} diagnostic implemented in
9844the C/C++ front ends, but is implemented based on analyzing
9845interprocedural paths, rather than merely parsing the syntax tree.
9846However, the analyzer does not prioritize detection of such paths, so
9847false negatives are more likely relative to other warnings.
9848
9849@item -Wno-analyzer-shift-count-overflow
9850@opindex Wanalyzer-shift-count-overflow
9851@opindex Wno-analyzer-shift-count-overflow
9852This warning requires @option{-fanalyzer}, which enables it; use
9853@option{-Wno-analyzer-shift-count-overflow} to disable it.
9854
9855This diagnostic warns for paths through the code in which a
9856shift is attempted with a count greater than or equal to the
9857precision of the operand's type.  It is analogous to
9858the @option{-Wshift-count-overflow} diagnostic implemented in
9859the C/C++ front ends, but is implemented based on analyzing
9860interprocedural paths, rather than merely parsing the syntax tree.
9861However, the analyzer does not prioritize detection of such paths, so
9862false negatives are more likely relative to other warnings.
9863
9864@item -Wno-analyzer-stale-setjmp-buffer
9865@opindex Wanalyzer-stale-setjmp-buffer
9866@opindex Wno-analyzer-stale-setjmp-buffer
9867This warning requires @option{-fanalyzer}, which enables it; use
9868@option{-Wno-analyzer-stale-setjmp-buffer} to disable it.
9869
9870This diagnostic warns for paths through the code in which
9871@code{longjmp} is called to rewind to a @code{jmp_buf} relating
9872to a @code{setjmp} call in a function that has returned.
9873
9874When @code{setjmp} is called on a @code{jmp_buf} to record a rewind
9875location, it records the stack frame.  The stack frame becomes invalid
9876when the function containing the @code{setjmp} call returns.  Attempting
9877to rewind to it via @code{longjmp} would reference a stack frame that
9878no longer exists, and likely lead to a crash (or worse).
9879
9880@item -Wno-analyzer-tainted-allocation-size
9881@opindex Wanalyzer-tainted-allocation-size
9882@opindex Wno-analyzer-tainted-allocation-size
9883This warning requires both @option{-fanalyzer} and
9884@option{-fanalyzer-checker=taint} to enable it;
9885use @option{-Wno-analyzer-tainted-allocation-size} to disable it.
9886
9887This diagnostic warns for paths through the code in which a value
9888that could be under an attacker's control is used as the size
9889of an allocation without being sanitized, so that an attacker could
9890inject an excessively large allocation and potentially cause a denial
9891of service attack.
9892
9893See @url{https://cwe.mitre.org/data/definitions/789.html, CWE-789: Memory Allocation with Excessive Size Value}.
9894
9895@item -Wno-analyzer-tainted-array-index
9896@opindex Wanalyzer-tainted-array-index
9897@opindex Wno-analyzer-tainted-array-index
9898This warning requires both @option{-fanalyzer} and
9899@option{-fanalyzer-checker=taint} to enable it;
9900use @option{-Wno-analyzer-tainted-array-index} to disable it.
9901
9902This diagnostic warns for paths through the code in which a value
9903that could be under an attacker's control is used as the index
9904of an array access without being sanitized, so that an attacker
9905could inject an out-of-bounds access.
9906
9907See @url{https://cwe.mitre.org/data/definitions/129.html, CWE-129: Improper Validation of Array Index}.
9908
9909@item -Wno-analyzer-tainted-divisor
9910@opindex Wanalyzer-tainted-divisor
9911@opindex Wno-analyzer-tainted-divisor
9912This warning requires both @option{-fanalyzer} and
9913@option{-fanalyzer-checker=taint} to enable it;
9914use @option{-Wno-analyzer-tainted-divisor} to disable it.
9915
9916This diagnostic warns for paths through the code in which a value
9917that could be under an attacker's control is used as the divisor
9918in a division or modulus operation without being sanitized, so that
9919an attacker could inject a division-by-zero.
9920
9921@item -Wno-analyzer-tainted-offset
9922@opindex Wanalyzer-tainted-offset
9923@opindex Wno-analyzer-tainted-offset
9924This warning requires both @option{-fanalyzer} and
9925@option{-fanalyzer-checker=taint} to enable it;
9926use @option{-Wno-analyzer-tainted-offset} to disable it.
9927
9928This diagnostic warns for paths through the code in which a value
9929that could be under an attacker's control is used as a pointer offset
9930without being sanitized, so that an attacker could inject an out-of-bounds
9931access.
9932
9933See @url{https://cwe.mitre.org/data/definitions/823.html, CWE-823: Use of Out-of-range Pointer Offset}.
9934
9935@item -Wno-analyzer-tainted-size
9936@opindex Wanalyzer-tainted-size
9937@opindex Wno-analyzer-tainted-size
9938This warning requires both @option{-fanalyzer} and
9939@option{-fanalyzer-checker=taint} to enable it;
9940use @option{-Wno-analyzer-tainted-size} to disable it.
9941
9942This diagnostic warns for paths through the code in which a value
9943that could be under an attacker's control is used as the size of
9944an operation such as @code{memset} without being sanitized, so that an
9945attacker could inject an out-of-bounds access.
9946
9947@item -Wno-analyzer-unsafe-call-within-signal-handler
9948@opindex Wanalyzer-unsafe-call-within-signal-handler
9949@opindex Wno-analyzer-unsafe-call-within-signal-handler
9950This warning requires @option{-fanalyzer}, which enables it; use
9951@option{-Wno-analyzer-unsafe-call-within-signal-handler} to disable it.
9952
9953This diagnostic warns for paths through the code in which a
9954function known to be async-signal-unsafe (such as @code{fprintf}) is
9955called from a signal handler.
9956
9957@item -Wno-analyzer-use-after-free
9958@opindex Wanalyzer-use-after-free
9959@opindex Wno-analyzer-use-after-free
9960This warning requires @option{-fanalyzer}, which enables it; use
9961@option{-Wno-analyzer-use-after-free} to disable it.
9962
9963This diagnostic warns for paths through the code in which a
9964pointer is used after a deallocator is called on it: either @code{free},
9965or a deallocator referenced by attribute @code{malloc}.
9966
9967@item -Wno-analyzer-use-of-pointer-in-stale-stack-frame
9968@opindex Wanalyzer-use-of-pointer-in-stale-stack-frame
9969@opindex Wno-analyzer-use-of-pointer-in-stale-stack-frame
9970This warning requires @option{-fanalyzer}, which enables it; use
9971@option{-Wno-analyzer-use-of-pointer-in-stale-stack-frame}
9972to disable it.
9973
9974This diagnostic warns for paths through the code in which a pointer
9975is dereferenced that points to a variable in a stale stack frame.
9976
9977@item -Wno-analyzer-write-to-const
9978@opindex Wanalyzer-write-to-const
9979@opindex Wno-analyzer-write-to-const
9980This warning requires @option{-fanalyzer}, which enables it; use
9981@option{-Wno-analyzer-write-to-const}
9982to disable it.
9983
9984This diagnostic warns for paths through the code in which the analyzer
9985detects an attempt to write through a pointer to a @code{const} object.
9986However, the analyzer does not prioritize detection of such paths, so
9987false negatives are more likely relative to other warnings.
9988
9989@item -Wno-analyzer-write-to-string-literal
9990@opindex Wanalyzer-write-to-string-literal
9991@opindex Wno-analyzer-write-to-string-literal
9992This warning requires @option{-fanalyzer}, which enables it; use
9993@option{-Wno-analyzer-write-to-string-literal}
9994to disable it.
9995
9996This diagnostic warns for paths through the code in which the analyzer
9997detects an attempt to write through a pointer to a string literal.
9998However, the analyzer does not prioritize detection of such paths, so
9999false negatives are more likely relative to other warnings.
10000
10001@item -Wno-analyzer-use-of-uninitialized-value
10002@opindex Wanalyzer-use-of-uninitialized-value
10003@opindex Wno-analyzer-use-of-uninitialized-value
10004This warning requires @option{-fanalyzer}, which enables it; use
10005@option{-Wno-analyzer-use-of-uninitialized-value} to disable it.
10006
10007This diagnostic warns for paths through the code in which an uninitialized
10008value is used.
10009
10010@end table
10011
10012Pertinent parameters for controlling the exploration are:
10013@option{--param analyzer-bb-explosion-factor=@var{value}},
10014@option{--param analyzer-max-enodes-per-program-point=@var{value}},
10015@option{--param analyzer-max-recursion-depth=@var{value}}, and
10016@option{--param analyzer-min-snodes-for-call-summary=@var{value}}.
10017
10018The following options control the analyzer.
10019
10020@table @gcctabopt
10021
10022@item -fanalyzer-call-summaries
10023@opindex fanalyzer-call-summaries
10024@opindex fno-analyzer-call-summaries
10025Simplify interprocedural analysis by computing the effect of certain calls,
10026rather than exploring all paths through the function from callsite to each
10027possible return.
10028
10029If enabled, call summaries are only used for functions with more than one
10030call site, and that are sufficiently complicated (as per
10031@option{--param analyzer-min-snodes-for-call-summary=@var{value}}).
10032
10033@item -fanalyzer-checker=@var{name}
10034@opindex fanalyzer-checker
10035Restrict the analyzer to run just the named checker, and enable it.
10036
10037Some checkers are disabled by default (even with @option{-fanalyzer}),
10038such as the @code{taint} checker that implements
10039@option{-Wanalyzer-tainted-array-index}, and this option is required
10040to enable them.
10041
10042@emph{Note:} currently, @option{-fanalyzer-checker=taint} disables the
10043following warnings from @option{-fanalyzer}:
10044
10045@gccoptlist{ @gol
10046-Wanalyzer-double-fclose @gol
10047-Wanalyzer-double-free @gol
10048-Wanalyzer-exposure-through-output-file @gol
10049-Wanalyzer-file-leak @gol
10050-Wanalyzer-free-of-non-heap @gol
10051-Wanalyzer-malloc-leak @gol
10052-Wanalyzer-mismatching-deallocation @gol
10053-Wanalyzer-null-argument @gol
10054-Wanalyzer-null-dereference @gol
10055-Wanalyzer-possible-null-argument @gol
10056-Wanalyzer-possible-null-dereference @gol
10057-Wanalyzer-unsafe-call-within-signal-handler @gol
10058-Wanalyzer-use-after-free @gol
10059}
10060
10061@item -fno-analyzer-feasibility
10062@opindex fanalyzer-feasibility
10063@opindex fno-analyzer-feasibility
10064This option is intended for analyzer developers.
10065
10066By default the analyzer verifies that there is a feasible control flow path
10067for each diagnostic it emits: that the conditions that hold are not mutually
10068exclusive.  Diagnostics for which no feasible path can be found are rejected.
10069This filtering can be suppressed with @option{-fno-analyzer-feasibility}, for
10070debugging issues in this code.
10071
10072@item -fanalyzer-fine-grained
10073@opindex fanalyzer-fine-grained
10074@opindex fno-analyzer-fine-grained
10075This option is intended for analyzer developers.
10076
10077Internally the analyzer builds an ``exploded graph'' that combines
10078control flow graphs with data flow information.
10079
10080By default, an edge in this graph can contain the effects of a run
10081of multiple statements within a basic block.  With
10082@option{-fanalyzer-fine-grained}, each statement gets its own edge.
10083
10084@item -fanalyzer-show-duplicate-count
10085@opindex fanalyzer-show-duplicate-count
10086@opindex fno-analyzer-show-duplicate-count
10087This option is intended for analyzer developers: if multiple diagnostics
10088have been detected as being duplicates of each other, it emits a note when
10089reporting the best diagnostic, giving the number of additional diagnostics
10090that were suppressed by the deduplication logic.
10091
10092@item -fno-analyzer-state-merge
10093@opindex fanalyzer-state-merge
10094@opindex fno-analyzer-state-merge
10095This option is intended for analyzer developers.
10096
10097By default the analyzer attempts to simplify analysis by merging
10098sufficiently similar states at each program point as it builds its
10099``exploded graph''.  With @option{-fno-analyzer-state-merge} this
10100merging can be suppressed, for debugging state-handling issues.
10101
10102@item -fno-analyzer-state-purge
10103@opindex fanalyzer-state-purge
10104@opindex fno-analyzer-state-purge
10105This option is intended for analyzer developers.
10106
10107By default the analyzer attempts to simplify analysis by purging
10108aspects of state at a program point that appear to no longer be relevant
10109e.g. the values of locals that aren't accessed later in the function
10110and which aren't relevant to leak analysis.
10111
10112With @option{-fno-analyzer-state-purge} this purging of state can
10113be suppressed, for debugging state-handling issues.
10114
10115@item -fanalyzer-transitivity
10116@opindex fanalyzer-transitivity
10117@opindex fno-analyzer-transitivity
10118This option enables transitivity of constraints within the analyzer.
10119
10120@item -fanalyzer-verbose-edges
10121This option is intended for analyzer developers.  It enables more
10122verbose, lower-level detail in the descriptions of control flow
10123within diagnostic paths.
10124
10125@item -fanalyzer-verbose-state-changes
10126This option is intended for analyzer developers.  It enables more
10127verbose, lower-level detail in the descriptions of events relating
10128to state machines within diagnostic paths.
10129
10130@item -fanalyzer-verbosity=@var{level}
10131This option controls the complexity of the control flow paths that are
10132emitted for analyzer diagnostics.
10133
10134The @var{level} can be one of:
10135
10136@table @samp
10137@item 0
10138At this level, interprocedural call and return events are displayed,
10139along with the most pertinent state-change events relating to
10140a diagnostic.  For example, for a double-@code{free} diagnostic,
10141both calls to @code{free} will be shown.
10142
10143@item 1
10144As per the previous level, but also show events for the entry
10145to each function.
10146
10147@item 2
10148As per the previous level, but also show events relating to
10149control flow that are significant to triggering the issue
10150(e.g. ``true path taken'' at a conditional).
10151
10152This level is the default.
10153
10154@item 3
10155As per the previous level, but show all control flow events, not
10156just significant ones.
10157
10158@item 4
10159This level is intended for analyzer developers; it adds various
10160other events intended for debugging the analyzer.
10161
10162@end table
10163
10164@item -fdump-analyzer
10165@opindex fdump-analyzer
10166Dump internal details about what the analyzer is doing to
10167@file{@var{file}.analyzer.txt}.
10168This option is overridden by @option{-fdump-analyzer-stderr}.
10169
10170@item -fdump-analyzer-stderr
10171@opindex fdump-analyzer-stderr
10172Dump internal details about what the analyzer is doing to stderr.
10173This option overrides @option{-fdump-analyzer}.
10174
10175@item -fdump-analyzer-callgraph
10176@opindex fdump-analyzer-callgraph
10177Dump a representation of the call graph suitable for viewing with
10178GraphViz to @file{@var{file}.callgraph.dot}.
10179
10180@item -fdump-analyzer-exploded-graph
10181@opindex fdump-analyzer-exploded-graph
10182Dump a representation of the ``exploded graph'' suitable for viewing with
10183GraphViz to @file{@var{file}.eg.dot}.
10184Nodes are color-coded based on state-machine states to emphasize
10185state changes.
10186
10187@item -fdump-analyzer-exploded-nodes
10188@opindex dump-analyzer-exploded-nodes
10189Emit diagnostics showing where nodes in the ``exploded graph'' are
10190in relation to the program source.
10191
10192@item -fdump-analyzer-exploded-nodes-2
10193@opindex dump-analyzer-exploded-nodes-2
10194Dump a textual representation of the ``exploded graph'' to
10195@file{@var{file}.eg.txt}.
10196
10197@item -fdump-analyzer-exploded-nodes-3
10198@opindex dump-analyzer-exploded-nodes-3
10199Dump a textual representation of the ``exploded graph'' to
10200one dump file per node, to @file{@var{file}.eg-@var{id}.txt}.
10201This is typically a large number of dump files.
10202
10203@item -fdump-analyzer-exploded-paths
10204@opindex fdump-analyzer-exploded-paths
10205Dump a textual representation of the ``exploded path'' for each
10206diagnostic to @file{@var{file}.@var{idx}.@var{kind}.epath.txt}.
10207
10208@item -fdump-analyzer-feasibility
10209@opindex dump-analyzer-feasibility
10210Dump internal details about the analyzer's search for feasible paths.
10211The details are written in a form suitable for viewing with GraphViz
10212to filenames of the form @file{@var{file}.*.fg.dot},
10213@file{@var{file}.*.tg.dot}, and @file{@var{file}.*.fpath.txt}.
10214
10215@item -fdump-analyzer-json
10216@opindex fdump-analyzer-json
10217Dump a compressed JSON representation of analyzer internals to
10218@file{@var{file}.analyzer.json.gz}.  The precise format is subject
10219to change.
10220
10221@item -fdump-analyzer-state-purge
10222@opindex fdump-analyzer-state-purge
10223As per @option{-fdump-analyzer-supergraph}, dump a representation of the
10224``supergraph'' suitable for viewing with GraphViz, but annotate the
10225graph with information on what state will be purged at each node.
10226The graph is written to @file{@var{file}.state-purge.dot}.
10227
10228@item -fdump-analyzer-supergraph
10229@opindex fdump-analyzer-supergraph
10230Dump representations of the ``supergraph'' suitable for viewing with
10231GraphViz to @file{@var{file}.supergraph.dot} and to
10232@file{@var{file}.supergraph-eg.dot}.  These show all of the
10233control flow graphs in the program, with interprocedural edges for
10234calls and returns.  The second dump contains annotations showing nodes
10235in the ``exploded graph'' and diagnostics associated with them.
10236
10237@item -fdump-analyzer-untracked
10238@opindex fdump-analyzer-untracked
10239Emit custom warnings with internal details intended for analyzer developers.
10240
10241@end table
10242
10243@node Debugging Options
10244@section Options for Debugging Your Program
10245@cindex options, debugging
10246@cindex debugging information options
10247
10248To tell GCC to emit extra information for use by a debugger, in almost 
10249all cases you need only to add @option{-g} to your other options.  Some debug
10250formats can co-exist (like DWARF with CTF) when each of them is enabled
10251explicitly by adding the respective command line option to your other options.
10252
10253GCC allows you to use @option{-g} with
10254@option{-O}.  The shortcuts taken by optimized code may occasionally
10255be surprising: some variables you declared may not exist
10256at all; flow of control may briefly move where you did not expect it;
10257some statements may not be executed because they compute constant
10258results or their values are already at hand; some statements may
10259execute in different places because they have been moved out of loops.
10260Nevertheless it is possible to debug optimized output.  This makes
10261it reasonable to use the optimizer for programs that might have bugs.
10262
10263If you are not using some other optimization option, consider
10264using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.  
10265With no @option{-O} option at all, some compiler passes that collect
10266information useful for debugging do not run at all, so that
10267@option{-Og} may result in a better debugging experience.
10268
10269@table @gcctabopt
10270@item -g
10271@opindex g
10272Produce debugging information in the operating system's native format
10273(stabs, COFF, XCOFF, or DWARF)@.  GDB can work with this debugging
10274information.
10275
10276On most systems that use stabs format, @option{-g} enables use of extra
10277debugging information that only GDB can use; this extra information
10278makes debugging work better in GDB but probably makes other debuggers
10279crash or
10280refuse to read the program.  If you want to control for certain whether
10281to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
10282@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
10283
10284@item -ggdb
10285@opindex ggdb
10286Produce debugging information for use by GDB@.  This means to use the
10287most expressive format available (DWARF, stabs, or the native format
10288if neither of those are supported), including GDB extensions if at all
10289possible.
10290
10291@item -gdwarf
10292@itemx -gdwarf-@var{version}
10293@opindex gdwarf
10294Produce debugging information in DWARF format (if that is supported).
10295The value of @var{version} may be either 2, 3, 4 or 5; the default
10296version for most targets is 5 (with the exception of VxWorks, TPF and
10297Darwin/Mac OS X, which default to version 2, and AIX, which defaults
10298to version 4).
10299
10300Note that with DWARF Version 2, some ports require and always
10301use some non-conflicting DWARF 3 extensions in the unwind tables.
10302
10303Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
10304for maximum benefit. Version 5 requires GDB 8.0 or higher.
10305
10306GCC no longer supports DWARF Version 1, which is substantially
10307different than Version 2 and later.  For historical reasons, some
10308other DWARF-related options such as
10309@option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
10310in their names, but apply to all currently-supported versions of DWARF.
10311
10312@item -gbtf
10313@opindex gbtf
10314Request BTF debug information.  BTF is the default debugging format for the
10315eBPF target.  On other targets, like x86, BTF debug information can be
10316generated along with DWARF debug information when both of the debug formats are
10317enabled explicitly via their respective command line options.
10318
10319@item -gctf
10320@itemx -gctf@var{level}
10321@opindex gctf
10322Request CTF debug information and use level to specify how much CTF debug
10323information should be produced.  If @option{-gctf} is specified
10324without a value for level, the default level of CTF debug information is 2.
10325
10326CTF debug information can be generated along with DWARF debug information when
10327both of the debug formats are enabled explicitly via their respective command
10328line options.
10329
10330Level 0 produces no CTF debug information at all.  Thus, @option{-gctf0}
10331negates @option{-gctf}.
10332
10333Level 1 produces CTF information for tracebacks only.  This includes callsite
10334information, but does not include type information.
10335
10336Level 2 produces type information for entities (functions, data objects etc.)
10337at file-scope or global-scope only.
10338
10339@item -gstabs
10340@opindex gstabs
10341Produce debugging information in stabs format (if that is supported),
10342without GDB extensions.  This is the format used by DBX on most BSD
10343systems.  On MIPS, Alpha and System V Release 4 systems this option
10344produces stabs debugging output that is not understood by DBX@.
10345On System V Release 4 systems this option requires the GNU assembler.
10346
10347@item -gstabs+
10348@opindex gstabs+
10349Produce debugging information in stabs format (if that is supported),
10350using GNU extensions understood only by the GNU debugger (GDB)@.  The
10351use of these extensions is likely to make other debuggers crash or
10352refuse to read the program.
10353
10354@item -gxcoff
10355@opindex gxcoff
10356Produce debugging information in XCOFF format (if that is supported).
10357This is the format used by the DBX debugger on IBM RS/6000 systems.
10358
10359@item -gxcoff+
10360@opindex gxcoff+
10361Produce debugging information in XCOFF format (if that is supported),
10362using GNU extensions understood only by the GNU debugger (GDB)@.  The
10363use of these extensions is likely to make other debuggers crash or
10364refuse to read the program, and may cause assemblers other than the GNU
10365assembler (GAS) to fail with an error.
10366
10367@item -gvms
10368@opindex gvms
10369Produce debugging information in Alpha/VMS debug format (if that is
10370supported).  This is the format used by DEBUG on Alpha/VMS systems.
10371
10372@item -g@var{level}
10373@itemx -ggdb@var{level}
10374@itemx -gstabs@var{level}
10375@itemx -gxcoff@var{level}
10376@itemx -gvms@var{level}
10377Request debugging information and also use @var{level} to specify how
10378much information.  The default level is 2.
10379
10380Level 0 produces no debug information at all.  Thus, @option{-g0} negates
10381@option{-g}.
10382
10383Level 1 produces minimal information, enough for making backtraces in
10384parts of the program that you don't plan to debug.  This includes
10385descriptions of functions and external variables, and line number
10386tables, but no information about local variables.
10387
10388Level 3 includes extra information, such as all the macro definitions
10389present in the program.  Some debuggers support macro expansion when
10390you use @option{-g3}.
10391
10392If you use multiple @option{-g} options, with or without level numbers,
10393the last such option is the one that is effective.
10394
10395@option{-gdwarf} does not accept a concatenated debug level, to avoid
10396confusion with @option{-gdwarf-@var{level}}.
10397Instead use an additional @option{-g@var{level}} option to change the
10398debug level for DWARF.
10399
10400@item -fno-eliminate-unused-debug-symbols
10401@opindex feliminate-unused-debug-symbols
10402@opindex fno-eliminate-unused-debug-symbols
10403By default, no debug information is produced for symbols that are not actually
10404used. Use this option if you want debug information for all symbols.
10405
10406@item -femit-class-debug-always
10407@opindex femit-class-debug-always
10408Instead of emitting debugging information for a C++ class in only one
10409object file, emit it in all object files using the class.  This option
10410should be used only with debuggers that are unable to handle the way GCC
10411normally emits debugging information for classes because using this
10412option increases the size of debugging information by as much as a
10413factor of two.
10414
10415@item -fno-merge-debug-strings
10416@opindex fmerge-debug-strings
10417@opindex fno-merge-debug-strings
10418Direct the linker to not merge together strings in the debugging
10419information that are identical in different object files.  Merging is
10420not supported by all assemblers or linkers.  Merging decreases the size
10421of the debug information in the output file at the cost of increasing
10422link processing time.  Merging is enabled by default.
10423
10424@item -fdebug-prefix-map=@var{old}=@var{new}
10425@opindex fdebug-prefix-map
10426When compiling files residing in directory @file{@var{old}}, record
10427debugging information describing them as if the files resided in
10428directory @file{@var{new}} instead.  This can be used to replace a
10429build-time path with an install-time path in the debug info.  It can
10430also be used to change an absolute path to a relative path by using
10431@file{.} for @var{new}.  This can give more reproducible builds, which
10432are location independent, but may require an extra command to tell GDB
10433where to find the source files. See also @option{-ffile-prefix-map}.
10434
10435@item -fvar-tracking
10436@opindex fvar-tracking
10437Run variable tracking pass.  It computes where variables are stored at each
10438position in code.  Better debugging information is then generated
10439(if the debugging information format supports this information).
10440
10441It is enabled by default when compiling with optimization (@option{-Os},
10442@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
10443the debug info format supports it.
10444
10445@item -fvar-tracking-assignments
10446@opindex fvar-tracking-assignments
10447@opindex fno-var-tracking-assignments
10448Annotate assignments to user variables early in the compilation and
10449attempt to carry the annotations over throughout the compilation all the
10450way to the end, in an attempt to improve debug information while
10451optimizing.  Use of @option{-gdwarf-4} is recommended along with it.
10452
10453It can be enabled even if var-tracking is disabled, in which case
10454annotations are created and maintained, but discarded at the end.
10455By default, this flag is enabled together with @option{-fvar-tracking},
10456except when selective scheduling is enabled.
10457
10458@item -gsplit-dwarf
10459@opindex gsplit-dwarf
10460If DWARF debugging information is enabled, separate as much debugging
10461information as possible into a separate output file with the extension
10462@file{.dwo}.  This option allows the build system to avoid linking files with
10463debug information.  To be useful, this option requires a debugger capable of
10464reading @file{.dwo} files.
10465
10466@item -gdwarf32
10467@itemx -gdwarf64
10468@opindex gdwarf32
10469@opindex gdwarf64
10470If DWARF debugging information is enabled, the @option{-gdwarf32} selects
10471the 32-bit DWARF format and the @option{-gdwarf64} selects the 64-bit
10472DWARF format.  The default is target specific, on most targets it is
10473@option{-gdwarf32} though.  The 32-bit DWARF format is smaller, but
10474can't support more than 2GiB of debug information in any of the DWARF
10475debug information sections.  The 64-bit DWARF format allows larger debug
10476information and might not be well supported by all consumers yet.
10477
10478@item -gdescribe-dies
10479@opindex gdescribe-dies
10480Add description attributes to some DWARF DIEs that have no name attribute,
10481such as artificial variables, external references and call site
10482parameter DIEs.
10483
10484@item -gpubnames
10485@opindex gpubnames
10486Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
10487
10488@item -ggnu-pubnames
10489@opindex ggnu-pubnames
10490Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
10491suitable for conversion into a GDB@ index.  This option is only useful
10492with a linker that can produce GDB@ index version 7.
10493
10494@item -fdebug-types-section
10495@opindex fdebug-types-section
10496@opindex fno-debug-types-section
10497When using DWARF Version 4 or higher, type DIEs can be put into
10498their own @code{.debug_types} section instead of making them part of the
10499@code{.debug_info} section.  It is more efficient to put them in a separate
10500comdat section since the linker can then remove duplicates.
10501But not all DWARF consumers support @code{.debug_types} sections yet
10502and on some objects @code{.debug_types} produces larger instead of smaller
10503debugging information.
10504
10505@item -grecord-gcc-switches
10506@itemx -gno-record-gcc-switches
10507@opindex grecord-gcc-switches
10508@opindex gno-record-gcc-switches
10509This switch causes the command-line options used to invoke the
10510compiler that may affect code generation to be appended to the
10511DW_AT_producer attribute in DWARF debugging information.  The options
10512are concatenated with spaces separating them from each other and from
10513the compiler version.  
10514It is enabled by default.
10515See also @option{-frecord-gcc-switches} for another
10516way of storing compiler options into the object file.  
10517
10518@item -gstrict-dwarf
10519@opindex gstrict-dwarf
10520Disallow using extensions of later DWARF standard version than selected
10521with @option{-gdwarf-@var{version}}.  On most targets using non-conflicting
10522DWARF extensions from later standard versions is allowed.
10523
10524@item -gno-strict-dwarf
10525@opindex gno-strict-dwarf
10526Allow using extensions of later DWARF standard version than selected with
10527@option{-gdwarf-@var{version}}.
10528
10529@item -gas-loc-support
10530@opindex gas-loc-support
10531Inform the compiler that the assembler supports @code{.loc} directives.
10532It may then use them for the assembler to generate DWARF2+ line number
10533tables.
10534
10535This is generally desirable, because assembler-generated line-number
10536tables are a lot more compact than those the compiler can generate
10537itself.
10538
10539This option will be enabled by default if, at GCC configure time, the
10540assembler was found to support such directives.
10541
10542@item -gno-as-loc-support
10543@opindex gno-as-loc-support
10544Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
10545line number tables are to be generated.
10546
10547@item -gas-locview-support
10548@opindex gas-locview-support
10549Inform the compiler that the assembler supports @code{view} assignment
10550and reset assertion checking in @code{.loc} directives.
10551
10552This option will be enabled by default if, at GCC configure time, the
10553assembler was found to support them.
10554
10555@item -gno-as-locview-support
10556Force GCC to assign view numbers internally, if
10557@option{-gvariable-location-views} are explicitly requested.
10558
10559@item -gcolumn-info
10560@itemx -gno-column-info
10561@opindex gcolumn-info
10562@opindex gno-column-info
10563Emit location column information into DWARF debugging information, rather
10564than just file and line.
10565This option is enabled by default.
10566
10567@item -gstatement-frontiers
10568@itemx -gno-statement-frontiers
10569@opindex gstatement-frontiers
10570@opindex gno-statement-frontiers
10571This option causes GCC to create markers in the internal representation
10572at the beginning of statements, and to keep them roughly in place
10573throughout compilation, using them to guide the output of @code{is_stmt}
10574markers in the line number table.  This is enabled by default when
10575compiling with optimization (@option{-Os}, @option{-O1}, @option{-O2},
10576@dots{}), and outputting DWARF 2 debug information at the normal level.
10577
10578@item -gvariable-location-views
10579@itemx -gvariable-location-views=incompat5
10580@itemx -gno-variable-location-views
10581@opindex gvariable-location-views
10582@opindex gvariable-location-views=incompat5
10583@opindex gno-variable-location-views
10584Augment variable location lists with progressive view numbers implied
10585from the line number table.  This enables debug information consumers to
10586inspect state at certain points of the program, even if no instructions
10587associated with the corresponding source locations are present at that
10588point.  If the assembler lacks support for view numbers in line number
10589tables, this will cause the compiler to emit the line number table,
10590which generally makes them somewhat less compact.  The augmented line
10591number tables and location lists are fully backward-compatible, so they
10592can be consumed by debug information consumers that are not aware of
10593these augmentations, but they won't derive any benefit from them either.
10594
10595This is enabled by default when outputting DWARF 2 debug information at
10596the normal level, as long as there is assembler support,
10597@option{-fvar-tracking-assignments} is enabled and
10598@option{-gstrict-dwarf} is not.  When assembler support is not
10599available, this may still be enabled, but it will force GCC to output
10600internal line number tables, and if
10601@option{-ginternal-reset-location-views} is not enabled, that will most
10602certainly lead to silently mismatching location views.
10603
10604There is a proposed representation for view numbers that is not backward
10605compatible with the location list format introduced in DWARF 5, that can
10606be enabled with @option{-gvariable-location-views=incompat5}.  This
10607option may be removed in the future, is only provided as a reference
10608implementation of the proposed representation.  Debug information
10609consumers are not expected to support this extended format, and they
10610would be rendered unable to decode location lists using it.
10611
10612@item -ginternal-reset-location-views
10613@itemx -gno-internal-reset-location-views
10614@opindex ginternal-reset-location-views
10615@opindex gno-internal-reset-location-views
10616Attempt to determine location views that can be omitted from location
10617view lists.  This requires the compiler to have very accurate insn
10618length estimates, which isn't always the case, and it may cause
10619incorrect view lists to be generated silently when using an assembler
10620that does not support location view lists.  The GNU assembler will flag
10621any such error as a @code{view number mismatch}.  This is only enabled
10622on ports that define a reliable estimation function.
10623
10624@item -ginline-points
10625@itemx -gno-inline-points
10626@opindex ginline-points
10627@opindex gno-inline-points
10628Generate extended debug information for inlined functions.  Location
10629view tracking markers are inserted at inlined entry points, so that
10630address and view numbers can be computed and output in debug
10631information.  This can be enabled independently of location views, in
10632which case the view numbers won't be output, but it can only be enabled
10633along with statement frontiers, and it is only enabled by default if
10634location views are enabled.
10635
10636@item -gz@r{[}=@var{type}@r{]}
10637@opindex gz
10638Produce compressed debug sections in DWARF format, if that is supported.
10639If @var{type} is not given, the default type depends on the capabilities
10640of the assembler and linker used.  @var{type} may be one of
10641@samp{none} (don't compress debug sections), @samp{zlib} (use zlib
10642compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
10643compression in traditional GNU format).  If the linker doesn't support
10644writing compressed debug sections, the option is rejected.  Otherwise,
10645if the assembler does not support them, @option{-gz} is silently ignored
10646when producing object files.
10647
10648@item -femit-struct-debug-baseonly
10649@opindex femit-struct-debug-baseonly
10650Emit debug information for struct-like types
10651only when the base name of the compilation source file
10652matches the base name of file in which the struct is defined.
10653
10654This option substantially reduces the size of debugging information,
10655but at significant potential loss in type information to the debugger.
10656See @option{-femit-struct-debug-reduced} for a less aggressive option.
10657See @option{-femit-struct-debug-detailed} for more detailed control.
10658
10659This option works only with DWARF debug output.
10660
10661@item -femit-struct-debug-reduced
10662@opindex femit-struct-debug-reduced
10663Emit debug information for struct-like types
10664only when the base name of the compilation source file
10665matches the base name of file in which the type is defined,
10666unless the struct is a template or defined in a system header.
10667
10668This option significantly reduces the size of debugging information,
10669with some potential loss in type information to the debugger.
10670See @option{-femit-struct-debug-baseonly} for a more aggressive option.
10671See @option{-femit-struct-debug-detailed} for more detailed control.
10672
10673This option works only with DWARF debug output.
10674
10675@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
10676@opindex femit-struct-debug-detailed
10677Specify the struct-like types
10678for which the compiler generates debug information.
10679The intent is to reduce duplicate struct debug information
10680between different object files within the same program.
10681
10682This option is a detailed version of
10683@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
10684which serves for most needs.
10685
10686A specification has the syntax@*
10687[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
10688
10689The optional first word limits the specification to
10690structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
10691A struct type is used directly when it is the type of a variable, member.
10692Indirect uses arise through pointers to structs.
10693That is, when use of an incomplete struct is valid, the use is indirect.
10694An example is
10695@samp{struct one direct; struct two * indirect;}.
10696
10697The optional second word limits the specification to
10698ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
10699Generic structs are a bit complicated to explain.
10700For C++, these are non-explicit specializations of template classes,
10701or non-template classes within the above.
10702Other programming languages have generics,
10703but @option{-femit-struct-debug-detailed} does not yet implement them.
10704
10705The third word specifies the source files for those
10706structs for which the compiler should emit debug information.
10707The values @samp{none} and @samp{any} have the normal meaning.
10708The value @samp{base} means that
10709the base of name of the file in which the type declaration appears
10710must match the base of the name of the main compilation file.
10711In practice, this means that when compiling @file{foo.c}, debug information
10712is generated for types declared in that file and @file{foo.h},
10713but not other header files.
10714The value @samp{sys} means those types satisfying @samp{base}
10715or declared in system or compiler headers.
10716
10717You may need to experiment to determine the best settings for your application.
10718
10719The default is @option{-femit-struct-debug-detailed=all}.
10720
10721This option works only with DWARF debug output.
10722
10723@item -fno-dwarf2-cfi-asm
10724@opindex fdwarf2-cfi-asm
10725@opindex fno-dwarf2-cfi-asm
10726Emit DWARF unwind info as compiler generated @code{.eh_frame} section
10727instead of using GAS @code{.cfi_*} directives.
10728
10729@item -fno-eliminate-unused-debug-types
10730@opindex feliminate-unused-debug-types
10731@opindex fno-eliminate-unused-debug-types
10732Normally, when producing DWARF output, GCC avoids producing debug symbol 
10733output for types that are nowhere used in the source file being compiled.
10734Sometimes it is useful to have GCC emit debugging
10735information for all types declared in a compilation
10736unit, regardless of whether or not they are actually used
10737in that compilation unit, for example 
10738if, in the debugger, you want to cast a value to a type that is
10739not actually used in your program (but is declared).  More often,
10740however, this results in a significant amount of wasted space.
10741@end table
10742
10743@node Optimize Options
10744@section Options That Control Optimization
10745@cindex optimize options
10746@cindex options, optimization
10747
10748These options control various sorts of optimizations.
10749
10750Without any optimization option, the compiler's goal is to reduce the
10751cost of compilation and to make debugging produce the expected
10752results.  Statements are independent: if you stop the program with a
10753breakpoint between statements, you can then assign a new value to any
10754variable or change the program counter to any other statement in the
10755function and get exactly the results you expect from the source
10756code.
10757
10758Turning on optimization flags makes the compiler attempt to improve
10759the performance and/or code size at the expense of compilation time
10760and possibly the ability to debug the program.
10761
10762The compiler performs optimization based on the knowledge it has of the
10763program.  Compiling multiple files at once to a single output file mode allows
10764the compiler to use information gained from all of the files when compiling
10765each of them.
10766
10767Not all optimizations are controlled directly by a flag.  Only
10768optimizations that have a flag are listed in this section.
10769
10770Most optimizations are completely disabled at @option{-O0} or if an
10771@option{-O} level is not set on the command line, even if individual
10772optimization flags are specified.  Similarly, @option{-Og} suppresses
10773many optimization passes.
10774
10775Depending on the target and how GCC was configured, a slightly different
10776set of optimizations may be enabled at each @option{-O} level than
10777those listed here.  You can invoke GCC with @option{-Q --help=optimizers}
10778to find out the exact set of optimizations that are enabled at each level.
10779@xref{Overall Options}, for examples.
10780
10781@table @gcctabopt
10782@item -O
10783@itemx -O1
10784@opindex O
10785@opindex O1
10786Optimize.  Optimizing compilation takes somewhat more time, and a lot
10787more memory for a large function.
10788
10789With @option{-O}, the compiler tries to reduce code size and execution
10790time, without performing any optimizations that take a great deal of
10791compilation time.
10792
10793@c Note that in addition to the default_options_table list in opts.cc,
10794@c several optimization flags default to true but control optimization
10795@c passes that are explicitly disabled at -O0.
10796
10797@option{-O} turns on the following optimization flags:
10798
10799@c Please keep the following list alphabetized.
10800@gccoptlist{-fauto-inc-dec @gol
10801-fbranch-count-reg @gol
10802-fcombine-stack-adjustments @gol
10803-fcompare-elim @gol
10804-fcprop-registers @gol
10805-fdce @gol
10806-fdefer-pop @gol
10807-fdelayed-branch @gol
10808-fdse @gol
10809-fforward-propagate @gol
10810-fguess-branch-probability @gol
10811-fif-conversion @gol
10812-fif-conversion2 @gol
10813-finline-functions-called-once @gol
10814-fipa-modref @gol
10815-fipa-profile @gol
10816-fipa-pure-const @gol
10817-fipa-reference @gol
10818-fipa-reference-addressable @gol
10819-fmerge-constants @gol
10820-fmove-loop-invariants @gol
10821-fmove-loop-stores@gol
10822-fomit-frame-pointer @gol
10823-freorder-blocks @gol
10824-fshrink-wrap @gol
10825-fshrink-wrap-separate @gol
10826-fsplit-wide-types @gol
10827-fssa-backprop @gol
10828-fssa-phiopt @gol
10829-ftree-bit-ccp @gol
10830-ftree-ccp @gol
10831-ftree-ch @gol
10832-ftree-coalesce-vars @gol
10833-ftree-copy-prop @gol
10834-ftree-dce @gol
10835-ftree-dominator-opts @gol
10836-ftree-dse @gol
10837-ftree-forwprop @gol
10838-ftree-fre @gol
10839-ftree-phiprop @gol
10840-ftree-pta @gol
10841-ftree-scev-cprop @gol
10842-ftree-sink @gol
10843-ftree-slsr @gol
10844-ftree-sra @gol
10845-ftree-ter @gol
10846-funit-at-a-time}
10847
10848@item -O2
10849@opindex O2
10850Optimize even more.  GCC performs nearly all supported optimizations
10851that do not involve a space-speed tradeoff.
10852As compared to @option{-O}, this option increases both compilation time
10853and the performance of the generated code.
10854
10855@option{-O2} turns on all optimization flags specified by @option{-O1}.  It
10856also turns on the following optimization flags:
10857
10858@c Please keep the following list alphabetized!
10859@gccoptlist{-falign-functions  -falign-jumps @gol
10860-falign-labels  -falign-loops @gol
10861-fcaller-saves @gol
10862-fcode-hoisting @gol
10863-fcrossjumping @gol
10864-fcse-follow-jumps  -fcse-skip-blocks @gol
10865-fdelete-null-pointer-checks @gol
10866-fdevirtualize  -fdevirtualize-speculatively @gol
10867-fexpensive-optimizations @gol
10868-ffinite-loops @gol
10869-fgcse  -fgcse-lm  @gol
10870-fhoist-adjacent-loads @gol
10871-finline-functions @gol
10872-finline-small-functions @gol
10873-findirect-inlining @gol
10874-fipa-bit-cp  -fipa-cp  -fipa-icf @gol
10875-fipa-ra  -fipa-sra  -fipa-vrp @gol
10876-fisolate-erroneous-paths-dereference @gol
10877-flra-remat @gol
10878-foptimize-sibling-calls @gol
10879-foptimize-strlen @gol
10880-fpartial-inlining @gol
10881-fpeephole2 @gol
10882-freorder-blocks-algorithm=stc @gol
10883-freorder-blocks-and-partition  -freorder-functions @gol
10884-frerun-cse-after-loop  @gol
10885-fschedule-insns  -fschedule-insns2 @gol
10886-fsched-interblock  -fsched-spec @gol
10887-fstore-merging @gol
10888-fstrict-aliasing @gol
10889-fthread-jumps @gol
10890-ftree-builtin-call-dce @gol
10891-ftree-loop-vectorize @gol
10892-ftree-pre @gol
10893-ftree-slp-vectorize @gol
10894-ftree-switch-conversion  -ftree-tail-merge @gol
10895-ftree-vrp @gol
10896-fvect-cost-model=very-cheap}
10897
10898Please note the warning under @option{-fgcse} about
10899invoking @option{-O2} on programs that use computed gotos.
10900
10901@item -O3
10902@opindex O3
10903Optimize yet more.  @option{-O3} turns on all optimizations specified
10904by @option{-O2} and also turns on the following optimization flags:
10905
10906@c Please keep the following list alphabetized!
10907@gccoptlist{-fgcse-after-reload @gol
10908-fipa-cp-clone
10909-floop-interchange @gol
10910-floop-unroll-and-jam @gol
10911-fpeel-loops @gol
10912-fpredictive-commoning @gol
10913-fsplit-loops @gol
10914-fsplit-paths @gol
10915-ftree-loop-distribution @gol
10916-ftree-partial-pre @gol
10917-funswitch-loops @gol
10918-fvect-cost-model=dynamic @gol
10919-fversion-loops-for-strides}
10920
10921@item -O0
10922@opindex O0
10923Reduce compilation time and make debugging produce the expected
10924results.  This is the default.
10925
10926@item -Os
10927@opindex Os
10928Optimize for size.  @option{-Os} enables all @option{-O2} optimizations 
10929except those that often increase code size:
10930
10931@gccoptlist{-falign-functions  -falign-jumps @gol
10932-falign-labels  -falign-loops @gol
10933-fprefetch-loop-arrays  -freorder-blocks-algorithm=stc}
10934
10935It also enables @option{-finline-functions}, causes the compiler to tune for
10936code size rather than execution speed, and performs further optimizations
10937designed to reduce code size.
10938
10939@item -Ofast
10940@opindex Ofast
10941Disregard strict standards compliance.  @option{-Ofast} enables all
10942@option{-O3} optimizations.  It also enables optimizations that are not
10943valid for all standard-compliant programs.
10944It turns on @option{-ffast-math}, @option{-fallow-store-data-races}
10945and the Fortran-specific @option{-fstack-arrays}, unless
10946@option{-fmax-stack-var-size} is specified, and @option{-fno-protect-parens}.
10947It turns off @option{-fsemantic-interposition}.
10948
10949@item -Og
10950@opindex Og
10951Optimize debugging experience.  @option{-Og} should be the optimization
10952level of choice for the standard edit-compile-debug cycle, offering
10953a reasonable level of optimization while maintaining fast compilation
10954and a good debugging experience.  It is a better choice than @option{-O0}
10955for producing debuggable code because some compiler passes
10956that collect debug information are disabled at @option{-O0}.
10957
10958Like @option{-O0}, @option{-Og} completely disables a number of 
10959optimization passes so that individual options controlling them have
10960no effect.  Otherwise @option{-Og} enables all @option{-O1} 
10961optimization flags except for those that may interfere with debugging:
10962
10963@gccoptlist{-fbranch-count-reg  -fdelayed-branch @gol
10964-fdse  -fif-conversion  -fif-conversion2  @gol
10965-finline-functions-called-once @gol
10966-fmove-loop-invariants  -fmove-loop-stores  -fssa-phiopt @gol
10967-ftree-bit-ccp  -ftree-dse  -ftree-pta  -ftree-sra}
10968
10969@item -Oz
10970@opindex Oz
10971Optimize aggressively for size rather than speed.  This may increase
10972the number of instructions executed if those instructions require
10973fewer bytes to encode.  @option{-Oz} behaves similarly to @option{-Os}
10974including enabling most @option{-O2} optimizations.
10975
10976@end table
10977
10978If you use multiple @option{-O} options, with or without level numbers,
10979the last such option is the one that is effective.
10980
10981Options of the form @option{-f@var{flag}} specify machine-independent
10982flags.  Most flags have both positive and negative forms; the negative
10983form of @option{-ffoo} is @option{-fno-foo}.  In the table
10984below, only one of the forms is listed---the one you typically 
10985use.  You can figure out the other form by either removing @samp{no-}
10986or adding it.
10987
10988The following options control specific optimizations.  They are either
10989activated by @option{-O} options or are related to ones that are.  You
10990can use the following flags in the rare cases when ``fine-tuning'' of
10991optimizations to be performed is desired.
10992
10993@table @gcctabopt
10994@item -fno-defer-pop
10995@opindex fno-defer-pop
10996@opindex fdefer-pop
10997For machines that must pop arguments after a function call, always pop 
10998the arguments as soon as each function returns.  
10999At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
11000this allows the compiler to let arguments accumulate on the stack for several
11001function calls and pop them all at once.
11002
11003@item -fforward-propagate
11004@opindex fforward-propagate
11005Perform a forward propagation pass on RTL@.  The pass tries to combine two
11006instructions and checks if the result can be simplified.  If loop unrolling
11007is active, two passes are performed and the second is scheduled after
11008loop unrolling.
11009
11010This option is enabled by default at optimization levels @option{-O1},
11011@option{-O2}, @option{-O3}, @option{-Os}.
11012
11013@item -ffp-contract=@var{style}
11014@opindex ffp-contract
11015@option{-ffp-contract=off} disables floating-point expression contraction.
11016@option{-ffp-contract=fast} enables floating-point expression contraction
11017such as forming of fused multiply-add operations if the target has
11018native support for them.
11019@option{-ffp-contract=on} enables floating-point expression contraction
11020if allowed by the language standard.  This is currently not implemented
11021and treated equal to @option{-ffp-contract=off}.
11022
11023The default is @option{-ffp-contract=fast}.
11024
11025@item -fomit-frame-pointer
11026@opindex fomit-frame-pointer
11027Omit the frame pointer in functions that don't need one.  This avoids the
11028instructions to save, set up and restore the frame pointer; on many targets
11029it also makes an extra register available.
11030
11031On some targets this flag has no effect because the standard calling sequence
11032always uses a frame pointer, so it cannot be omitted.
11033
11034Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
11035is used in all functions.  Several targets always omit the frame pointer in
11036leaf functions.
11037
11038Enabled by default at @option{-O1} and higher.
11039
11040@item -foptimize-sibling-calls
11041@opindex foptimize-sibling-calls
11042Optimize sibling and tail recursive calls.
11043
11044Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11045
11046@item -foptimize-strlen
11047@opindex foptimize-strlen
11048Optimize various standard C string functions (e.g.@: @code{strlen},
11049@code{strchr} or @code{strcpy}) and
11050their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
11051
11052Enabled at levels @option{-O2}, @option{-O3}.
11053
11054@item -fno-inline
11055@opindex fno-inline
11056@opindex finline
11057Do not expand any functions inline apart from those marked with
11058the @code{always_inline} attribute.  This is the default when not
11059optimizing.
11060
11061Single functions can be exempted from inlining by marking them
11062with the @code{noinline} attribute.
11063
11064@item -finline-small-functions
11065@opindex finline-small-functions
11066Integrate functions into their callers when their body is smaller than expected
11067function call code (so overall size of program gets smaller).  The compiler
11068heuristically decides which functions are simple enough to be worth integrating
11069in this way.  This inlining applies to all functions, even those not declared
11070inline.
11071
11072Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11073
11074@item -findirect-inlining
11075@opindex findirect-inlining
11076Inline also indirect calls that are discovered to be known at compile
11077time thanks to previous inlining.  This option has any effect only
11078when inlining itself is turned on by the @option{-finline-functions}
11079or @option{-finline-small-functions} options.
11080
11081Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11082
11083@item -finline-functions
11084@opindex finline-functions
11085Consider all functions for inlining, even if they are not declared inline.
11086The compiler heuristically decides which functions are worth integrating
11087in this way.
11088
11089If all calls to a given function are integrated, and the function is
11090declared @code{static}, then the function is normally not output as
11091assembler code in its own right.
11092
11093Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.  Also enabled
11094by @option{-fprofile-use} and @option{-fauto-profile}.
11095
11096@item -finline-functions-called-once
11097@opindex finline-functions-called-once
11098Consider all @code{static} functions called once for inlining into their
11099caller even if they are not marked @code{inline}.  If a call to a given
11100function is integrated, then the function is not output as assembler code
11101in its own right.
11102
11103Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
11104but not @option{-Og}.
11105
11106@item -fearly-inlining
11107@opindex fearly-inlining
11108Inline functions marked by @code{always_inline} and functions whose body seems
11109smaller than the function call overhead early before doing
11110@option{-fprofile-generate} instrumentation and real inlining pass.  Doing so
11111makes profiling significantly cheaper and usually inlining faster on programs
11112having large chains of nested wrapper functions.
11113
11114Enabled by default.
11115
11116@item -fipa-sra
11117@opindex fipa-sra
11118Perform interprocedural scalar replacement of aggregates, removal of
11119unused parameters and replacement of parameters passed by reference
11120by parameters passed by value.
11121
11122Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
11123
11124@item -finline-limit=@var{n}
11125@opindex finline-limit
11126By default, GCC limits the size of functions that can be inlined.  This flag
11127allows coarse control of this limit.  @var{n} is the size of functions that
11128can be inlined in number of pseudo instructions.
11129
11130Inlining is actually controlled by a number of parameters, which may be
11131specified individually by using @option{--param @var{name}=@var{value}}.
11132The @option{-finline-limit=@var{n}} option sets some of these parameters
11133as follows:
11134
11135@table @gcctabopt
11136@item max-inline-insns-single
11137is set to @var{n}/2.
11138@item max-inline-insns-auto
11139is set to @var{n}/2.
11140@end table
11141
11142See below for a documentation of the individual
11143parameters controlling inlining and for the defaults of these parameters.
11144
11145@emph{Note:} there may be no value to @option{-finline-limit} that results
11146in default behavior.
11147
11148@emph{Note:} pseudo instruction represents, in this particular context, an
11149abstract measurement of function's size.  In no way does it represent a count
11150of assembly instructions and as such its exact meaning might change from one
11151release to an another.
11152
11153@item -fno-keep-inline-dllexport
11154@opindex fno-keep-inline-dllexport
11155@opindex fkeep-inline-dllexport
11156This is a more fine-grained version of @option{-fkeep-inline-functions},
11157which applies only to functions that are declared using the @code{dllexport}
11158attribute or declspec.  @xref{Function Attributes,,Declaring Attributes of
11159Functions}.
11160
11161@item -fkeep-inline-functions
11162@opindex fkeep-inline-functions
11163In C, emit @code{static} functions that are declared @code{inline}
11164into the object file, even if the function has been inlined into all
11165of its callers.  This switch does not affect functions using the
11166@code{extern inline} extension in GNU C90@.  In C++, emit any and all
11167inline functions into the object file.
11168
11169@item -fkeep-static-functions
11170@opindex fkeep-static-functions
11171Emit @code{static} functions into the object file, even if the function
11172is never used.
11173
11174@item -fkeep-static-consts
11175@opindex fkeep-static-consts
11176Emit variables declared @code{static const} when optimization isn't turned
11177on, even if the variables aren't referenced.
11178
11179GCC enables this option by default.  If you want to force the compiler to
11180check if a variable is referenced, regardless of whether or not
11181optimization is turned on, use the @option{-fno-keep-static-consts} option.
11182
11183@item -fmerge-constants
11184@opindex fmerge-constants
11185Attempt to merge identical constants (string constants and floating-point
11186constants) across compilation units.
11187
11188This option is the default for optimized compilation if the assembler and
11189linker support it.  Use @option{-fno-merge-constants} to inhibit this
11190behavior.
11191
11192Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
11193
11194@item -fmerge-all-constants
11195@opindex fmerge-all-constants
11196Attempt to merge identical constants and identical variables.
11197
11198This option implies @option{-fmerge-constants}.  In addition to
11199@option{-fmerge-constants} this considers e.g.@: even constant initialized
11200arrays or initialized constant variables with integral or floating-point
11201types.  Languages like C or C++ require each variable, including multiple
11202instances of the same variable in recursive calls, to have distinct locations,
11203so using this option results in non-conforming
11204behavior.
11205
11206@item -fmodulo-sched
11207@opindex fmodulo-sched
11208Perform swing modulo scheduling immediately before the first scheduling
11209pass.  This pass looks at innermost loops and reorders their
11210instructions by overlapping different iterations.
11211
11212@item -fmodulo-sched-allow-regmoves
11213@opindex fmodulo-sched-allow-regmoves
11214Perform more aggressive SMS-based modulo scheduling with register moves
11215allowed.  By setting this flag certain anti-dependences edges are
11216deleted, which triggers the generation of reg-moves based on the
11217life-range analysis.  This option is effective only with
11218@option{-fmodulo-sched} enabled.
11219
11220@item -fno-branch-count-reg
11221@opindex fno-branch-count-reg
11222@opindex fbranch-count-reg
11223Disable the optimization pass that scans for opportunities to use 
11224``decrement and branch'' instructions on a count register instead of
11225instruction sequences that decrement a register, compare it against zero, and
11226then branch based upon the result.  This option is only meaningful on
11227architectures that support such instructions, which include x86, PowerPC,
11228IA-64 and S/390.  Note that the @option{-fno-branch-count-reg} option
11229doesn't remove the decrement and branch instructions from the generated
11230instruction stream introduced by other optimization passes.
11231
11232The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
11233except for @option{-Og}.
11234
11235@item -fno-function-cse
11236@opindex fno-function-cse
11237@opindex ffunction-cse
11238Do not put function addresses in registers; make each instruction that
11239calls a constant function contain the function's address explicitly.
11240
11241This option results in less efficient code, but some strange hacks
11242that alter the assembler output may be confused by the optimizations
11243performed when this option is not used.
11244
11245The default is @option{-ffunction-cse}
11246
11247@item -fno-zero-initialized-in-bss
11248@opindex fno-zero-initialized-in-bss
11249@opindex fzero-initialized-in-bss
11250If the target supports a BSS section, GCC by default puts variables that
11251are initialized to zero into BSS@.  This can save space in the resulting
11252code.
11253
11254This option turns off this behavior because some programs explicitly
11255rely on variables going to the data section---e.g., so that the
11256resulting executable can find the beginning of that section and/or make
11257assumptions based on that.
11258
11259The default is @option{-fzero-initialized-in-bss}.
11260
11261@item -fthread-jumps
11262@opindex fthread-jumps
11263Perform optimizations that check to see if a jump branches to a
11264location where another comparison subsumed by the first is found.  If
11265so, the first branch is redirected to either the destination of the
11266second branch or a point immediately following it, depending on whether
11267the condition is known to be true or false.
11268
11269Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
11270
11271@item -fsplit-wide-types
11272@opindex fsplit-wide-types
11273When using a type that occupies multiple registers, such as @code{long
11274long} on a 32-bit system, split the registers apart and allocate them
11275independently.  This normally generates better code for those types,
11276but may make debugging more difficult.
11277
11278Enabled at levels @option{-O1}, @option{-O2}, @option{-O3},
11279@option{-Os}.
11280
11281@item -fsplit-wide-types-early
11282@opindex fsplit-wide-types-early
11283Fully split wide types early, instead of very late.
11284This option has no effect unless @option{-fsplit-wide-types} is turned on.
11285
11286This is the default on some targets.
11287
11288@item -fcse-follow-jumps
11289@opindex fcse-follow-jumps
11290In common subexpression elimination (CSE), scan through jump instructions
11291when the target of the jump is not reached by any other path.  For
11292example, when CSE encounters an @code{if} statement with an
11293@code{else} clause, CSE follows the jump when the condition
11294tested is false.
11295
11296Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11297
11298@item -fcse-skip-blocks
11299@opindex fcse-skip-blocks
11300This is similar to @option{-fcse-follow-jumps}, but causes CSE to
11301follow jumps that conditionally skip over blocks.  When CSE
11302encounters a simple @code{if} statement with no else clause,
11303@option{-fcse-skip-blocks} causes CSE to follow the jump around the
11304body of the @code{if}.
11305
11306Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11307
11308@item -frerun-cse-after-loop
11309@opindex frerun-cse-after-loop
11310Re-run common subexpression elimination after loop optimizations are
11311performed.
11312
11313Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11314
11315@item -fgcse
11316@opindex fgcse
11317Perform a global common subexpression elimination pass.
11318This pass also performs global constant and copy propagation.
11319
11320@emph{Note:} When compiling a program using computed gotos, a GCC
11321extension, you may get better run-time performance if you disable
11322the global common subexpression elimination pass by adding
11323@option{-fno-gcse} to the command line.
11324
11325Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11326
11327@item -fgcse-lm
11328@opindex fgcse-lm
11329When @option{-fgcse-lm} is enabled, global common subexpression elimination
11330attempts to move loads that are only killed by stores into themselves.  This
11331allows a loop containing a load/store sequence to be changed to a load outside
11332the loop, and a copy/store within the loop.
11333
11334Enabled by default when @option{-fgcse} is enabled.
11335
11336@item -fgcse-sm
11337@opindex fgcse-sm
11338When @option{-fgcse-sm} is enabled, a store motion pass is run after
11339global common subexpression elimination.  This pass attempts to move
11340stores out of loops.  When used in conjunction with @option{-fgcse-lm},
11341loops containing a load/store sequence can be changed to a load before
11342the loop and a store after the loop.
11343
11344Not enabled at any optimization level.
11345
11346@item -fgcse-las
11347@opindex fgcse-las
11348When @option{-fgcse-las} is enabled, the global common subexpression
11349elimination pass eliminates redundant loads that come after stores to the
11350same memory location (both partial and full redundancies).
11351
11352Not enabled at any optimization level.
11353
11354@item -fgcse-after-reload
11355@opindex fgcse-after-reload
11356When @option{-fgcse-after-reload} is enabled, a redundant load elimination
11357pass is performed after reload.  The purpose of this pass is to clean up
11358redundant spilling.
11359
11360Enabled by @option{-O3}, @option{-fprofile-use} and @option{-fauto-profile}.
11361
11362@item -faggressive-loop-optimizations
11363@opindex faggressive-loop-optimizations
11364This option tells the loop optimizer to use language constraints to
11365derive bounds for the number of iterations of a loop.  This assumes that
11366loop code does not invoke undefined behavior by for example causing signed
11367integer overflows or out-of-bound array accesses.  The bounds for the
11368number of iterations of a loop are used to guide loop unrolling and peeling
11369and loop exit test optimizations.
11370This option is enabled by default.
11371
11372@item -funconstrained-commons
11373@opindex funconstrained-commons
11374This option tells the compiler that variables declared in common blocks
11375(e.g.@: Fortran) may later be overridden with longer trailing arrays. This
11376prevents certain optimizations that depend on knowing the array bounds.
11377
11378@item -fcrossjumping
11379@opindex fcrossjumping
11380Perform cross-jumping transformation.
11381This transformation unifies equivalent code and saves code size.  The
11382resulting code may or may not perform better than without cross-jumping.
11383
11384Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11385
11386@item -fauto-inc-dec
11387@opindex fauto-inc-dec
11388Combine increments or decrements of addresses with memory accesses.
11389This pass is always skipped on architectures that do not have
11390instructions to support this.  Enabled by default at @option{-O1} and
11391higher on architectures that support this.
11392
11393@item -fdce
11394@opindex fdce
11395Perform dead code elimination (DCE) on RTL@.
11396Enabled by default at @option{-O1} and higher.
11397
11398@item -fdse
11399@opindex fdse
11400Perform dead store elimination (DSE) on RTL@.
11401Enabled by default at @option{-O1} and higher.
11402
11403@item -fif-conversion
11404@opindex fif-conversion
11405Attempt to transform conditional jumps into branch-less equivalents.  This
11406includes use of conditional moves, min, max, set flags and abs instructions, and
11407some tricks doable by standard arithmetics.  The use of conditional execution
11408on chips where it is available is controlled by @option{-fif-conversion2}.
11409
11410Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}, but
11411not with @option{-Og}.
11412
11413@item -fif-conversion2
11414@opindex fif-conversion2
11415Use conditional execution (where available) to transform conditional jumps into
11416branch-less equivalents.
11417
11418Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}, but
11419not with @option{-Og}.
11420
11421@item -fdeclone-ctor-dtor
11422@opindex fdeclone-ctor-dtor
11423The C++ ABI requires multiple entry points for constructors and
11424destructors: one for a base subobject, one for a complete object, and
11425one for a virtual destructor that calls operator delete afterwards.
11426For a hierarchy with virtual bases, the base and complete variants are
11427clones, which means two copies of the function.  With this option, the
11428base and complete variants are changed to be thunks that call a common
11429implementation.
11430
11431Enabled by @option{-Os}.
11432
11433@item -fdelete-null-pointer-checks
11434@opindex fdelete-null-pointer-checks
11435Assume that programs cannot safely dereference null pointers, and that
11436no code or data element resides at address zero.
11437This option enables simple constant
11438folding optimizations at all optimization levels.  In addition, other
11439optimization passes in GCC use this flag to control global dataflow
11440analyses that eliminate useless checks for null pointers; these assume
11441that a memory access to address zero always results in a trap, so
11442that if a pointer is checked after it has already been dereferenced,
11443it cannot be null.
11444
11445Note however that in some environments this assumption is not true.
11446Use @option{-fno-delete-null-pointer-checks} to disable this optimization
11447for programs that depend on that behavior.
11448
11449This option is enabled by default on most targets.  On Nios II ELF, it
11450defaults to off.  On AVR, CR16, and MSP430, this option is completely disabled.
11451
11452Passes that use the dataflow information
11453are enabled independently at different optimization levels.
11454
11455@item -fdevirtualize
11456@opindex fdevirtualize
11457Attempt to convert calls to virtual functions to direct calls.  This
11458is done both within a procedure and interprocedurally as part of
11459indirect inlining (@option{-findirect-inlining}) and interprocedural constant
11460propagation (@option{-fipa-cp}).
11461Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11462
11463@item -fdevirtualize-speculatively
11464@opindex fdevirtualize-speculatively
11465Attempt to convert calls to virtual functions to speculative direct calls.
11466Based on the analysis of the type inheritance graph, determine for a given call
11467the set of likely targets. If the set is small, preferably of size 1, change
11468the call into a conditional deciding between direct and indirect calls.  The
11469speculative calls enable more optimizations, such as inlining.  When they seem
11470useless after further optimization, they are converted back into original form.
11471
11472@item -fdevirtualize-at-ltrans
11473@opindex fdevirtualize-at-ltrans
11474Stream extra information needed for aggressive devirtualization when running
11475the link-time optimizer in local transformation mode.  
11476This option enables more devirtualization but
11477significantly increases the size of streamed data. For this reason it is
11478disabled by default.
11479
11480@item -fexpensive-optimizations
11481@opindex fexpensive-optimizations
11482Perform a number of minor optimizations that are relatively expensive.
11483
11484Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11485
11486@item -free
11487@opindex free
11488Attempt to remove redundant extension instructions.  This is especially
11489helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
11490registers after writing to their lower 32-bit half.
11491
11492Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
11493@option{-O3}, @option{-Os}.
11494
11495@item -fno-lifetime-dse
11496@opindex fno-lifetime-dse
11497@opindex flifetime-dse
11498In C++ the value of an object is only affected by changes within its
11499lifetime: when the constructor begins, the object has an indeterminate
11500value, and any changes during the lifetime of the object are dead when
11501the object is destroyed.  Normally dead store elimination will take
11502advantage of this; if your code relies on the value of the object
11503storage persisting beyond the lifetime of the object, you can use this
11504flag to disable this optimization.  To preserve stores before the
11505constructor starts (e.g.@: because your operator new clears the object
11506storage) but still treat the object as dead after the destructor, you
11507can use @option{-flifetime-dse=1}.  The default behavior can be
11508explicitly selected with @option{-flifetime-dse=2}.
11509@option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
11510
11511@item -flive-range-shrinkage
11512@opindex flive-range-shrinkage
11513Attempt to decrease register pressure through register live range
11514shrinkage.  This is helpful for fast processors with small or moderate
11515size register sets.
11516
11517@item -fira-algorithm=@var{algorithm}
11518@opindex fira-algorithm
11519Use the specified coloring algorithm for the integrated register
11520allocator.  The @var{algorithm} argument can be @samp{priority}, which
11521specifies Chow's priority coloring, or @samp{CB}, which specifies
11522Chaitin-Briggs coloring.  Chaitin-Briggs coloring is not implemented
11523for all architectures, but for those targets that do support it, it is
11524the default because it generates better code.
11525
11526@item -fira-region=@var{region}
11527@opindex fira-region
11528Use specified regions for the integrated register allocator.  The
11529@var{region} argument should be one of the following:
11530
11531@table @samp
11532
11533@item all
11534Use all loops as register allocation regions.
11535This can give the best results for machines with a small and/or
11536irregular register set.
11537
11538@item mixed
11539Use all loops except for loops with small register pressure 
11540as the regions.  This value usually gives
11541the best results in most cases and for most architectures,
11542and is enabled by default when compiling with optimization for speed
11543(@option{-O}, @option{-O2}, @dots{}).
11544
11545@item one
11546Use all functions as a single region.  
11547This typically results in the smallest code size, and is enabled by default for
11548@option{-Os} or @option{-O0}.
11549
11550@end table
11551
11552@item -fira-hoist-pressure
11553@opindex fira-hoist-pressure
11554Use IRA to evaluate register pressure in the code hoisting pass for
11555decisions to hoist expressions.  This option usually results in smaller
11556code, but it can slow the compiler down.
11557
11558This option is enabled at level @option{-Os} for all targets.
11559
11560@item -fira-loop-pressure
11561@opindex fira-loop-pressure
11562Use IRA to evaluate register pressure in loops for decisions to move
11563loop invariants.  This option usually results in generation
11564of faster and smaller code on machines with large register files (>= 32
11565registers), but it can slow the compiler down.
11566
11567This option is enabled at level @option{-O3} for some targets.
11568
11569@item -fno-ira-share-save-slots
11570@opindex fno-ira-share-save-slots
11571@opindex fira-share-save-slots
11572Disable sharing of stack slots used for saving call-used hard
11573registers living through a call.  Each hard register gets a
11574separate stack slot, and as a result function stack frames are
11575larger.
11576
11577@item -fno-ira-share-spill-slots
11578@opindex fno-ira-share-spill-slots
11579@opindex fira-share-spill-slots
11580Disable sharing of stack slots allocated for pseudo-registers.  Each
11581pseudo-register that does not get a hard register gets a separate
11582stack slot, and as a result function stack frames are larger.
11583
11584@item -flra-remat
11585@opindex flra-remat
11586Enable CFG-sensitive rematerialization in LRA.  Instead of loading
11587values of spilled pseudos, LRA tries to rematerialize (recalculate)
11588values if it is profitable.
11589
11590Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11591
11592@item -fdelayed-branch
11593@opindex fdelayed-branch
11594If supported for the target machine, attempt to reorder instructions
11595to exploit instruction slots available after delayed branch
11596instructions.
11597
11598Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os},
11599but not at @option{-Og}.
11600
11601@item -fschedule-insns
11602@opindex fschedule-insns
11603If supported for the target machine, attempt to reorder instructions to
11604eliminate execution stalls due to required data being unavailable.  This
11605helps machines that have slow floating point or memory load instructions
11606by allowing other instructions to be issued until the result of the load
11607or floating-point instruction is required.
11608
11609Enabled at levels @option{-O2}, @option{-O3}.
11610
11611@item -fschedule-insns2
11612@opindex fschedule-insns2
11613Similar to @option{-fschedule-insns}, but requests an additional pass of
11614instruction scheduling after register allocation has been done.  This is
11615especially useful on machines with a relatively small number of
11616registers and where memory load instructions take more than one cycle.
11617
11618Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11619
11620@item -fno-sched-interblock
11621@opindex fno-sched-interblock
11622@opindex fsched-interblock
11623Disable instruction scheduling across basic blocks, which
11624is normally enabled when scheduling before register allocation, i.e.@:
11625with @option{-fschedule-insns} or at @option{-O2} or higher.
11626
11627@item -fno-sched-spec
11628@opindex fno-sched-spec
11629@opindex fsched-spec
11630Disable speculative motion of non-load instructions, which
11631is normally enabled when scheduling before register allocation, i.e.@:
11632with @option{-fschedule-insns} or at @option{-O2} or higher.
11633
11634@item -fsched-pressure
11635@opindex fsched-pressure
11636Enable register pressure sensitive insn scheduling before register
11637allocation.  This only makes sense when scheduling before register
11638allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
11639@option{-O2} or higher.  Usage of this option can improve the
11640generated code and decrease its size by preventing register pressure
11641increase above the number of available hard registers and subsequent
11642spills in register allocation.
11643
11644@item -fsched-spec-load
11645@opindex fsched-spec-load
11646Allow speculative motion of some load instructions.  This only makes
11647sense when scheduling before register allocation, i.e.@: with
11648@option{-fschedule-insns} or at @option{-O2} or higher.
11649
11650@item -fsched-spec-load-dangerous
11651@opindex fsched-spec-load-dangerous
11652Allow speculative motion of more load instructions.  This only makes
11653sense when scheduling before register allocation, i.e.@: with
11654@option{-fschedule-insns} or at @option{-O2} or higher.
11655
11656@item -fsched-stalled-insns
11657@itemx -fsched-stalled-insns=@var{n}
11658@opindex fsched-stalled-insns
11659Define how many insns (if any) can be moved prematurely from the queue
11660of stalled insns into the ready list during the second scheduling pass.
11661@option{-fno-sched-stalled-insns} means that no insns are moved
11662prematurely, @option{-fsched-stalled-insns=0} means there is no limit
11663on how many queued insns can be moved prematurely.
11664@option{-fsched-stalled-insns} without a value is equivalent to
11665@option{-fsched-stalled-insns=1}.
11666
11667@item -fsched-stalled-insns-dep
11668@itemx -fsched-stalled-insns-dep=@var{n}
11669@opindex fsched-stalled-insns-dep
11670Define how many insn groups (cycles) are examined for a dependency
11671on a stalled insn that is a candidate for premature removal from the queue
11672of stalled insns.  This has an effect only during the second scheduling pass,
11673and only if @option{-fsched-stalled-insns} is used.
11674@option{-fno-sched-stalled-insns-dep} is equivalent to
11675@option{-fsched-stalled-insns-dep=0}.
11676@option{-fsched-stalled-insns-dep} without a value is equivalent to
11677@option{-fsched-stalled-insns-dep=1}.
11678
11679@item -fsched2-use-superblocks
11680@opindex fsched2-use-superblocks
11681When scheduling after register allocation, use superblock scheduling.
11682This allows motion across basic block boundaries,
11683resulting in faster schedules.  This option is experimental, as not all machine
11684descriptions used by GCC model the CPU closely enough to avoid unreliable
11685results from the algorithm.
11686
11687This only makes sense when scheduling after register allocation, i.e.@: with
11688@option{-fschedule-insns2} or at @option{-O2} or higher.
11689
11690@item -fsched-group-heuristic
11691@opindex fsched-group-heuristic
11692Enable the group heuristic in the scheduler.  This heuristic favors
11693the instruction that belongs to a schedule group.  This is enabled
11694by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
11695or @option{-fschedule-insns2} or at @option{-O2} or higher.
11696
11697@item -fsched-critical-path-heuristic
11698@opindex fsched-critical-path-heuristic
11699Enable the critical-path heuristic in the scheduler.  This heuristic favors
11700instructions on the critical path.  This is enabled by default when
11701scheduling is enabled, i.e.@: with @option{-fschedule-insns}
11702or @option{-fschedule-insns2} or at @option{-O2} or higher.
11703
11704@item -fsched-spec-insn-heuristic
11705@opindex fsched-spec-insn-heuristic
11706Enable the speculative instruction heuristic in the scheduler.  This
11707heuristic favors speculative instructions with greater dependency weakness.
11708This is enabled by default when scheduling is enabled, i.e.@:
11709with @option{-fschedule-insns} or @option{-fschedule-insns2}
11710or at @option{-O2} or higher.
11711
11712@item -fsched-rank-heuristic
11713@opindex fsched-rank-heuristic
11714Enable the rank heuristic in the scheduler.  This heuristic favors
11715the instruction belonging to a basic block with greater size or frequency.
11716This is enabled by default when scheduling is enabled, i.e.@:
11717with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11718at @option{-O2} or higher.
11719
11720@item -fsched-last-insn-heuristic
11721@opindex fsched-last-insn-heuristic
11722Enable the last-instruction heuristic in the scheduler.  This heuristic
11723favors the instruction that is less dependent on the last instruction
11724scheduled.  This is enabled by default when scheduling is enabled,
11725i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11726at @option{-O2} or higher.
11727
11728@item -fsched-dep-count-heuristic
11729@opindex fsched-dep-count-heuristic
11730Enable the dependent-count heuristic in the scheduler.  This heuristic
11731favors the instruction that has more instructions depending on it.
11732This is enabled by default when scheduling is enabled, i.e.@:
11733with @option{-fschedule-insns} or @option{-fschedule-insns2} or
11734at @option{-O2} or higher.
11735
11736@item -freschedule-modulo-scheduled-loops
11737@opindex freschedule-modulo-scheduled-loops
11738Modulo scheduling is performed before traditional scheduling.  If a loop
11739is modulo scheduled, later scheduling passes may change its schedule.  
11740Use this option to control that behavior.
11741
11742@item -fselective-scheduling
11743@opindex fselective-scheduling
11744Schedule instructions using selective scheduling algorithm.  Selective
11745scheduling runs instead of the first scheduler pass.
11746
11747@item -fselective-scheduling2
11748@opindex fselective-scheduling2
11749Schedule instructions using selective scheduling algorithm.  Selective
11750scheduling runs instead of the second scheduler pass.
11751
11752@item -fsel-sched-pipelining
11753@opindex fsel-sched-pipelining
11754Enable software pipelining of innermost loops during selective scheduling.
11755This option has no effect unless one of @option{-fselective-scheduling} or
11756@option{-fselective-scheduling2} is turned on.
11757
11758@item -fsel-sched-pipelining-outer-loops
11759@opindex fsel-sched-pipelining-outer-loops
11760When pipelining loops during selective scheduling, also pipeline outer loops.
11761This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
11762
11763@item -fsemantic-interposition
11764@opindex fsemantic-interposition
11765Some object formats, like ELF, allow interposing of symbols by the 
11766dynamic linker.
11767This means that for symbols exported from the DSO, the compiler cannot perform
11768interprocedural propagation, inlining and other optimizations in anticipation
11769that the function or variable in question may change. While this feature is
11770useful, for example, to rewrite memory allocation functions by a debugging
11771implementation, it is expensive in the terms of code quality.
11772With @option{-fno-semantic-interposition} the compiler assumes that 
11773if interposition happens for functions the overwriting function will have 
11774precisely the same semantics (and side effects). 
11775Similarly if interposition happens
11776for variables, the constructor of the variable will be the same. The flag
11777has no effect for functions explicitly declared inline 
11778(where it is never allowed for interposition to change semantics) 
11779and for symbols explicitly declared weak.
11780
11781@item -fshrink-wrap
11782@opindex fshrink-wrap
11783Emit function prologues only before parts of the function that need it,
11784rather than at the top of the function.  This flag is enabled by default at
11785@option{-O} and higher.
11786
11787@item -fshrink-wrap-separate
11788@opindex fshrink-wrap-separate
11789Shrink-wrap separate parts of the prologue and epilogue separately, so that
11790those parts are only executed when needed.
11791This option is on by default, but has no effect unless @option{-fshrink-wrap}
11792is also turned on and the target supports this.
11793
11794@item -fcaller-saves
11795@opindex fcaller-saves
11796Enable allocation of values to registers that are clobbered by
11797function calls, by emitting extra instructions to save and restore the
11798registers around such calls.  Such allocation is done only when it
11799seems to result in better code.
11800
11801This option is always enabled by default on certain machines, usually
11802those which have no call-preserved registers to use instead.
11803
11804Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
11805
11806@item -fcombine-stack-adjustments
11807@opindex fcombine-stack-adjustments
11808Tracks stack adjustments (pushes and pops) and stack memory references
11809and then tries to find ways to combine them.
11810
11811Enabled by default at @option{-O1} and higher.
11812
11813@item -fipa-ra
11814@opindex fipa-ra
11815Use caller save registers for allocation if those registers are not used by
11816any called function.  In that case it is not necessary to save and restore
11817them around calls.  This is only possible if called functions are part of
11818same compilation unit as current function and they are compiled before it.
11819
11820Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
11821is disabled if generated code will be instrumented for profiling
11822(@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
11823exactly (this happens on targets that do not expose prologues
11824and epilogues in RTL).
11825
11826@item -fconserve-stack
11827@opindex fconserve-stack
11828Attempt to minimize stack usage.  The compiler attempts to use less
11829stack space, even if that makes the program slower.  This option
11830implies setting the @option{large-stack-frame} parameter to 100
11831and the @option{large-stack-frame-growth} parameter to 400.
11832
11833@item -ftree-reassoc
11834@opindex ftree-reassoc
11835Perform reassociation on trees.  This flag is enabled by default
11836at @option{-O1} and higher.
11837
11838@item -fcode-hoisting
11839@opindex fcode-hoisting
11840Perform code hoisting.  Code hoisting tries to move the
11841evaluation of expressions executed on all paths to the function exit
11842as early as possible.  This is especially useful as a code size
11843optimization, but it often helps for code speed as well.
11844This flag is enabled by default at @option{-O2} and higher.
11845
11846@item -ftree-pre
11847@opindex ftree-pre
11848Perform partial redundancy elimination (PRE) on trees.  This flag is
11849enabled by default at @option{-O2} and @option{-O3}.
11850
11851@item -ftree-partial-pre
11852@opindex ftree-partial-pre
11853Make partial redundancy elimination (PRE) more aggressive.  This flag is
11854enabled by default at @option{-O3}.
11855
11856@item -ftree-forwprop
11857@opindex ftree-forwprop
11858Perform forward propagation on trees.  This flag is enabled by default
11859at @option{-O1} and higher.
11860
11861@item -ftree-fre
11862@opindex ftree-fre
11863Perform full redundancy elimination (FRE) on trees.  The difference
11864between FRE and PRE is that FRE only considers expressions
11865that are computed on all paths leading to the redundant computation.
11866This analysis is faster than PRE, though it exposes fewer redundancies.
11867This flag is enabled by default at @option{-O1} and higher.
11868
11869@item -ftree-phiprop
11870@opindex ftree-phiprop
11871Perform hoisting of loads from conditional pointers on trees.  This
11872pass is enabled by default at @option{-O1} and higher.
11873
11874@item -fhoist-adjacent-loads
11875@opindex fhoist-adjacent-loads
11876Speculatively hoist loads from both branches of an if-then-else if the
11877loads are from adjacent locations in the same structure and the target
11878architecture has a conditional move instruction.  This flag is enabled
11879by default at @option{-O2} and higher.
11880
11881@item -ftree-copy-prop
11882@opindex ftree-copy-prop
11883Perform copy propagation on trees.  This pass eliminates unnecessary
11884copy operations.  This flag is enabled by default at @option{-O1} and
11885higher.
11886
11887@item -fipa-pure-const
11888@opindex fipa-pure-const
11889Discover which functions are pure or constant.
11890Enabled by default at @option{-O1} and higher.
11891
11892@item -fipa-reference
11893@opindex fipa-reference
11894Discover which static variables do not escape the
11895compilation unit.
11896Enabled by default at @option{-O1} and higher.
11897
11898@item -fipa-reference-addressable
11899@opindex fipa-reference-addressable
11900Discover read-only, write-only and non-addressable static variables.
11901Enabled by default at @option{-O1} and higher.
11902
11903@item -fipa-stack-alignment
11904@opindex fipa-stack-alignment
11905Reduce stack alignment on call sites if possible.
11906Enabled by default.
11907
11908@item -fipa-pta
11909@opindex fipa-pta
11910Perform interprocedural pointer analysis and interprocedural modification
11911and reference analysis.  This option can cause excessive memory and
11912compile-time usage on large compilation units.  It is not enabled by
11913default at any optimization level.
11914
11915@item -fipa-profile
11916@opindex fipa-profile
11917Perform interprocedural profile propagation.  The functions called only from
11918cold functions are marked as cold. Also functions executed once (such as
11919@code{cold}, @code{noreturn}, static constructors or destructors) are
11920identified. Cold functions and loop less parts of functions executed once are
11921then optimized for size.
11922Enabled by default at @option{-O1} and higher.
11923
11924@item -fipa-modref
11925@opindex fipa-modref
11926Perform interprocedural mod/ref analysis.  This optimization analyzes the side
11927effects of functions (memory locations that are modified or referenced) and
11928enables better optimization across the function call boundary.  This flag is
11929enabled by default at @option{-O1} and higher.
11930
11931@item -fipa-cp
11932@opindex fipa-cp
11933Perform interprocedural constant propagation.
11934This optimization analyzes the program to determine when values passed
11935to functions are constants and then optimizes accordingly.
11936This optimization can substantially increase performance
11937if the application has constants passed to functions.
11938This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
11939It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11940
11941@item -fipa-cp-clone
11942@opindex fipa-cp-clone
11943Perform function cloning to make interprocedural constant propagation stronger.
11944When enabled, interprocedural constant propagation performs function cloning
11945when externally visible function can be called with constant arguments.
11946Because this optimization can create multiple copies of functions,
11947it may significantly increase code size
11948(see @option{--param ipa-cp-unit-growth=@var{value}}).
11949This flag is enabled by default at @option{-O3}.
11950It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11951
11952@item -fipa-bit-cp
11953@opindex fipa-bit-cp
11954When enabled, perform interprocedural bitwise constant
11955propagation. This flag is enabled by default at @option{-O2} and
11956by @option{-fprofile-use} and @option{-fauto-profile}.
11957It requires that @option{-fipa-cp} is enabled.  
11958
11959@item -fipa-vrp
11960@opindex fipa-vrp
11961When enabled, perform interprocedural propagation of value
11962ranges. This flag is enabled by default at @option{-O2}. It requires
11963that @option{-fipa-cp} is enabled.
11964
11965@item -fipa-icf
11966@opindex fipa-icf
11967Perform Identical Code Folding for functions and read-only variables.
11968The optimization reduces code size and may disturb unwind stacks by replacing
11969a function by equivalent one with a different name. The optimization works
11970more effectively with link-time optimization enabled.
11971
11972Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
11973works on different levels and thus the optimizations are not same - there are
11974equivalences that are found only by GCC and equivalences found only by Gold.
11975
11976This flag is enabled by default at @option{-O2} and @option{-Os}.
11977
11978@item -flive-patching=@var{level}
11979@opindex flive-patching
11980Control GCC's optimizations to produce output suitable for live-patching.
11981
11982If the compiler's optimization uses a function's body or information extracted
11983from its body to optimize/change another function, the latter is called an
11984impacted function of the former.  If a function is patched, its impacted
11985functions should be patched too.
11986
11987The impacted functions are determined by the compiler's interprocedural
11988optimizations.  For example, a caller is impacted when inlining a function
11989into its caller,
11990cloning a function and changing its caller to call this new clone,
11991or extracting a function's pureness/constness information to optimize
11992its direct or indirect callers, etc.
11993
11994Usually, the more IPA optimizations enabled, the larger the number of
11995impacted functions for each function.  In order to control the number of
11996impacted functions and more easily compute the list of impacted function,
11997IPA optimizations can be partially enabled at two different levels.
11998
11999The @var{level} argument should be one of the following:
12000
12001@table @samp
12002
12003@item inline-clone
12004
12005Only enable inlining and cloning optimizations, which includes inlining,
12006cloning, interprocedural scalar replacement of aggregates and partial inlining.
12007As a result, when patching a function, all its callers and its clones'
12008callers are impacted, therefore need to be patched as well.
12009
12010@option{-flive-patching=inline-clone} disables the following optimization flags:
12011@gccoptlist{-fwhole-program  -fipa-pta  -fipa-reference  -fipa-ra @gol
12012-fipa-icf  -fipa-icf-functions  -fipa-icf-variables @gol
12013-fipa-bit-cp  -fipa-vrp  -fipa-pure-const  -fipa-reference-addressable @gol
12014-fipa-stack-alignment -fipa-modref}
12015
12016@item inline-only-static
12017
12018Only enable inlining of static functions.
12019As a result, when patching a static function, all its callers are impacted
12020and so need to be patched as well.
12021
12022In addition to all the flags that @option{-flive-patching=inline-clone}
12023disables,
12024@option{-flive-patching=inline-only-static} disables the following additional
12025optimization flags:
12026@gccoptlist{-fipa-cp-clone  -fipa-sra  -fpartial-inlining  -fipa-cp}
12027
12028@end table
12029
12030When @option{-flive-patching} is specified without any value, the default value
12031is @var{inline-clone}.
12032
12033This flag is disabled by default.
12034
12035Note that @option{-flive-patching} is not supported with link-time optimization
12036(@option{-flto}).
12037
12038@item -fisolate-erroneous-paths-dereference
12039@opindex fisolate-erroneous-paths-dereference
12040Detect paths that trigger erroneous or undefined behavior due to
12041dereferencing a null pointer.  Isolate those paths from the main control
12042flow and turn the statement with erroneous or undefined behavior into a trap.
12043This flag is enabled by default at @option{-O2} and higher and depends on
12044@option{-fdelete-null-pointer-checks} also being enabled.
12045
12046@item -fisolate-erroneous-paths-attribute
12047@opindex fisolate-erroneous-paths-attribute
12048Detect paths that trigger erroneous or undefined behavior due to a null value
12049being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
12050attribute.  Isolate those paths from the main control flow and turn the
12051statement with erroneous or undefined behavior into a trap.  This is not
12052currently enabled, but may be enabled by @option{-O2} in the future.
12053
12054@item -ftree-sink
12055@opindex ftree-sink
12056Perform forward store motion on trees.  This flag is
12057enabled by default at @option{-O1} and higher.
12058
12059@item -ftree-bit-ccp
12060@opindex ftree-bit-ccp
12061Perform sparse conditional bit constant propagation on trees and propagate
12062pointer alignment information.
12063This pass only operates on local scalar variables and is enabled by default
12064at @option{-O1} and higher, except for @option{-Og}.
12065It requires that @option{-ftree-ccp} is enabled.
12066
12067@item -ftree-ccp
12068@opindex ftree-ccp
12069Perform sparse conditional constant propagation (CCP) on trees.  This
12070pass only operates on local scalar variables and is enabled by default
12071at @option{-O1} and higher.
12072
12073@item -fssa-backprop
12074@opindex fssa-backprop
12075Propagate information about uses of a value up the definition chain
12076in order to simplify the definitions.  For example, this pass strips
12077sign operations if the sign of a value never matters.  The flag is
12078enabled by default at @option{-O1} and higher.
12079
12080@item -fssa-phiopt
12081@opindex fssa-phiopt
12082Perform pattern matching on SSA PHI nodes to optimize conditional
12083code.  This pass is enabled by default at @option{-O1} and higher,
12084except for @option{-Og}.
12085
12086@item -ftree-switch-conversion
12087@opindex ftree-switch-conversion
12088Perform conversion of simple initializations in a switch to
12089initializations from a scalar array.  This flag is enabled by default
12090at @option{-O2} and higher.
12091
12092@item -ftree-tail-merge
12093@opindex ftree-tail-merge
12094Look for identical code sequences.  When found, replace one with a jump to the
12095other.  This optimization is known as tail merging or cross jumping.  This flag
12096is enabled by default at @option{-O2} and higher.  The compilation time
12097in this pass can
12098be limited using @option{max-tail-merge-comparisons} parameter and
12099@option{max-tail-merge-iterations} parameter.
12100
12101@item -ftree-dce
12102@opindex ftree-dce
12103Perform dead code elimination (DCE) on trees.  This flag is enabled by
12104default at @option{-O1} and higher.
12105
12106@item -ftree-builtin-call-dce
12107@opindex ftree-builtin-call-dce
12108Perform conditional dead code elimination (DCE) for calls to built-in functions
12109that may set @code{errno} but are otherwise free of side effects.  This flag is
12110enabled by default at @option{-O2} and higher if @option{-Os} is not also
12111specified.
12112
12113@item -ffinite-loops
12114@opindex ffinite-loops
12115@opindex fno-finite-loops
12116Assume that a loop with an exit will eventually take the exit and not loop
12117indefinitely.  This allows the compiler to remove loops that otherwise have
12118no side-effects, not considering eventual endless looping as such.
12119
12120This option is enabled by default at @option{-O2} for C++ with -std=c++11
12121or higher.
12122
12123@item -ftree-dominator-opts
12124@opindex ftree-dominator-opts
12125Perform a variety of simple scalar cleanups (constant/copy
12126propagation, redundancy elimination, range propagation and expression
12127simplification) based on a dominator tree traversal.  This also
12128performs jump threading (to reduce jumps to jumps). This flag is
12129enabled by default at @option{-O1} and higher.
12130
12131@item -ftree-dse
12132@opindex ftree-dse
12133Perform dead store elimination (DSE) on trees.  A dead store is a store into
12134a memory location that is later overwritten by another store without
12135any intervening loads.  In this case the earlier store can be deleted.  This
12136flag is enabled by default at @option{-O1} and higher.
12137
12138@item -ftree-ch
12139@opindex ftree-ch
12140Perform loop header copying on trees.  This is beneficial since it increases
12141effectiveness of code motion optimizations.  It also saves one jump.  This flag
12142is enabled by default at @option{-O1} and higher.  It is not enabled
12143for @option{-Os}, since it usually increases code size.
12144
12145@item -ftree-loop-optimize
12146@opindex ftree-loop-optimize
12147Perform loop optimizations on trees.  This flag is enabled by default
12148at @option{-O1} and higher.
12149
12150@item -ftree-loop-linear
12151@itemx -floop-strip-mine
12152@itemx -floop-block
12153@opindex ftree-loop-linear
12154@opindex floop-strip-mine
12155@opindex floop-block
12156Perform loop nest optimizations.  Same as
12157@option{-floop-nest-optimize}.  To use this code transformation, GCC has
12158to be configured with @option{--with-isl} to enable the Graphite loop
12159transformation infrastructure.
12160
12161@item -fgraphite-identity
12162@opindex fgraphite-identity
12163Enable the identity transformation for graphite.  For every SCoP we generate
12164the polyhedral representation and transform it back to gimple.  Using
12165@option{-fgraphite-identity} we can check the costs or benefits of the
12166GIMPLE -> GRAPHITE -> GIMPLE transformation.  Some minimal optimizations
12167are also performed by the code generator isl, like index splitting and
12168dead code elimination in loops.
12169
12170@item -floop-nest-optimize
12171@opindex floop-nest-optimize
12172Enable the isl based loop nest optimizer.  This is a generic loop nest
12173optimizer based on the Pluto optimization algorithms.  It calculates a loop
12174structure optimized for data-locality and parallelism.  This option
12175is experimental.
12176
12177@item -floop-parallelize-all
12178@opindex floop-parallelize-all
12179Use the Graphite data dependence analysis to identify loops that can
12180be parallelized.  Parallelize all the loops that can be analyzed to
12181not contain loop carried dependences without checking that it is
12182profitable to parallelize the loops.
12183
12184@item -ftree-coalesce-vars
12185@opindex ftree-coalesce-vars
12186While transforming the program out of the SSA representation, attempt to
12187reduce copying by coalescing versions of different user-defined
12188variables, instead of just compiler temporaries.  This may severely
12189limit the ability to debug an optimized program compiled with
12190@option{-fno-var-tracking-assignments}.  In the negated form, this flag
12191prevents SSA coalescing of user variables.  This option is enabled by
12192default if optimization is enabled, and it does very little otherwise.
12193
12194@item -ftree-loop-if-convert
12195@opindex ftree-loop-if-convert
12196Attempt to transform conditional jumps in the innermost loops to
12197branch-less equivalents.  The intent is to remove control-flow from
12198the innermost loops in order to improve the ability of the
12199vectorization pass to handle these loops.  This is enabled by default
12200if vectorization is enabled.
12201
12202@item -ftree-loop-distribution
12203@opindex ftree-loop-distribution
12204Perform loop distribution.  This flag can improve cache performance on
12205big loop bodies and allow further loop optimizations, like
12206parallelization or vectorization, to take place.  For example, the loop
12207@smallexample
12208DO I = 1, N
12209  A(I) = B(I) + C
12210  D(I) = E(I) * F
12211ENDDO
12212@end smallexample
12213is transformed to
12214@smallexample
12215DO I = 1, N
12216   A(I) = B(I) + C
12217ENDDO
12218DO I = 1, N
12219   D(I) = E(I) * F
12220ENDDO
12221@end smallexample
12222This flag is enabled by default at @option{-O3}.
12223It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12224
12225@item -ftree-loop-distribute-patterns
12226@opindex ftree-loop-distribute-patterns
12227Perform loop distribution of patterns that can be code generated with
12228calls to a library.  This flag is enabled by default at @option{-O2} and
12229higher, and by @option{-fprofile-use} and @option{-fauto-profile}.
12230
12231This pass distributes the initialization loops and generates a call to
12232memset zero.  For example, the loop
12233@smallexample
12234DO I = 1, N
12235  A(I) = 0
12236  B(I) = A(I) + I
12237ENDDO
12238@end smallexample
12239is transformed to
12240@smallexample
12241DO I = 1, N
12242   A(I) = 0
12243ENDDO
12244DO I = 1, N
12245   B(I) = A(I) + I
12246ENDDO
12247@end smallexample
12248and the initialization loop is transformed into a call to memset zero.
12249This flag is enabled by default at @option{-O3}.
12250It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12251
12252@item -floop-interchange
12253@opindex floop-interchange
12254Perform loop interchange outside of graphite.  This flag can improve cache
12255performance on loop nest and allow further loop optimizations, like
12256vectorization, to take place.  For example, the loop
12257@smallexample
12258for (int i = 0; i < N; i++)
12259  for (int j = 0; j < N; j++)
12260    for (int k = 0; k < N; k++)
12261      c[i][j] = c[i][j] + a[i][k]*b[k][j];
12262@end smallexample
12263is transformed to
12264@smallexample
12265for (int i = 0; i < N; i++)
12266  for (int k = 0; k < N; k++)
12267    for (int j = 0; j < N; j++)
12268      c[i][j] = c[i][j] + a[i][k]*b[k][j];
12269@end smallexample
12270This flag is enabled by default at @option{-O3}.
12271It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12272
12273@item -floop-unroll-and-jam
12274@opindex floop-unroll-and-jam
12275Apply unroll and jam transformations on feasible loops.  In a loop
12276nest this unrolls the outer loop by some factor and fuses the resulting
12277multiple inner loops.  This flag is enabled by default at @option{-O3}.
12278It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12279
12280@item -ftree-loop-im
12281@opindex ftree-loop-im
12282Perform loop invariant motion on trees.  This pass moves only invariants that
12283are hard to handle at RTL level (function calls, operations that expand to
12284nontrivial sequences of insns).  With @option{-funswitch-loops} it also moves
12285operands of conditions that are invariant out of the loop, so that we can use
12286just trivial invariantness analysis in loop unswitching.  The pass also includes
12287store motion.
12288
12289@item -ftree-loop-ivcanon
12290@opindex ftree-loop-ivcanon
12291Create a canonical counter for number of iterations in loops for which
12292determining number of iterations requires complicated analysis.  Later
12293optimizations then may determine the number easily.  Useful especially
12294in connection with unrolling.
12295
12296@item -ftree-scev-cprop
12297@opindex ftree-scev-cprop
12298Perform final value replacement.  If a variable is modified in a loop
12299in such a way that its value when exiting the loop can be determined using
12300only its initial value and the number of loop iterations, replace uses of
12301the final value by such a computation, provided it is sufficiently cheap.
12302This reduces data dependencies and may allow further simplifications.
12303Enabled by default at @option{-O1} and higher.
12304
12305@item -fivopts
12306@opindex fivopts
12307Perform induction variable optimizations (strength reduction, induction
12308variable merging and induction variable elimination) on trees.
12309
12310@item -ftree-parallelize-loops=n
12311@opindex ftree-parallelize-loops
12312Parallelize loops, i.e., split their iteration space to run in n threads.
12313This is only possible for loops whose iterations are independent
12314and can be arbitrarily reordered.  The optimization is only
12315profitable on multiprocessor machines, for loops that are CPU-intensive,
12316rather than constrained e.g.@: by memory bandwidth.  This option
12317implies @option{-pthread}, and thus is only supported on targets
12318that have support for @option{-pthread}.
12319
12320@item -ftree-pta
12321@opindex ftree-pta
12322Perform function-local points-to analysis on trees.  This flag is
12323enabled by default at @option{-O1} and higher, except for @option{-Og}.
12324
12325@item -ftree-sra
12326@opindex ftree-sra
12327Perform scalar replacement of aggregates.  This pass replaces structure
12328references with scalars to prevent committing structures to memory too
12329early.  This flag is enabled by default at @option{-O1} and higher,
12330except for @option{-Og}.
12331
12332@item -fstore-merging
12333@opindex fstore-merging
12334Perform merging of narrow stores to consecutive memory addresses.  This pass
12335merges contiguous stores of immediate values narrower than a word into fewer
12336wider stores to reduce the number of instructions.  This is enabled by default
12337at @option{-O2} and higher as well as @option{-Os}.
12338
12339@item -ftree-ter
12340@opindex ftree-ter
12341Perform temporary expression replacement during the SSA->normal phase.  Single
12342use/single def temporaries are replaced at their use location with their
12343defining expression.  This results in non-GIMPLE code, but gives the expanders
12344much more complex trees to work on resulting in better RTL generation.  This is
12345enabled by default at @option{-O1} and higher.
12346
12347@item -ftree-slsr
12348@opindex ftree-slsr
12349Perform straight-line strength reduction on trees.  This recognizes related
12350expressions involving multiplications and replaces them by less expensive
12351calculations when possible.  This is enabled by default at @option{-O1} and
12352higher.
12353
12354@item -ftree-vectorize
12355@opindex ftree-vectorize
12356Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
12357and @option{-ftree-slp-vectorize} if not explicitly specified.
12358
12359@item -ftree-loop-vectorize
12360@opindex ftree-loop-vectorize
12361Perform loop vectorization on trees. This flag is enabled by default at
12362@option{-O2} and by @option{-ftree-vectorize}, @option{-fprofile-use},
12363and @option{-fauto-profile}.
12364
12365@item -ftree-slp-vectorize
12366@opindex ftree-slp-vectorize
12367Perform basic block vectorization on trees. This flag is enabled by default at
12368@option{-O2} and by @option{-ftree-vectorize}, @option{-fprofile-use},
12369and @option{-fauto-profile}.
12370
12371@item -ftrivial-auto-var-init=@var{choice}
12372@opindex ftrivial-auto-var-init
12373Initialize automatic variables with either a pattern or with zeroes to increase
12374the security and predictability of a program by preventing uninitialized memory
12375disclosure and use.
12376GCC still considers an automatic variable that doesn't have an explicit
12377initializer as uninitialized, @option{-Wuninitialized} and
12378@option{-Wanalyzer-use-of-uninitialized-value} will still report
12379warning messages on such automatic variables.
12380With this option, GCC will also initialize any padding of automatic variables
12381that have structure or union types to zeroes.
12382However, the current implementation cannot initialize automatic variables that
12383are declared between the controlling expression and the first case of a
12384@code{switch} statement.  Using @option{-Wtrivial-auto-var-init} to report all
12385such cases.
12386
12387The three values of @var{choice} are:
12388
12389@itemize @bullet
12390@item
12391@samp{uninitialized} doesn't initialize any automatic variables.
12392This is C and C++'s default.
12393
12394@item
12395@samp{pattern} Initialize automatic variables with values which will likely
12396transform logic bugs into crashes down the line, are easily recognized in a
12397crash dump and without being values that programmers can rely on for useful
12398program semantics.
12399The current value is byte-repeatable pattern with byte "0xFE".
12400The values used for pattern initialization might be changed in the future.
12401
12402@item
12403@samp{zero} Initialize automatic variables with zeroes.
12404@end itemize
12405
12406The default is @samp{uninitialized}.
12407
12408You can control this behavior for a specific variable by using the variable
12409attribute @code{uninitialized} (@pxref{Variable Attributes}).
12410
12411@item -fvect-cost-model=@var{model}
12412@opindex fvect-cost-model
12413Alter the cost model used for vectorization.  The @var{model} argument
12414should be one of @samp{unlimited}, @samp{dynamic}, @samp{cheap} or
12415@samp{very-cheap}.
12416With the @samp{unlimited} model the vectorized code-path is assumed
12417to be profitable while with the @samp{dynamic} model a runtime check
12418guards the vectorized code-path to enable it only for iteration
12419counts that will likely execute faster than when executing the original
12420scalar loop.  The @samp{cheap} model disables vectorization of
12421loops where doing so would be cost prohibitive for example due to
12422required runtime checks for data dependence or alignment but otherwise
12423is equal to the @samp{dynamic} model.  The @samp{very-cheap} model only
12424allows vectorization if the vector code would entirely replace the
12425scalar code that is being vectorized.  For example, if each iteration
12426of a vectorized loop would only be able to handle exactly four iterations
12427of the scalar loop, the @samp{very-cheap} model would only allow
12428vectorization if the scalar iteration count is known to be a multiple
12429of four.
12430
12431The default cost model depends on other optimization flags and is
12432either @samp{dynamic} or @samp{cheap}.
12433
12434@item -fsimd-cost-model=@var{model}
12435@opindex fsimd-cost-model
12436Alter the cost model used for vectorization of loops marked with the OpenMP
12437simd directive.  The @var{model} argument should be one of
12438@samp{unlimited}, @samp{dynamic}, @samp{cheap}.  All values of @var{model}
12439have the same meaning as described in @option{-fvect-cost-model} and by
12440default a cost model defined with @option{-fvect-cost-model} is used.
12441
12442@item -ftree-vrp
12443@opindex ftree-vrp
12444Perform Value Range Propagation on trees.  This is similar to the
12445constant propagation pass, but instead of values, ranges of values are
12446propagated.  This allows the optimizers to remove unnecessary range
12447checks like array bound checks and null pointer checks.  This is
12448enabled by default at @option{-O2} and higher.  Null pointer check
12449elimination is only done if @option{-fdelete-null-pointer-checks} is
12450enabled.
12451
12452@item -fsplit-paths
12453@opindex fsplit-paths
12454Split paths leading to loop backedges.  This can improve dead code
12455elimination and common subexpression elimination.  This is enabled by
12456default at @option{-O3} and above.
12457
12458@item -fsplit-ivs-in-unroller
12459@opindex fsplit-ivs-in-unroller
12460Enables expression of values of induction variables in later iterations
12461of the unrolled loop using the value in the first iteration.  This breaks
12462long dependency chains, thus improving efficiency of the scheduling passes.
12463
12464A combination of @option{-fweb} and CSE is often sufficient to obtain the
12465same effect.  However, that is not reliable in cases where the loop body
12466is more complicated than a single basic block.  It also does not work at all
12467on some architectures due to restrictions in the CSE pass.
12468
12469This optimization is enabled by default.
12470
12471@item -fvariable-expansion-in-unroller
12472@opindex fvariable-expansion-in-unroller
12473With this option, the compiler creates multiple copies of some
12474local variables when unrolling a loop, which can result in superior code.
12475
12476This optimization is enabled by default for PowerPC targets, but disabled
12477by default otherwise.
12478
12479@item -fpartial-inlining
12480@opindex fpartial-inlining
12481Inline parts of functions.  This option has any effect only
12482when inlining itself is turned on by the @option{-finline-functions}
12483or @option{-finline-small-functions} options.
12484
12485Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
12486
12487@item -fpredictive-commoning
12488@opindex fpredictive-commoning
12489Perform predictive commoning optimization, i.e., reusing computations
12490(especially memory loads and stores) performed in previous
12491iterations of loops.
12492
12493This option is enabled at level @option{-O3}.
12494It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
12495
12496@item -fprefetch-loop-arrays
12497@opindex fprefetch-loop-arrays
12498If supported by the target machine, generate instructions to prefetch
12499memory to improve the performance of loops that access large arrays.
12500
12501This option may generate better or worse code; results are highly
12502dependent on the structure of loops within the source code.
12503
12504Disabled at level @option{-Os}.
12505
12506@item -fno-printf-return-value
12507@opindex fno-printf-return-value
12508@opindex fprintf-return-value
12509Do not substitute constants for known return value of formatted output
12510functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
12511@code{vsnprintf} (but not @code{printf} of @code{fprintf}).  This
12512transformation allows GCC to optimize or even eliminate branches based
12513on the known return value of these functions called with arguments that
12514are either constant, or whose values are known to be in a range that
12515makes determining the exact return value possible.  For example, when
12516@option{-fprintf-return-value} is in effect, both the branch and the
12517body of the @code{if} statement (but not the call to @code{snprint})
12518can be optimized away when @code{i} is a 32-bit or smaller integer
12519because the return value is guaranteed to be at most 8.
12520
12521@smallexample
12522char buf[9];
12523if (snprintf (buf, "%08x", i) >= sizeof buf)
12524  @dots{}
12525@end smallexample
12526
12527The @option{-fprintf-return-value} option relies on other optimizations
12528and yields best results with @option{-O2} and above.  It works in tandem
12529with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
12530options.  The @option{-fprintf-return-value} option is enabled by default.
12531
12532@item -fno-peephole
12533@itemx -fno-peephole2
12534@opindex fno-peephole
12535@opindex fpeephole
12536@opindex fno-peephole2
12537@opindex fpeephole2
12538Disable any machine-specific peephole optimizations.  The difference
12539between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
12540are implemented in the compiler; some targets use one, some use the
12541other, a few use both.
12542
12543@option{-fpeephole} is enabled by default.
12544@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
12545
12546@item -fno-guess-branch-probability
12547@opindex fno-guess-branch-probability
12548@opindex fguess-branch-probability
12549Do not guess branch probabilities using heuristics.
12550
12551GCC uses heuristics to guess branch probabilities if they are
12552not provided by profiling feedback (@option{-fprofile-arcs}).  These
12553heuristics are based on the control flow graph.  If some branch probabilities
12554are specified by @code{__builtin_expect}, then the heuristics are
12555used to guess branch probabilities for the rest of the control flow graph,
12556taking the @code{__builtin_expect} info into account.  The interactions
12557between the heuristics and @code{__builtin_expect} can be complex, and in
12558some cases, it may be useful to disable the heuristics so that the effects
12559of @code{__builtin_expect} are easier to understand.
12560
12561It is also possible to specify expected probability of the expression
12562with @code{__builtin_expect_with_probability} built-in function.
12563
12564The default is @option{-fguess-branch-probability} at levels
12565@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
12566
12567@item -freorder-blocks
12568@opindex freorder-blocks
12569Reorder basic blocks in the compiled function in order to reduce number of
12570taken branches and improve code locality.
12571
12572Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
12573
12574@item -freorder-blocks-algorithm=@var{algorithm}
12575@opindex freorder-blocks-algorithm
12576Use the specified algorithm for basic block reordering.  The
12577@var{algorithm} argument can be @samp{simple}, which does not increase
12578code size (except sometimes due to secondary effects like alignment),
12579or @samp{stc}, the ``software trace cache'' algorithm, which tries to
12580put all often executed code together, minimizing the number of branches
12581executed by making extra copies of code.
12582
12583The default is @samp{simple} at levels @option{-O1}, @option{-Os}, and
12584@samp{stc} at levels @option{-O2}, @option{-O3}.
12585
12586@item -freorder-blocks-and-partition
12587@opindex freorder-blocks-and-partition
12588In addition to reordering basic blocks in the compiled function, in order
12589to reduce number of taken branches, partitions hot and cold basic blocks
12590into separate sections of the assembly and @file{.o} files, to improve
12591paging and cache locality performance.
12592
12593This optimization is automatically turned off in the presence of
12594exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
12595section attribute and on any architecture that does not support named
12596sections.  When @option{-fsplit-stack} is used this option is not
12597enabled by default (to avoid linker errors), but may be enabled
12598explicitly (if using a working linker).
12599
12600Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
12601
12602@item -freorder-functions
12603@opindex freorder-functions
12604Reorder functions in the object file in order to
12605improve code locality.  This is implemented by using special
12606subsections @code{.text.hot} for most frequently executed functions and
12607@code{.text.unlikely} for unlikely executed functions.  Reordering is done by
12608the linker so object file format must support named sections and linker must
12609place them in a reasonable way.
12610
12611This option isn't effective unless you either provide profile feedback
12612(see @option{-fprofile-arcs} for details) or manually annotate functions with 
12613@code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
12614
12615Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
12616
12617@item -fstrict-aliasing
12618@opindex fstrict-aliasing
12619Allow the compiler to assume the strictest aliasing rules applicable to
12620the language being compiled.  For C (and C++), this activates
12621optimizations based on the type of expressions.  In particular, an
12622object of one type is assumed never to reside at the same address as an
12623object of a different type, unless the types are almost the same.  For
12624example, an @code{unsigned int} can alias an @code{int}, but not a
12625@code{void*} or a @code{double}.  A character type may alias any other
12626type.
12627
12628@anchor{Type-punning}Pay special attention to code like this:
12629@smallexample
12630union a_union @{
12631  int i;
12632  double d;
12633@};
12634
12635int f() @{
12636  union a_union t;
12637  t.d = 3.0;
12638  return t.i;
12639@}
12640@end smallexample
12641The practice of reading from a different union member than the one most
12642recently written to (called ``type-punning'') is common.  Even with
12643@option{-fstrict-aliasing}, type-punning is allowed, provided the memory
12644is accessed through the union type.  So, the code above works as
12645expected.  @xref{Structures unions enumerations and bit-fields
12646implementation}.  However, this code might not:
12647@smallexample
12648int f() @{
12649  union a_union t;
12650  int* ip;
12651  t.d = 3.0;
12652  ip = &t.i;
12653  return *ip;
12654@}
12655@end smallexample
12656
12657Similarly, access by taking the address, casting the resulting pointer
12658and dereferencing the result has undefined behavior, even if the cast
12659uses a union type, e.g.:
12660@smallexample
12661int f() @{
12662  double d = 3.0;
12663  return ((union a_union *) &d)->i;
12664@}
12665@end smallexample
12666
12667The @option{-fstrict-aliasing} option is enabled at levels
12668@option{-O2}, @option{-O3}, @option{-Os}.
12669
12670@item -fipa-strict-aliasing
12671@opindex fipa-strict-aliasing
12672Controls whether rules of @option{-fstrict-aliasing} are applied across
12673function boundaries.  Note that if multiple functions gets inlined into a
12674single function the memory accesses are no longer considered to be crossing a
12675function boundary.
12676
12677The @option{-fipa-strict-aliasing} option is enabled by default and is
12678effective only in combination with @option{-fstrict-aliasing}.
12679
12680@item -falign-functions
12681@itemx -falign-functions=@var{n}
12682@itemx -falign-functions=@var{n}:@var{m}
12683@itemx -falign-functions=@var{n}:@var{m}:@var{n2}
12684@itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
12685@opindex falign-functions
12686Align the start of functions to the next power-of-two greater than or
12687equal to @var{n}, skipping up to @var{m}-1 bytes.  This ensures that at
12688least the first @var{m} bytes of the function can be fetched by the CPU
12689without crossing an @var{n}-byte alignment boundary.
12690
12691If @var{m} is not specified, it defaults to @var{n}.
12692
12693Examples: @option{-falign-functions=32} aligns functions to the next
1269432-byte boundary, @option{-falign-functions=24} aligns to the next
1269532-byte boundary only if this can be done by skipping 23 bytes or less,
12696@option{-falign-functions=32:7} aligns to the next
1269732-byte boundary only if this can be done by skipping 6 bytes or less.
12698
12699The second pair of @var{n2}:@var{m2} values allows you to specify
12700a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
12701the next 64-byte boundary if this can be done by skipping 6 bytes or less,
12702otherwise aligns to the next 32-byte boundary if this can be done
12703by skipping 2 bytes or less.
12704If @var{m2} is not specified, it defaults to @var{n2}.
12705
12706Some assemblers only support this flag when @var{n} is a power of two;
12707in that case, it is rounded up.
12708
12709@option{-fno-align-functions} and @option{-falign-functions=1} are
12710equivalent and mean that functions are not aligned.
12711
12712If @var{n} is not specified or is zero, use a machine-dependent default.
12713The maximum allowed @var{n} option value is 65536.
12714
12715Enabled at levels @option{-O2}, @option{-O3}.
12716
12717@item -flimit-function-alignment
12718If this option is enabled, the compiler tries to avoid unnecessarily
12719overaligning functions. It attempts to instruct the assembler to align
12720by the amount specified by @option{-falign-functions}, but not to
12721skip more bytes than the size of the function.
12722
12723@item -falign-labels
12724@itemx -falign-labels=@var{n}
12725@itemx -falign-labels=@var{n}:@var{m}
12726@itemx -falign-labels=@var{n}:@var{m}:@var{n2}
12727@itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
12728@opindex falign-labels
12729Align all branch targets to a power-of-two boundary.
12730
12731Parameters of this option are analogous to the @option{-falign-functions} option.
12732@option{-fno-align-labels} and @option{-falign-labels=1} are
12733equivalent and mean that labels are not aligned.
12734
12735If @option{-falign-loops} or @option{-falign-jumps} are applicable and
12736are greater than this value, then their values are used instead.
12737
12738If @var{n} is not specified or is zero, use a machine-dependent default
12739which is very likely to be @samp{1}, meaning no alignment.
12740The maximum allowed @var{n} option value is 65536.
12741
12742Enabled at levels @option{-O2}, @option{-O3}.
12743
12744@item -falign-loops
12745@itemx -falign-loops=@var{n}
12746@itemx -falign-loops=@var{n}:@var{m}
12747@itemx -falign-loops=@var{n}:@var{m}:@var{n2}
12748@itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
12749@opindex falign-loops
12750Align loops to a power-of-two boundary.  If the loops are executed
12751many times, this makes up for any execution of the dummy padding
12752instructions.
12753
12754If @option{-falign-labels} is greater than this value, then its value
12755is used instead.
12756
12757Parameters of this option are analogous to the @option{-falign-functions} option.
12758@option{-fno-align-loops} and @option{-falign-loops=1} are
12759equivalent and mean that loops are not aligned.
12760The maximum allowed @var{n} option value is 65536.
12761
12762If @var{n} is not specified or is zero, use a machine-dependent default.
12763
12764Enabled at levels @option{-O2}, @option{-O3}.
12765
12766@item -falign-jumps
12767@itemx -falign-jumps=@var{n}
12768@itemx -falign-jumps=@var{n}:@var{m}
12769@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
12770@itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
12771@opindex falign-jumps
12772Align branch targets to a power-of-two boundary, for branch targets
12773where the targets can only be reached by jumping.  In this case,
12774no dummy operations need be executed.
12775
12776If @option{-falign-labels} is greater than this value, then its value
12777is used instead.
12778
12779Parameters of this option are analogous to the @option{-falign-functions} option.
12780@option{-fno-align-jumps} and @option{-falign-jumps=1} are
12781equivalent and mean that loops are not aligned.
12782
12783If @var{n} is not specified or is zero, use a machine-dependent default.
12784The maximum allowed @var{n} option value is 65536.
12785
12786Enabled at levels @option{-O2}, @option{-O3}.
12787
12788@item -fno-allocation-dce
12789@opindex fno-allocation-dce
12790Do not remove unused C++ allocations in dead code elimination.
12791
12792@item -fallow-store-data-races
12793@opindex fallow-store-data-races
12794Allow the compiler to perform optimizations that may introduce new data races
12795on stores, without proving that the variable cannot be concurrently accessed
12796by other threads.  Does not affect optimization of local data.  It is safe to
12797use this option if it is known that global data will not be accessed by
12798multiple threads.
12799
12800Examples of optimizations enabled by @option{-fallow-store-data-races} include
12801hoisting or if-conversions that may cause a value that was already in memory
12802to be re-written with that same value.  Such re-writing is safe in a single
12803threaded context but may be unsafe in a multi-threaded context.  Note that on
12804some processors, if-conversions may be required in order to enable
12805vectorization.
12806
12807Enabled at level @option{-Ofast}.
12808
12809@item -funit-at-a-time
12810@opindex funit-at-a-time
12811This option is left for compatibility reasons. @option{-funit-at-a-time}
12812has no effect, while @option{-fno-unit-at-a-time} implies
12813@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
12814
12815Enabled by default.
12816
12817@item -fno-toplevel-reorder
12818@opindex fno-toplevel-reorder
12819@opindex ftoplevel-reorder
12820Do not reorder top-level functions, variables, and @code{asm}
12821statements.  Output them in the same order that they appear in the
12822input file.  When this option is used, unreferenced static variables
12823are not removed.  This option is intended to support existing code
12824that relies on a particular ordering.  For new code, it is better to
12825use attributes when possible.
12826
12827@option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
12828also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
12829Additionally @option{-fno-toplevel-reorder} implies
12830@option{-fno-section-anchors}.
12831
12832@item -fweb
12833@opindex fweb
12834Constructs webs as commonly used for register allocation purposes and assign
12835each web individual pseudo register.  This allows the register allocation pass
12836to operate on pseudos directly, but also strengthens several other optimization
12837passes, such as CSE, loop optimizer and trivial dead code remover.  It can,
12838however, make debugging impossible, since variables no longer stay in a
12839``home register''.
12840
12841Enabled by default with @option{-funroll-loops}.
12842
12843@item -fwhole-program
12844@opindex fwhole-program
12845Assume that the current compilation unit represents the whole program being
12846compiled.  All public functions and variables with the exception of @code{main}
12847and those merged by attribute @code{externally_visible} become static functions
12848and in effect are optimized more aggressively by interprocedural optimizers.
12849
12850This option should not be used in combination with @option{-flto}.
12851Instead relying on a linker plugin should provide safer and more precise
12852information.
12853
12854@item -flto[=@var{n}]
12855@opindex flto
12856This option runs the standard link-time optimizer.  When invoked
12857with source code, it generates GIMPLE (one of GCC's internal
12858representations) and writes it to special ELF sections in the object
12859file.  When the object files are linked together, all the function
12860bodies are read from these ELF sections and instantiated as if they
12861had been part of the same translation unit.
12862
12863To use the link-time optimizer, @option{-flto} and optimization
12864options should be specified at compile time and during the final link.
12865It is recommended that you compile all the files participating in the
12866same link with the same options and also specify those options at
12867link time.  
12868For example:
12869
12870@smallexample
12871gcc -c -O2 -flto foo.c
12872gcc -c -O2 -flto bar.c
12873gcc -o myprog -flto -O2 foo.o bar.o
12874@end smallexample
12875
12876The first two invocations to GCC save a bytecode representation
12877of GIMPLE into special ELF sections inside @file{foo.o} and
12878@file{bar.o}.  The final invocation reads the GIMPLE bytecode from
12879@file{foo.o} and @file{bar.o}, merges the two files into a single
12880internal image, and compiles the result as usual.  Since both
12881@file{foo.o} and @file{bar.o} are merged into a single image, this
12882causes all the interprocedural analyses and optimizations in GCC to
12883work across the two files as if they were a single one.  This means,
12884for example, that the inliner is able to inline functions in
12885@file{bar.o} into functions in @file{foo.o} and vice-versa.
12886
12887Another (simpler) way to enable link-time optimization is:
12888
12889@smallexample
12890gcc -o myprog -flto -O2 foo.c bar.c
12891@end smallexample
12892
12893The above generates bytecode for @file{foo.c} and @file{bar.c},
12894merges them together into a single GIMPLE representation and optimizes
12895them as usual to produce @file{myprog}.
12896
12897The important thing to keep in mind is that to enable link-time
12898optimizations you need to use the GCC driver to perform the link step.
12899GCC automatically performs link-time optimization if any of the
12900objects involved were compiled with the @option{-flto} command-line option.  
12901You can always override
12902the automatic decision to do link-time optimization
12903by passing @option{-fno-lto} to the link command.
12904
12905To make whole program optimization effective, it is necessary to make
12906certain whole program assumptions.  The compiler needs to know
12907what functions and variables can be accessed by libraries and runtime
12908outside of the link-time optimized unit.  When supported by the linker,
12909the linker plugin (see @option{-fuse-linker-plugin}) passes information
12910to the compiler about used and externally visible symbols.  When
12911the linker plugin is not available, @option{-fwhole-program} should be
12912used to allow the compiler to make these assumptions, which leads
12913to more aggressive optimization decisions.
12914
12915When a file is compiled with @option{-flto} without
12916@option{-fuse-linker-plugin}, the generated object file is larger than
12917a regular object file because it contains GIMPLE bytecodes and the usual
12918final code (see @option{-ffat-lto-objects}).  This means that
12919object files with LTO information can be linked as normal object
12920files; if @option{-fno-lto} is passed to the linker, no
12921interprocedural optimizations are applied.  Note that when
12922@option{-fno-fat-lto-objects} is enabled the compile stage is faster
12923but you cannot perform a regular, non-LTO link on them.
12924
12925When producing the final binary, GCC only
12926applies link-time optimizations to those files that contain bytecode.
12927Therefore, you can mix and match object files and libraries with
12928GIMPLE bytecodes and final object code.  GCC automatically selects
12929which files to optimize in LTO mode and which files to link without
12930further processing.
12931
12932Generally, options specified at link time override those
12933specified at compile time, although in some cases GCC attempts to infer
12934link-time options from the settings used to compile the input files.
12935
12936If you do not specify an optimization level option @option{-O} at
12937link time, then GCC uses the highest optimization level 
12938used when compiling the object files.  Note that it is generally 
12939ineffective to specify an optimization level option only at link time and 
12940not at compile time, for two reasons.  First, compiling without 
12941optimization suppresses compiler passes that gather information 
12942needed for effective optimization at link time.  Second, some early
12943optimization passes can be performed only at compile time and 
12944not at link time.
12945
12946There are some code generation flags preserved by GCC when
12947generating bytecodes, as they need to be used during the final link.
12948Currently, the following options and their settings are taken from
12949the first object file that explicitly specifies them: 
12950@option{-fcommon}, @option{-fexceptions}, @option{-fnon-call-exceptions},
12951@option{-fgnu-tm} and all the @option{-m} target flags.
12952
12953The following options @option{-fPIC}, @option{-fpic}, @option{-fpie} and
12954@option{-fPIE} are combined based on the following scheme:
12955
12956@smallexample
12957@option{-fPIC} + @option{-fpic} = @option{-fpic}
12958@option{-fPIC} + @option{-fno-pic} = @option{-fno-pic}
12959@option{-fpic/-fPIC} + (no option) = (no option)
12960@option{-fPIC} + @option{-fPIE} = @option{-fPIE}
12961@option{-fpic} + @option{-fPIE} = @option{-fpie}
12962@option{-fPIC/-fpic} + @option{-fpie} = @option{-fpie}
12963@end smallexample
12964
12965Certain ABI-changing flags are required to match in all compilation units,
12966and trying to override this at link time with a conflicting value
12967is ignored.  This includes options such as @option{-freg-struct-return}
12968and @option{-fpcc-struct-return}. 
12969
12970Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
12971@option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
12972are passed through to the link stage and merged conservatively for
12973conflicting translation units.  Specifically
12974@option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
12975precedence; and for example @option{-ffp-contract=off} takes precedence
12976over @option{-ffp-contract=fast}.  You can override them at link time.
12977
12978Diagnostic options such as @option{-Wstringop-overflow} are passed
12979through to the link stage and their setting matches that of the
12980compile-step at function granularity.  Note that this matters only
12981for diagnostics emitted during optimization.  Note that code
12982transforms such as inlining can lead to warnings being enabled
12983or disabled for regions if code not consistent with the setting
12984at compile time.
12985
12986When you need to pass options to the assembler via @option{-Wa} or
12987@option{-Xassembler} make sure to either compile such translation
12988units with @option{-fno-lto} or consistently use the same assembler
12989options on all translation units.  You can alternatively also
12990specify assembler options at LTO link time.
12991
12992To enable debug info generation you need to supply @option{-g} at
12993compile time.  If any of the input files at link time were built
12994with debug info generation enabled the link will enable debug info
12995generation as well.  Any elaborate debug info settings
12996like the dwarf level @option{-gdwarf-5} need to be explicitly repeated
12997at the linker command line and mixing different settings in different
12998translation units is discouraged.
12999
13000If LTO encounters objects with C linkage declared with incompatible
13001types in separate translation units to be linked together (undefined
13002behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
13003issued.  The behavior is still undefined at run time.  Similar
13004diagnostics may be raised for other languages.
13005
13006Another feature of LTO is that it is possible to apply interprocedural
13007optimizations on files written in different languages:
13008
13009@smallexample
13010gcc -c -flto foo.c
13011g++ -c -flto bar.cc
13012gfortran -c -flto baz.f90
13013g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
13014@end smallexample
13015
13016Notice that the final link is done with @command{g++} to get the C++
13017runtime libraries and @option{-lgfortran} is added to get the Fortran
13018runtime libraries.  In general, when mixing languages in LTO mode, you
13019should use the same link command options as when mixing languages in a
13020regular (non-LTO) compilation.
13021
13022If object files containing GIMPLE bytecode are stored in a library archive, say
13023@file{libfoo.a}, it is possible to extract and use them in an LTO link if you
13024are using a linker with plugin support.  To create static libraries suitable
13025for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
13026and @command{ranlib}; 
13027to show the symbols of object files with GIMPLE bytecode, use
13028@command{gcc-nm}.  Those commands require that @command{ar}, @command{ranlib}
13029and @command{nm} have been compiled with plugin support.  At link time, use the
13030flag @option{-fuse-linker-plugin} to ensure that the library participates in
13031the LTO optimization process:
13032
13033@smallexample
13034gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
13035@end smallexample
13036
13037With the linker plugin enabled, the linker extracts the needed
13038GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
13039to make them part of the aggregated GIMPLE image to be optimized.
13040
13041If you are not using a linker with plugin support and/or do not
13042enable the linker plugin, then the objects inside @file{libfoo.a}
13043are extracted and linked as usual, but they do not participate
13044in the LTO optimization process.  In order to make a static library suitable
13045for both LTO optimization and usual linkage, compile its object files with
13046@option{-flto} @option{-ffat-lto-objects}.
13047
13048Link-time optimizations do not require the presence of the whole program to
13049operate.  If the program does not require any symbols to be exported, it is
13050possible to combine @option{-flto} and @option{-fwhole-program} to allow
13051the interprocedural optimizers to use more aggressive assumptions which may
13052lead to improved optimization opportunities.
13053Use of @option{-fwhole-program} is not needed when linker plugin is
13054active (see @option{-fuse-linker-plugin}).
13055
13056The current implementation of LTO makes no
13057attempt to generate bytecode that is portable between different
13058types of hosts.  The bytecode files are versioned and there is a
13059strict version check, so bytecode files generated in one version of
13060GCC do not work with an older or newer version of GCC.
13061
13062Link-time optimization does not work well with generation of debugging
13063information on systems other than those using a combination of ELF and
13064DWARF.
13065
13066If you specify the optional @var{n}, the optimization and code
13067generation done at link time is executed in parallel using @var{n}
13068parallel jobs by utilizing an installed @command{make} program.  The
13069environment variable @env{MAKE} may be used to override the program
13070used.
13071
13072You can also specify @option{-flto=jobserver} to use GNU make's
13073job server mode to determine the number of parallel jobs. This
13074is useful when the Makefile calling GCC is already executing in parallel.
13075You must prepend a @samp{+} to the command recipe in the parent Makefile
13076for this to work.  This option likely only works if @env{MAKE} is
13077GNU make.  Even without the option value, GCC tries to automatically
13078detect a running GNU make's job server.
13079
13080Use @option{-flto=auto} to use GNU make's job server, if available,
13081or otherwise fall back to autodetection of the number of CPU threads
13082present in your system.
13083
13084@item -flto-partition=@var{alg}
13085@opindex flto-partition
13086Specify the partitioning algorithm used by the link-time optimizer.
13087The value is either @samp{1to1} to specify a partitioning mirroring
13088the original source files or @samp{balanced} to specify partitioning
13089into equally sized chunks (whenever possible) or @samp{max} to create
13090new partition for every symbol where possible.  Specifying @samp{none}
13091as an algorithm disables partitioning and streaming completely. 
13092The default value is @samp{balanced}. While @samp{1to1} can be used
13093as an workaround for various code ordering issues, the @samp{max}
13094partitioning is intended for internal testing only.
13095The value @samp{one} specifies that exactly one partition should be
13096used while the value @samp{none} bypasses partitioning and executes
13097the link-time optimization step directly from the WPA phase.
13098
13099@item -flto-compression-level=@var{n}
13100@opindex flto-compression-level
13101This option specifies the level of compression used for intermediate
13102language written to LTO object files, and is only meaningful in
13103conjunction with LTO mode (@option{-flto}).  GCC currently supports two
13104LTO compression algorithms. For zstd, valid values are 0 (no compression)
13105to 19 (maximum compression), while zlib supports values from 0 to 9.
13106Values outside this range are clamped to either minimum or maximum
13107of the supported values.  If the option is not given,
13108a default balanced compression setting is used.
13109
13110@item -fuse-linker-plugin
13111@opindex fuse-linker-plugin
13112Enables the use of a linker plugin during link-time optimization.  This
13113option relies on plugin support in the linker, which is available in gold
13114or in GNU ld 2.21 or newer.
13115
13116This option enables the extraction of object files with GIMPLE bytecode out
13117of library archives. This improves the quality of optimization by exposing
13118more code to the link-time optimizer.  This information specifies what
13119symbols can be accessed externally (by non-LTO object or during dynamic
13120linking).  Resulting code quality improvements on binaries (and shared
13121libraries that use hidden visibility) are similar to @option{-fwhole-program}.
13122See @option{-flto} for a description of the effect of this flag and how to
13123use it.
13124
13125This option is enabled by default when LTO support in GCC is enabled
13126and GCC was configured for use with
13127a linker supporting plugins (GNU ld 2.21 or newer or gold).
13128
13129@item -ffat-lto-objects
13130@opindex ffat-lto-objects
13131Fat LTO objects are object files that contain both the intermediate language
13132and the object code. This makes them usable for both LTO linking and normal
13133linking. This option is effective only when compiling with @option{-flto}
13134and is ignored at link time.
13135
13136@option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
13137requires the complete toolchain to be aware of LTO. It requires a linker with
13138linker plugin support for basic functionality.  Additionally,
13139@command{nm}, @command{ar} and @command{ranlib}
13140need to support linker plugins to allow a full-featured build environment
13141(capable of building static libraries etc).  GCC provides the @command{gcc-ar},
13142@command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
13143to these tools. With non fat LTO makefiles need to be modified to use them.
13144
13145Note that modern binutils provide plugin auto-load mechanism.
13146Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
13147effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
13148@command{gcc-ranlib}).
13149
13150The default is @option{-fno-fat-lto-objects} on targets with linker plugin
13151support.
13152
13153@item -fcompare-elim
13154@opindex fcompare-elim
13155After register allocation and post-register allocation instruction splitting,
13156identify arithmetic instructions that compute processor flags similar to a
13157comparison operation based on that arithmetic.  If possible, eliminate the
13158explicit comparison operation.
13159
13160This pass only applies to certain targets that cannot explicitly represent
13161the comparison operation before register allocation is complete.
13162
13163Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
13164
13165@item -fcprop-registers
13166@opindex fcprop-registers
13167After register allocation and post-register allocation instruction splitting,
13168perform a copy-propagation pass to try to reduce scheduling dependencies
13169and occasionally eliminate the copy.
13170
13171Enabled at levels @option{-O1}, @option{-O2}, @option{-O3}, @option{-Os}.
13172
13173@item -fprofile-correction
13174@opindex fprofile-correction
13175Profiles collected using an instrumented binary for multi-threaded programs may
13176be inconsistent due to missed counter updates. When this option is specified,
13177GCC uses heuristics to correct or smooth out such inconsistencies. By
13178default, GCC emits an error message when an inconsistent profile is detected.
13179
13180This option is enabled by @option{-fauto-profile}.
13181
13182@item -fprofile-partial-training
13183@opindex fprofile-partial-training
13184With @code{-fprofile-use} all portions of programs not executed during train
13185run are optimized agressively for size rather than speed.  In some cases it is
13186not practical to train all possible hot paths in the program. (For
13187example, program may contain functions specific for a given hardware and
13188trianing may not cover all hardware configurations program is run on.)  With
13189@code{-fprofile-partial-training} profile feedback will be ignored for all
13190functions not executed during the train run leading them to be optimized as if
13191they were compiled without profile feedback. This leads to better performance
13192when train run is not representative but also leads to significantly bigger
13193code.
13194
13195@item -fprofile-use
13196@itemx -fprofile-use=@var{path}
13197@opindex fprofile-use
13198Enable profile feedback-directed optimizations, 
13199and the following optimizations, many of which
13200are generally profitable only with profile feedback available:
13201
13202@gccoptlist{-fbranch-probabilities  -fprofile-values @gol
13203-funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
13204-finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
13205-fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
13206-fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
13207-fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
13208-fprofile-reorder-functions}
13209
13210Before you can use this option, you must first generate profiling information.
13211@xref{Instrumentation Options}, for information about the
13212@option{-fprofile-generate} option.
13213
13214By default, GCC emits an error message if the feedback profiles do not
13215match the source code.  This error can be turned into a warning by using
13216@option{-Wno-error=coverage-mismatch}.  Note this may result in poorly
13217optimized code.  Additionally, by default, GCC also emits a warning message if
13218the feedback profiles do not exist (see @option{-Wmissing-profile}).
13219
13220If @var{path} is specified, GCC looks at the @var{path} to find
13221the profile feedback data files. See @option{-fprofile-dir}.
13222
13223@item -fauto-profile
13224@itemx -fauto-profile=@var{path}
13225@opindex fauto-profile
13226Enable sampling-based feedback-directed optimizations, 
13227and the following optimizations,
13228many of which are generally profitable only with profile feedback available:
13229
13230@gccoptlist{-fbranch-probabilities  -fprofile-values @gol
13231-funroll-loops  -fpeel-loops  -ftracer  -fvpt @gol
13232-finline-functions  -fipa-cp  -fipa-cp-clone  -fipa-bit-cp @gol
13233-fpredictive-commoning  -fsplit-loops  -funswitch-loops @gol
13234-fgcse-after-reload  -ftree-loop-vectorize  -ftree-slp-vectorize @gol
13235-fvect-cost-model=dynamic  -ftree-loop-distribute-patterns @gol
13236-fprofile-correction}
13237
13238@var{path} is the name of a file containing AutoFDO profile information.
13239If omitted, it defaults to @file{fbdata.afdo} in the current directory.
13240
13241Producing an AutoFDO profile data file requires running your program
13242with the @command{perf} utility on a supported GNU/Linux target system.
13243For more information, see @uref{https://perf.wiki.kernel.org/}.
13244
13245E.g.
13246@smallexample
13247perf record -e br_inst_retired:near_taken -b -o perf.data \
13248    -- your_program
13249@end smallexample
13250
13251Then use the @command{create_gcov} tool to convert the raw profile data
13252to a format that can be used by GCC.@  You must also supply the 
13253unstripped binary for your program to this tool.  
13254See @uref{https://github.com/google/autofdo}.
13255
13256E.g.
13257@smallexample
13258create_gcov --binary=your_program.unstripped --profile=perf.data \
13259    --gcov=profile.afdo
13260@end smallexample
13261@end table
13262
13263The following options control compiler behavior regarding floating-point 
13264arithmetic.  These options trade off between speed and
13265correctness.  All must be specifically enabled.
13266
13267@table @gcctabopt
13268@item -ffloat-store
13269@opindex ffloat-store
13270Do not store floating-point variables in registers, and inhibit other
13271options that might change whether a floating-point value is taken from a
13272register or memory.
13273
13274@cindex floating-point precision
13275This option prevents undesirable excess precision on machines such as
13276the 68000 where the floating registers (of the 68881) keep more
13277precision than a @code{double} is supposed to have.  Similarly for the
13278x86 architecture.  For most programs, the excess precision does only
13279good, but a few programs rely on the precise definition of IEEE floating
13280point.  Use @option{-ffloat-store} for such programs, after modifying
13281them to store all pertinent intermediate computations into variables.
13282
13283@item -fexcess-precision=@var{style}
13284@opindex fexcess-precision
13285This option allows further control over excess precision on machines
13286where floating-point operations occur in a format with more precision or
13287range than the IEEE standard and interchange floating-point types.  By
13288default, @option{-fexcess-precision=fast} is in effect; this means that
13289operations may be carried out in a wider precision than the types specified
13290in the source if that would result in faster code, and it is unpredictable
13291when rounding to the types specified in the source code takes place.
13292When compiling C, if @option{-fexcess-precision=standard} is specified then
13293excess precision follows the rules specified in ISO C99; in particular,
13294both casts and assignments cause values to be rounded to their
13295semantic types (whereas @option{-ffloat-store} only affects
13296assignments).  This option is enabled by default for C if a strict
13297conformance option such as @option{-std=c99} is used.
13298@option{-ffast-math} enables @option{-fexcess-precision=fast} by default
13299regardless of whether a strict conformance option is used.
13300
13301@opindex mfpmath
13302@option{-fexcess-precision=standard} is not implemented for languages
13303other than C.  On the x86, it has no effect if @option{-mfpmath=sse}
13304or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
13305semantics apply without excess precision, and in the latter, rounding
13306is unpredictable.
13307
13308@item -ffast-math
13309@opindex ffast-math
13310Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
13311@option{-ffinite-math-only}, @option{-fno-rounding-math},
13312@option{-fno-signaling-nans}, @option{-fcx-limited-range} and
13313@option{-fexcess-precision=fast}.
13314
13315This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
13316
13317This option is not turned on by any @option{-O} option besides
13318@option{-Ofast} since it can result in incorrect output for programs
13319that depend on an exact implementation of IEEE or ISO rules/specifications
13320for math functions. It may, however, yield faster code for programs
13321that do not require the guarantees of these specifications.
13322
13323@item -fno-math-errno
13324@opindex fno-math-errno
13325@opindex fmath-errno
13326Do not set @code{errno} after calling math functions that are executed
13327with a single instruction, e.g., @code{sqrt}.  A program that relies on
13328IEEE exceptions for math error handling may want to use this flag
13329for speed while maintaining IEEE arithmetic compatibility.
13330
13331This option is not turned on by any @option{-O} option since
13332it can result in incorrect output for programs that depend on
13333an exact implementation of IEEE or ISO rules/specifications for
13334math functions. It may, however, yield faster code for programs
13335that do not require the guarantees of these specifications.
13336
13337The default is @option{-fmath-errno}.
13338
13339On Darwin systems, the math library never sets @code{errno}.  There is
13340therefore no reason for the compiler to consider the possibility that
13341it might, and @option{-fno-math-errno} is the default.
13342
13343@item -funsafe-math-optimizations
13344@opindex funsafe-math-optimizations
13345
13346Allow optimizations for floating-point arithmetic that (a) assume
13347that arguments and results are valid and (b) may violate IEEE or
13348ANSI standards.  When used at link time, it may include libraries
13349or startup files that change the default FPU control word or other
13350similar optimizations.
13351
13352This option is not turned on by any @option{-O} option since
13353it can result in incorrect output for programs that depend on
13354an exact implementation of IEEE or ISO rules/specifications for
13355math functions. It may, however, yield faster code for programs
13356that do not require the guarantees of these specifications.
13357Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
13358@option{-fassociative-math} and @option{-freciprocal-math}.
13359
13360The default is @option{-fno-unsafe-math-optimizations}.
13361
13362@item -fassociative-math
13363@opindex fassociative-math
13364
13365Allow re-association of operands in series of floating-point operations.
13366This violates the ISO C and C++ language standard by possibly changing
13367computation result.  NOTE: re-ordering may change the sign of zero as
13368well as ignore NaNs and inhibit or create underflow or overflow (and
13369thus cannot be used on code that relies on rounding behavior like
13370@code{(x + 2**52) - 2**52}.  May also reorder floating-point comparisons
13371and thus may not be used when ordered comparisons are required.
13372This option requires that both @option{-fno-signed-zeros} and
13373@option{-fno-trapping-math} be in effect.  Moreover, it doesn't make
13374much sense with @option{-frounding-math}. For Fortran the option
13375is automatically enabled when both @option{-fno-signed-zeros} and
13376@option{-fno-trapping-math} are in effect.
13377
13378The default is @option{-fno-associative-math}.
13379
13380@item -freciprocal-math
13381@opindex freciprocal-math
13382
13383Allow the reciprocal of a value to be used instead of dividing by
13384the value if this enables optimizations.  For example @code{x / y}
13385can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
13386is subject to common subexpression elimination.  Note that this loses
13387precision and increases the number of flops operating on the value.
13388
13389The default is @option{-fno-reciprocal-math}.
13390
13391@item -ffinite-math-only
13392@opindex ffinite-math-only
13393Allow optimizations for floating-point arithmetic that assume
13394that arguments and results are not NaNs or +-Infs.
13395
13396This option is not turned on by any @option{-O} option since
13397it can result in incorrect output for programs that depend on
13398an exact implementation of IEEE or ISO rules/specifications for
13399math functions. It may, however, yield faster code for programs
13400that do not require the guarantees of these specifications.
13401
13402The default is @option{-fno-finite-math-only}.
13403
13404@item -fno-signed-zeros
13405@opindex fno-signed-zeros
13406@opindex fsigned-zeros
13407Allow optimizations for floating-point arithmetic that ignore the
13408signedness of zero.  IEEE arithmetic specifies the behavior of
13409distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
13410of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
13411This option implies that the sign of a zero result isn't significant.
13412
13413The default is @option{-fsigned-zeros}.
13414
13415@item -fno-trapping-math
13416@opindex fno-trapping-math
13417@opindex ftrapping-math
13418Compile code assuming that floating-point operations cannot generate
13419user-visible traps.  These traps include division by zero, overflow,
13420underflow, inexact result and invalid operation.  This option requires
13421that @option{-fno-signaling-nans} be in effect.  Setting this option may
13422allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
13423
13424This option should never be turned on by any @option{-O} option since
13425it can result in incorrect output for programs that depend on
13426an exact implementation of IEEE or ISO rules/specifications for
13427math functions.
13428
13429The default is @option{-ftrapping-math}.
13430
13431@item -frounding-math
13432@opindex frounding-math
13433Disable transformations and optimizations that assume default floating-point
13434rounding behavior.  This is round-to-zero for all floating point
13435to integer conversions, and round-to-nearest for all other arithmetic
13436truncations.  This option should be specified for programs that change
13437the FP rounding mode dynamically, or that may be executed with a
13438non-default rounding mode.  This option disables constant folding of
13439floating-point expressions at compile time (which may be affected by
13440rounding mode) and arithmetic transformations that are unsafe in the
13441presence of sign-dependent rounding modes.
13442
13443The default is @option{-fno-rounding-math}.
13444
13445This option is experimental and does not currently guarantee to
13446disable all GCC optimizations that are affected by rounding mode.
13447Future versions of GCC may provide finer control of this setting
13448using C99's @code{FENV_ACCESS} pragma.  This command-line option
13449will be used to specify the default state for @code{FENV_ACCESS}.
13450
13451@item -fsignaling-nans
13452@opindex fsignaling-nans
13453Compile code assuming that IEEE signaling NaNs may generate user-visible
13454traps during floating-point operations.  Setting this option disables
13455optimizations that may change the number of exceptions visible with
13456signaling NaNs.  This option implies @option{-ftrapping-math}.
13457
13458This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
13459be defined.
13460
13461The default is @option{-fno-signaling-nans}.
13462
13463This option is experimental and does not currently guarantee to
13464disable all GCC optimizations that affect signaling NaN behavior.
13465
13466@item -fno-fp-int-builtin-inexact
13467@opindex fno-fp-int-builtin-inexact
13468@opindex ffp-int-builtin-inexact
13469Do not allow the built-in functions @code{ceil}, @code{floor},
13470@code{round} and @code{trunc}, and their @code{float} and @code{long
13471double} variants, to generate code that raises the ``inexact''
13472floating-point exception for noninteger arguments.  ISO C99 and C11
13473allow these functions to raise the ``inexact'' exception, but ISO/IEC
13474TS 18661-1:2014, the C bindings to IEEE 754-2008, as integrated into
13475ISO C2X, does not allow these functions to do so.
13476
13477The default is @option{-ffp-int-builtin-inexact}, allowing the
13478exception to be raised, unless C2X or a later C standard is selected.
13479This option does nothing unless @option{-ftrapping-math} is in effect.
13480
13481Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
13482generate a call to a library function then the ``inexact'' exception
13483may be raised if the library implementation does not follow TS 18661.
13484
13485@item -fsingle-precision-constant
13486@opindex fsingle-precision-constant
13487Treat floating-point constants as single precision instead of
13488implicitly converting them to double-precision constants.
13489
13490@item -fcx-limited-range
13491@opindex fcx-limited-range
13492When enabled, this option states that a range reduction step is not
13493needed when performing complex division.  Also, there is no checking
13494whether the result of a complex multiplication or division is @code{NaN
13495+ I*NaN}, with an attempt to rescue the situation in that case.  The
13496default is @option{-fno-cx-limited-range}, but is enabled by
13497@option{-ffast-math}.
13498
13499This option controls the default setting of the ISO C99
13500@code{CX_LIMITED_RANGE} pragma.  Nevertheless, the option applies to
13501all languages.
13502
13503@item -fcx-fortran-rules
13504@opindex fcx-fortran-rules
13505Complex multiplication and division follow Fortran rules.  Range
13506reduction is done as part of complex division, but there is no checking
13507whether the result of a complex multiplication or division is @code{NaN
13508+ I*NaN}, with an attempt to rescue the situation in that case.
13509
13510The default is @option{-fno-cx-fortran-rules}.
13511
13512@end table
13513
13514The following options control optimizations that may improve
13515performance, but are not enabled by any @option{-O} options.  This
13516section includes experimental options that may produce broken code.
13517
13518@table @gcctabopt
13519@item -fbranch-probabilities
13520@opindex fbranch-probabilities
13521After running a program compiled with @option{-fprofile-arcs}
13522(@pxref{Instrumentation Options}),
13523you can compile it a second time using
13524@option{-fbranch-probabilities}, to improve optimizations based on
13525the number of times each branch was taken.  When a program
13526compiled with @option{-fprofile-arcs} exits, it saves arc execution
13527counts to a file called @file{@var{sourcename}.gcda} for each source
13528file.  The information in this data file is very dependent on the
13529structure of the generated code, so you must use the same source code
13530and the same optimization options for both compilations.
13531See details about the file naming in @option{-fprofile-arcs}.
13532
13533With @option{-fbranch-probabilities}, GCC puts a
13534@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
13535These can be used to improve optimization.  Currently, they are only
13536used in one place: in @file{reorg.cc}, instead of guessing which path a
13537branch is most likely to take, the @samp{REG_BR_PROB} values are used to
13538exactly determine which path is taken more often.
13539
13540Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13541
13542@item -fprofile-values
13543@opindex fprofile-values
13544If combined with @option{-fprofile-arcs}, it adds code so that some
13545data about values of expressions in the program is gathered.
13546
13547With @option{-fbranch-probabilities}, it reads back the data gathered
13548from profiling values of expressions for usage in optimizations.
13549
13550Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
13551@option{-fauto-profile}.
13552
13553@item -fprofile-reorder-functions
13554@opindex fprofile-reorder-functions
13555Function reordering based on profile instrumentation collects
13556first time of execution of a function and orders these functions
13557in ascending order.
13558
13559Enabled with @option{-fprofile-use}.
13560
13561@item -fvpt
13562@opindex fvpt
13563If combined with @option{-fprofile-arcs}, this option instructs the compiler
13564to add code to gather information about values of expressions.
13565
13566With @option{-fbranch-probabilities}, it reads back the data gathered
13567and actually performs the optimizations based on them.
13568Currently the optimizations include specialization of division operations
13569using the knowledge about the value of the denominator.
13570
13571Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
13572
13573@item -frename-registers
13574@opindex frename-registers
13575Attempt to avoid false dependencies in scheduled code by making use
13576of registers left over after register allocation.  This optimization
13577most benefits processors with lots of registers.  Depending on the
13578debug information format adopted by the target, however, it can
13579make debugging impossible, since variables no longer stay in
13580a ``home register''.
13581
13582Enabled by default with @option{-funroll-loops}.
13583
13584@item -fschedule-fusion
13585@opindex fschedule-fusion
13586Performs a target dependent pass over the instruction stream to schedule
13587instructions of same type together because target machine can execute them
13588more efficiently if they are adjacent to each other in the instruction flow.
13589
13590Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
13591
13592@item -ftracer
13593@opindex ftracer
13594Perform tail duplication to enlarge superblock size.  This transformation
13595simplifies the control flow of the function allowing other optimizations to do
13596a better job.
13597
13598Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13599
13600@item -funroll-loops
13601@opindex funroll-loops
13602Unroll loops whose number of iterations can be determined at compile time or
13603upon entry to the loop.  @option{-funroll-loops} implies
13604@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
13605It also turns on complete loop peeling (i.e.@: complete removal of loops with
13606a small constant number of iterations).  This option makes code larger, and may
13607or may not make it run faster.
13608
13609Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13610
13611@item -funroll-all-loops
13612@opindex funroll-all-loops
13613Unroll all loops, even if their number of iterations is uncertain when
13614the loop is entered.  This usually makes programs run more slowly.
13615@option{-funroll-all-loops} implies the same options as
13616@option{-funroll-loops}.
13617
13618@item -fpeel-loops
13619@opindex fpeel-loops
13620Peels loops for which there is enough information that they do not
13621roll much (from profile feedback or static analysis).  It also turns on
13622complete loop peeling (i.e.@: complete removal of loops with small constant
13623number of iterations).
13624
13625Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
13626
13627@item -fmove-loop-invariants
13628@opindex fmove-loop-invariants
13629Enables the loop invariant motion pass in the RTL loop optimizer.  Enabled
13630at level @option{-O1} and higher, except for @option{-Og}.
13631
13632@item -fmove-loop-stores
13633@opindex fmove-loop-stores
13634Enables the loop store motion pass in the GIMPLE loop optimizer.  This
13635moves invariant stores to after the end of the loop in exchange for
13636carrying the stored value in a register across the iteration.
13637Note for this option to have an effect @option{-ftree-loop-im} has to
13638be enabled as well.  Enabled at level @option{-O1} and higher, except
13639for @option{-Og}.
13640
13641@item -fsplit-loops
13642@opindex fsplit-loops
13643Split a loop into two if it contains a condition that's always true
13644for one side of the iteration space and false for the other.
13645
13646Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13647
13648@item -funswitch-loops
13649@opindex funswitch-loops
13650Move branches with loop invariant conditions out of the loop, with duplicates
13651of the loop on both branches (modified according to result of the condition).
13652
13653Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13654
13655@item -fversion-loops-for-strides
13656@opindex fversion-loops-for-strides
13657If a loop iterates over an array with a variable stride, create another
13658version of the loop that assumes the stride is always one.  For example:
13659
13660@smallexample
13661for (int i = 0; i < n; ++i)
13662  x[i * stride] = @dots{};
13663@end smallexample
13664
13665becomes:
13666
13667@smallexample
13668if (stride == 1)
13669  for (int i = 0; i < n; ++i)
13670    x[i] = @dots{};
13671else
13672  for (int i = 0; i < n; ++i)
13673    x[i * stride] = @dots{};
13674@end smallexample
13675
13676This is particularly useful for assumed-shape arrays in Fortran where
13677(for example) it allows better vectorization assuming contiguous accesses.
13678This flag is enabled by default at @option{-O3}.
13679It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
13680
13681@item -ffunction-sections
13682@itemx -fdata-sections
13683@opindex ffunction-sections
13684@opindex fdata-sections
13685Place each function or data item into its own section in the output
13686file if the target supports arbitrary sections.  The name of the
13687function or the name of the data item determines the section's name
13688in the output file.
13689
13690Use these options on systems where the linker can perform optimizations to
13691improve locality of reference in the instruction space.  Most systems using the
13692ELF object format have linkers with such optimizations.  On AIX, the linker
13693rearranges sections (CSECTs) based on the call graph.  The performance impact
13694varies.
13695
13696Together with a linker garbage collection (linker @option{--gc-sections}
13697option) these options may lead to smaller statically-linked executables (after
13698stripping).
13699
13700On ELF/DWARF systems these options do not degenerate the quality of the debug
13701information.  There could be issues with other object files/debug info formats.
13702
13703Only use these options when there are significant benefits from doing so.  When
13704you specify these options, the assembler and linker create larger object and
13705executable files and are also slower.  These options affect code generation.
13706They prevent optimizations by the compiler and assembler using relative
13707locations inside a translation unit since the locations are unknown until
13708link time.  An example of such an optimization is relaxing calls to short call
13709instructions.
13710
13711@item -fstdarg-opt
13712@opindex fstdarg-opt
13713Optimize the prologue of variadic argument functions with respect to usage of
13714those arguments.
13715
13716@item -fsection-anchors
13717@opindex fsection-anchors
13718Try to reduce the number of symbolic address calculations by using
13719shared ``anchor'' symbols to address nearby objects.  This transformation
13720can help to reduce the number of GOT entries and GOT accesses on some
13721targets.
13722
13723For example, the implementation of the following function @code{foo}:
13724
13725@smallexample
13726static int a, b, c;
13727int foo (void) @{ return a + b + c; @}
13728@end smallexample
13729
13730@noindent
13731usually calculates the addresses of all three variables, but if you
13732compile it with @option{-fsection-anchors}, it accesses the variables
13733from a common anchor point instead.  The effect is similar to the
13734following pseudocode (which isn't valid C):
13735
13736@smallexample
13737int foo (void)
13738@{
13739  register int *xr = &x;
13740  return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
13741@}
13742@end smallexample
13743
13744Not all targets support this option.
13745
13746@item -fzero-call-used-regs=@var{choice}
13747@opindex fzero-call-used-regs
13748Zero call-used registers at function return to increase program
13749security by either mitigating Return-Oriented Programming (ROP)
13750attacks or preventing information leakage through registers.
13751
13752The possible values of @var{choice} are the same as for the
13753@code{zero_call_used_regs} attribute (@pxref{Function Attributes}).
13754The default is @samp{skip}.
13755
13756You can control this behavior for a specific function by using the function
13757attribute @code{zero_call_used_regs} (@pxref{Function Attributes}).
13758
13759@item --param @var{name}=@var{value}
13760@opindex param
13761In some places, GCC uses various constants to control the amount of
13762optimization that is done.  For example, GCC does not inline functions
13763that contain more than a certain number of instructions.  You can
13764control some of these constants on the command line using the
13765@option{--param} option.
13766
13767The names of specific parameters, and the meaning of the values, are
13768tied to the internals of the compiler, and are subject to change
13769without notice in future releases.
13770
13771In order to get minimal, maximal and default value of a parameter,
13772one can use @option{--help=param -Q} options.
13773
13774In each case, the @var{value} is an integer.  The following choices
13775of @var{name} are recognized for all targets:
13776
13777@table @gcctabopt
13778@item predictable-branch-outcome
13779When branch is predicted to be taken with probability lower than this threshold
13780(in percent), then it is considered well predictable.
13781
13782@item max-rtl-if-conversion-insns
13783RTL if-conversion tries to remove conditional branches around a block and
13784replace them with conditionally executed instructions.  This parameter
13785gives the maximum number of instructions in a block which should be
13786considered for if-conversion.  The compiler will
13787also use other heuristics to decide whether if-conversion is likely to be
13788profitable.
13789
13790@item max-rtl-if-conversion-predictable-cost
13791RTL if-conversion will try to remove conditional branches around a block
13792and replace them with conditionally executed instructions.  These parameters
13793give the maximum permissible cost for the sequence that would be generated
13794by if-conversion depending on whether the branch is statically determined
13795to be predictable or not.  The units for this parameter are the same as
13796those for the GCC internal seq_cost metric.  The compiler will try to
13797provide a reasonable default for this parameter using the BRANCH_COST
13798target macro.
13799
13800@item max-crossjump-edges
13801The maximum number of incoming edges to consider for cross-jumping.
13802The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
13803the number of edges incoming to each block.  Increasing values mean
13804more aggressive optimization, making the compilation time increase with
13805probably small improvement in executable size.
13806
13807@item min-crossjump-insns
13808The minimum number of instructions that must be matched at the end
13809of two blocks before cross-jumping is performed on them.  This
13810value is ignored in the case where all instructions in the block being
13811cross-jumped from are matched.
13812
13813@item max-grow-copy-bb-insns
13814The maximum code size expansion factor when copying basic blocks
13815instead of jumping.  The expansion is relative to a jump instruction.
13816
13817@item max-goto-duplication-insns
13818The maximum number of instructions to duplicate to a block that jumps
13819to a computed goto.  To avoid @math{O(N^2)} behavior in a number of
13820passes, GCC factors computed gotos early in the compilation process,
13821and unfactors them as late as possible.  Only computed jumps at the
13822end of a basic blocks with no more than max-goto-duplication-insns are
13823unfactored.
13824
13825@item max-delay-slot-insn-search
13826The maximum number of instructions to consider when looking for an
13827instruction to fill a delay slot.  If more than this arbitrary number of
13828instructions are searched, the time savings from filling the delay slot
13829are minimal, so stop searching.  Increasing values mean more
13830aggressive optimization, making the compilation time increase with probably
13831small improvement in execution time.
13832
13833@item max-delay-slot-live-search
13834When trying to fill delay slots, the maximum number of instructions to
13835consider when searching for a block with valid live register
13836information.  Increasing this arbitrarily chosen value means more
13837aggressive optimization, increasing the compilation time.  This parameter
13838should be removed when the delay slot code is rewritten to maintain the
13839control-flow graph.
13840
13841@item max-gcse-memory
13842The approximate maximum amount of memory in @code{kB} that can be allocated in
13843order to perform the global common subexpression elimination
13844optimization.  If more memory than specified is required, the
13845optimization is not done.
13846
13847@item max-gcse-insertion-ratio
13848If the ratio of expression insertions to deletions is larger than this value
13849for any expression, then RTL PRE inserts or removes the expression and thus
13850leaves partially redundant computations in the instruction stream.
13851
13852@item max-pending-list-length
13853The maximum number of pending dependencies scheduling allows
13854before flushing the current state and starting over.  Large functions
13855with few branches or calls can create excessively large lists which
13856needlessly consume memory and resources.
13857
13858@item max-modulo-backtrack-attempts
13859The maximum number of backtrack attempts the scheduler should make
13860when modulo scheduling a loop.  Larger values can exponentially increase
13861compilation time.
13862
13863@item max-inline-functions-called-once-loop-depth
13864Maximal loop depth of a call considered by inline heuristics that tries to
13865inline all functions called once.
13866
13867@item max-inline-functions-called-once-insns
13868Maximal estimated size of functions produced while inlining functions called
13869once.
13870
13871@item max-inline-insns-single
13872Several parameters control the tree inliner used in GCC@.  This number sets the
13873maximum number of instructions (counted in GCC's internal representation) in a
13874single function that the tree inliner considers for inlining.  This only
13875affects functions declared inline and methods implemented in a class
13876declaration (C++). 
13877
13878
13879@item max-inline-insns-auto
13880When you use @option{-finline-functions} (included in @option{-O3}),
13881a lot of functions that would otherwise not be considered for inlining
13882by the compiler are investigated.  To those functions, a different
13883(more restrictive) limit compared to functions declared inline can
13884be applied (@option{--param max-inline-insns-auto}).
13885
13886@item max-inline-insns-small
13887This is bound applied to calls which are considered relevant with
13888@option{-finline-small-functions}.
13889
13890@item max-inline-insns-size
13891This is bound applied to calls which are optimized for size. Small growth
13892may be desirable to anticipate optimization oppurtunities exposed by inlining.
13893
13894@item uninlined-function-insns
13895Number of instructions accounted by inliner for function overhead such as
13896function prologue and epilogue.
13897
13898@item uninlined-function-time
13899Extra time accounted by inliner for function overhead such as time needed to
13900execute function prologue and epilogue.
13901
13902@item inline-heuristics-hint-percent
13903The scale (in percents) applied to @option{inline-insns-single},
13904@option{inline-insns-single-O2}, @option{inline-insns-auto}
13905when inline heuristics hints that inlining is
13906very profitable (will enable later optimizations).
13907
13908@item uninlined-thunk-insns
13909@item uninlined-thunk-time
13910Same as @option{--param uninlined-function-insns} and
13911@option{--param uninlined-function-time} but applied to function thunks.
13912
13913@item inline-min-speedup
13914When estimated performance improvement of caller + callee runtime exceeds this
13915threshold (in percent), the function can be inlined regardless of the limit on
13916@option{--param max-inline-insns-single} and @option{--param
13917max-inline-insns-auto}.
13918
13919@item large-function-insns
13920The limit specifying really large functions.  For functions larger than this
13921limit after inlining, inlining is constrained by
13922@option{--param large-function-growth}.  This parameter is useful primarily
13923to avoid extreme compilation time caused by non-linear algorithms used by the
13924back end.
13925
13926@item large-function-growth
13927Specifies maximal growth of large function caused by inlining in percents.
13928For example, parameter value 100 limits large function growth to 2.0 times
13929the original size.
13930
13931@item large-unit-insns
13932The limit specifying large translation unit.  Growth caused by inlining of
13933units larger than this limit is limited by @option{--param inline-unit-growth}.
13934For small units this might be too tight.
13935For example, consider a unit consisting of function A
13936that is inline and B that just calls A three times.  If B is small relative to
13937A, the growth of unit is 300\% and yet such inlining is very sane.  For very
13938large units consisting of small inlineable functions, however, the overall unit
13939growth limit is needed to avoid exponential explosion of code size.  Thus for
13940smaller units, the size is increased to @option{--param large-unit-insns}
13941before applying @option{--param inline-unit-growth}.
13942
13943@item lazy-modules
13944Maximum number of concurrently open C++ module files when lazy loading.
13945
13946@item inline-unit-growth
13947Specifies maximal overall growth of the compilation unit caused by inlining.
13948For example, parameter value 20 limits unit growth to 1.2 times the original
13949size. Cold functions (either marked cold via an attribute or by profile
13950feedback) are not accounted into the unit size.
13951
13952@item ipa-cp-unit-growth
13953Specifies maximal overall growth of the compilation unit caused by
13954interprocedural constant propagation.  For example, parameter value 10 limits
13955unit growth to 1.1 times the original size.
13956
13957@item ipa-cp-large-unit-insns
13958The size of translation unit that IPA-CP pass considers large.
13959
13960@item large-stack-frame
13961The limit specifying large stack frames.  While inlining the algorithm is trying
13962to not grow past this limit too much.
13963
13964@item large-stack-frame-growth
13965Specifies maximal growth of large stack frames caused by inlining in percents.
13966For example, parameter value 1000 limits large stack frame growth to 11 times
13967the original size.
13968
13969@item max-inline-insns-recursive
13970@itemx max-inline-insns-recursive-auto
13971Specifies the maximum number of instructions an out-of-line copy of a
13972self-recursive inline
13973function can grow into by performing recursive inlining.
13974
13975@option{--param max-inline-insns-recursive} applies to functions
13976declared inline.
13977For functions not declared inline, recursive inlining
13978happens only when @option{-finline-functions} (included in @option{-O3}) is
13979enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
13980
13981@item max-inline-recursive-depth
13982@itemx max-inline-recursive-depth-auto
13983Specifies the maximum recursion depth used for recursive inlining.
13984
13985@option{--param max-inline-recursive-depth} applies to functions
13986declared inline.  For functions not declared inline, recursive inlining
13987happens only when @option{-finline-functions} (included in @option{-O3}) is
13988enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
13989
13990@item min-inline-recursive-probability
13991Recursive inlining is profitable only for function having deep recursion
13992in average and can hurt for function having little recursion depth by
13993increasing the prologue size or complexity of function body to other
13994optimizers.
13995
13996When profile feedback is available (see @option{-fprofile-generate}) the actual
13997recursion depth can be guessed from the probability that function recurses
13998via a given call expression.  This parameter limits inlining only to call
13999expressions whose probability exceeds the given threshold (in percents).
14000
14001@item early-inlining-insns
14002Specify growth that the early inliner can make.  In effect it increases
14003the amount of inlining for code having a large abstraction penalty.
14004
14005@item max-early-inliner-iterations
14006Limit of iterations of the early inliner.  This basically bounds
14007the number of nested indirect calls the early inliner can resolve.
14008Deeper chains are still handled by late inlining.
14009
14010@item comdat-sharing-probability
14011Probability (in percent) that C++ inline function with comdat visibility
14012are shared across multiple compilation units.
14013
14014@item modref-max-bases
14015@item modref-max-refs
14016@item modref-max-accesses
14017Specifies the maximal number of base pointers, references and accesses stored
14018for a single function by mod/ref analysis.
14019
14020@item modref-max-tests
14021Specifies the maxmal number of tests alias oracle can perform to disambiguate
14022memory locations using the mod/ref information.  This parameter ought to be
14023bigger than @option{--param modref-max-bases} and @option{--param
14024modref-max-refs}.
14025
14026@item modref-max-depth
14027Specifies the maximum depth of DFS walk used by modref escape analysis.
14028Setting to 0 disables the analysis completely.
14029
14030@item modref-max-escape-points
14031Specifies the maximum number of escape points tracked by modref per SSA-name.
14032
14033@item modref-max-adjustments
14034Specifies the maximum number the access range is enlarged during modref dataflow
14035analysis.
14036
14037@item profile-func-internal-id
14038A parameter to control whether to use function internal id in profile
14039database lookup. If the value is 0, the compiler uses an id that
14040is based on function assembler name and filename, which makes old profile
14041data more tolerant to source changes such as function reordering etc.
14042
14043@item min-vect-loop-bound
14044The minimum number of iterations under which loops are not vectorized
14045when @option{-ftree-vectorize} is used.  The number of iterations after
14046vectorization needs to be greater than the value specified by this option
14047to allow vectorization.
14048
14049@item gcse-cost-distance-ratio
14050Scaling factor in calculation of maximum distance an expression
14051can be moved by GCSE optimizations.  This is currently supported only in the
14052code hoisting pass.  The bigger the ratio, the more aggressive code hoisting
14053is with simple expressions, i.e., the expressions that have cost
14054less than @option{gcse-unrestricted-cost}.  Specifying 0 disables
14055hoisting of simple expressions.
14056
14057@item gcse-unrestricted-cost
14058Cost, roughly measured as the cost of a single typical machine
14059instruction, at which GCSE optimizations do not constrain
14060the distance an expression can travel.  This is currently
14061supported only in the code hoisting pass.  The lesser the cost,
14062the more aggressive code hoisting is.  Specifying 0 
14063allows all expressions to travel unrestricted distances.
14064
14065@item max-hoist-depth
14066The depth of search in the dominator tree for expressions to hoist.
14067This is used to avoid quadratic behavior in hoisting algorithm.
14068The value of 0 does not limit on the search, but may slow down compilation
14069of huge functions.
14070
14071@item max-tail-merge-comparisons
14072The maximum amount of similar bbs to compare a bb with.  This is used to
14073avoid quadratic behavior in tree tail merging.
14074
14075@item max-tail-merge-iterations
14076The maximum amount of iterations of the pass over the function.  This is used to
14077limit compilation time in tree tail merging.
14078
14079@item store-merging-allow-unaligned
14080Allow the store merging pass to introduce unaligned stores if it is legal to
14081do so.
14082
14083@item max-stores-to-merge
14084The maximum number of stores to attempt to merge into wider stores in the store
14085merging pass.
14086
14087@item max-store-chains-to-track
14088The maximum number of store chains to track at the same time in the attempt
14089to merge them into wider stores in the store merging pass.
14090
14091@item max-stores-to-track
14092The maximum number of stores to track at the same time in the attemt to
14093to merge them into wider stores in the store merging pass.
14094
14095@item max-unrolled-insns
14096The maximum number of instructions that a loop may have to be unrolled.
14097If a loop is unrolled, this parameter also determines how many times
14098the loop code is unrolled.
14099
14100@item max-average-unrolled-insns
14101The maximum number of instructions biased by probabilities of their execution
14102that a loop may have to be unrolled.  If a loop is unrolled,
14103this parameter also determines how many times the loop code is unrolled.
14104
14105@item max-unroll-times
14106The maximum number of unrollings of a single loop.
14107
14108@item max-peeled-insns
14109The maximum number of instructions that a loop may have to be peeled.
14110If a loop is peeled, this parameter also determines how many times
14111the loop code is peeled.
14112
14113@item max-peel-times
14114The maximum number of peelings of a single loop.
14115
14116@item max-peel-branches
14117The maximum number of branches on the hot path through the peeled sequence.
14118
14119@item max-completely-peeled-insns
14120The maximum number of insns of a completely peeled loop.
14121
14122@item max-completely-peel-times
14123The maximum number of iterations of a loop to be suitable for complete peeling.
14124
14125@item max-completely-peel-loop-nest-depth
14126The maximum depth of a loop nest suitable for complete peeling.
14127
14128@item max-unswitch-insns
14129The maximum number of insns of an unswitched loop.
14130
14131@item max-unswitch-level
14132The maximum number of branches unswitched in a single loop.
14133
14134@item lim-expensive
14135The minimum cost of an expensive expression in the loop invariant motion.
14136
14137@item min-loop-cond-split-prob
14138When FDO profile information is available, @option{min-loop-cond-split-prob}
14139specifies minimum threshold for probability of semi-invariant condition
14140statement to trigger loop split.
14141
14142@item iv-consider-all-candidates-bound
14143Bound on number of candidates for induction variables, below which
14144all candidates are considered for each use in induction variable
14145optimizations.  If there are more candidates than this,
14146only the most relevant ones are considered to avoid quadratic time complexity.
14147
14148@item iv-max-considered-uses
14149The induction variable optimizations give up on loops that contain more
14150induction variable uses.
14151
14152@item iv-always-prune-cand-set-bound
14153If the number of candidates in the set is smaller than this value,
14154always try to remove unnecessary ivs from the set
14155when adding a new one.
14156
14157@item avg-loop-niter
14158Average number of iterations of a loop.
14159
14160@item dse-max-object-size
14161Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
14162Larger values may result in larger compilation times.
14163
14164@item dse-max-alias-queries-per-store
14165Maximum number of queries into the alias oracle per store.
14166Larger values result in larger compilation times and may result in more
14167removed dead stores.
14168
14169@item scev-max-expr-size
14170Bound on size of expressions used in the scalar evolutions analyzer.
14171Large expressions slow the analyzer.
14172
14173@item scev-max-expr-complexity
14174Bound on the complexity of the expressions in the scalar evolutions analyzer.
14175Complex expressions slow the analyzer.
14176
14177@item max-tree-if-conversion-phi-args
14178Maximum number of arguments in a PHI supported by TREE if conversion
14179unless the loop is marked with simd pragma.
14180
14181@item vect-max-version-for-alignment-checks
14182The maximum number of run-time checks that can be performed when
14183doing loop versioning for alignment in the vectorizer.
14184
14185@item vect-max-version-for-alias-checks
14186The maximum number of run-time checks that can be performed when
14187doing loop versioning for alias in the vectorizer.
14188
14189@item vect-max-peeling-for-alignment
14190The maximum number of loop peels to enhance access alignment
14191for vectorizer. Value -1 means no limit.
14192
14193@item max-iterations-to-track
14194The maximum number of iterations of a loop the brute-force algorithm
14195for analysis of the number of iterations of the loop tries to evaluate.
14196
14197@item hot-bb-count-fraction
14198The denominator n of fraction 1/n of the maximal execution count of a
14199basic block in the entire program that a basic block needs to at least
14200have in order to be considered hot.  The default is 10000, which means
14201that a basic block is considered hot if its execution count is greater
14202than 1/10000 of the maximal execution count.  0 means that it is never
14203considered hot.  Used in non-LTO mode.
14204
14205@item hot-bb-count-ws-permille
14206The number of most executed permilles, ranging from 0 to 1000, of the
14207profiled execution of the entire program to which the execution count
14208of a basic block must be part of in order to be considered hot.  The
14209default is 990, which means that a basic block is considered hot if
14210its execution count contributes to the upper 990 permilles, or 99.0%,
14211of the profiled execution of the entire program.  0 means that it is
14212never considered hot.  Used in LTO mode.
14213
14214@item hot-bb-frequency-fraction
14215The denominator n of fraction 1/n of the execution frequency of the
14216entry block of a function that a basic block of this function needs
14217to at least have in order to be considered hot.  The default is 1000,
14218which means that a basic block is considered hot in a function if it
14219is executed more frequently than 1/1000 of the frequency of the entry
14220block of the function.  0 means that it is never considered hot.
14221
14222@item unlikely-bb-count-fraction
14223The denominator n of fraction 1/n of the number of profiled runs of
14224the entire program below which the execution count of a basic block
14225must be in order for the basic block to be considered unlikely executed.
14226The default is 20, which means that a basic block is considered unlikely
14227executed if it is executed in fewer than 1/20, or 5%, of the runs of
14228the program.  0 means that it is always considered unlikely executed.
14229
14230@item max-predicted-iterations
14231The maximum number of loop iterations we predict statically.  This is useful
14232in cases where a function contains a single loop with known bound and
14233another loop with unknown bound.
14234The known number of iterations is predicted correctly, while
14235the unknown number of iterations average to roughly 10.  This means that the
14236loop without bounds appears artificially cold relative to the other one.
14237
14238@item builtin-expect-probability
14239Control the probability of the expression having the specified value. This
14240parameter takes a percentage (i.e.@: 0 ... 100) as input.
14241
14242@item builtin-string-cmp-inline-length
14243The maximum length of a constant string for a builtin string cmp call 
14244eligible for inlining.
14245
14246@item align-threshold
14247
14248Select fraction of the maximal frequency of executions of a basic block in
14249a function to align the basic block.
14250
14251@item align-loop-iterations
14252
14253A loop expected to iterate at least the selected number of iterations is
14254aligned.
14255
14256@item tracer-dynamic-coverage
14257@itemx tracer-dynamic-coverage-feedback
14258
14259This value is used to limit superblock formation once the given percentage of
14260executed instructions is covered.  This limits unnecessary code size
14261expansion.
14262
14263The @option{tracer-dynamic-coverage-feedback} parameter
14264is used only when profile
14265feedback is available.  The real profiles (as opposed to statically estimated
14266ones) are much less balanced allowing the threshold to be larger value.
14267
14268@item tracer-max-code-growth
14269Stop tail duplication once code growth has reached given percentage.  This is
14270a rather artificial limit, as most of the duplicates are eliminated later in
14271cross jumping, so it may be set to much higher values than is the desired code
14272growth.
14273
14274@item tracer-min-branch-ratio
14275
14276Stop reverse growth when the reverse probability of best edge is less than this
14277threshold (in percent).
14278
14279@item tracer-min-branch-probability
14280@itemx tracer-min-branch-probability-feedback
14281
14282Stop forward growth if the best edge has probability lower than this
14283threshold.
14284
14285Similarly to @option{tracer-dynamic-coverage} two parameters are
14286provided.  @option{tracer-min-branch-probability-feedback} is used for
14287compilation with profile feedback and @option{tracer-min-branch-probability}
14288compilation without.  The value for compilation with profile feedback
14289needs to be more conservative (higher) in order to make tracer
14290effective.
14291
14292@item stack-clash-protection-guard-size
14293Specify the size of the operating system provided stack guard as
142942 raised to @var{num} bytes.  Higher values may reduce the
14295number of explicit probes, but a value larger than the operating system
14296provided guard will leave code vulnerable to stack clash style attacks.
14297
14298@item stack-clash-protection-probe-interval
14299Stack clash protection involves probing stack space as it is allocated.  This
14300param controls the maximum distance between probes into the stack as 2 raised
14301to @var{num} bytes.  Higher values may reduce the number of explicit probes, but a value
14302larger than the operating system provided guard will leave code vulnerable to
14303stack clash style attacks.
14304
14305@item max-cse-path-length
14306
14307The maximum number of basic blocks on path that CSE considers.
14308
14309@item max-cse-insns
14310The maximum number of instructions CSE processes before flushing.
14311
14312@item ggc-min-expand
14313
14314GCC uses a garbage collector to manage its own memory allocation.  This
14315parameter specifies the minimum percentage by which the garbage
14316collector's heap should be allowed to expand between collections.
14317Tuning this may improve compilation speed; it has no effect on code
14318generation.
14319
14320The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
14321RAM >= 1GB@.  If @code{getrlimit} is available, the notion of ``RAM'' is
14322the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}.  If
14323GCC is not able to calculate RAM on a particular platform, the lower
14324bound of 30% is used.  Setting this parameter and
14325@option{ggc-min-heapsize} to zero causes a full collection to occur at
14326every opportunity.  This is extremely slow, but can be useful for
14327debugging.
14328
14329@item ggc-min-heapsize
14330
14331Minimum size of the garbage collector's heap before it begins bothering
14332to collect garbage.  The first collection occurs after the heap expands
14333by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}.  Again,
14334tuning this may improve compilation speed, and has no effect on code
14335generation.
14336
14337The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
14338tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
14339with a lower bound of 4096 (four megabytes) and an upper bound of
14340131072 (128 megabytes).  If GCC is not able to calculate RAM on a
14341particular platform, the lower bound is used.  Setting this parameter
14342very large effectively disables garbage collection.  Setting this
14343parameter and @option{ggc-min-expand} to zero causes a full collection
14344to occur at every opportunity.
14345
14346@item max-reload-search-insns
14347The maximum number of instruction reload should look backward for equivalent
14348register.  Increasing values mean more aggressive optimization, making the
14349compilation time increase with probably slightly better performance.
14350
14351@item max-cselib-memory-locations
14352The maximum number of memory locations cselib should take into account.
14353Increasing values mean more aggressive optimization, making the compilation time
14354increase with probably slightly better performance.
14355
14356@item max-sched-ready-insns
14357The maximum number of instructions ready to be issued the scheduler should
14358consider at any given time during the first scheduling pass.  Increasing
14359values mean more thorough searches, making the compilation time increase
14360with probably little benefit.
14361
14362@item max-sched-region-blocks
14363The maximum number of blocks in a region to be considered for
14364interblock scheduling.
14365
14366@item max-pipeline-region-blocks
14367The maximum number of blocks in a region to be considered for
14368pipelining in the selective scheduler.
14369
14370@item max-sched-region-insns
14371The maximum number of insns in a region to be considered for
14372interblock scheduling.
14373
14374@item max-pipeline-region-insns
14375The maximum number of insns in a region to be considered for
14376pipelining in the selective scheduler.
14377
14378@item min-spec-prob
14379The minimum probability (in percents) of reaching a source block
14380for interblock speculative scheduling.
14381
14382@item max-sched-extend-regions-iters
14383The maximum number of iterations through CFG to extend regions.
14384A value of 0 disables region extensions.
14385
14386@item max-sched-insn-conflict-delay
14387The maximum conflict delay for an insn to be considered for speculative motion.
14388
14389@item sched-spec-prob-cutoff
14390The minimal probability of speculation success (in percents), so that
14391speculative insns are scheduled.
14392
14393@item sched-state-edge-prob-cutoff
14394The minimum probability an edge must have for the scheduler to save its
14395state across it.
14396
14397@item sched-mem-true-dep-cost
14398Minimal distance (in CPU cycles) between store and load targeting same
14399memory locations.
14400
14401@item selsched-max-lookahead
14402The maximum size of the lookahead window of selective scheduling.  It is a
14403depth of search for available instructions.
14404
14405@item selsched-max-sched-times
14406The maximum number of times that an instruction is scheduled during
14407selective scheduling.  This is the limit on the number of iterations
14408through which the instruction may be pipelined.
14409
14410@item selsched-insns-to-rename
14411The maximum number of best instructions in the ready list that are considered
14412for renaming in the selective scheduler.
14413
14414@item sms-min-sc
14415The minimum value of stage count that swing modulo scheduler
14416generates.
14417
14418@item max-last-value-rtl
14419The maximum size measured as number of RTLs that can be recorded in an expression
14420in combiner for a pseudo register as last known value of that register.
14421
14422@item max-combine-insns
14423The maximum number of instructions the RTL combiner tries to combine.
14424
14425@item integer-share-limit
14426Small integer constants can use a shared data structure, reducing the
14427compiler's memory usage and increasing its speed.  This sets the maximum
14428value of a shared integer constant.
14429
14430@item ssp-buffer-size
14431The minimum size of buffers (i.e.@: arrays) that receive stack smashing
14432protection when @option{-fstack-protector} is used.
14433
14434@item min-size-for-stack-sharing
14435The minimum size of variables taking part in stack slot sharing when not
14436optimizing.
14437
14438@item max-jump-thread-duplication-stmts
14439Maximum number of statements allowed in a block that needs to be
14440duplicated when threading jumps.
14441
14442@item max-fields-for-field-sensitive
14443Maximum number of fields in a structure treated in
14444a field sensitive manner during pointer analysis.
14445
14446@item prefetch-latency
14447Estimate on average number of instructions that are executed before
14448prefetch finishes.  The distance prefetched ahead is proportional
14449to this constant.  Increasing this number may also lead to less
14450streams being prefetched (see @option{simultaneous-prefetches}).
14451
14452@item simultaneous-prefetches
14453Maximum number of prefetches that can run at the same time.
14454
14455@item l1-cache-line-size
14456The size of cache line in L1 data cache, in bytes.
14457
14458@item l1-cache-size
14459The size of L1 data cache, in kilobytes.
14460
14461@item l2-cache-size
14462The size of L2 data cache, in kilobytes.
14463
14464@item prefetch-dynamic-strides
14465Whether the loop array prefetch pass should issue software prefetch hints
14466for strides that are non-constant.  In some cases this may be
14467beneficial, though the fact the stride is non-constant may make it
14468hard to predict when there is clear benefit to issuing these hints.
14469
14470Set to 1 if the prefetch hints should be issued for non-constant
14471strides.  Set to 0 if prefetch hints should be issued only for strides that
14472are known to be constant and below @option{prefetch-minimum-stride}.
14473
14474@item prefetch-minimum-stride
14475Minimum constant stride, in bytes, to start using prefetch hints for.  If
14476the stride is less than this threshold, prefetch hints will not be issued.
14477
14478This setting is useful for processors that have hardware prefetchers, in
14479which case there may be conflicts between the hardware prefetchers and
14480the software prefetchers.  If the hardware prefetchers have a maximum
14481stride they can handle, it should be used here to improve the use of
14482software prefetchers.
14483
14484A value of -1 means we don't have a threshold and therefore
14485prefetch hints can be issued for any constant stride.
14486
14487This setting is only useful for strides that are known and constant.
14488
14489@item destructive-interference-size
14490@item constructive-interference-size
14491The values for the C++17 variables
14492@code{std::hardware_destructive_interference_size} and
14493@code{std::hardware_constructive_interference_size}.  The destructive
14494interference size is the minimum recommended offset between two
14495independent concurrently-accessed objects; the constructive
14496interference size is the maximum recommended size of contiguous memory
14497accessed together.  Typically both will be the size of an L1 cache
14498line for the target, in bytes.  For a generic target covering a range of L1
14499cache line sizes, typically the constructive interference size will be
14500the small end of the range and the destructive size will be the large
14501end.
14502
14503The destructive interference size is intended to be used for layout,
14504and thus has ABI impact.  The default value is not expected to be
14505stable, and on some targets varies with @option{-mtune}, so use of
14506this variable in a context where ABI stability is important, such as
14507the public interface of a library, is strongly discouraged; if it is
14508used in that context, users can stabilize the value using this
14509option.
14510
14511The constructive interference size is less sensitive, as it is
14512typically only used in a @samp{static_assert} to make sure that a type
14513fits within a cache line.
14514
14515See also @option{-Winterference-size}.
14516
14517@item loop-interchange-max-num-stmts
14518The maximum number of stmts in a loop to be interchanged.
14519
14520@item loop-interchange-stride-ratio
14521The minimum ratio between stride of two loops for interchange to be profitable.
14522
14523@item min-insn-to-prefetch-ratio
14524The minimum ratio between the number of instructions and the
14525number of prefetches to enable prefetching in a loop.
14526
14527@item prefetch-min-insn-to-mem-ratio
14528The minimum ratio between the number of instructions and the
14529number of memory references to enable prefetching in a loop.
14530
14531@item use-canonical-types
14532Whether the compiler should use the ``canonical'' type system.
14533Should always be 1, which uses a more efficient internal
14534mechanism for comparing types in C++ and Objective-C++.  However, if
14535bugs in the canonical type system are causing compilation failures,
14536set this value to 0 to disable canonical types.
14537
14538@item switch-conversion-max-branch-ratio
14539Switch initialization conversion refuses to create arrays that are
14540bigger than @option{switch-conversion-max-branch-ratio} times the number of
14541branches in the switch.
14542
14543@item max-partial-antic-length
14544Maximum length of the partial antic set computed during the tree
14545partial redundancy elimination optimization (@option{-ftree-pre}) when
14546optimizing at @option{-O3} and above.  For some sorts of source code
14547the enhanced partial redundancy elimination optimization can run away,
14548consuming all of the memory available on the host machine.  This
14549parameter sets a limit on the length of the sets that are computed,
14550which prevents the runaway behavior.  Setting a value of 0 for
14551this parameter allows an unlimited set length.
14552
14553@item rpo-vn-max-loop-depth
14554Maximum loop depth that is value-numbered optimistically.
14555When the limit hits the innermost
14556@var{rpo-vn-max-loop-depth} loops and the outermost loop in the
14557loop nest are value-numbered optimistically and the remaining ones not.
14558
14559@item sccvn-max-alias-queries-per-access
14560Maximum number of alias-oracle queries we perform when looking for
14561redundancies for loads and stores.  If this limit is hit the search
14562is aborted and the load or store is not considered redundant.  The
14563number of queries is algorithmically limited to the number of
14564stores on all paths from the load to the function entry.
14565
14566@item ira-max-loops-num
14567IRA uses regional register allocation by default.  If a function
14568contains more loops than the number given by this parameter, only at most
14569the given number of the most frequently-executed loops form regions
14570for regional register allocation.
14571
14572@item ira-max-conflict-table-size 
14573Although IRA uses a sophisticated algorithm to compress the conflict
14574table, the table can still require excessive amounts of memory for
14575huge functions.  If the conflict table for a function could be more
14576than the size in MB given by this parameter, the register allocator
14577instead uses a faster, simpler, and lower-quality
14578algorithm that does not require building a pseudo-register conflict table.  
14579
14580@item ira-loop-reserved-regs
14581IRA can be used to evaluate more accurate register pressure in loops
14582for decisions to move loop invariants (see @option{-O3}).  The number
14583of available registers reserved for some other purposes is given
14584by this parameter.  Default of the parameter
14585is the best found from numerous experiments.
14586
14587@item ira-consider-dup-in-all-alts
14588Make IRA to consider matching constraint (duplicated operand number)
14589heavily in all available alternatives for preferred register class.
14590If it is set as zero, it means IRA only respects the matching
14591constraint when it's in the only available alternative with an
14592appropriate register class.  Otherwise, it means IRA will check all
14593available alternatives for preferred register class even if it has
14594found some choice with an appropriate register class and respect the
14595found qualified matching constraint.
14596
14597@item lra-inheritance-ebb-probability-cutoff
14598LRA tries to reuse values reloaded in registers in subsequent insns.
14599This optimization is called inheritance.  EBB is used as a region to
14600do this optimization.  The parameter defines a minimal fall-through
14601edge probability in percentage used to add BB to inheritance EBB in
14602LRA.  The default value was chosen
14603from numerous runs of SPEC2000 on x86-64.
14604
14605@item loop-invariant-max-bbs-in-loop
14606Loop invariant motion can be very expensive, both in compilation time and
14607in amount of needed compile-time memory, with very large loops.  Loops
14608with more basic blocks than this parameter won't have loop invariant
14609motion optimization performed on them.
14610
14611@item loop-max-datarefs-for-datadeps
14612Building data dependencies is expensive for very large loops.  This
14613parameter limits the number of data references in loops that are
14614considered for data dependence analysis.  These large loops are no
14615handled by the optimizations using loop data dependencies.
14616
14617@item max-vartrack-size
14618Sets a maximum number of hash table slots to use during variable
14619tracking dataflow analysis of any function.  If this limit is exceeded
14620with variable tracking at assignments enabled, analysis for that
14621function is retried without it, after removing all debug insns from
14622the function.  If the limit is exceeded even without debug insns, var
14623tracking analysis is completely disabled for the function.  Setting
14624the parameter to zero makes it unlimited.
14625
14626@item max-vartrack-expr-depth
14627Sets a maximum number of recursion levels when attempting to map
14628variable names or debug temporaries to value expressions.  This trades
14629compilation time for more complete debug information.  If this is set too
14630low, value expressions that are available and could be represented in
14631debug information may end up not being used; setting this higher may
14632enable the compiler to find more complex debug expressions, but compile
14633time and memory use may grow.
14634
14635@item max-debug-marker-count
14636Sets a threshold on the number of debug markers (e.g.@: begin stmt
14637markers) to avoid complexity explosion at inlining or expanding to RTL.
14638If a function has more such gimple stmts than the set limit, such stmts
14639will be dropped from the inlined copy of a function, and from its RTL
14640expansion.
14641
14642@item min-nondebug-insn-uid
14643Use uids starting at this parameter for nondebug insns.  The range below
14644the parameter is reserved exclusively for debug insns created by
14645@option{-fvar-tracking-assignments}, but debug insns may get
14646(non-overlapping) uids above it if the reserved range is exhausted.
14647
14648@item ipa-sra-ptr-growth-factor
14649IPA-SRA replaces a pointer to an aggregate with one or more new
14650parameters only when their cumulative size is less or equal to
14651@option{ipa-sra-ptr-growth-factor} times the size of the original
14652pointer parameter.
14653
14654@item ipa-sra-max-replacements
14655Maximum pieces of an aggregate that IPA-SRA tracks.  As a
14656consequence, it is also the maximum number of replacements of a formal
14657parameter.
14658
14659@item sra-max-scalarization-size-Ospeed
14660@itemx sra-max-scalarization-size-Osize
14661The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
14662replace scalar parts of aggregates with uses of independent scalar
14663variables.  These parameters control the maximum size, in storage units,
14664of aggregate which is considered for replacement when compiling for
14665speed
14666(@option{sra-max-scalarization-size-Ospeed}) or size
14667(@option{sra-max-scalarization-size-Osize}) respectively.
14668
14669@item sra-max-propagations
14670The maximum number of artificial accesses that Scalar Replacement of
14671Aggregates (SRA) will track, per one local variable, in order to
14672facilitate copy propagation.
14673
14674@item tm-max-aggregate-size
14675When making copies of thread-local variables in a transaction, this
14676parameter specifies the size in bytes after which variables are
14677saved with the logging functions as opposed to save/restore code
14678sequence pairs.  This option only applies when using
14679@option{-fgnu-tm}.
14680
14681@item graphite-max-nb-scop-params
14682To avoid exponential effects in the Graphite loop transforms, the
14683number of parameters in a Static Control Part (SCoP) is bounded.
14684A value of zero can be used to lift
14685the bound.  A variable whose value is unknown at compilation time and
14686defined outside a SCoP is a parameter of the SCoP.
14687
14688@item loop-block-tile-size
14689Loop blocking or strip mining transforms, enabled with
14690@option{-floop-block} or @option{-floop-strip-mine}, strip mine each
14691loop in the loop nest by a given number of iterations.  The strip
14692length can be changed using the @option{loop-block-tile-size}
14693parameter.
14694
14695@item ipa-jump-function-lookups
14696Specifies number of statements visited during jump function offset discovery.
14697
14698@item ipa-cp-value-list-size
14699IPA-CP attempts to track all possible values and types passed to a function's
14700parameter in order to propagate them and perform devirtualization.
14701@option{ipa-cp-value-list-size} is the maximum number of values and types it
14702stores per one formal parameter of a function.
14703
14704@item ipa-cp-eval-threshold
14705IPA-CP calculates its own score of cloning profitability heuristics
14706and performs those cloning opportunities with scores that exceed
14707@option{ipa-cp-eval-threshold}.
14708
14709@item ipa-cp-max-recursive-depth
14710Maximum depth of recursive cloning for self-recursive function.
14711
14712@item ipa-cp-min-recursive-probability
14713Recursive cloning only when the probability of call being executed exceeds
14714the parameter.
14715
14716@item ipa-cp-profile-count-base
14717When using @option{-fprofile-use} option, IPA-CP will consider the measured
14718execution count of a call graph edge at this percentage position in their
14719histogram as the basis for its heuristics calculation.
14720
14721@item ipa-cp-recursive-freq-factor
14722The number of times interprocedural copy propagation expects recursive
14723functions to call themselves.
14724
14725@item ipa-cp-recursion-penalty
14726Percentage penalty the recursive functions will receive when they
14727are evaluated for cloning.
14728
14729@item ipa-cp-single-call-penalty
14730Percentage penalty functions containing a single call to another
14731function will receive when they are evaluated for cloning.
14732
14733@item ipa-max-agg-items
14734IPA-CP is also capable to propagate a number of scalar values passed
14735in an aggregate. @option{ipa-max-agg-items} controls the maximum
14736number of such values per one parameter.
14737
14738@item ipa-cp-loop-hint-bonus
14739When IPA-CP determines that a cloning candidate would make the number
14740of iterations of a loop known, it adds a bonus of
14741@option{ipa-cp-loop-hint-bonus} to the profitability score of
14742the candidate.
14743
14744@item ipa-max-loop-predicates
14745The maximum number of different predicates IPA will use to describe when
14746loops in a function have known properties.
14747
14748@item ipa-max-aa-steps
14749During its analysis of function bodies, IPA-CP employs alias analysis
14750in order to track values pointed to by function parameters.  In order
14751not spend too much time analyzing huge functions, it gives up and
14752consider all memory clobbered after examining
14753@option{ipa-max-aa-steps} statements modifying memory.
14754
14755@item ipa-max-switch-predicate-bounds
14756Maximal number of boundary endpoints of case ranges of switch statement.
14757For switch exceeding this limit, IPA-CP will not construct cloning cost
14758predicate, which is used to estimate cloning benefit, for default case
14759of the switch statement.
14760
14761@item ipa-max-param-expr-ops
14762IPA-CP will analyze conditional statement that references some function
14763parameter to estimate benefit for cloning upon certain constant value.
14764But if number of operations in a parameter expression exceeds
14765@option{ipa-max-param-expr-ops}, the expression is treated as complicated
14766one, and is not handled by IPA analysis.
14767
14768@item lto-partitions
14769Specify desired number of partitions produced during WHOPR compilation.
14770The number of partitions should exceed the number of CPUs used for compilation.
14771
14772@item lto-min-partition
14773Size of minimal partition for WHOPR (in estimated instructions).
14774This prevents expenses of splitting very small programs into too many
14775partitions.
14776
14777@item lto-max-partition
14778Size of max partition for WHOPR (in estimated instructions).
14779to provide an upper bound for individual size of partition.
14780Meant to be used only with balanced partitioning.
14781
14782@item lto-max-streaming-parallelism
14783Maximal number of parallel processes used for LTO streaming.
14784
14785@item cxx-max-namespaces-for-diagnostic-help
14786The maximum number of namespaces to consult for suggestions when C++
14787name lookup fails for an identifier.
14788
14789@item sink-frequency-threshold
14790The maximum relative execution frequency (in percents) of the target block
14791relative to a statement's original block to allow statement sinking of a
14792statement.  Larger numbers result in more aggressive statement sinking.
14793A small positive adjustment is applied for
14794statements with memory operands as those are even more profitable so sink.
14795
14796@item max-stores-to-sink
14797The maximum number of conditional store pairs that can be sunk.  Set to 0
14798if either vectorization (@option{-ftree-vectorize}) or if-conversion
14799(@option{-ftree-loop-if-convert}) is disabled.
14800
14801@item case-values-threshold
14802The smallest number of different values for which it is best to use a
14803jump-table instead of a tree of conditional branches.  If the value is
148040, use the default for the machine.
14805
14806@item jump-table-max-growth-ratio-for-size
14807The maximum code size growth ratio when expanding
14808into a jump table (in percent).  The parameter is used when
14809optimizing for size.
14810
14811@item jump-table-max-growth-ratio-for-speed
14812The maximum code size growth ratio when expanding
14813into a jump table (in percent).  The parameter is used when
14814optimizing for speed.
14815
14816@item tree-reassoc-width
14817Set the maximum number of instructions executed in parallel in
14818reassociated tree. This parameter overrides target dependent
14819heuristics used by default if has non zero value.
14820
14821@item sched-pressure-algorithm
14822Choose between the two available implementations of
14823@option{-fsched-pressure}.  Algorithm 1 is the original implementation
14824and is the more likely to prevent instructions from being reordered.
14825Algorithm 2 was designed to be a compromise between the relatively
14826conservative approach taken by algorithm 1 and the rather aggressive
14827approach taken by the default scheduler.  It relies more heavily on
14828having a regular register file and accurate register pressure classes.
14829See @file{haifa-sched.cc} in the GCC sources for more details.
14830
14831The default choice depends on the target.
14832
14833@item max-slsr-cand-scan
14834Set the maximum number of existing candidates that are considered when
14835seeking a basis for a new straight-line strength reduction candidate.
14836
14837@item asan-globals
14838Enable buffer overflow detection for global objects.  This kind
14839of protection is enabled by default if you are using
14840@option{-fsanitize=address} option.
14841To disable global objects protection use @option{--param asan-globals=0}.
14842
14843@item asan-stack
14844Enable buffer overflow detection for stack objects.  This kind of
14845protection is enabled by default when using @option{-fsanitize=address}.
14846To disable stack protection use @option{--param asan-stack=0} option.
14847
14848@item asan-instrument-reads
14849Enable buffer overflow detection for memory reads.  This kind of
14850protection is enabled by default when using @option{-fsanitize=address}.
14851To disable memory reads protection use
14852@option{--param asan-instrument-reads=0}.
14853
14854@item asan-instrument-writes
14855Enable buffer overflow detection for memory writes.  This kind of
14856protection is enabled by default when using @option{-fsanitize=address}.
14857To disable memory writes protection use
14858@option{--param asan-instrument-writes=0} option.
14859
14860@item asan-memintrin
14861Enable detection for built-in functions.  This kind of protection
14862is enabled by default when using @option{-fsanitize=address}.
14863To disable built-in functions protection use
14864@option{--param asan-memintrin=0}.
14865
14866@item asan-use-after-return
14867Enable detection of use-after-return.  This kind of protection
14868is enabled by default when using the @option{-fsanitize=address} option.
14869To disable it use @option{--param asan-use-after-return=0}.
14870
14871Note: By default the check is disabled at run time.  To enable it,
14872add @code{detect_stack_use_after_return=1} to the environment variable
14873@env{ASAN_OPTIONS}.
14874
14875@item asan-instrumentation-with-call-threshold
14876If number of memory accesses in function being instrumented
14877is greater or equal to this number, use callbacks instead of inline checks.
14878E.g. to disable inline code use
14879@option{--param asan-instrumentation-with-call-threshold=0}.
14880
14881@item hwasan-instrument-stack
14882Enable hwasan instrumentation of statically sized stack-allocated variables.
14883This kind of instrumentation is enabled by default when using
14884@option{-fsanitize=hwaddress} and disabled by default when using
14885@option{-fsanitize=kernel-hwaddress}.
14886To disable stack instrumentation use
14887@option{--param hwasan-instrument-stack=0}, and to enable it use
14888@option{--param hwasan-instrument-stack=1}.
14889
14890@item hwasan-random-frame-tag
14891When using stack instrumentation, decide tags for stack variables using a
14892deterministic sequence beginning at a random tag for each frame.  With this
14893parameter unset tags are chosen using the same sequence but beginning from 1.
14894This is enabled by default for @option{-fsanitize=hwaddress} and unavailable
14895for @option{-fsanitize=kernel-hwaddress}.
14896To disable it use @option{--param hwasan-random-frame-tag=0}.
14897
14898@item hwasan-instrument-allocas
14899Enable hwasan instrumentation of dynamically sized stack-allocated variables.
14900This kind of instrumentation is enabled by default when using
14901@option{-fsanitize=hwaddress} and disabled by default when using
14902@option{-fsanitize=kernel-hwaddress}.
14903To disable instrumentation of such variables use
14904@option{--param hwasan-instrument-allocas=0}, and to enable it use
14905@option{--param hwasan-instrument-allocas=1}.
14906
14907@item hwasan-instrument-reads
14908Enable hwasan checks on memory reads.  Instrumentation of reads is enabled by
14909default for both @option{-fsanitize=hwaddress} and
14910@option{-fsanitize=kernel-hwaddress}.
14911To disable checking memory reads use
14912@option{--param hwasan-instrument-reads=0}.
14913
14914@item hwasan-instrument-writes
14915Enable hwasan checks on memory writes.  Instrumentation of writes is enabled by
14916default for both @option{-fsanitize=hwaddress} and
14917@option{-fsanitize=kernel-hwaddress}.
14918To disable checking memory writes use
14919@option{--param hwasan-instrument-writes=0}.
14920
14921@item hwasan-instrument-mem-intrinsics
14922Enable hwasan instrumentation of builtin functions.  Instrumentation of these
14923builtin functions is enabled by default for both @option{-fsanitize=hwaddress}
14924and @option{-fsanitize=kernel-hwaddress}.
14925To disable instrumentation of builtin functions use
14926@option{--param hwasan-instrument-mem-intrinsics=0}.
14927
14928@item use-after-scope-direct-emission-threshold
14929If the size of a local variable in bytes is smaller or equal to this
14930number, directly poison (or unpoison) shadow memory instead of using
14931run-time callbacks.
14932
14933@item tsan-distinguish-volatile
14934Emit special instrumentation for accesses to volatiles.
14935
14936@item tsan-instrument-func-entry-exit
14937Emit instrumentation calls to __tsan_func_entry() and __tsan_func_exit().
14938
14939@item max-fsm-thread-path-insns
14940Maximum number of instructions to copy when duplicating blocks on a
14941finite state automaton jump thread path.
14942
14943@item max-fsm-thread-length
14944Maximum number of basic blocks on a jump thread path.
14945
14946@item threader-debug
14947threader-debug=[none|all] Enables verbose dumping of the threader solver.
14948
14949@item parloops-chunk-size
14950Chunk size of omp schedule for loops parallelized by parloops.
14951
14952@item parloops-schedule
14953Schedule type of omp schedule for loops parallelized by parloops (static,
14954dynamic, guided, auto, runtime).
14955
14956@item parloops-min-per-thread
14957The minimum number of iterations per thread of an innermost parallelized
14958loop for which the parallelized variant is preferred over the single threaded
14959one.  Note that for a parallelized loop nest the
14960minimum number of iterations of the outermost loop per thread is two.
14961
14962@item max-ssa-name-query-depth
14963Maximum depth of recursion when querying properties of SSA names in things
14964like fold routines.  One level of recursion corresponds to following a
14965use-def chain.
14966
14967@item max-speculative-devirt-maydefs
14968The maximum number of may-defs we analyze when looking for a must-def
14969specifying the dynamic type of an object that invokes a virtual call
14970we may be able to devirtualize speculatively.
14971
14972@item max-vrp-switch-assertions
14973The maximum number of assertions to add along the default edge of a switch
14974statement during VRP.
14975
14976@item evrp-sparse-threshold
14977Maximum number of basic blocks before EVRP uses a sparse cache.
14978
14979@item evrp-mode
14980Specifies the mode Early VRP should operate in.
14981
14982@item vrp1-mode
14983Specifies the mode VRP pass 1 should operate in.
14984
14985@item vrp2-mode
14986Specifies the mode VRP pass 2 should operate in.
14987
14988@item ranger-debug
14989Specifies the type of debug output to be issued for ranges.
14990
14991@item evrp-switch-limit
14992Specifies the maximum number of switch cases before EVRP ignores a switch.
14993
14994@item unroll-jam-min-percent
14995The minimum percentage of memory references that must be optimized
14996away for the unroll-and-jam transformation to be considered profitable.
14997
14998@item unroll-jam-max-unroll
14999The maximum number of times the outer loop should be unrolled by
15000the unroll-and-jam transformation.
15001
15002@item max-rtl-if-conversion-unpredictable-cost
15003Maximum permissible cost for the sequence that would be generated
15004by the RTL if-conversion pass for a branch that is considered unpredictable.
15005
15006@item max-variable-expansions-in-unroller
15007If @option{-fvariable-expansion-in-unroller} is used, the maximum number
15008of times that an individual variable will be expanded during loop unrolling.
15009
15010@item partial-inlining-entry-probability
15011Maximum probability of the entry BB of split region
15012(in percent relative to entry BB of the function)
15013to make partial inlining happen.
15014
15015@item max-tracked-strlens
15016Maximum number of strings for which strlen optimization pass will
15017track string lengths.
15018
15019@item gcse-after-reload-partial-fraction
15020The threshold ratio for performing partial redundancy
15021elimination after reload.
15022
15023@item gcse-after-reload-critical-fraction
15024The threshold ratio of critical edges execution count that
15025permit performing redundancy elimination after reload.
15026
15027@item max-loop-header-insns
15028The maximum number of insns in loop header duplicated
15029by the copy loop headers pass.
15030
15031@item vect-epilogues-nomask
15032Enable loop epilogue vectorization using smaller vector size.
15033
15034@item vect-partial-vector-usage
15035Controls when the loop vectorizer considers using partial vector loads
15036and stores as an alternative to falling back to scalar code.  0 stops
15037the vectorizer from ever using partial vector loads and stores.  1 allows
15038partial vector loads and stores if vectorization removes the need for the
15039code to iterate.  2 allows partial vector loads and stores in all loops.
15040The parameter only has an effect on targets that support partial
15041vector loads and stores.
15042
15043@item vect-inner-loop-cost-factor
15044The maximum factor which the loop vectorizer applies to the cost of statements
15045in an inner loop relative to the loop being vectorized.  The factor applied
15046is the maximum of the estimated number of iterations of the inner loop and
15047this parameter.  The default value of this parameter is 50.
15048
15049@item vect-induction-float
15050Enable loop vectorization of floating point inductions.
15051
15052@item avoid-fma-max-bits
15053Maximum number of bits for which we avoid creating FMAs.
15054
15055@item sms-loop-average-count-threshold
15056A threshold on the average loop count considered by the swing modulo scheduler.
15057
15058@item sms-dfa-history
15059The number of cycles the swing modulo scheduler considers when checking
15060conflicts using DFA.
15061
15062@item graphite-allow-codegen-errors
15063Whether codegen errors should be ICEs when @option{-fchecking}.
15064
15065@item sms-max-ii-factor
15066A factor for tuning the upper bound that swing modulo scheduler
15067uses for scheduling a loop.
15068
15069@item lra-max-considered-reload-pseudos
15070The max number of reload pseudos which are considered during
15071spilling a non-reload pseudo.
15072
15073@item max-pow-sqrt-depth
15074Maximum depth of sqrt chains to use when synthesizing exponentiation
15075by a real constant.
15076
15077@item max-dse-active-local-stores
15078Maximum number of active local stores in RTL dead store elimination.
15079
15080@item asan-instrument-allocas
15081Enable asan allocas/VLAs protection.
15082
15083@item max-iterations-computation-cost
15084Bound on the cost of an expression to compute the number of iterations.
15085
15086@item max-isl-operations
15087Maximum number of isl operations, 0 means unlimited.
15088
15089@item graphite-max-arrays-per-scop
15090Maximum number of arrays per scop.
15091
15092@item max-vartrack-reverse-op-size
15093Max. size of loc list for which reverse ops should be added.
15094
15095@item fsm-scale-path-stmts
15096Scale factor to apply to the number of statements in a threading path
15097when comparing to the number of (scaled) blocks.
15098
15099@item uninit-control-dep-attempts
15100Maximum number of nested calls to search for control dependencies
15101during uninitialized variable analysis.
15102
15103@item fsm-scale-path-blocks
15104Scale factor to apply to the number of blocks in a threading path
15105when comparing to the number of (scaled) statements.
15106
15107@item sched-autopref-queue-depth
15108Hardware autoprefetcher scheduler model control flag.
15109Number of lookahead cycles the model looks into; at '
15110' only enable instruction sorting heuristic.
15111
15112@item loop-versioning-max-inner-insns
15113The maximum number of instructions that an inner loop can have
15114before the loop versioning pass considers it too big to copy.
15115
15116@item loop-versioning-max-outer-insns
15117The maximum number of instructions that an outer loop can have
15118before the loop versioning pass considers it too big to copy,
15119discounting any instructions in inner loops that directly benefit
15120from versioning.
15121
15122@item ssa-name-def-chain-limit
15123The maximum number of SSA_NAME assignments to follow in determining
15124a property of a variable such as its value.  This limits the number
15125of iterations or recursive calls GCC performs when optimizing certain
15126statements or when determining their validity prior to issuing
15127diagnostics.
15128
15129@item store-merging-max-size
15130Maximum size of a single store merging region in bytes.
15131
15132@item hash-table-verification-limit
15133The number of elements for which hash table verification is done
15134for each searched element.
15135
15136@item max-find-base-term-values
15137Maximum number of VALUEs handled during a single find_base_term call.
15138
15139@item analyzer-max-enodes-per-program-point
15140The maximum number of exploded nodes per program point within
15141the analyzer, before terminating analysis of that point.
15142
15143@item analyzer-max-constraints
15144The maximum number of constraints per state.
15145
15146@item analyzer-min-snodes-for-call-summary
15147The minimum number of supernodes within a function for the
15148analyzer to consider summarizing its effects at call sites.
15149
15150@item analyzer-max-enodes-for-full-dump
15151The maximum depth of exploded nodes that should appear in a dot dump
15152before switching to a less verbose format.
15153
15154@item analyzer-max-recursion-depth
15155The maximum number of times a callsite can appear in a call stack
15156within the analyzer, before terminating analysis of a call that would
15157recurse deeper.
15158
15159@item analyzer-max-svalue-depth
15160The maximum depth of a symbolic value, before approximating
15161the value as unknown.
15162
15163@item analyzer-max-infeasible-edges
15164The maximum number of infeasible edges to reject before declaring
15165a diagnostic as infeasible.
15166
15167@item gimple-fe-computed-hot-bb-threshold
15168The number of executions of a basic block which is considered hot.
15169The parameter is used only in GIMPLE FE.
15170
15171@item analyzer-bb-explosion-factor
15172The maximum number of 'after supernode' exploded nodes within the analyzer
15173per supernode, before terminating analysis.
15174
15175@item ranger-logical-depth
15176Maximum depth of logical expression evaluation ranger will look through
15177when evaluating outgoing edge ranges.
15178
15179@item relation-block-limit
15180Maximum number of relations the oracle will register in a basic block.
15181
15182@item min-pagesize
15183Minimum page size for warning purposes.
15184
15185@item openacc-kernels
15186Specify mode of OpenACC `kernels' constructs handling.
15187With @option{--param=openacc-kernels=decompose}, OpenACC `kernels'
15188constructs are decomposed into parts, a sequence of compute
15189constructs, each then handled individually.
15190This is work in progress.
15191With @option{--param=openacc-kernels=parloops}, OpenACC `kernels'
15192constructs are handled by the @samp{parloops} pass, en bloc.
15193This is the current default.
15194
15195@item openacc-privatization
15196Specify mode of OpenACC privatization diagnostics for
15197@option{-fopt-info-omp-note} and applicable
15198@option{-fdump-tree-*-details}.
15199With @option{--param=openacc-privatization=quiet}, don't diagnose.
15200This is the current default.
15201With @option{--param=openacc-privatization=noisy}, do diagnose.
15202
15203@end table
15204
15205The following choices of @var{name} are available on AArch64 targets:
15206
15207@table @gcctabopt
15208@item aarch64-sve-compare-costs
15209When vectorizing for SVE, consider using ``unpacked'' vectors for
15210smaller elements and use the cost model to pick the cheapest approach.
15211Also use the cost model to choose between SVE and Advanced SIMD vectorization.
15212
15213Using unpacked vectors includes storing smaller elements in larger
15214containers and accessing elements with extending loads and truncating
15215stores.
15216
15217@item aarch64-float-recp-precision
15218The number of Newton iterations for calculating the reciprocal for float type.
15219The precision of division is proportional to this param when division
15220approximation is enabled.  The default value is 1.
15221
15222@item aarch64-double-recp-precision
15223The number of Newton iterations for calculating the reciprocal for double type.
15224The precision of division is propotional to this param when division
15225approximation is enabled.  The default value is 2.
15226
15227@item aarch64-autovec-preference
15228Force an ISA selection strategy for auto-vectorization.  Accepts values from
152290 to 4, inclusive.
15230@table @samp
15231@item 0
15232Use the default heuristics.
15233@item 1
15234Use only Advanced SIMD for auto-vectorization.
15235@item 2
15236Use only SVE for auto-vectorization.
15237@item 3
15238Use both Advanced SIMD and SVE.  Prefer Advanced SIMD when the costs are
15239deemed equal.
15240@item 4
15241Use both Advanced SIMD and SVE.  Prefer SVE when the costs are deemed equal.
15242@end table
15243The default value is 0.
15244
15245@item aarch64-loop-vect-issue-rate-niters
15246The tuning for some AArch64 CPUs tries to take both latencies and issue
15247rates into account when deciding whether a loop should be vectorized
15248using SVE, vectorized using Advanced SIMD, or not vectorized at all.
15249If this parameter is set to @var{n}, GCC will not use this heuristic
15250for loops that are known to execute in fewer than @var{n} Advanced
15251SIMD iterations.
15252
15253@item aarch64-vect-unroll-limit
15254The vectorizer will use available tuning information to determine whether it
15255would be beneficial to unroll the main vectorized loop and by how much.  This
15256parameter set's the upper bound of how much the vectorizer will unroll the main
15257loop.  The default value is four.
15258
15259@end table
15260
15261The following choices of @var{name} are available on i386 and x86_64 targets:
15262
15263@table @gcctabopt
15264@item x86-stlf-window-ninsns
15265Instructions number above which STFL stall penalty can be compensated.
15266
15267@end table
15268
15269@end table
15270
15271@node Instrumentation Options
15272@section Program Instrumentation Options
15273@cindex instrumentation options
15274@cindex program instrumentation options
15275@cindex run-time error checking options
15276@cindex profiling options
15277@cindex options, program instrumentation
15278@cindex options, run-time error checking
15279@cindex options, profiling
15280
15281GCC supports a number of command-line options that control adding
15282run-time instrumentation to the code it normally generates.  
15283For example, one purpose of instrumentation is collect profiling
15284statistics for use in finding program hot spots, code coverage
15285analysis, or profile-guided optimizations.
15286Another class of program instrumentation is adding run-time checking 
15287to detect programming errors like invalid pointer
15288dereferences or out-of-bounds array accesses, as well as deliberately
15289hostile attacks such as stack smashing or C++ vtable hijacking.
15290There is also a general hook which can be used to implement other
15291forms of tracing or function-level instrumentation for debug or
15292program analysis purposes.
15293
15294@table @gcctabopt
15295@cindex @command{prof}
15296@cindex @command{gprof}
15297@item -p
15298@itemx -pg
15299@opindex p
15300@opindex pg
15301Generate extra code to write profile information suitable for the
15302analysis program @command{prof} (for @option{-p}) or @command{gprof}
15303(for @option{-pg}).  You must use this option when compiling
15304the source files you want data about, and you must also use it when
15305linking.
15306
15307You can use the function attribute @code{no_instrument_function} to
15308suppress profiling of individual functions when compiling with these options.
15309@xref{Common Function Attributes}.
15310
15311@item -fprofile-arcs
15312@opindex fprofile-arcs
15313Add code so that program flow @dfn{arcs} are instrumented.  During
15314execution the program records how many times each branch and call is
15315executed and how many times it is taken or returns.  On targets that support
15316constructors with priority support, profiling properly handles constructors,
15317destructors and C++ constructors (and destructors) of classes which are used
15318as a type of a global variable.
15319
15320When the compiled
15321program exits it saves this data to a file called
15322@file{@var{auxname}.gcda} for each source file.  The data may be used for
15323profile-directed optimizations (@option{-fbranch-probabilities}), or for
15324test coverage analysis (@option{-ftest-coverage}).  Each object file's
15325@var{auxname} is generated from the name of the output file, if
15326explicitly specified and it is not the final executable, otherwise it is
15327the basename of the source file.  In both cases any suffix is removed
15328(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
15329@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
15330
15331Note that if a command line directly links source files, the corresponding
15332@var{.gcda} files will be prefixed with the unsuffixed name of the output file.
15333E.g. @code{gcc a.c b.c -o binary} would generate @file{binary-a.gcda} and
15334@file{binary-b.gcda} files.
15335
15336@xref{Cross-profiling}.
15337
15338@cindex @command{gcov}
15339@item --coverage
15340@opindex coverage
15341
15342This option is used to compile and link code instrumented for coverage
15343analysis.  The option is a synonym for @option{-fprofile-arcs}
15344@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
15345linking).  See the documentation for those options for more details.
15346
15347@itemize
15348
15349@item
15350Compile the source files with @option{-fprofile-arcs} plus optimization
15351and code generation options.  For test coverage analysis, use the
15352additional @option{-ftest-coverage} option.  You do not need to profile
15353every source file in a program.
15354
15355@item
15356Compile the source files additionally with @option{-fprofile-abs-path}
15357to create absolute path names in the @file{.gcno} files.  This allows
15358@command{gcov} to find the correct sources in projects where compilations
15359occur with different working directories.
15360
15361@item
15362Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
15363(the latter implies the former).
15364
15365@item
15366Run the program on a representative workload to generate the arc profile
15367information.  This may be repeated any number of times.  You can run
15368concurrent instances of your program, and provided that the file system
15369supports locking, the data files will be correctly updated.  Unless
15370a strict ISO C dialect option is in effect, @code{fork} calls are
15371detected and correctly handled without double counting.
15372
15373Moreover, an object file can be recompiled multiple times
15374and the corresponding @file{.gcda} file merges as long as
15375the source file and the compiler options are unchanged.
15376
15377@item
15378For profile-directed optimizations, compile the source files again with
15379the same optimization and code generation options plus
15380@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
15381Control Optimization}).
15382
15383@item
15384For test coverage analysis, use @command{gcov} to produce human readable
15385information from the @file{.gcno} and @file{.gcda} files.  Refer to the
15386@command{gcov} documentation for further information.
15387
15388@end itemize
15389
15390With @option{-fprofile-arcs}, for each function of your program GCC
15391creates a program flow graph, then finds a spanning tree for the graph.
15392Only arcs that are not on the spanning tree have to be instrumented: the
15393compiler adds code to count the number of times that these arcs are
15394executed.  When an arc is the only exit or only entrance to a block, the
15395instrumentation code can be added to the block; otherwise, a new basic
15396block must be created to hold the instrumentation code.
15397
15398@need 2000
15399@item -ftest-coverage
15400@opindex ftest-coverage
15401Produce a notes file that the @command{gcov} code-coverage utility
15402(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
15403show program coverage.  Each source file's note file is called
15404@file{@var{auxname}.gcno}.  Refer to the @option{-fprofile-arcs} option
15405above for a description of @var{auxname} and instructions on how to
15406generate test coverage data.  Coverage data matches the source files
15407more closely if you do not optimize.
15408
15409@item -fprofile-abs-path
15410@opindex fprofile-abs-path
15411Automatically convert relative source file names to absolute path names
15412in the @file{.gcno} files.  This allows @command{gcov} to find the correct
15413sources in projects where compilations occur with different working
15414directories.
15415
15416@item -fprofile-dir=@var{path}
15417@opindex fprofile-dir
15418
15419Set the directory to search for the profile data files in to @var{path}.
15420This option affects only the profile data generated by
15421@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
15422and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
15423and its related options.  Both absolute and relative paths can be used.
15424By default, GCC uses the current directory as @var{path}, thus the
15425profile data file appears in the same directory as the object file.
15426In order to prevent the file name clashing, if the object file name is
15427not an absolute path, we mangle the absolute path of the
15428@file{@var{sourcename}.gcda} file and use it as the file name of a
15429@file{.gcda} file.  See details about the file naming in @option{-fprofile-arcs}.
15430See similar option @option{-fprofile-note}.
15431
15432When an executable is run in a massive parallel environment, it is recommended
15433to save profile to different folders.  That can be done with variables
15434in @var{path} that are exported during run-time:
15435
15436@table @gcctabopt
15437
15438@item %p
15439process ID.
15440
15441@item %q@{VAR@}
15442value of environment variable @var{VAR}
15443
15444@end table
15445
15446@item -fprofile-generate
15447@itemx -fprofile-generate=@var{path}
15448@opindex fprofile-generate
15449
15450Enable options usually used for instrumenting application to produce
15451profile useful for later recompilation with profile feedback based
15452optimization.  You must use @option{-fprofile-generate} both when
15453compiling and when linking your program.
15454
15455The following options are enabled:
15456@option{-fprofile-arcs}, @option{-fprofile-values},
15457@option{-finline-functions}, and @option{-fipa-bit-cp}.
15458
15459If @var{path} is specified, GCC looks at the @var{path} to find
15460the profile feedback data files. See @option{-fprofile-dir}.
15461
15462To optimize the program based on the collected profile information, use
15463@option{-fprofile-use}.  @xref{Optimize Options}, for more information.
15464
15465@item -fprofile-info-section
15466@itemx -fprofile-info-section=@var{name}
15467@opindex fprofile-info-section
15468
15469Register the profile information in the specified section instead of using a
15470constructor/destructor.  The section name is @var{name} if it is specified,
15471otherwise the section name defaults to @code{.gcov_info}.  A pointer to the
15472profile information generated by @option{-fprofile-arcs} is placed in the
15473specified section for each translation unit.  This option disables the profile
15474information registration through a constructor and it disables the profile
15475information processing through a destructor.  This option is not intended to be
15476used in hosted environments such as GNU/Linux.  It targets free-standing
15477environments (for example embedded systems) with limited resources which do not
15478support constructors/destructors or the C library file I/O.
15479
15480The linker could collect the input sections in a continuous memory block and
15481define start and end symbols.  A GNU linker script example which defines a
15482linker output section follows:
15483
15484@smallexample
15485  .gcov_info      :
15486  @{
15487    PROVIDE (__gcov_info_start = .);
15488    KEEP (*(.gcov_info))
15489    PROVIDE (__gcov_info_end = .);
15490  @}
15491@end smallexample
15492
15493The program could dump the profiling information registered in this linker set
15494for example like this:
15495
15496@smallexample
15497#include <gcov.h>
15498#include <stdio.h>
15499#include <stdlib.h>
15500
15501extern const struct gcov_info *__gcov_info_start[];
15502extern const struct gcov_info *__gcov_info_end[];
15503
15504static void
15505filename (const char *f, void *arg)
15506@{
15507  puts (f);
15508@}
15509
15510static void
15511dump (const void *d, unsigned n, void *arg)
15512@{
15513  const unsigned char *c = d;
15514
15515  for (unsigned i = 0; i < n; ++i)
15516    printf ("%02x", c[i]);
15517@}
15518
15519static void *
15520allocate (unsigned length, void *arg)
15521@{
15522  return malloc (length);
15523@}
15524
15525static void
15526dump_gcov_info (void)
15527@{
15528  const struct gcov_info **info = __gcov_info_start;
15529  const struct gcov_info **end = __gcov_info_end;
15530
15531  /* Obfuscate variable to prevent compiler optimizations.  */
15532  __asm__ ("" : "+r" (info));
15533
15534  while (info != end)
15535  @{
15536    void *arg = NULL;
15537    __gcov_info_to_gcda (*info, filename, dump, allocate, arg);
15538    putchar ('\n');
15539    ++info;
15540  @}
15541@}
15542
15543int
15544main()
15545@{
15546  dump_gcov_info();
15547  return 0;
15548@}
15549@end smallexample
15550
15551@item -fprofile-note=@var{path}
15552@opindex fprofile-note
15553
15554If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
15555location.  If you combine the option with multiple source files,
15556the @file{.gcno} file will be overwritten.
15557
15558@item -fprofile-prefix-path=@var{path}
15559@opindex fprofile-prefix-path
15560
15561This option can be used in combination with
15562@option{profile-generate=}@var{profile_dir} and
15563@option{profile-use=}@var{profile_dir} to inform GCC where is the base
15564directory of built source tree.  By default @var{profile_dir} will contain
15565files with mangled absolute paths of all object files in the built project.
15566This is not desirable when directory used to build the instrumented binary
15567differs from the directory used to build the binary optimized with profile
15568feedback because the profile data will not be found during the optimized build.
15569In such setups @option{-fprofile-prefix-path=}@var{path} with @var{path}
15570pointing to the base directory of the build can be used to strip the irrelevant
15571part of the path and keep all file names relative to the main build directory.
15572
15573@item -fprofile-prefix-map=@var{old}=@var{new}
15574@opindex fprofile-prefix-map
15575When compiling files residing in directory @file{@var{old}}, record
15576profiling information (with @option{--coverage})
15577describing them as if the files resided in
15578directory @file{@var{new}} instead.
15579See also @option{-ffile-prefix-map}.
15580
15581@item -fprofile-update=@var{method}
15582@opindex fprofile-update
15583
15584Alter the update method for an application instrumented for profile
15585feedback based optimization.  The @var{method} argument should be one of
15586@samp{single}, @samp{atomic} or @samp{prefer-atomic}.
15587The first one is useful for single-threaded applications,
15588while the second one prevents profile corruption by emitting thread-safe code.
15589
15590@strong{Warning:} When an application does not properly join all threads
15591(or creates an detached thread), a profile file can be still corrupted.
15592
15593Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
15594when supported by a target, or to @samp{single} otherwise.  The GCC driver
15595automatically selects @samp{prefer-atomic} when @option{-pthread}
15596is present in the command line.
15597
15598@item -fprofile-filter-files=@var{regex}
15599@opindex fprofile-filter-files
15600
15601Instrument only functions from files whose name matches
15602any of the regular expressions (separated by semi-colons).
15603
15604For example, @option{-fprofile-filter-files=main\.c;module.*\.c} will instrument
15605only @file{main.c} and all C files starting with 'module'.
15606
15607@item -fprofile-exclude-files=@var{regex}
15608@opindex fprofile-exclude-files
15609
15610Instrument only functions from files whose name does not match
15611any of the regular expressions (separated by semi-colons).
15612
15613For example, @option{-fprofile-exclude-files=/usr/.*} will prevent instrumentation
15614of all files that are located in the @file{/usr/} folder.
15615
15616@item -fprofile-reproducible=@r{[}multithreaded@r{|}parallel-runs@r{|}serial@r{]}
15617@opindex fprofile-reproducible
15618Control level of reproducibility of profile gathered by
15619@code{-fprofile-generate}.  This makes it possible to rebuild program
15620with same outcome which is useful, for example, for distribution
15621packages.
15622
15623With @option{-fprofile-reproducible=serial} the profile gathered by
15624@option{-fprofile-generate} is reproducible provided the trained program
15625behaves the same at each invocation of the train run, it is not
15626multi-threaded and profile data streaming is always done in the same
15627order.  Note that profile streaming happens at the end of program run but
15628also before @code{fork} function is invoked.
15629
15630Note that it is quite common that execution counts of some part of
15631programs depends, for example, on length of temporary file names or
15632memory space randomization (that may affect hash-table collision rate).
15633Such non-reproducible part of programs may be annotated by
15634@code{no_instrument_function} function attribute. @command{gcov-dump} with
15635@option{-l} can be used to dump gathered data and verify that they are
15636indeed reproducible.
15637
15638With @option{-fprofile-reproducible=parallel-runs} collected profile
15639stays reproducible regardless the order of streaming of the data into
15640gcda files.  This setting makes it possible to run multiple instances of
15641instrumented program in parallel (such as with @code{make -j}). This
15642reduces quality of gathered data, in particular of indirect call
15643profiling.
15644
15645@item -fsanitize=address
15646@opindex fsanitize=address
15647Enable AddressSanitizer, a fast memory error detector.
15648Memory access instructions are instrumented to detect
15649out-of-bounds and use-after-free bugs.
15650The option enables @option{-fsanitize-address-use-after-scope}.
15651See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
15652more details.  The run-time behavior can be influenced using the
15653@env{ASAN_OPTIONS} environment variable.  When set to @code{help=1},
15654the available options are shown at startup of the instrumented program.  See
15655@url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
15656for a list of supported options.
15657The option cannot be combined with @option{-fsanitize=thread} or
15658@option{-fsanitize=hwaddress}.  Note that the only target
15659@option{-fsanitize=hwaddress} is currently supported on is AArch64.
15660
15661@item -fsanitize=kernel-address
15662@opindex fsanitize=kernel-address
15663Enable AddressSanitizer for Linux kernel.
15664See @uref{https://github.com/google/kasan} for more details.
15665
15666@item -fsanitize=hwaddress
15667@opindex fsanitize=hwaddress
15668Enable Hardware-assisted AddressSanitizer, which uses a hardware ability to
15669ignore the top byte of a pointer to allow the detection of memory errors with
15670a low memory overhead.
15671Memory access instructions are instrumented to detect out-of-bounds and
15672use-after-free bugs.
15673The option enables @option{-fsanitize-address-use-after-scope}.
15674See
15675@uref{https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html}
15676for more details.  The run-time behavior can be influenced using the
15677@env{HWASAN_OPTIONS} environment variable.  When set to @code{help=1},
15678the available options are shown at startup of the instrumented program.
15679The option cannot be combined with @option{-fsanitize=thread} or
15680@option{-fsanitize=address}, and is currently only available on AArch64.
15681
15682@item -fsanitize=kernel-hwaddress
15683@opindex fsanitize=kernel-hwaddress
15684Enable Hardware-assisted AddressSanitizer for compilation of the Linux kernel.
15685Similar to @option{-fsanitize=kernel-address} but using an alternate
15686instrumentation method, and similar to @option{-fsanitize=hwaddress} but with
15687instrumentation differences necessary for compiling the Linux kernel.
15688These differences are to avoid hwasan library initialization calls and to
15689account for the stack pointer having a different value in its top byte.
15690
15691@emph{Note:} This option has different defaults to the @option{-fsanitize=hwaddress}.
15692Instrumenting the stack and alloca calls are not on by default but are still
15693possible by specifying the command-line options
15694@option{--param hwasan-instrument-stack=1} and
15695@option{--param hwasan-instrument-allocas=1} respectively. Using a random frame
15696tag is not implemented for kernel instrumentation.
15697
15698@item -fsanitize=pointer-compare
15699@opindex fsanitize=pointer-compare
15700Instrument comparison operation (<, <=, >, >=) with pointer operands.
15701The option must be combined with either @option{-fsanitize=kernel-address} or
15702@option{-fsanitize=address}
15703The option cannot be combined with @option{-fsanitize=thread}.
15704Note: By default the check is disabled at run time.  To enable it,
15705add @code{detect_invalid_pointer_pairs=2} to the environment variable
15706@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
15707invalid operation only when both pointers are non-null.
15708
15709@item -fsanitize=pointer-subtract
15710@opindex fsanitize=pointer-subtract
15711Instrument subtraction with pointer operands.
15712The option must be combined with either @option{-fsanitize=kernel-address} or
15713@option{-fsanitize=address}
15714The option cannot be combined with @option{-fsanitize=thread}.
15715Note: By default the check is disabled at run time.  To enable it,
15716add @code{detect_invalid_pointer_pairs=2} to the environment variable
15717@env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
15718invalid operation only when both pointers are non-null.
15719
15720@item -fsanitize=shadow-call-stack
15721@opindex fsanitize=shadow-call-stack
15722Enable ShadowCallStack, a security enhancement mechanism used to protect
15723programs against return address overwrites (e.g. stack buffer overflows.)
15724It works by saving a function's return address to a separately allocated
15725shadow call stack in the function prologue and restoring the return address
15726from the shadow call stack in the function epilogue.  Instrumentation only
15727occurs in functions that need to save the return address to the stack.
15728
15729Currently it only supports the aarch64 platform.  It is specifically
15730designed for linux kernels that enable the CONFIG_SHADOW_CALL_STACK option.
15731For the user space programs, runtime support is not currently provided
15732in libc and libgcc.  Users who want to use this feature in user space need
15733to provide their own support for the runtime.  It should be noted that
15734this may cause the ABI rules to be broken.
15735
15736On aarch64, the instrumentation makes use of the platform register @code{x18}.
15737This generally means that any code that may run on the same thread as code
15738compiled with ShadowCallStack must be compiled with the flag
15739@option{-ffixed-x18}, otherwise functions compiled without
15740@option{-ffixed-x18} might clobber @code{x18} and so corrupt the shadow
15741stack pointer.
15742
15743Also, because there is no userspace runtime support, code compiled with
15744ShadowCallStack cannot use exception handling.  Use @option{-fno-exceptions}
15745to turn off exceptions.
15746
15747See @uref{https://clang.llvm.org/docs/ShadowCallStack.html} for more
15748details.
15749
15750@item -fsanitize=thread
15751@opindex fsanitize=thread
15752Enable ThreadSanitizer, a fast data race detector.
15753Memory access instructions are instrumented to detect
15754data race bugs.  See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
15755details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
15756environment variable; see
15757@url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
15758supported options.
15759The option cannot be combined with @option{-fsanitize=address},
15760@option{-fsanitize=leak}.
15761
15762Note that sanitized atomic builtins cannot throw exceptions when
15763operating on invalid memory addresses with non-call exceptions
15764(@option{-fnon-call-exceptions}).
15765
15766@item -fsanitize=leak
15767@opindex fsanitize=leak
15768Enable LeakSanitizer, a memory leak detector.
15769This option only matters for linking of executables and
15770the executable is linked against a library that overrides @code{malloc}
15771and other allocator functions.  See
15772@uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
15773details.  The run-time behavior can be influenced using the
15774@env{LSAN_OPTIONS} environment variable.
15775The option cannot be combined with @option{-fsanitize=thread}.
15776
15777@item -fsanitize=undefined
15778@opindex fsanitize=undefined
15779Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
15780Various computations are instrumented to detect undefined behavior
15781at runtime.  See @uref{https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html} for more details.   The run-time behavior can be influenced using the
15782@env{UBSAN_OPTIONS} environment variable.  Current suboptions are:
15783
15784@table @gcctabopt
15785
15786@item -fsanitize=shift
15787@opindex fsanitize=shift
15788This option enables checking that the result of a shift operation is
15789not undefined.  Note that what exactly is considered undefined differs
15790slightly between C and C++, as well as between ISO C90 and C99, etc.
15791This option has two suboptions, @option{-fsanitize=shift-base} and
15792@option{-fsanitize=shift-exponent}.
15793
15794@item -fsanitize=shift-exponent
15795@opindex fsanitize=shift-exponent
15796This option enables checking that the second argument of a shift operation
15797is not negative and is smaller than the precision of the promoted first
15798argument.
15799
15800@item -fsanitize=shift-base
15801@opindex fsanitize=shift-base
15802If the second argument of a shift operation is within range, check that the
15803result of a shift operation is not undefined.  Note that what exactly is
15804considered undefined differs slightly between C and C++, as well as between
15805ISO C90 and C99, etc.
15806
15807@item -fsanitize=integer-divide-by-zero
15808@opindex fsanitize=integer-divide-by-zero
15809Detect integer division by zero.
15810
15811@item -fsanitize=unreachable
15812@opindex fsanitize=unreachable
15813With this option, the compiler turns the @code{__builtin_unreachable}
15814call into a diagnostics message call instead.  When reaching the
15815@code{__builtin_unreachable} call, the behavior is undefined.
15816
15817@item -fsanitize=vla-bound
15818@opindex fsanitize=vla-bound
15819This option instructs the compiler to check that the size of a variable
15820length array is positive.
15821
15822@item -fsanitize=null
15823@opindex fsanitize=null
15824This option enables pointer checking.  Particularly, the application
15825built with this option turned on will issue an error message when it
15826tries to dereference a NULL pointer, or if a reference (possibly an
15827rvalue reference) is bound to a NULL pointer, or if a method is invoked
15828on an object pointed by a NULL pointer.
15829
15830@item -fsanitize=return
15831@opindex fsanitize=return
15832This option enables return statement checking.  Programs
15833built with this option turned on will issue an error message
15834when the end of a non-void function is reached without actually
15835returning a value.  This option works in C++ only.
15836
15837@item -fsanitize=signed-integer-overflow
15838@opindex fsanitize=signed-integer-overflow
15839This option enables signed integer overflow checking.  We check that
15840the result of @code{+}, @code{*}, and both unary and binary @code{-}
15841does not overflow in the signed arithmetics.  This also detects
15842@code{INT_MIN / -1} signed division.  Note, integer promotion
15843rules must be taken into account.  That is, the following is not an
15844overflow:
15845@smallexample
15846signed char a = SCHAR_MAX;
15847a++;
15848@end smallexample
15849
15850@item -fsanitize=bounds
15851@opindex fsanitize=bounds
15852This option enables instrumentation of array bounds.  Various out of bounds
15853accesses are detected.  Flexible array members, flexible array member-like
15854arrays, and initializers of variables with static storage are not instrumented.
15855
15856@item -fsanitize=bounds-strict
15857@opindex fsanitize=bounds-strict
15858This option enables strict instrumentation of array bounds.  Most out of bounds
15859accesses are detected, including flexible array members and flexible array
15860member-like arrays.  Initializers of variables with static storage are not
15861instrumented.
15862
15863@item -fsanitize=alignment
15864@opindex fsanitize=alignment
15865
15866This option enables checking of alignment of pointers when they are
15867dereferenced, or when a reference is bound to insufficiently aligned target,
15868or when a method or constructor is invoked on insufficiently aligned object.
15869
15870@item -fsanitize=object-size
15871@opindex fsanitize=object-size
15872This option enables instrumentation of memory references using the
15873@code{__builtin_object_size} function.  Various out of bounds pointer
15874accesses are detected.
15875
15876@item -fsanitize=float-divide-by-zero
15877@opindex fsanitize=float-divide-by-zero
15878Detect floating-point division by zero.  Unlike other similar options,
15879@option{-fsanitize=float-divide-by-zero} is not enabled by
15880@option{-fsanitize=undefined}, since floating-point division by zero can
15881be a legitimate way of obtaining infinities and NaNs.
15882
15883@item -fsanitize=float-cast-overflow
15884@opindex fsanitize=float-cast-overflow
15885This option enables floating-point type to integer conversion checking.
15886We check that the result of the conversion does not overflow.
15887Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
15888not enabled by @option{-fsanitize=undefined}.
15889This option does not work well with @code{FE_INVALID} exceptions enabled.
15890
15891@item -fsanitize=nonnull-attribute
15892@opindex fsanitize=nonnull-attribute
15893
15894This option enables instrumentation of calls, checking whether null values
15895are not passed to arguments marked as requiring a non-null value by the
15896@code{nonnull} function attribute.
15897
15898@item -fsanitize=returns-nonnull-attribute
15899@opindex fsanitize=returns-nonnull-attribute
15900
15901This option enables instrumentation of return statements in functions
15902marked with @code{returns_nonnull} function attribute, to detect returning
15903of null values from such functions.
15904
15905@item -fsanitize=bool
15906@opindex fsanitize=bool
15907
15908This option enables instrumentation of loads from bool.  If a value other
15909than 0/1 is loaded, a run-time error is issued.
15910
15911@item -fsanitize=enum
15912@opindex fsanitize=enum
15913
15914This option enables instrumentation of loads from an enum type.  If
15915a value outside the range of values for the enum type is loaded,
15916a run-time error is issued.
15917
15918@item -fsanitize=vptr
15919@opindex fsanitize=vptr
15920
15921This option enables instrumentation of C++ member function calls, member
15922accesses and some conversions between pointers to base and derived classes,
15923to verify the referenced object has the correct dynamic type.
15924
15925@item -fsanitize=pointer-overflow
15926@opindex fsanitize=pointer-overflow
15927
15928This option enables instrumentation of pointer arithmetics.  If the pointer
15929arithmetics overflows, a run-time error is issued.
15930
15931@item -fsanitize=builtin
15932@opindex fsanitize=builtin
15933
15934This option enables instrumentation of arguments to selected builtin
15935functions.  If an invalid value is passed to such arguments, a run-time
15936error is issued.  E.g.@ passing 0 as the argument to @code{__builtin_ctz}
15937or @code{__builtin_clz} invokes undefined behavior and is diagnosed
15938by this option.
15939
15940@end table
15941
15942While @option{-ftrapv} causes traps for signed overflows to be emitted,
15943@option{-fsanitize=undefined} gives a diagnostic message.
15944This currently works only for the C family of languages.
15945
15946@item -fno-sanitize=all
15947@opindex fno-sanitize=all
15948
15949This option disables all previously enabled sanitizers.
15950@option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
15951together.
15952
15953@item -fasan-shadow-offset=@var{number}
15954@opindex fasan-shadow-offset
15955This option forces GCC to use custom shadow offset in AddressSanitizer checks.
15956It is useful for experimenting with different shadow memory layouts in
15957Kernel AddressSanitizer.
15958
15959@item -fsanitize-sections=@var{s1},@var{s2},...
15960@opindex fsanitize-sections
15961Sanitize global variables in selected user-defined sections.  @var{si} may
15962contain wildcards.
15963
15964@item -fsanitize-recover@r{[}=@var{opts}@r{]}
15965@opindex fsanitize-recover
15966@opindex fno-sanitize-recover
15967@option{-fsanitize-recover=} controls error recovery mode for sanitizers
15968mentioned in comma-separated list of @var{opts}.  Enabling this option
15969for a sanitizer component causes it to attempt to continue
15970running the program as if no error happened.  This means multiple
15971runtime errors can be reported in a single program run, and the exit
15972code of the program may indicate success even when errors
15973have been reported.  The @option{-fno-sanitize-recover=} option
15974can be used to alter
15975this behavior: only the first detected error is reported
15976and program then exits with a non-zero exit code.
15977
15978Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
15979except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
15980@option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
15981@option{-fsanitize=bounds-strict},
15982@option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
15983For these sanitizers error recovery is turned on by default,
15984except @option{-fsanitize=address}, for which this feature is experimental.
15985@option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
15986accepted, the former enables recovery for all sanitizers that support it,
15987the latter disables recovery for all sanitizers that support it.
15988
15989Even if a recovery mode is turned on the compiler side, it needs to be also
15990enabled on the runtime library side, otherwise the failures are still fatal.
15991The runtime library defaults to @code{halt_on_error=0} for
15992ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
15993AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
15994setting the @code{halt_on_error} flag in the corresponding environment variable.
15995
15996Syntax without an explicit @var{opts} parameter is deprecated.  It is
15997equivalent to specifying an @var{opts} list of:
15998
15999@smallexample
16000undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
16001@end smallexample
16002
16003@item -fsanitize-address-use-after-scope
16004@opindex fsanitize-address-use-after-scope
16005Enable sanitization of local variables to detect use-after-scope bugs.
16006The option sets @option{-fstack-reuse} to @samp{none}.
16007
16008@item -fsanitize-undefined-trap-on-error
16009@opindex fsanitize-undefined-trap-on-error
16010The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
16011report undefined behavior using @code{__builtin_trap} rather than
16012a @code{libubsan} library routine.  The advantage of this is that the
16013@code{libubsan} library is not needed and is not linked in, so this
16014is usable even in freestanding environments.
16015
16016@item -fsanitize-coverage=trace-pc
16017@opindex fsanitize-coverage=trace-pc
16018Enable coverage-guided fuzzing code instrumentation.
16019Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
16020
16021@item -fsanitize-coverage=trace-cmp
16022@opindex fsanitize-coverage=trace-cmp
16023Enable dataflow guided fuzzing code instrumentation.
16024Inserts a call to @code{__sanitizer_cov_trace_cmp1},
16025@code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
16026@code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
16027variable or @code{__sanitizer_cov_trace_const_cmp1},
16028@code{__sanitizer_cov_trace_const_cmp2},
16029@code{__sanitizer_cov_trace_const_cmp4} or
16030@code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
16031operand constant, @code{__sanitizer_cov_trace_cmpf} or
16032@code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
16033@code{__sanitizer_cov_trace_switch} for switch statements.
16034
16035@item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{|}check@r{]}
16036@opindex fcf-protection
16037Enable code instrumentation of control-flow transfers to increase
16038program security by checking that target addresses of control-flow
16039transfer instructions (such as indirect function call, function return,
16040indirect jump) are valid.  This prevents diverting the flow of control
16041to an unexpected target.  This is intended to protect against such
16042threats as Return-oriented Programming (ROP), and similarly
16043call/jmp-oriented programming (COP/JOP).
16044
16045The value @code{branch} tells the compiler to implement checking of
16046validity of control-flow transfer at the point of indirect branch
16047instructions, i.e.@: call/jmp instructions.  The value @code{return}
16048implements checking of validity at the point of returning from a
16049function.  The value @code{full} is an alias for specifying both
16050@code{branch} and @code{return}. The value @code{none} turns off
16051instrumentation.
16052
16053The value @code{check} is used for the final link with link-time
16054optimization (LTO).  An error is issued if LTO object files are
16055compiled with different @option{-fcf-protection} values.  The
16056value @code{check} is ignored at the compile time.
16057
16058The macro @code{__CET__} is defined when @option{-fcf-protection} is
16059used.  The first bit of @code{__CET__} is set to 1 for the value
16060@code{branch} and the second bit of @code{__CET__} is set to 1 for
16061the @code{return}.
16062
16063You can also use the @code{nocf_check} attribute to identify
16064which functions and calls should be skipped from instrumentation
16065(@pxref{Function Attributes}).
16066
16067Currently the x86 GNU/Linux target provides an implementation based
16068on Intel Control-flow Enforcement Technology (CET) which works for
16069i686 processor or newer.
16070
16071@item -fharden-compares
16072@opindex fharden-compares
16073For every logical test that survives gimple optimizations and is
16074@emph{not} the condition in a conditional branch (for example,
16075conditions tested for conditional moves, or to store in boolean
16076variables), emit extra code to compute and verify the reversed
16077condition, and to call @code{__builtin_trap} if the results do not
16078match.  Use with @samp{-fharden-conditional-branches} to cover all
16079conditionals.
16080
16081@item -fharden-conditional-branches
16082@opindex fharden-conditional-branches
16083For every non-vectorized conditional branch that survives gimple
16084optimizations, emit extra code to compute and verify the reversed
16085condition, and to call @code{__builtin_trap} if the result is
16086unexpected.  Use with @samp{-fharden-compares} to cover all
16087conditionals.
16088
16089@item -fstack-protector
16090@opindex fstack-protector
16091Emit extra code to check for buffer overflows, such as stack smashing
16092attacks.  This is done by adding a guard variable to functions with
16093vulnerable objects.  This includes functions that call @code{alloca}, and
16094functions with buffers larger than or equal to 8 bytes.  The guards are
16095initialized when a function is entered and then checked when the function
16096exits.  If a guard check fails, an error message is printed and the program
16097exits.  Only variables that are actually allocated on the stack are
16098considered, optimized away variables or variables allocated in registers
16099don't count.
16100
16101@item -fstack-protector-all
16102@opindex fstack-protector-all
16103Like @option{-fstack-protector} except that all functions are protected.
16104
16105@item -fstack-protector-strong
16106@opindex fstack-protector-strong
16107Like @option{-fstack-protector} but includes additional functions to
16108be protected --- those that have local array definitions, or have
16109references to local frame addresses.  Only variables that are actually
16110allocated on the stack are considered, optimized away variables or variables
16111allocated in registers don't count.
16112
16113@item -fstack-protector-explicit
16114@opindex fstack-protector-explicit
16115Like @option{-fstack-protector} but only protects those functions which
16116have the @code{stack_protect} attribute.
16117
16118@item -fstack-check
16119@opindex fstack-check
16120Generate code to verify that you do not go beyond the boundary of the
16121stack.  You should specify this flag if you are running in an
16122environment with multiple threads, but you only rarely need to specify it in
16123a single-threaded environment since stack overflow is automatically
16124detected on nearly all systems if there is only one stack.
16125
16126Note that this switch does not actually cause checking to be done; the
16127operating system or the language runtime must do that.  The switch causes
16128generation of code to ensure that they see the stack being extended.
16129
16130You can additionally specify a string parameter: @samp{no} means no
16131checking, @samp{generic} means force the use of old-style checking,
16132@samp{specific} means use the best checking method and is equivalent
16133to bare @option{-fstack-check}.
16134
16135Old-style checking is a generic mechanism that requires no specific
16136target support in the compiler but comes with the following drawbacks:
16137
16138@enumerate
16139@item
16140Modified allocation strategy for large objects: they are always
16141allocated dynamically if their size exceeds a fixed threshold.  Note this
16142may change the semantics of some code.
16143
16144@item
16145Fixed limit on the size of the static frame of functions: when it is
16146topped by a particular function, stack checking is not reliable and
16147a warning is issued by the compiler.
16148
16149@item
16150Inefficiency: because of both the modified allocation strategy and the
16151generic implementation, code performance is hampered.
16152@end enumerate
16153
16154Note that old-style stack checking is also the fallback method for
16155@samp{specific} if no target support has been added in the compiler.
16156
16157@samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
16158and stack overflows.  @samp{specific} is an excellent choice when compiling
16159Ada code.  It is not generally sufficient to protect against stack-clash
16160attacks.  To protect against those you want @samp{-fstack-clash-protection}.
16161
16162@item -fstack-clash-protection
16163@opindex fstack-clash-protection
16164Generate code to prevent stack clash style attacks.  When this option is
16165enabled, the compiler will only allocate one page of stack space at a time
16166and each page is accessed immediately after allocation.  Thus, it prevents
16167allocations from jumping over any stack guard page provided by the
16168operating system.
16169
16170Most targets do not fully support stack clash protection.  However, on
16171those targets @option{-fstack-clash-protection} will protect dynamic stack
16172allocations.  @option{-fstack-clash-protection} may also provide limited
16173protection for static stack allocations if the target supports
16174@option{-fstack-check=specific}.
16175
16176@item -fstack-limit-register=@var{reg}
16177@itemx -fstack-limit-symbol=@var{sym}
16178@itemx -fno-stack-limit
16179@opindex fstack-limit-register
16180@opindex fstack-limit-symbol
16181@opindex fno-stack-limit
16182Generate code to ensure that the stack does not grow beyond a certain value,
16183either the value of a register or the address of a symbol.  If a larger
16184stack is required, a signal is raised at run time.  For most targets,
16185the signal is raised before the stack overruns the boundary, so
16186it is possible to catch the signal without taking special precautions.
16187
16188For instance, if the stack starts at absolute address @samp{0x80000000}
16189and grows downwards, you can use the flags
16190@option{-fstack-limit-symbol=__stack_limit} and
16191@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
16192of 128KB@.  Note that this may only work with the GNU linker.
16193
16194You can locally override stack limit checking by using the
16195@code{no_stack_limit} function attribute (@pxref{Function Attributes}).
16196
16197@item -fsplit-stack
16198@opindex fsplit-stack
16199Generate code to automatically split the stack before it overflows.
16200The resulting program has a discontiguous stack which can only
16201overflow if the program is unable to allocate any more memory.  This
16202is most useful when running threaded programs, as it is no longer
16203necessary to calculate a good stack size to use for each thread.  This
16204is currently only implemented for the x86 targets running
16205GNU/Linux.
16206
16207When code compiled with @option{-fsplit-stack} calls code compiled
16208without @option{-fsplit-stack}, there may not be much stack space
16209available for the latter code to run.  If compiling all code,
16210including library code, with @option{-fsplit-stack} is not an option,
16211then the linker can fix up these calls so that the code compiled
16212without @option{-fsplit-stack} always has a large stack.  Support for
16213this is implemented in the gold linker in GNU binutils release 2.21
16214and later.
16215
16216@item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
16217@opindex fvtable-verify
16218This option is only available when compiling C++ code.
16219It turns on (or off, if using @option{-fvtable-verify=none}) the security
16220feature that verifies at run time, for every virtual call, that
16221the vtable pointer through which the call is made is valid for the type of
16222the object, and has not been corrupted or overwritten.  If an invalid vtable
16223pointer is detected at run time, an error is reported and execution of the
16224program is immediately halted.
16225
16226This option causes run-time data structures to be built at program startup,
16227which are used for verifying the vtable pointers.  
16228The options @samp{std} and @samp{preinit}
16229control the timing of when these data structures are built.  In both cases the
16230data structures are built before execution reaches @code{main}.  Using
16231@option{-fvtable-verify=std} causes the data structures to be built after
16232shared libraries have been loaded and initialized.
16233@option{-fvtable-verify=preinit} causes them to be built before shared
16234libraries have been loaded and initialized.
16235
16236If this option appears multiple times in the command line with different
16237values specified, @samp{none} takes highest priority over both @samp{std} and
16238@samp{preinit}; @samp{preinit} takes priority over @samp{std}.
16239
16240@item -fvtv-debug
16241@opindex fvtv-debug
16242When used in conjunction with @option{-fvtable-verify=std} or 
16243@option{-fvtable-verify=preinit}, causes debug versions of the 
16244runtime functions for the vtable verification feature to be called.  
16245This flag also causes the compiler to log information about which 
16246vtable pointers it finds for each class.
16247This information is written to a file named @file{vtv_set_ptr_data.log} 
16248in the directory named by the environment variable @env{VTV_LOGS_DIR} 
16249if that is defined or the current working directory otherwise.
16250
16251Note:  This feature @emph{appends} data to the log file. If you want a fresh log
16252file, be sure to delete any existing one.
16253
16254@item -fvtv-counts
16255@opindex fvtv-counts
16256This is a debugging flag.  When used in conjunction with
16257@option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
16258causes the compiler to keep track of the total number of virtual calls
16259it encounters and the number of verifications it inserts.  It also
16260counts the number of calls to certain run-time library functions
16261that it inserts and logs this information for each compilation unit.
16262The compiler writes this information to a file named
16263@file{vtv_count_data.log} in the directory named by the environment
16264variable @env{VTV_LOGS_DIR} if that is defined or the current working
16265directory otherwise.  It also counts the size of the vtable pointer sets
16266for each class, and writes this information to @file{vtv_class_set_sizes.log}
16267in the same directory.
16268
16269Note:  This feature @emph{appends} data to the log files.  To get fresh log
16270files, be sure to delete any existing ones.
16271
16272@item -finstrument-functions
16273@opindex finstrument-functions
16274Generate instrumentation calls for entry and exit to functions.  Just
16275after function entry and just before function exit, the following
16276profiling functions are called with the address of the current
16277function and its call site.  (On some platforms,
16278@code{__builtin_return_address} does not work beyond the current
16279function, so the call site information may not be available to the
16280profiling functions otherwise.)
16281
16282@smallexample
16283void __cyg_profile_func_enter (void *this_fn,
16284                               void *call_site);
16285void __cyg_profile_func_exit  (void *this_fn,
16286                               void *call_site);
16287@end smallexample
16288
16289The first argument is the address of the start of the current function,
16290which may be looked up exactly in the symbol table.
16291
16292This instrumentation is also done for functions expanded inline in other
16293functions.  The profiling calls indicate where, conceptually, the
16294inline function is entered and exited.  This means that addressable
16295versions of such functions must be available.  If all your uses of a
16296function are expanded inline, this may mean an additional expansion of
16297code size.  If you use @code{extern inline} in your C code, an
16298addressable version of such functions must be provided.  (This is
16299normally the case anyway, but if you get lucky and the optimizer always
16300expands the functions inline, you might have gotten away without
16301providing static copies.)
16302
16303A function may be given the attribute @code{no_instrument_function}, in
16304which case this instrumentation is not done.  This can be used, for
16305example, for the profiling functions listed above, high-priority
16306interrupt routines, and any functions from which the profiling functions
16307cannot safely be called (perhaps signal handlers, if the profiling
16308routines generate output or allocate memory).
16309@xref{Common Function Attributes}.
16310
16311@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
16312@opindex finstrument-functions-exclude-file-list
16313
16314Set the list of functions that are excluded from instrumentation (see
16315the description of @option{-finstrument-functions}).  If the file that
16316contains a function definition matches with one of @var{file}, then
16317that function is not instrumented.  The match is done on substrings:
16318if the @var{file} parameter is a substring of the file name, it is
16319considered to be a match.
16320
16321For example:
16322
16323@smallexample
16324-finstrument-functions-exclude-file-list=/bits/stl,include/sys
16325@end smallexample
16326
16327@noindent
16328excludes any inline function defined in files whose pathnames
16329contain @file{/bits/stl} or @file{include/sys}.
16330
16331If, for some reason, you want to include letter @samp{,} in one of
16332@var{sym}, write @samp{\,}. For example,
16333@option{-finstrument-functions-exclude-file-list='\,\,tmp'}
16334(note the single quote surrounding the option).
16335
16336@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
16337@opindex finstrument-functions-exclude-function-list
16338
16339This is similar to @option{-finstrument-functions-exclude-file-list},
16340but this option sets the list of function names to be excluded from
16341instrumentation.  The function name to be matched is its user-visible
16342name, such as @code{vector<int> blah(const vector<int> &)}, not the
16343internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}).  The
16344match is done on substrings: if the @var{sym} parameter is a substring
16345of the function name, it is considered to be a match.  For C99 and C++
16346extended identifiers, the function name must be given in UTF-8, not
16347using universal character names.
16348
16349@item -fpatchable-function-entry=@var{N}[,@var{M}]
16350@opindex fpatchable-function-entry
16351Generate @var{N} NOPs right at the beginning
16352of each function, with the function entry point before the @var{M}th NOP.
16353If @var{M} is omitted, it defaults to @code{0} so the
16354function entry points to the address just at the first NOP.
16355The NOP instructions reserve extra space which can be used to patch in
16356any desired instrumentation at run time, provided that the code segment
16357is writable.  The amount of space is controllable indirectly via
16358the number of NOPs; the NOP instruction used corresponds to the instruction
16359emitted by the internal GCC back-end interface @code{gen_nop}.  This behavior
16360is target-specific and may also depend on the architecture variant and/or
16361other compilation options.
16362
16363For run-time identification, the starting addresses of these areas,
16364which correspond to their respective function entries minus @var{M},
16365are additionally collected in the @code{__patchable_function_entries}
16366section of the resulting binary.
16367
16368Note that the value of @code{__attribute__ ((patchable_function_entry
16369(N,M)))} takes precedence over command-line option
16370@option{-fpatchable-function-entry=N,M}.  This can be used to increase
16371the area size or to remove it completely on a single function.
16372If @code{N=0}, no pad location is recorded.
16373
16374The NOP instructions are inserted at---and maybe before, depending on
16375@var{M}---the function entry address, even before the prologue.
16376
16377The maximum value of @var{N} and @var{M} is 65535.
16378@end table
16379
16380
16381@node Preprocessor Options
16382@section Options Controlling the Preprocessor
16383@cindex preprocessor options
16384@cindex options, preprocessor
16385
16386These options control the C preprocessor, which is run on each C source
16387file before actual compilation.
16388
16389If you use the @option{-E} option, nothing is done except preprocessing.
16390Some of these options make sense only together with @option{-E} because
16391they cause the preprocessor output to be unsuitable for actual
16392compilation.
16393
16394In addition to the options listed here, there are a number of options 
16395to control search paths for include files documented in 
16396@ref{Directory Options}.  
16397Options to control preprocessor diagnostics are listed in 
16398@ref{Warning Options}.
16399
16400@table @gcctabopt
16401@include cppopts.texi
16402
16403@item -Wp,@var{option}
16404@opindex Wp
16405You can use @option{-Wp,@var{option}} to bypass the compiler driver
16406and pass @var{option} directly through to the preprocessor.  If
16407@var{option} contains commas, it is split into multiple options at the
16408commas.  However, many options are modified, translated or interpreted
16409by the compiler driver before being passed to the preprocessor, and
16410@option{-Wp} forcibly bypasses this phase.  The preprocessor's direct
16411interface is undocumented and subject to change, so whenever possible
16412you should avoid using @option{-Wp} and let the driver handle the
16413options instead.
16414
16415@item -Xpreprocessor @var{option}
16416@opindex Xpreprocessor
16417Pass @var{option} as an option to the preprocessor.  You can use this to
16418supply system-specific preprocessor options that GCC does not 
16419recognize.
16420
16421If you want to pass an option that takes an argument, you must use
16422@option{-Xpreprocessor} twice, once for the option and once for the argument.
16423
16424@item -no-integrated-cpp
16425@opindex no-integrated-cpp
16426Perform preprocessing as a separate pass before compilation.
16427By default, GCC performs preprocessing as an integrated part of
16428input tokenization and parsing.
16429If this option is provided, the appropriate language front end
16430(@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
16431and Objective-C, respectively) is instead invoked twice,
16432once for preprocessing only and once for actual compilation
16433of the preprocessed input.
16434This option may be useful in conjunction with the @option{-B} or
16435@option{-wrapper} options to specify an alternate preprocessor or
16436perform additional processing of the program source between
16437normal preprocessing and compilation.
16438
16439@item -flarge-source-files
16440@opindex flarge-source-files
16441Adjust GCC to expect large source files, at the expense of slower
16442compilation and higher memory usage.
16443
16444Specifically, GCC normally tracks both column numbers and line numbers
16445within source files and it normally prints both of these numbers in
16446diagnostics.  However, once it has processed a certain number of source
16447lines, it stops tracking column numbers and only tracks line numbers.
16448This means that diagnostics for later lines do not include column numbers.
16449It also means that options like @option{-Wmisleading-indentation} cease to work
16450at that point, although the compiler prints a note if this happens.
16451Passing @option{-flarge-source-files} significantly increases the number
16452of source lines that GCC can process before it stops tracking columns.
16453
16454@end table
16455
16456@node Assembler Options
16457@section Passing Options to the Assembler
16458
16459@c prevent bad page break with this line
16460You can pass options to the assembler.
16461
16462@table @gcctabopt
16463@item -Wa,@var{option}
16464@opindex Wa
16465Pass @var{option} as an option to the assembler.  If @var{option}
16466contains commas, it is split into multiple options at the commas.
16467
16468@item -Xassembler @var{option}
16469@opindex Xassembler
16470Pass @var{option} as an option to the assembler.  You can use this to
16471supply system-specific assembler options that GCC does not
16472recognize.
16473
16474If you want to pass an option that takes an argument, you must use
16475@option{-Xassembler} twice, once for the option and once for the argument.
16476
16477@end table
16478
16479@node Link Options
16480@section Options for Linking
16481@cindex link options
16482@cindex options, linking
16483
16484These options come into play when the compiler links object files into
16485an executable output file.  They are meaningless if the compiler is
16486not doing a link step.
16487
16488@table @gcctabopt
16489@cindex file names
16490@item @var{object-file-name}
16491A file name that does not end in a special recognized suffix is
16492considered to name an object file or library.  (Object files are
16493distinguished from libraries by the linker according to the file
16494contents.)  If linking is done, these object files are used as input
16495to the linker.
16496
16497@item -c
16498@itemx -S
16499@itemx -E
16500@opindex c
16501@opindex S
16502@opindex E
16503If any of these options is used, then the linker is not run, and
16504object file names should not be used as arguments.  @xref{Overall
16505Options}.
16506
16507@item -flinker-output=@var{type}
16508@opindex flinker-output
16509This option controls code generation of the link-time optimizer.  By
16510default the linker output is automatically determined by the linker
16511plugin.  For debugging the compiler and if incremental linking with a 
16512non-LTO object file is desired, it may be useful to control the type
16513manually.
16514
16515If @var{type} is @samp{exec}, code generation produces a static
16516binary. In this case @option{-fpic} and @option{-fpie} are both
16517disabled.
16518
16519If @var{type} is @samp{dyn}, code generation produces a shared
16520library.  In this case @option{-fpic} or @option{-fPIC} is preserved,
16521but not enabled automatically.  This allows to build shared libraries
16522without position-independent code on architectures where this is
16523possible, i.e.@: on x86.
16524
16525If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
16526executable. This results in similar optimizations as @samp{exec}
16527except that @option{-fpie} is not disabled if specified at compilation
16528time.
16529
16530If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
16531done.  The sections containing intermediate code for link-time optimization are
16532merged, pre-optimized, and output to the resulting object file. In addition, if
16533@option{-ffat-lto-objects} is specified, binary code is produced for future
16534non-LTO linking. The object file produced by incremental linking is smaller
16535than a static library produced from the same object files.  At link time the
16536result of incremental linking also loads faster than a static
16537library assuming that the majority of objects in the library are used.
16538
16539Finally @samp{nolto-rel} configures the compiler for incremental linking where
16540code generation is forced, a final binary is produced, and the intermediate
16541code for later link-time optimization is stripped. When multiple object files
16542are linked together the resulting code is better optimized than with
16543link-time optimizations disabled (for example, cross-module inlining 
16544happens), but most of benefits of whole program optimizations are lost. 
16545
16546During the incremental link (by @option{-r}) the linker plugin defaults to
16547@option{rel}. With current interfaces to GNU Binutils it is however not
16548possible to incrementally link LTO objects and non-LTO objects into a single
16549mixed object file.  If any of object files in incremental link cannot
16550be used for link-time optimization, the linker plugin issues a warning and
16551uses @samp{nolto-rel}. To maintain whole program optimization, it is
16552recommended to link such objects into static library instead. Alternatively it
16553is possible to use H.J. Lu's binutils with support for mixed objects.
16554
16555@item -fuse-ld=bfd
16556@opindex fuse-ld=bfd
16557Use the @command{bfd} linker instead of the default linker.
16558
16559@item -fuse-ld=gold
16560@opindex fuse-ld=gold
16561Use the @command{gold} linker instead of the default linker.
16562
16563@item -fuse-ld=lld
16564@opindex fuse-ld=lld
16565Use the LLVM @command{lld} linker instead of the default linker.
16566
16567@item -fuse-ld=mold
16568@opindex fuse-ld=mold
16569Use the Modern Linker (@command{mold}) instead of the default linker.
16570
16571@cindex Libraries
16572@item -l@var{library}
16573@itemx -l @var{library}
16574@opindex l
16575Search the library named @var{library} when linking.  (The second
16576alternative with the library as a separate argument is only for
16577POSIX compliance and is not recommended.)
16578
16579The @option{-l} option is passed directly to the linker by GCC.  Refer
16580to your linker documentation for exact details.  The general
16581description below applies to the GNU linker.  
16582
16583The linker searches a standard list of directories for the library.
16584The directories searched include several standard system directories
16585plus any that you specify with @option{-L}.
16586
16587Static libraries are archives of object files, and have file names
16588like @file{lib@var{library}.a}.  Some targets also support shared
16589libraries, which typically have names like @file{lib@var{library}.so}.
16590If both static and shared libraries are found, the linker gives
16591preference to linking with the shared library unless the
16592@option{-static} option is used.
16593
16594It makes a difference where in the command you write this option; the
16595linker searches and processes libraries and object files in the order they
16596are specified.  Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
16597after file @file{foo.o} but before @file{bar.o}.  If @file{bar.o} refers
16598to functions in @samp{z}, those functions may not be loaded.
16599
16600@item -lobjc
16601@opindex lobjc
16602You need this special case of the @option{-l} option in order to
16603link an Objective-C or Objective-C++ program.
16604
16605@item -nostartfiles
16606@opindex nostartfiles
16607Do not use the standard system startup files when linking.
16608The standard system libraries are used normally, unless @option{-nostdlib},
16609@option{-nolibc}, or @option{-nodefaultlibs} is used.
16610
16611@item -nodefaultlibs
16612@opindex nodefaultlibs
16613Do not use the standard system libraries when linking.
16614Only the libraries you specify are passed to the linker, and options
16615specifying linkage of the system libraries, such as @option{-static-libgcc}
16616or @option{-shared-libgcc}, are ignored.  
16617The standard startup files are used normally, unless @option{-nostartfiles}
16618is used.  
16619
16620The compiler may generate calls to @code{memcmp},
16621@code{memset}, @code{memcpy} and @code{memmove}.
16622These entries are usually resolved by entries in
16623libc.  These entry points should be supplied through some other
16624mechanism when this option is specified.
16625
16626@item -nolibc
16627@opindex nolibc
16628Do not use the C library or system libraries tightly coupled with it when
16629linking.  Still link with the startup files, @file{libgcc} or toolchain
16630provided language support libraries such as @file{libgnat}, @file{libgfortran}
16631or @file{libstdc++} unless options preventing their inclusion are used as
16632well.  This typically removes @option{-lc} from the link command line, as well
16633as system libraries that normally go with it and become meaningless when
16634absence of a C library is assumed, for example @option{-lpthread} or
16635@option{-lm} in some configurations.  This is intended for bare-board
16636targets when there is indeed no C library available.
16637
16638@item -nostdlib
16639@opindex nostdlib
16640Do not use the standard system startup files or libraries when linking.
16641No startup files and only the libraries you specify are passed to
16642the linker, and options specifying linkage of the system libraries, such as
16643@option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
16644
16645The compiler may generate calls to @code{memcmp}, @code{memset},
16646@code{memcpy} and @code{memmove}.
16647These entries are usually resolved by entries in
16648libc.  These entry points should be supplied through some other
16649mechanism when this option is specified.
16650
16651@cindex @option{-lgcc}, use with @option{-nostdlib}
16652@cindex @option{-nostdlib} and unresolved references
16653@cindex unresolved references and @option{-nostdlib}
16654@cindex @option{-lgcc}, use with @option{-nodefaultlibs}
16655@cindex @option{-nodefaultlibs} and unresolved references
16656@cindex unresolved references and @option{-nodefaultlibs}
16657One of the standard libraries bypassed by @option{-nostdlib} and
16658@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
16659which GCC uses to overcome shortcomings of particular machines, or special
16660needs for some languages.
16661(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
16662Collection (GCC) Internals},
16663for more discussion of @file{libgcc.a}.)
16664In most cases, you need @file{libgcc.a} even when you want to avoid
16665other standard libraries.  In other words, when you specify @option{-nostdlib}
16666or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
16667This ensures that you have no unresolved references to internal GCC
16668library subroutines.
16669(An example of such an internal subroutine is @code{__main}, used to ensure C++
16670constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
16671GNU Compiler Collection (GCC) Internals}.)
16672
16673@item -e @var{entry}
16674@itemx --entry=@var{entry}
16675@opindex e
16676@opindex entry
16677
16678Specify that the program entry point is @var{entry}.  The argument is
16679interpreted by the linker; the GNU linker accepts either a symbol name
16680or an address.
16681
16682@item -pie
16683@opindex pie
16684Produce a dynamically linked position independent executable on targets
16685that support it.  For predictable results, you must also specify the same
16686set of options used for compilation (@option{-fpie}, @option{-fPIE},
16687or model suboptions) when you specify this linker option.
16688
16689@item -no-pie
16690@opindex no-pie
16691Don't produce a dynamically linked position independent executable.
16692
16693@item -static-pie
16694@opindex static-pie
16695Produce a static position independent executable on targets that support
16696it.  A static position independent executable is similar to a static
16697executable, but can be loaded at any address without a dynamic linker.
16698For predictable results, you must also specify the same set of options
16699used for compilation (@option{-fpie}, @option{-fPIE}, or model
16700suboptions) when you specify this linker option.
16701
16702@item -pthread
16703@opindex pthread
16704Link with the POSIX threads library.  This option is supported on 
16705GNU/Linux targets, most other Unix derivatives, and also on 
16706x86 Cygwin and MinGW targets.  On some targets this option also sets 
16707flags for the preprocessor, so it should be used consistently for both
16708compilation and linking.
16709
16710@item -r
16711@opindex r
16712Produce a relocatable object as output.  This is also known as partial
16713linking.
16714
16715@item -rdynamic
16716@opindex rdynamic
16717Pass the flag @option{-export-dynamic} to the ELF linker, on targets
16718that support it. This instructs the linker to add all symbols, not
16719only used ones, to the dynamic symbol table. This option is needed
16720for some uses of @code{dlopen} or to allow obtaining backtraces
16721from within a program.
16722
16723@item -s
16724@opindex s
16725Remove all symbol table and relocation information from the executable.
16726
16727@item -static
16728@opindex static
16729On systems that support dynamic linking, this overrides @option{-pie}
16730and prevents linking with the shared libraries.  On other systems, this
16731option has no effect.
16732
16733@item -shared
16734@opindex shared
16735Produce a shared object which can then be linked with other objects to
16736form an executable.  Not all systems support this option.  For predictable
16737results, you must also specify the same set of options used for compilation
16738(@option{-fpic}, @option{-fPIC}, or model suboptions) when
16739you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
16740needs to build supplementary stub code for constructors to work.  On
16741multi-libbed systems, @samp{gcc -shared} must select the correct support
16742libraries to link against.  Failing to supply the correct flags may lead
16743to subtle defects.  Supplying them in cases where they are not necessary
16744is innocuous.}
16745
16746@item -shared-libgcc
16747@itemx -static-libgcc
16748@opindex shared-libgcc
16749@opindex static-libgcc
16750On systems that provide @file{libgcc} as a shared library, these options
16751force the use of either the shared or static version, respectively.
16752If no shared version of @file{libgcc} was built when the compiler was
16753configured, these options have no effect.
16754
16755There are several situations in which an application should use the
16756shared @file{libgcc} instead of the static version.  The most common
16757of these is when the application wishes to throw and catch exceptions
16758across different shared libraries.  In that case, each of the libraries
16759as well as the application itself should use the shared @file{libgcc}.
16760
16761Therefore, the G++ driver automatically adds @option{-shared-libgcc}
16762whenever you build a shared library or a main executable, because C++
16763programs typically use exceptions, so this is the right thing to do.
16764
16765If, instead, you use the GCC driver to create shared libraries, you may
16766find that they are not always linked with the shared @file{libgcc}.
16767If GCC finds, at its configuration time, that you have a non-GNU linker
16768or a GNU linker that does not support option @option{--eh-frame-hdr},
16769it links the shared version of @file{libgcc} into shared libraries
16770by default.  Otherwise, it takes advantage of the linker and optimizes
16771away the linking with the shared version of @file{libgcc}, linking with
16772the static version of libgcc by default.  This allows exceptions to
16773propagate through such shared libraries, without incurring relocation
16774costs at library load time.
16775
16776However, if a library or main executable is supposed to throw or catch
16777exceptions, you must link it using the G++ driver, or using the option
16778@option{-shared-libgcc}, such that it is linked with the shared
16779@file{libgcc}.
16780
16781@item -static-libasan
16782@opindex static-libasan
16783When the @option{-fsanitize=address} option is used to link a program,
16784the GCC driver automatically links against @option{libasan}.  If
16785@file{libasan} is available as a shared library, and the @option{-static}
16786option is not used, then this links against the shared version of
16787@file{libasan}.  The @option{-static-libasan} option directs the GCC
16788driver to link @file{libasan} statically, without necessarily linking
16789other libraries statically.
16790
16791@item -static-libtsan
16792@opindex static-libtsan
16793When the @option{-fsanitize=thread} option is used to link a program,
16794the GCC driver automatically links against @option{libtsan}.  If
16795@file{libtsan} is available as a shared library, and the @option{-static}
16796option is not used, then this links against the shared version of
16797@file{libtsan}.  The @option{-static-libtsan} option directs the GCC
16798driver to link @file{libtsan} statically, without necessarily linking
16799other libraries statically.
16800
16801@item -static-liblsan
16802@opindex static-liblsan
16803When the @option{-fsanitize=leak} option is used to link a program,
16804the GCC driver automatically links against @option{liblsan}.  If
16805@file{liblsan} is available as a shared library, and the @option{-static}
16806option is not used, then this links against the shared version of
16807@file{liblsan}.  The @option{-static-liblsan} option directs the GCC
16808driver to link @file{liblsan} statically, without necessarily linking
16809other libraries statically.
16810
16811@item -static-libubsan
16812@opindex static-libubsan
16813When the @option{-fsanitize=undefined} option is used to link a program,
16814the GCC driver automatically links against @option{libubsan}.  If
16815@file{libubsan} is available as a shared library, and the @option{-static}
16816option is not used, then this links against the shared version of
16817@file{libubsan}.  The @option{-static-libubsan} option directs the GCC
16818driver to link @file{libubsan} statically, without necessarily linking
16819other libraries statically.
16820
16821@item -static-libstdc++
16822@opindex static-libstdc++
16823When the @command{g++} program is used to link a C++ program, it
16824normally automatically links against @option{libstdc++}.  If
16825@file{libstdc++} is available as a shared library, and the
16826@option{-static} option is not used, then this links against the
16827shared version of @file{libstdc++}.  That is normally fine.  However, it
16828is sometimes useful to freeze the version of @file{libstdc++} used by
16829the program without going all the way to a fully static link.  The
16830@option{-static-libstdc++} option directs the @command{g++} driver to
16831link @file{libstdc++} statically, without necessarily linking other
16832libraries statically.
16833
16834@item -symbolic
16835@opindex symbolic
16836Bind references to global symbols when building a shared object.  Warn
16837about any unresolved references (unless overridden by the link editor
16838option @option{-Xlinker -z -Xlinker defs}).  Only a few systems support
16839this option.
16840
16841@item -T @var{script}
16842@opindex T
16843@cindex linker script
16844Use @var{script} as the linker script.  This option is supported by most
16845systems using the GNU linker.  On some targets, such as bare-board
16846targets without an operating system, the @option{-T} option may be required
16847when linking to avoid references to undefined symbols.
16848
16849@item -Xlinker @var{option}
16850@opindex Xlinker
16851Pass @var{option} as an option to the linker.  You can use this to
16852supply system-specific linker options that GCC does not recognize.
16853
16854If you want to pass an option that takes a separate argument, you must use
16855@option{-Xlinker} twice, once for the option and once for the argument.
16856For example, to pass @option{-assert definitions}, you must write
16857@option{-Xlinker -assert -Xlinker definitions}.  It does not work to write
16858@option{-Xlinker "-assert definitions"}, because this passes the entire
16859string as a single argument, which is not what the linker expects.
16860
16861When using the GNU linker, it is usually more convenient to pass
16862arguments to linker options using the @option{@var{option}=@var{value}}
16863syntax than as separate arguments.  For example, you can specify
16864@option{-Xlinker -Map=output.map} rather than
16865@option{-Xlinker -Map -Xlinker output.map}.  Other linkers may not support
16866this syntax for command-line options.
16867
16868@item -Wl,@var{option}
16869@opindex Wl
16870Pass @var{option} as an option to the linker.  If @var{option} contains
16871commas, it is split into multiple options at the commas.  You can use this
16872syntax to pass an argument to the option.
16873For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
16874linker.  When using the GNU linker, you can also get the same effect with
16875@option{-Wl,-Map=output.map}.
16876
16877@item -u @var{symbol}
16878@opindex u
16879Pretend the symbol @var{symbol} is undefined, to force linking of
16880library modules to define it.  You can use @option{-u} multiple times with
16881different symbols to force loading of additional library modules.
16882
16883@item -z @var{keyword}
16884@opindex z
16885@option{-z} is passed directly on to the linker along with the keyword
16886@var{keyword}. See the section in the documentation of your linker for
16887permitted values and their meanings.
16888@end table
16889
16890@node Directory Options
16891@section Options for Directory Search
16892@cindex directory options
16893@cindex options, directory search
16894@cindex search path
16895
16896These options specify directories to search for header files, for
16897libraries and for parts of the compiler:
16898
16899@table @gcctabopt
16900@include cppdiropts.texi
16901
16902@item -iplugindir=@var{dir}
16903@opindex iplugindir=
16904Set the directory to search for plugins that are passed
16905by @option{-fplugin=@var{name}} instead of
16906@option{-fplugin=@var{path}/@var{name}.so}.  This option is not meant
16907to be used by the user, but only passed by the driver.
16908
16909@item -L@var{dir}
16910@opindex L
16911Add directory @var{dir} to the list of directories to be searched
16912for @option{-l}.
16913
16914@item -B@var{prefix}
16915@opindex B
16916This option specifies where to find the executables, libraries,
16917include files, and data files of the compiler itself.
16918
16919The compiler driver program runs one or more of the subprograms
16920@command{cpp}, @command{cc1}, @command{as} and @command{ld}.  It tries
16921@var{prefix} as a prefix for each program it tries to run, both with and
16922without @samp{@var{machine}/@var{version}/} for the corresponding target
16923machine and compiler version.
16924
16925For each subprogram to be run, the compiler driver first tries the
16926@option{-B} prefix, if any.  If that name is not found, or if @option{-B}
16927is not specified, the driver tries two standard prefixes, 
16928@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}.  If neither of
16929those results in a file name that is found, the unmodified program
16930name is searched for using the directories specified in your
16931@env{PATH} environment variable.
16932
16933The compiler checks to see if the path provided by @option{-B}
16934refers to a directory, and if necessary it adds a directory
16935separator character at the end of the path.
16936
16937@option{-B} prefixes that effectively specify directory names also apply
16938to libraries in the linker, because the compiler translates these
16939options into @option{-L} options for the linker.  They also apply to
16940include files in the preprocessor, because the compiler translates these
16941options into @option{-isystem} options for the preprocessor.  In this case,
16942the compiler appends @samp{include} to the prefix.
16943
16944The runtime support file @file{libgcc.a} can also be searched for using
16945the @option{-B} prefix, if needed.  If it is not found there, the two
16946standard prefixes above are tried, and that is all.  The file is left
16947out of the link if it is not found by those means.
16948
16949Another way to specify a prefix much like the @option{-B} prefix is to use
16950the environment variable @env{GCC_EXEC_PREFIX}.  @xref{Environment
16951Variables}.
16952
16953As a special kludge, if the path provided by @option{-B} is
16954@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
169559, then it is replaced by @file{[dir/]include}.  This is to help
16956with boot-strapping the compiler.
16957
16958@item -no-canonical-prefixes
16959@opindex no-canonical-prefixes
16960Do not expand any symbolic links, resolve references to @samp{/../}
16961or @samp{/./}, or make the path absolute when generating a relative
16962prefix.
16963
16964@item --sysroot=@var{dir}
16965@opindex sysroot
16966Use @var{dir} as the logical root directory for headers and libraries.
16967For example, if the compiler normally searches for headers in
16968@file{/usr/include} and libraries in @file{/usr/lib}, it instead
16969searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
16970
16971If you use both this option and the @option{-isysroot} option, then
16972the @option{--sysroot} option applies to libraries, but the
16973@option{-isysroot} option applies to header files.
16974
16975The GNU linker (beginning with version 2.16) has the necessary support
16976for this option.  If your linker does not support this option, the
16977header file aspect of @option{--sysroot} still works, but the
16978library aspect does not.
16979
16980@item --no-sysroot-suffix
16981@opindex no-sysroot-suffix
16982For some targets, a suffix is added to the root directory specified
16983with @option{--sysroot}, depending on the other options used, so that
16984headers may for example be found in
16985@file{@var{dir}/@var{suffix}/usr/include} instead of
16986@file{@var{dir}/usr/include}.  This option disables the addition of
16987such a suffix.
16988
16989@end table
16990
16991@node Code Gen Options
16992@section Options for Code Generation Conventions
16993@cindex code generation conventions
16994@cindex options, code generation
16995@cindex run-time options
16996
16997These machine-independent options control the interface conventions
16998used in code generation.
16999
17000Most of them have both positive and negative forms; the negative form
17001of @option{-ffoo} is @option{-fno-foo}.  In the table below, only
17002one of the forms is listed---the one that is not the default.  You
17003can figure out the other form by either removing @samp{no-} or adding
17004it.
17005
17006@table @gcctabopt
17007@item -fstack-reuse=@var{reuse-level}
17008@opindex fstack_reuse
17009This option controls stack space reuse for user declared local/auto variables
17010and compiler generated temporaries.  @var{reuse_level} can be @samp{all},
17011@samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
17012local variables and temporaries, @samp{named_vars} enables the reuse only for
17013user defined local variables with names, and @samp{none} disables stack reuse
17014completely. The default value is @samp{all}. The option is needed when the
17015program extends the lifetime of a scoped local variable or a compiler generated
17016temporary beyond the end point defined by the language.  When a lifetime of
17017a variable ends, and if the variable lives in memory, the optimizing compiler
17018has the freedom to reuse its stack space with other temporaries or scoped
17019local variables whose live range does not overlap with it. Legacy code extending
17020local lifetime is likely to break with the stack reuse optimization.
17021
17022For example,
17023
17024@smallexample
17025   int *p;
17026   @{
17027     int local1;
17028
17029     p = &local1;
17030     local1 = 10;
17031     ....
17032   @}
17033   @{
17034      int local2;
17035      local2 = 20;
17036      ...
17037   @}
17038
17039   if (*p == 10)  // out of scope use of local1
17040     @{
17041
17042     @}
17043@end smallexample
17044
17045Another example:
17046@smallexample
17047
17048   struct A
17049   @{
17050       A(int k) : i(k), j(k) @{ @}
17051       int i;
17052       int j;
17053   @};
17054
17055   A *ap;
17056
17057   void foo(const A& ar)
17058   @{
17059      ap = &ar;
17060   @}
17061
17062   void bar()
17063   @{
17064      foo(A(10)); // temp object's lifetime ends when foo returns
17065
17066      @{
17067        A a(20);
17068        ....
17069      @}
17070      ap->i+= 10;  // ap references out of scope temp whose space
17071                   // is reused with a. What is the value of ap->i?
17072   @}
17073
17074@end smallexample
17075
17076The lifetime of a compiler generated temporary is well defined by the C++
17077standard. When a lifetime of a temporary ends, and if the temporary lives
17078in memory, the optimizing compiler has the freedom to reuse its stack
17079space with other temporaries or scoped local variables whose live range
17080does not overlap with it. However some of the legacy code relies on
17081the behavior of older compilers in which temporaries' stack space is
17082not reused, the aggressive stack reuse can lead to runtime errors. This
17083option is used to control the temporary stack reuse optimization.
17084
17085@item -ftrapv
17086@opindex ftrapv
17087This option generates traps for signed overflow on addition, subtraction,
17088multiplication operations.
17089The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
17090@option{-ftrapv} @option{-fwrapv} on the command-line results in
17091@option{-fwrapv} being effective.  Note that only active options override, so
17092using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
17093results in @option{-ftrapv} being effective.
17094
17095@item -fwrapv
17096@opindex fwrapv
17097This option instructs the compiler to assume that signed arithmetic
17098overflow of addition, subtraction and multiplication wraps around
17099using twos-complement representation.  This flag enables some optimizations
17100and disables others.
17101The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
17102@option{-ftrapv} @option{-fwrapv} on the command-line results in
17103@option{-fwrapv} being effective.  Note that only active options override, so
17104using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
17105results in @option{-ftrapv} being effective.
17106
17107@item -fwrapv-pointer
17108@opindex fwrapv-pointer
17109This option instructs the compiler to assume that pointer arithmetic
17110overflow on addition and subtraction wraps around using twos-complement
17111representation.  This flag disables some optimizations which assume
17112pointer overflow is invalid.
17113
17114@item -fstrict-overflow
17115@opindex fstrict-overflow
17116This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
17117negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
17118
17119@item -fexceptions
17120@opindex fexceptions
17121Enable exception handling.  Generates extra code needed to propagate
17122exceptions.  For some targets, this implies GCC generates frame
17123unwind information for all functions, which can produce significant data
17124size overhead, although it does not affect execution.  If you do not
17125specify this option, GCC enables it by default for languages like
17126C++ that normally require exception handling, and disables it for
17127languages like C that do not normally require it.  However, you may need
17128to enable this option when compiling C code that needs to interoperate
17129properly with exception handlers written in C++.  You may also wish to
17130disable this option if you are compiling older C++ programs that don't
17131use exception handling.
17132
17133@item -fnon-call-exceptions
17134@opindex fnon-call-exceptions
17135Generate code that allows trapping instructions to throw exceptions.
17136Note that this requires platform-specific runtime support that does
17137not exist everywhere.  Moreover, it only allows @emph{trapping}
17138instructions to throw exceptions, i.e.@: memory references or floating-point
17139instructions.  It does not allow exceptions to be thrown from
17140arbitrary signal handlers such as @code{SIGALRM}.  This enables
17141@option{-fexceptions}.
17142
17143@item -fdelete-dead-exceptions
17144@opindex fdelete-dead-exceptions
17145Consider that instructions that may throw exceptions but don't otherwise
17146contribute to the execution of the program can be optimized away.
17147This does not affect calls to functions except those with the
17148@code{pure} or @code{const} attributes.
17149This option is enabled by default for the Ada and C++ compilers, as permitted by
17150the language specifications.
17151Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
17152
17153@item -funwind-tables
17154@opindex funwind-tables
17155Similar to @option{-fexceptions}, except that it just generates any needed
17156static data, but does not affect the generated code in any other way.
17157You normally do not need to enable this option; instead, a language processor
17158that needs this handling enables it on your behalf.
17159
17160@item -fasynchronous-unwind-tables
17161@opindex fasynchronous-unwind-tables
17162Generate unwind table in DWARF format, if supported by target machine.  The
17163table is exact at each instruction boundary, so it can be used for stack
17164unwinding from asynchronous events (such as debugger or garbage collector).
17165
17166@item -fno-gnu-unique
17167@opindex fno-gnu-unique
17168@opindex fgnu-unique
17169On systems with recent GNU assembler and C library, the C++ compiler
17170uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
17171of template static data members and static local variables in inline
17172functions are unique even in the presence of @code{RTLD_LOCAL}; this
17173is necessary to avoid problems with a library used by two different
17174@code{RTLD_LOCAL} plugins depending on a definition in one of them and
17175therefore disagreeing with the other one about the binding of the
17176symbol.  But this causes @code{dlclose} to be ignored for affected
17177DSOs; if your program relies on reinitialization of a DSO via
17178@code{dlclose} and @code{dlopen}, you can use
17179@option{-fno-gnu-unique}.
17180
17181@item -fpcc-struct-return
17182@opindex fpcc-struct-return
17183Return ``short'' @code{struct} and @code{union} values in memory like
17184longer ones, rather than in registers.  This convention is less
17185efficient, but it has the advantage of allowing intercallability between
17186GCC-compiled files and files compiled with other compilers, particularly
17187the Portable C Compiler (pcc).
17188
17189The precise convention for returning structures in memory depends
17190on the target configuration macros.
17191
17192Short structures and unions are those whose size and alignment match
17193that of some integer type.
17194
17195@strong{Warning:} code compiled with the @option{-fpcc-struct-return}
17196switch is not binary compatible with code compiled with the
17197@option{-freg-struct-return} switch.
17198Use it to conform to a non-default application binary interface.
17199
17200@item -freg-struct-return
17201@opindex freg-struct-return
17202Return @code{struct} and @code{union} values in registers when possible.
17203This is more efficient for small structures than
17204@option{-fpcc-struct-return}.
17205
17206If you specify neither @option{-fpcc-struct-return} nor
17207@option{-freg-struct-return}, GCC defaults to whichever convention is
17208standard for the target.  If there is no standard convention, GCC
17209defaults to @option{-fpcc-struct-return}, except on targets where GCC is
17210the principal compiler.  In those cases, we can choose the standard, and
17211we chose the more efficient register return alternative.
17212
17213@strong{Warning:} code compiled with the @option{-freg-struct-return}
17214switch is not binary compatible with code compiled with the
17215@option{-fpcc-struct-return} switch.
17216Use it to conform to a non-default application binary interface.
17217
17218@item -fshort-enums
17219@opindex fshort-enums
17220Allocate to an @code{enum} type only as many bytes as it needs for the
17221declared range of possible values.  Specifically, the @code{enum} type
17222is equivalent to the smallest integer type that has enough room.
17223
17224@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
17225code that is not binary compatible with code generated without that switch.
17226Use it to conform to a non-default application binary interface.
17227
17228@item -fshort-wchar
17229@opindex fshort-wchar
17230Override the underlying type for @code{wchar_t} to be @code{short
17231unsigned int} instead of the default for the target.  This option is
17232useful for building programs to run under WINE@.
17233
17234@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
17235code that is not binary compatible with code generated without that switch.
17236Use it to conform to a non-default application binary interface.
17237
17238@item -fcommon
17239@opindex fcommon
17240@opindex fno-common
17241@cindex tentative definitions
17242In C code, this option controls the placement of global variables
17243defined without an initializer, known as @dfn{tentative definitions}
17244in the C standard.  Tentative definitions are distinct from declarations
17245of a variable with the @code{extern} keyword, which do not allocate storage.
17246
17247The default is @option{-fno-common}, which specifies that the compiler places
17248uninitialized global variables in the BSS section of the object file.
17249This inhibits the merging of tentative definitions by the linker so you get a
17250multiple-definition error if the same variable is accidentally defined in more
17251than one compilation unit.
17252
17253The @option{-fcommon} places uninitialized global variables in a common block.
17254This allows the linker to resolve all tentative definitions of the same variable
17255in different compilation units to the same object, or to a non-tentative
17256definition.  This behavior is inconsistent with C++, and on many targets implies
17257a speed and code size penalty on global variable references.  It is mainly
17258useful to enable legacy code to link without errors.
17259
17260@item -fno-ident
17261@opindex fno-ident
17262@opindex fident
17263Ignore the @code{#ident} directive.
17264
17265@item -finhibit-size-directive
17266@opindex finhibit-size-directive
17267Don't output a @code{.size} assembler directive, or anything else that
17268would cause trouble if the function is split in the middle, and the
17269two halves are placed at locations far apart in memory.  This option is
17270used when compiling @file{crtstuff.c}; you should not need to use it
17271for anything else.
17272
17273@item -fverbose-asm
17274@opindex fverbose-asm
17275Put extra commentary information in the generated assembly code to
17276make it more readable.  This option is generally only of use to those
17277who actually need to read the generated assembly code (perhaps while
17278debugging the compiler itself).
17279
17280@option{-fno-verbose-asm}, the default, causes the
17281extra information to be omitted and is useful when comparing two assembler
17282files.
17283
17284The added comments include:
17285
17286@itemize @bullet
17287
17288@item
17289information on the compiler version and command-line options,
17290
17291@item
17292the source code lines associated with the assembly instructions,
17293in the form FILENAME:LINENUMBER:CONTENT OF LINE,
17294
17295@item
17296hints on which high-level expressions correspond to
17297the various assembly instruction operands.
17298
17299@end itemize
17300
17301For example, given this C source file:
17302
17303@smallexample
17304int test (int n)
17305@{
17306  int i;
17307  int total = 0;
17308
17309  for (i = 0; i < n; i++)
17310    total += i * i;
17311
17312  return total;
17313@}
17314@end smallexample
17315
17316compiling to (x86_64) assembly via @option{-S} and emitting the result
17317direct to stdout via @option{-o} @option{-}
17318
17319@smallexample
17320gcc -S test.c -fverbose-asm -Os -o -
17321@end smallexample
17322
17323gives output similar to this:
17324
17325@smallexample
17326	.file	"test.c"
17327# GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
17328  [...snip...]
17329# options passed:
17330  [...snip...]
17331
17332	.text
17333	.globl	test
17334	.type	test, @@function
17335test:
17336.LFB0:
17337	.cfi_startproc
17338# test.c:4:   int total = 0;
17339	xorl	%eax, %eax	# <retval>
17340# test.c:6:   for (i = 0; i < n; i++)
17341	xorl	%edx, %edx	# i
17342.L2:
17343# test.c:6:   for (i = 0; i < n; i++)
17344	cmpl	%edi, %edx	# n, i
17345	jge	.L5	#,
17346# test.c:7:     total += i * i;
17347	movl	%edx, %ecx	# i, tmp92
17348	imull	%edx, %ecx	# i, tmp92
17349# test.c:6:   for (i = 0; i < n; i++)
17350	incl	%edx	# i
17351# test.c:7:     total += i * i;
17352	addl	%ecx, %eax	# tmp92, <retval>
17353	jmp	.L2	#
17354.L5:
17355# test.c:10: @}
17356	ret
17357	.cfi_endproc
17358.LFE0:
17359	.size	test, .-test
17360	.ident	"GCC: (GNU) 7.0.0 20160809 (experimental)"
17361	.section	.note.GNU-stack,"",@@progbits
17362@end smallexample
17363
17364The comments are intended for humans rather than machines and hence the
17365precise format of the comments is subject to change.
17366
17367@item -frecord-gcc-switches
17368@opindex frecord-gcc-switches
17369This switch causes the command line used to invoke the
17370compiler to be recorded into the object file that is being created.
17371This switch is only implemented on some targets and the exact format
17372of the recording is target and binary file format dependent, but it
17373usually takes the form of a section containing ASCII text.  This
17374switch is related to the @option{-fverbose-asm} switch, but that
17375switch only records information in the assembler output file as
17376comments, so it never reaches the object file.
17377See also @option{-grecord-gcc-switches} for another
17378way of storing compiler options into the object file.
17379
17380@item -fpic
17381@opindex fpic
17382@cindex global offset table
17383@cindex PIC
17384Generate position-independent code (PIC) suitable for use in a shared
17385library, if supported for the target machine.  Such code accesses all
17386constant addresses through a global offset table (GOT)@.  The dynamic
17387loader resolves the GOT entries when the program starts (the dynamic
17388loader is not part of GCC; it is part of the operating system).  If
17389the GOT size for the linked executable exceeds a machine-specific
17390maximum size, you get an error message from the linker indicating that
17391@option{-fpic} does not work; in that case, recompile with @option{-fPIC}
17392instead.  (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
17393on the m68k and RS/6000.  The x86 has no such limit.)
17394
17395Position-independent code requires special support, and therefore works
17396only on certain machines.  For the x86, GCC supports PIC for System V
17397but not for the Sun 386i.  Code generated for the IBM RS/6000 is always
17398position-independent.
17399
17400When this flag is set, the macros @code{__pic__} and @code{__PIC__}
17401are defined to 1.
17402
17403@item -fPIC
17404@opindex fPIC
17405If supported for the target machine, emit position-independent code,
17406suitable for dynamic linking and avoiding any limit on the size of the
17407global offset table.  This option makes a difference on AArch64, m68k,
17408PowerPC and SPARC@.
17409
17410Position-independent code requires special support, and therefore works
17411only on certain machines.
17412
17413When this flag is set, the macros @code{__pic__} and @code{__PIC__}
17414are defined to 2.
17415
17416@item -fpie
17417@itemx -fPIE
17418@opindex fpie
17419@opindex fPIE
17420These options are similar to @option{-fpic} and @option{-fPIC}, but the
17421generated position-independent code can be only linked into executables.
17422Usually these options are used to compile code that will be linked using
17423the @option{-pie} GCC option.
17424
17425@option{-fpie} and @option{-fPIE} both define the macros
17426@code{__pie__} and @code{__PIE__}.  The macros have the value 1
17427for @option{-fpie} and 2 for @option{-fPIE}.
17428
17429@item -fno-plt
17430@opindex fno-plt
17431@opindex fplt
17432Do not use the PLT for external function calls in position-independent code.
17433Instead, load the callee address at call sites from the GOT and branch to it.
17434This leads to more efficient code by eliminating PLT stubs and exposing
17435GOT loads to optimizations.  On architectures such as 32-bit x86 where
17436PLT stubs expect the GOT pointer in a specific register, this gives more
17437register allocation freedom to the compiler.
17438Lazy binding requires use of the PLT; 
17439with @option{-fno-plt} all external symbols are resolved at load time.
17440
17441Alternatively, the function attribute @code{noplt} can be used to avoid calls
17442through the PLT for specific external functions.
17443
17444In position-dependent code, a few targets also convert calls to
17445functions that are marked to not use the PLT to use the GOT instead.
17446
17447@item -fno-jump-tables
17448@opindex fno-jump-tables
17449@opindex fjump-tables
17450Do not use jump tables for switch statements even where it would be
17451more efficient than other code generation strategies.  This option is
17452of use in conjunction with @option{-fpic} or @option{-fPIC} for
17453building code that forms part of a dynamic linker and cannot
17454reference the address of a jump table.  On some targets, jump tables
17455do not require a GOT and this option is not needed.
17456
17457@item -fno-bit-tests
17458@opindex fno-bit-tests
17459@opindex fbit-tests
17460Do not use bit tests for switch statements even where it would be
17461more efficient than other code generation strategies.
17462
17463@item -ffixed-@var{reg}
17464@opindex ffixed
17465Treat the register named @var{reg} as a fixed register; generated code
17466should never refer to it (except perhaps as a stack pointer, frame
17467pointer or in some other fixed role).
17468
17469@var{reg} must be the name of a register.  The register names accepted
17470are machine-specific and are defined in the @code{REGISTER_NAMES}
17471macro in the machine description macro file.
17472
17473This flag does not have a negative form, because it specifies a
17474three-way choice.
17475
17476@item -fcall-used-@var{reg}
17477@opindex fcall-used
17478Treat the register named @var{reg} as an allocable register that is
17479clobbered by function calls.  It may be allocated for temporaries or
17480variables that do not live across a call.  Functions compiled this way
17481do not save and restore the register @var{reg}.
17482
17483It is an error to use this flag with the frame pointer or stack pointer.
17484Use of this flag for other registers that have fixed pervasive roles in
17485the machine's execution model produces disastrous results.
17486
17487This flag does not have a negative form, because it specifies a
17488three-way choice.
17489
17490@item -fcall-saved-@var{reg}
17491@opindex fcall-saved
17492Treat the register named @var{reg} as an allocable register saved by
17493functions.  It may be allocated even for temporaries or variables that
17494live across a call.  Functions compiled this way save and restore
17495the register @var{reg} if they use it.
17496
17497It is an error to use this flag with the frame pointer or stack pointer.
17498Use of this flag for other registers that have fixed pervasive roles in
17499the machine's execution model produces disastrous results.
17500
17501A different sort of disaster results from the use of this flag for
17502a register in which function values may be returned.
17503
17504This flag does not have a negative form, because it specifies a
17505three-way choice.
17506
17507@item -fpack-struct[=@var{n}]
17508@opindex fpack-struct
17509Without a value specified, pack all structure members together without
17510holes.  When a value is specified (which must be a small power of two), pack
17511structure members according to this value, representing the maximum
17512alignment (that is, objects with default alignment requirements larger than
17513this are output potentially unaligned at the next fitting location.
17514
17515@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
17516code that is not binary compatible with code generated without that switch.
17517Additionally, it makes the code suboptimal.
17518Use it to conform to a non-default application binary interface.
17519
17520@item -fleading-underscore
17521@opindex fleading-underscore
17522This option and its counterpart, @option{-fno-leading-underscore}, forcibly
17523change the way C symbols are represented in the object file.  One use
17524is to help link with legacy assembly code.
17525
17526@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
17527generate code that is not binary compatible with code generated without that
17528switch.  Use it to conform to a non-default application binary interface.
17529Not all targets provide complete support for this switch.
17530
17531@item -ftls-model=@var{model}
17532@opindex ftls-model
17533Alter the thread-local storage model to be used (@pxref{Thread-Local}).
17534The @var{model} argument should be one of @samp{global-dynamic},
17535@samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
17536Note that the choice is subject to optimization: the compiler may use
17537a more efficient model for symbols not visible outside of the translation
17538unit, or if @option{-fpic} is not given on the command line.
17539
17540The default without @option{-fpic} is @samp{initial-exec}; with
17541@option{-fpic} the default is @samp{global-dynamic}.
17542
17543@item -ftrampolines
17544@opindex ftrampolines
17545For targets that normally need trampolines for nested functions, always
17546generate them instead of using descriptors.  Otherwise, for targets that
17547do not need them, like for example HP-PA or IA-64, do nothing.
17548
17549A trampoline is a small piece of code that is created at run time on the
17550stack when the address of a nested function is taken, and is used to call
17551the nested function indirectly.  Therefore, it requires the stack to be
17552made executable in order for the program to work properly.
17553
17554@option{-fno-trampolines} is enabled by default on a language by language
17555basis to let the compiler avoid generating them, if it computes that this
17556is safe, and replace them with descriptors.  Descriptors are made up of data
17557only, but the generated code must be prepared to deal with them.  As of this
17558writing, @option{-fno-trampolines} is enabled by default only for Ada.
17559
17560Moreover, code compiled with @option{-ftrampolines} and code compiled with
17561@option{-fno-trampolines} are not binary compatible if nested functions are
17562present.  This option must therefore be used on a program-wide basis and be
17563manipulated with extreme care.
17564
17565For languages other than Ada, the @code{-ftrampolines} and
17566@code{-fno-trampolines} options currently have no effect, and
17567trampolines are always generated on platforms that need them
17568for nested functions.
17569
17570@item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
17571@opindex fvisibility
17572Set the default ELF image symbol visibility to the specified option---all
17573symbols are marked with this unless overridden within the code.
17574Using this feature can very substantially improve linking and
17575load times of shared object libraries, produce more optimized
17576code, provide near-perfect API export and prevent symbol clashes.
17577It is @strong{strongly} recommended that you use this in any shared objects
17578you distribute.
17579
17580Despite the nomenclature, @samp{default} always means public; i.e.,
17581available to be linked against from outside the shared object.
17582@samp{protected} and @samp{internal} are pretty useless in real-world
17583usage so the only other commonly used option is @samp{hidden}.
17584The default if @option{-fvisibility} isn't specified is
17585@samp{default}, i.e., make every symbol public.
17586
17587A good explanation of the benefits offered by ensuring ELF
17588symbols have the correct visibility is given by ``How To Write
17589Shared Libraries'' by Ulrich Drepper (which can be found at
17590@w{@uref{https://www.akkadia.org/drepper/}})---however a superior
17591solution made possible by this option to marking things hidden when
17592the default is public is to make the default hidden and mark things
17593public.  This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
17594and @code{__attribute__ ((visibility("default")))} instead of
17595@code{__declspec(dllexport)} you get almost identical semantics with
17596identical syntax.  This is a great boon to those working with
17597cross-platform projects.
17598
17599For those adding visibility support to existing code, you may find
17600@code{#pragma GCC visibility} of use.  This works by you enclosing
17601the declarations you wish to set visibility for with (for example)
17602@code{#pragma GCC visibility push(hidden)} and
17603@code{#pragma GCC visibility pop}.
17604Bear in mind that symbol visibility should be viewed @strong{as
17605part of the API interface contract} and thus all new code should
17606always specify visibility when it is not the default; i.e., declarations
17607only for use within the local DSO should @strong{always} be marked explicitly
17608as hidden as so to avoid PLT indirection overheads---making this
17609abundantly clear also aids readability and self-documentation of the code.
17610Note that due to ISO C++ specification requirements, @code{operator new} and
17611@code{operator delete} must always be of default visibility.
17612
17613Be aware that headers from outside your project, in particular system
17614headers and headers from any other library you use, may not be
17615expecting to be compiled with visibility other than the default.  You
17616may need to explicitly say @code{#pragma GCC visibility push(default)}
17617before including any such headers.
17618
17619@code{extern} declarations are not affected by @option{-fvisibility}, so
17620a lot of code can be recompiled with @option{-fvisibility=hidden} with
17621no modifications.  However, this means that calls to @code{extern}
17622functions with no explicit visibility use the PLT, so it is more
17623effective to use @code{__attribute ((visibility))} and/or
17624@code{#pragma GCC visibility} to tell the compiler which @code{extern}
17625declarations should be treated as hidden.
17626
17627Note that @option{-fvisibility} does affect C++ vague linkage
17628entities. This means that, for instance, an exception class that is
17629be thrown between DSOs must be explicitly marked with default
17630visibility so that the @samp{type_info} nodes are unified between
17631the DSOs.
17632
17633An overview of these techniques, their benefits and how to use them
17634is at @uref{https://gcc.gnu.org/@/wiki/@/Visibility}.
17635
17636@item -fstrict-volatile-bitfields
17637@opindex fstrict-volatile-bitfields
17638This option should be used if accesses to volatile bit-fields (or other
17639structure fields, although the compiler usually honors those types
17640anyway) should use a single access of the width of the
17641field's type, aligned to a natural alignment if possible.  For
17642example, targets with memory-mapped peripheral registers might require
17643all such accesses to be 16 bits wide; with this flag you can
17644declare all peripheral bit-fields as @code{unsigned short} (assuming short
17645is 16 bits on these targets) to force GCC to use 16-bit accesses
17646instead of, perhaps, a more efficient 32-bit access.
17647
17648If this option is disabled, the compiler uses the most efficient
17649instruction.  In the previous example, that might be a 32-bit load
17650instruction, even though that accesses bytes that do not contain
17651any portion of the bit-field, or memory-mapped registers unrelated to
17652the one being updated.
17653
17654In some cases, such as when the @code{packed} attribute is applied to a 
17655structure field, it may not be possible to access the field with a single
17656read or write that is correctly aligned for the target machine.  In this
17657case GCC falls back to generating multiple accesses rather than code that 
17658will fault or truncate the result at run time.
17659
17660Note:  Due to restrictions of the C/C++11 memory model, write accesses are
17661not allowed to touch non bit-field members.  It is therefore recommended
17662to define all bits of the field's type as bit-field members.
17663
17664The default value of this option is determined by the application binary
17665interface for the target processor.
17666
17667@item -fsync-libcalls
17668@opindex fsync-libcalls
17669This option controls whether any out-of-line instance of the @code{__sync}
17670family of functions may be used to implement the C++11 @code{__atomic}
17671family of functions.
17672
17673The default value of this option is enabled, thus the only useful form
17674of the option is @option{-fno-sync-libcalls}.  This option is used in
17675the implementation of the @file{libatomic} runtime library.
17676
17677@end table
17678
17679@node Developer Options
17680@section GCC Developer Options
17681@cindex developer options
17682@cindex debugging GCC
17683@cindex debug dump options
17684@cindex dump options
17685@cindex compilation statistics
17686
17687This section describes command-line options that are primarily of
17688interest to GCC developers, including options to support compiler
17689testing and investigation of compiler bugs and compile-time
17690performance problems.  This includes options that produce debug dumps
17691at various points in the compilation; that print statistics such as
17692memory use and execution time; and that print information about GCC's
17693configuration, such as where it searches for libraries.  You should
17694rarely need to use any of these options for ordinary compilation and
17695linking tasks.
17696
17697Many developer options that cause GCC to dump output to a file take an
17698optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
17699or @samp{-} to dump to standard output, and @samp{stderr} for standard
17700error.
17701
17702If @samp{=@var{filename}} is omitted, a default dump file name is
17703constructed by concatenating the base dump file name, a pass number,
17704phase letter, and pass name.  The base dump file name is the name of
17705output file produced by the compiler if explicitly specified and not
17706an executable; otherwise it is the source file name.
17707The pass number is determined by the order passes are registered with
17708the compiler's pass manager. 
17709This is generally the same as the order of execution, but passes
17710registered by plugins, target-specific passes, or passes that are
17711otherwise registered late are numbered higher than the pass named
17712@samp{final}, even if they are executed earlier.  The phase letter is
17713one of @samp{i} (inter-procedural analysis), @samp{l}
17714(language-specific), @samp{r} (RTL), or @samp{t} (tree). 
17715The files are created in the directory of the output file. 
17716
17717@table @gcctabopt
17718
17719@item -fcallgraph-info
17720@itemx -fcallgraph-info=@var{MARKERS}
17721@opindex fcallgraph-info
17722Makes the compiler output callgraph information for the program, on a
17723per-object-file basis.  The information is generated in the common VCG
17724format.  It can be decorated with additional, per-node and/or per-edge
17725information, if a list of comma-separated markers is additionally
17726specified.  When the @code{su} marker is specified, the callgraph is
17727decorated with stack usage information; it is equivalent to
17728@option{-fstack-usage}.  When the @code{da} marker is specified, the
17729callgraph is decorated with information about dynamically allocated
17730objects.
17731
17732When compiling with @option{-flto}, no callgraph information is output
17733along with the object file.  At LTO link time, @option{-fcallgraph-info}
17734may generate multiple callgraph information files next to intermediate
17735LTO output files.
17736
17737@item -d@var{letters}
17738@itemx -fdump-rtl-@var{pass}
17739@itemx -fdump-rtl-@var{pass}=@var{filename}
17740@opindex d
17741@opindex fdump-rtl-@var{pass}
17742Says to make debugging dumps during compilation at times specified by
17743@var{letters}.  This is used for debugging the RTL-based passes of the
17744compiler.
17745
17746Some @option{-d@var{letters}} switches have different meaning when
17747@option{-E} is used for preprocessing.  @xref{Preprocessor Options},
17748for information about preprocessor-specific dump options.
17749
17750Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
17751@option{-d} option @var{letters}.  Here are the possible
17752letters for use in @var{pass} and @var{letters}, and their meanings:
17753
17754@table @gcctabopt
17755
17756@item -fdump-rtl-alignments
17757@opindex fdump-rtl-alignments
17758Dump after branch alignments have been computed.
17759
17760@item -fdump-rtl-asmcons
17761@opindex fdump-rtl-asmcons
17762Dump after fixing rtl statements that have unsatisfied in/out constraints.
17763
17764@item -fdump-rtl-auto_inc_dec
17765@opindex fdump-rtl-auto_inc_dec
17766Dump after auto-inc-dec discovery.  This pass is only run on
17767architectures that have auto inc or auto dec instructions.
17768
17769@item -fdump-rtl-barriers
17770@opindex fdump-rtl-barriers
17771Dump after cleaning up the barrier instructions.
17772
17773@item -fdump-rtl-bbpart
17774@opindex fdump-rtl-bbpart
17775Dump after partitioning hot and cold basic blocks.
17776
17777@item -fdump-rtl-bbro
17778@opindex fdump-rtl-bbro
17779Dump after block reordering.
17780
17781@item -fdump-rtl-btl1
17782@itemx -fdump-rtl-btl2
17783@opindex fdump-rtl-btl2
17784@opindex fdump-rtl-btl2
17785@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
17786after the two branch
17787target load optimization passes.
17788
17789@item -fdump-rtl-bypass
17790@opindex fdump-rtl-bypass
17791Dump after jump bypassing and control flow optimizations.
17792
17793@item -fdump-rtl-combine
17794@opindex fdump-rtl-combine
17795Dump after the RTL instruction combination pass.
17796
17797@item -fdump-rtl-compgotos
17798@opindex fdump-rtl-compgotos
17799Dump after duplicating the computed gotos.
17800
17801@item -fdump-rtl-ce1
17802@itemx -fdump-rtl-ce2
17803@itemx -fdump-rtl-ce3
17804@opindex fdump-rtl-ce1
17805@opindex fdump-rtl-ce2
17806@opindex fdump-rtl-ce3
17807@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
17808@option{-fdump-rtl-ce3} enable dumping after the three
17809if conversion passes.
17810
17811@item -fdump-rtl-cprop_hardreg
17812@opindex fdump-rtl-cprop_hardreg
17813Dump after hard register copy propagation.
17814
17815@item -fdump-rtl-csa
17816@opindex fdump-rtl-csa
17817Dump after combining stack adjustments.
17818
17819@item -fdump-rtl-cse1
17820@itemx -fdump-rtl-cse2
17821@opindex fdump-rtl-cse1
17822@opindex fdump-rtl-cse2
17823@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
17824the two common subexpression elimination passes.
17825
17826@item -fdump-rtl-dce
17827@opindex fdump-rtl-dce
17828Dump after the standalone dead code elimination passes.
17829
17830@item -fdump-rtl-dbr
17831@opindex fdump-rtl-dbr
17832Dump after delayed branch scheduling.
17833
17834@item -fdump-rtl-dce1
17835@itemx -fdump-rtl-dce2
17836@opindex fdump-rtl-dce1
17837@opindex fdump-rtl-dce2
17838@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
17839the two dead store elimination passes.
17840
17841@item -fdump-rtl-eh
17842@opindex fdump-rtl-eh
17843Dump after finalization of EH handling code.
17844
17845@item -fdump-rtl-eh_ranges
17846@opindex fdump-rtl-eh_ranges
17847Dump after conversion of EH handling range regions.
17848
17849@item -fdump-rtl-expand
17850@opindex fdump-rtl-expand
17851Dump after RTL generation.
17852
17853@item -fdump-rtl-fwprop1
17854@itemx -fdump-rtl-fwprop2
17855@opindex fdump-rtl-fwprop1
17856@opindex fdump-rtl-fwprop2
17857@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
17858dumping after the two forward propagation passes.
17859
17860@item -fdump-rtl-gcse1
17861@itemx -fdump-rtl-gcse2
17862@opindex fdump-rtl-gcse1
17863@opindex fdump-rtl-gcse2
17864@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
17865after global common subexpression elimination.
17866
17867@item -fdump-rtl-init-regs
17868@opindex fdump-rtl-init-regs
17869Dump after the initialization of the registers.
17870
17871@item -fdump-rtl-initvals
17872@opindex fdump-rtl-initvals
17873Dump after the computation of the initial value sets.
17874
17875@item -fdump-rtl-into_cfglayout
17876@opindex fdump-rtl-into_cfglayout
17877Dump after converting to cfglayout mode.
17878
17879@item -fdump-rtl-ira
17880@opindex fdump-rtl-ira
17881Dump after iterated register allocation.
17882
17883@item -fdump-rtl-jump
17884@opindex fdump-rtl-jump
17885Dump after the second jump optimization.
17886
17887@item -fdump-rtl-loop2
17888@opindex fdump-rtl-loop2
17889@option{-fdump-rtl-loop2} enables dumping after the rtl
17890loop optimization passes.
17891
17892@item -fdump-rtl-mach
17893@opindex fdump-rtl-mach
17894Dump after performing the machine dependent reorganization pass, if that
17895pass exists.
17896
17897@item -fdump-rtl-mode_sw
17898@opindex fdump-rtl-mode_sw
17899Dump after removing redundant mode switches.
17900
17901@item -fdump-rtl-rnreg
17902@opindex fdump-rtl-rnreg
17903Dump after register renumbering.
17904
17905@item -fdump-rtl-outof_cfglayout
17906@opindex fdump-rtl-outof_cfglayout
17907Dump after converting from cfglayout mode.
17908
17909@item -fdump-rtl-peephole2
17910@opindex fdump-rtl-peephole2
17911Dump after the peephole pass.
17912
17913@item -fdump-rtl-postreload
17914@opindex fdump-rtl-postreload
17915Dump after post-reload optimizations.
17916
17917@item -fdump-rtl-pro_and_epilogue
17918@opindex fdump-rtl-pro_and_epilogue
17919Dump after generating the function prologues and epilogues.
17920
17921@item -fdump-rtl-sched1
17922@itemx -fdump-rtl-sched2
17923@opindex fdump-rtl-sched1
17924@opindex fdump-rtl-sched2
17925@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
17926after the basic block scheduling passes.
17927
17928@item -fdump-rtl-ree
17929@opindex fdump-rtl-ree
17930Dump after sign/zero extension elimination.
17931
17932@item -fdump-rtl-seqabstr
17933@opindex fdump-rtl-seqabstr
17934Dump after common sequence discovery.
17935
17936@item -fdump-rtl-shorten
17937@opindex fdump-rtl-shorten
17938Dump after shortening branches.
17939
17940@item -fdump-rtl-sibling
17941@opindex fdump-rtl-sibling
17942Dump after sibling call optimizations.
17943
17944@item -fdump-rtl-split1
17945@itemx -fdump-rtl-split2
17946@itemx -fdump-rtl-split3
17947@itemx -fdump-rtl-split4
17948@itemx -fdump-rtl-split5
17949@opindex fdump-rtl-split1
17950@opindex fdump-rtl-split2
17951@opindex fdump-rtl-split3
17952@opindex fdump-rtl-split4
17953@opindex fdump-rtl-split5
17954These options enable dumping after five rounds of
17955instruction splitting.
17956
17957@item -fdump-rtl-sms
17958@opindex fdump-rtl-sms
17959Dump after modulo scheduling.  This pass is only run on some
17960architectures.
17961
17962@item -fdump-rtl-stack
17963@opindex fdump-rtl-stack
17964Dump after conversion from GCC's ``flat register file'' registers to the
17965x87's stack-like registers.  This pass is only run on x86 variants.
17966
17967@item -fdump-rtl-subreg1
17968@itemx -fdump-rtl-subreg2
17969@opindex fdump-rtl-subreg1
17970@opindex fdump-rtl-subreg2
17971@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
17972the two subreg expansion passes.
17973
17974@item -fdump-rtl-unshare
17975@opindex fdump-rtl-unshare
17976Dump after all rtl has been unshared.
17977
17978@item -fdump-rtl-vartrack
17979@opindex fdump-rtl-vartrack
17980Dump after variable tracking.
17981
17982@item -fdump-rtl-vregs
17983@opindex fdump-rtl-vregs
17984Dump after converting virtual registers to hard registers.
17985
17986@item -fdump-rtl-web
17987@opindex fdump-rtl-web
17988Dump after live range splitting.
17989
17990@item -fdump-rtl-regclass
17991@itemx -fdump-rtl-subregs_of_mode_init
17992@itemx -fdump-rtl-subregs_of_mode_finish
17993@itemx -fdump-rtl-dfinit
17994@itemx -fdump-rtl-dfinish
17995@opindex fdump-rtl-regclass
17996@opindex fdump-rtl-subregs_of_mode_init
17997@opindex fdump-rtl-subregs_of_mode_finish
17998@opindex fdump-rtl-dfinit
17999@opindex fdump-rtl-dfinish
18000These dumps are defined but always produce empty files.
18001
18002@item -da
18003@itemx -fdump-rtl-all
18004@opindex da
18005@opindex fdump-rtl-all
18006Produce all the dumps listed above.
18007
18008@item -dA
18009@opindex dA
18010Annotate the assembler output with miscellaneous debugging information.
18011
18012@item -dD
18013@opindex dD
18014Dump all macro definitions, at the end of preprocessing, in addition to
18015normal output.
18016
18017@item -dH
18018@opindex dH
18019Produce a core dump whenever an error occurs.
18020
18021@item -dp
18022@opindex dp
18023Annotate the assembler output with a comment indicating which
18024pattern and alternative is used.  The length and cost of each instruction are
18025also printed.
18026
18027@item -dP
18028@opindex dP
18029Dump the RTL in the assembler output as a comment before each instruction.
18030Also turns on @option{-dp} annotation.
18031
18032@item -dx
18033@opindex dx
18034Just generate RTL for a function instead of compiling it.  Usually used
18035with @option{-fdump-rtl-expand}.
18036@end table
18037
18038@item -fdump-debug
18039@opindex fdump-debug
18040Dump debugging information generated during the debug
18041generation phase.
18042
18043@item -fdump-earlydebug
18044@opindex fdump-earlydebug
18045Dump debugging information generated during the early debug
18046generation phase.
18047
18048@item -fdump-noaddr
18049@opindex fdump-noaddr
18050When doing debugging dumps, suppress address output.  This makes it more
18051feasible to use diff on debugging dumps for compiler invocations with
18052different compiler binaries and/or different
18053text / bss / data / heap / stack / dso start locations.
18054
18055@item -freport-bug
18056@opindex freport-bug
18057Collect and dump debug information into a temporary file if an
18058internal compiler error (ICE) occurs.
18059
18060@item -fdump-unnumbered
18061@opindex fdump-unnumbered
18062When doing debugging dumps, suppress instruction numbers and address output.
18063This makes it more feasible to use diff on debugging dumps for compiler
18064invocations with different options, in particular with and without
18065@option{-g}.
18066
18067@item -fdump-unnumbered-links
18068@opindex fdump-unnumbered-links
18069When doing debugging dumps (see @option{-d} option above), suppress
18070instruction numbers for the links to the previous and next instructions
18071in a sequence.
18072
18073@item -fdump-ipa-@var{switch}
18074@itemx -fdump-ipa-@var{switch}-@var{options}
18075@opindex fdump-ipa
18076Control the dumping at various stages of inter-procedural analysis
18077language tree to a file.  The file name is generated by appending a
18078switch specific suffix to the source file name, and the file is created
18079in the same directory as the output file.  The following dumps are
18080possible:
18081
18082@table @samp
18083@item all
18084Enables all inter-procedural analysis dumps.
18085
18086@item cgraph
18087Dumps information about call-graph optimization, unused function removal,
18088and inlining decisions.
18089
18090@item inline
18091Dump after function inlining.
18092
18093@end table
18094
18095Additionally, the options @option{-optimized}, @option{-missed},
18096@option{-note}, and @option{-all} can be provided, with the same meaning
18097as for @option{-fopt-info}, defaulting to @option{-optimized}.
18098
18099For example, @option{-fdump-ipa-inline-optimized-missed} will emit
18100information on callsites that were inlined, along with callsites
18101that were not inlined.
18102
18103By default, the dump will contain messages about successful
18104optimizations (equivalent to @option{-optimized}) together with
18105low-level details about the analysis.
18106
18107@item -fdump-lang
18108@opindex fdump-lang
18109Dump language-specific information.  The file name is made by appending
18110@file{.lang} to the source file name.
18111
18112@item -fdump-lang-all
18113@itemx -fdump-lang-@var{switch}
18114@itemx -fdump-lang-@var{switch}-@var{options}
18115@itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
18116@opindex fdump-lang-all
18117@opindex fdump-lang
18118Control the dumping of language-specific information.  The @var{options}
18119and @var{filename} portions behave as described in the
18120@option{-fdump-tree} option.  The following @var{switch} values are
18121accepted:
18122
18123@table @samp
18124@item all
18125
18126Enable all language-specific dumps.
18127
18128@item class
18129Dump class hierarchy information.  Virtual table information is emitted
18130unless '@option{slim}' is specified.  This option is applicable to C++ only.
18131
18132@item module
18133Dump module information.  Options @option{lineno} (locations),
18134@option{graph} (reachability), @option{blocks} (clusters),
18135@option{uid} (serialization), @option{alias} (mergeable),
18136@option{asmname} (Elrond), @option{eh} (mapper) & @option{vops}
18137(macros) may provide additional information.  This option is
18138applicable to C++ only.
18139
18140@item raw
18141Dump the raw internal tree data.  This option is applicable to C++ only.
18142
18143@end table
18144
18145@item -fdump-passes
18146@opindex fdump-passes
18147Print on @file{stderr} the list of optimization passes that are turned
18148on and off by the current command-line options.
18149
18150@item -fdump-statistics-@var{option}
18151@opindex fdump-statistics
18152Enable and control dumping of pass statistics in a separate file.  The
18153file name is generated by appending a suffix ending in
18154@samp{.statistics} to the source file name, and the file is created in
18155the same directory as the output file.  If the @samp{-@var{option}}
18156form is used, @samp{-stats} causes counters to be summed over the
18157whole compilation unit while @samp{-details} dumps every event as
18158the passes generate them.  The default with no option is to sum
18159counters for each function compiled.
18160
18161@item -fdump-tree-all
18162@itemx -fdump-tree-@var{switch}
18163@itemx -fdump-tree-@var{switch}-@var{options}
18164@itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
18165@opindex fdump-tree-all
18166@opindex fdump-tree
18167Control the dumping at various stages of processing the intermediate
18168language tree to a file.  If the @samp{-@var{options}}
18169form is used, @var{options} is a list of @samp{-} separated options
18170which control the details of the dump.  Not all options are applicable
18171to all dumps; those that are not meaningful are ignored.  The
18172following options are available
18173
18174@table @samp
18175@item address
18176Print the address of each node.  Usually this is not meaningful as it
18177changes according to the environment and source file.  Its primary use
18178is for tying up a dump file with a debug environment.
18179@item asmname
18180If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
18181in the dump instead of @code{DECL_NAME}.  Its primary use is ease of
18182use working backward from mangled names in the assembly file.
18183@item slim
18184When dumping front-end intermediate representations, inhibit dumping
18185of members of a scope or body of a function merely because that scope
18186has been reached.  Only dump such items when they are directly reachable
18187by some other path.
18188
18189When dumping pretty-printed trees, this option inhibits dumping the
18190bodies of control structures.
18191
18192When dumping RTL, print the RTL in slim (condensed) form instead of
18193the default LISP-like representation.
18194@item raw
18195Print a raw representation of the tree.  By default, trees are
18196pretty-printed into a C-like representation.
18197@item details
18198Enable more detailed dumps (not honored by every dump option). Also
18199include information from the optimization passes.
18200@item stats
18201Enable dumping various statistics about the pass (not honored by every dump
18202option).
18203@item blocks
18204Enable showing basic block boundaries (disabled in raw dumps).
18205@item graph
18206For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
18207dump a representation of the control flow graph suitable for viewing with
18208GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}.  Each function in
18209the file is pretty-printed as a subgraph, so that GraphViz can render them
18210all in a single plot.
18211
18212This option currently only works for RTL dumps, and the RTL is always
18213dumped in slim form.
18214@item vops
18215Enable showing virtual operands for every statement.
18216@item lineno
18217Enable showing line numbers for statements.
18218@item uid
18219Enable showing the unique ID (@code{DECL_UID}) for each variable.
18220@item verbose
18221Enable showing the tree dump for each statement.
18222@item eh
18223Enable showing the EH region number holding each statement.
18224@item scev
18225Enable showing scalar evolution analysis details.
18226@item optimized
18227Enable showing optimization information (only available in certain
18228passes).
18229@item missed
18230Enable showing missed optimization information (only available in certain
18231passes).
18232@item note
18233Enable other detailed optimization information (only available in
18234certain passes).
18235@item all
18236Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
18237and @option{lineno}.
18238@item optall
18239Turn on all optimization options, i.e., @option{optimized},
18240@option{missed}, and @option{note}.
18241@end table
18242
18243To determine what tree dumps are available or find the dump for a pass
18244of interest follow the steps below.
18245
18246@enumerate
18247@item
18248Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
18249look for a code that corresponds to the pass you are interested in.
18250For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
18251@code{tree-vrp2} correspond to the three Value Range Propagation passes.
18252The number at the end distinguishes distinct invocations of the same pass.
18253@item
18254To enable the creation of the dump file, append the pass code to
18255the @option{-fdump-} option prefix and invoke GCC with it.  For example,
18256to enable the dump from the Early Value Range Propagation pass, invoke
18257GCC with the @option{-fdump-tree-evrp} option.  Optionally, you may
18258specify the name of the dump file.  If you don't specify one, GCC
18259creates as described below.
18260@item
18261Find the pass dump in a file whose name is composed of three components
18262separated by a period: the name of the source file GCC was invoked to
18263compile, a numeric suffix indicating the pass number followed by the
18264letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
18265and finally the pass code.  For example, the Early VRP pass dump might
18266be in a file named @file{myfile.c.038t.evrp} in the current working
18267directory.  Note that the numeric codes are not stable and may change
18268from one version of GCC to another.
18269@end enumerate
18270
18271@item -fopt-info
18272@itemx -fopt-info-@var{options}
18273@itemx -fopt-info-@var{options}=@var{filename}
18274@opindex fopt-info
18275Controls optimization dumps from various optimization passes. If the
18276@samp{-@var{options}} form is used, @var{options} is a list of
18277@samp{-} separated option keywords to select the dump details and
18278optimizations.  
18279
18280The @var{options} can be divided into three groups:
18281@enumerate
18282@item
18283options describing what kinds of messages should be emitted,
18284@item
18285options describing the verbosity of the dump, and
18286@item
18287options describing which optimizations should be included.
18288@end enumerate
18289The options from each group can be freely mixed as they are
18290non-overlapping. However, in case of any conflicts,
18291the later options override the earlier options on the command
18292line. 
18293
18294The following options control which kinds of messages should be emitted:
18295
18296@table @samp
18297@item optimized
18298Print information when an optimization is successfully applied. It is
18299up to a pass to decide which information is relevant. For example, the
18300vectorizer passes print the source location of loops which are
18301successfully vectorized.
18302@item missed
18303Print information about missed optimizations. Individual passes
18304control which information to include in the output. 
18305@item note
18306Print verbose information about optimizations, such as certain
18307transformations, more detailed messages about decisions etc.
18308@item all
18309Print detailed optimization information. This includes
18310@samp{optimized}, @samp{missed}, and @samp{note}.
18311@end table
18312
18313The following option controls the dump verbosity:
18314
18315@table @samp
18316@item internals
18317By default, only ``high-level'' messages are emitted. This option enables
18318additional, more detailed, messages, which are likely to only be of interest
18319to GCC developers.
18320@end table
18321
18322One or more of the following option keywords can be used to describe a
18323group of optimizations:
18324
18325@table @samp
18326@item ipa
18327Enable dumps from all interprocedural optimizations.
18328@item loop
18329Enable dumps from all loop optimizations.
18330@item inline
18331Enable dumps from all inlining optimizations.
18332@item omp
18333Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
18334@item vec
18335Enable dumps from all vectorization optimizations.
18336@item optall
18337Enable dumps from all optimizations. This is a superset of
18338the optimization groups listed above.
18339@end table
18340
18341If @var{options} is
18342omitted, it defaults to @samp{optimized-optall}, which means to dump messages
18343about successful optimizations from all the passes, omitting messages
18344that are treated as ``internals''.
18345
18346If the @var{filename} is provided, then the dumps from all the
18347applicable optimizations are concatenated into the @var{filename}.
18348Otherwise the dump is output onto @file{stderr}. Though multiple
18349@option{-fopt-info} options are accepted, only one of them can include
18350a @var{filename}. If other filenames are provided then all but the
18351first such option are ignored.
18352
18353Note that the output @var{filename} is overwritten
18354in case of multiple translation units. If a combined output from
18355multiple translation units is desired, @file{stderr} should be used
18356instead.
18357
18358In the following example, the optimization info is output to
18359@file{stderr}:
18360
18361@smallexample
18362gcc -O3 -fopt-info
18363@end smallexample
18364
18365This example:
18366@smallexample
18367gcc -O3 -fopt-info-missed=missed.all
18368@end smallexample
18369
18370@noindent
18371outputs missed optimization report from all the passes into
18372@file{missed.all}, and this one:
18373
18374@smallexample
18375gcc -O2 -ftree-vectorize -fopt-info-vec-missed
18376@end smallexample
18377
18378@noindent
18379prints information about missed optimization opportunities from
18380vectorization passes on @file{stderr}.  
18381Note that @option{-fopt-info-vec-missed} is equivalent to 
18382@option{-fopt-info-missed-vec}.  The order of the optimization group
18383names and message types listed after @option{-fopt-info} does not matter.
18384
18385As another example,
18386@smallexample
18387gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
18388@end smallexample
18389
18390@noindent
18391outputs information about missed optimizations as well as
18392optimized locations from all the inlining passes into
18393@file{inline.txt}.
18394
18395Finally, consider:
18396
18397@smallexample
18398gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
18399@end smallexample
18400
18401@noindent
18402Here the two output filenames @file{vec.miss} and @file{loop.opt} are
18403in conflict since only one output file is allowed. In this case, only
18404the first option takes effect and the subsequent options are
18405ignored. Thus only @file{vec.miss} is produced which contains
18406dumps from the vectorizer about missed opportunities.
18407
18408@item -fsave-optimization-record
18409@opindex fsave-optimization-record
18410Write a SRCFILE.opt-record.json.gz file detailing what optimizations
18411were performed, for those optimizations that support @option{-fopt-info}.
18412
18413This option is experimental and the format of the data within the
18414compressed JSON file is subject to change.
18415
18416It is roughly equivalent to a machine-readable version of
18417@option{-fopt-info-all}, as a collection of messages with source file,
18418line number and column number, with the following additional data for
18419each message:
18420
18421@itemize @bullet
18422
18423@item
18424the execution count of the code being optimized, along with metadata about
18425whether this was from actual profile data, or just an estimate, allowing
18426consumers to prioritize messages by code hotness,
18427
18428@item
18429the function name of the code being optimized, where applicable,
18430
18431@item
18432the ``inlining chain'' for the code being optimized, so that when
18433a function is inlined into several different places (which might
18434themselves be inlined), the reader can distinguish between the copies,
18435
18436@item
18437objects identifying those parts of the message that refer to expressions,
18438statements or symbol-table nodes, which of these categories they are, and,
18439when available, their source code location,
18440
18441@item
18442the GCC pass that emitted the message, and
18443
18444@item
18445the location in GCC's own code from which the message was emitted
18446
18447@end itemize
18448
18449Additionally, some messages are logically nested within other
18450messages, reflecting implementation details of the optimization
18451passes.
18452
18453@item -fsched-verbose=@var{n}
18454@opindex fsched-verbose
18455On targets that use instruction scheduling, this option controls the
18456amount of debugging output the scheduler prints to the dump files.
18457
18458For @var{n} greater than zero, @option{-fsched-verbose} outputs the
18459same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
18460For @var{n} greater than one, it also output basic block probabilities,
18461detailed ready list information and unit/insn info.  For @var{n} greater
18462than two, it includes RTL at abort point, control-flow and regions info.
18463And for @var{n} over four, @option{-fsched-verbose} also includes
18464dependence info.
18465
18466
18467
18468@item -fenable-@var{kind}-@var{pass}
18469@itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
18470@opindex fdisable-
18471@opindex fenable-
18472
18473This is a set of options that are used to explicitly disable/enable
18474optimization passes.  These options are intended for use for debugging GCC.
18475Compiler users should use regular options for enabling/disabling
18476passes instead.
18477
18478@table @gcctabopt
18479
18480@item -fdisable-ipa-@var{pass}
18481Disable IPA pass @var{pass}. @var{pass} is the pass name.  If the same pass is
18482statically invoked in the compiler multiple times, the pass name should be
18483appended with a sequential number starting from 1.
18484
18485@item -fdisable-rtl-@var{pass}
18486@itemx -fdisable-rtl-@var{pass}=@var{range-list}
18487Disable RTL pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
18488statically invoked in the compiler multiple times, the pass name should be
18489appended with a sequential number starting from 1.  @var{range-list} is a 
18490comma-separated list of function ranges or assembler names.  Each range is a number
18491pair separated by a colon.  The range is inclusive in both ends.  If the range
18492is trivial, the number pair can be simplified as a single number.  If the
18493function's call graph node's @var{uid} falls within one of the specified ranges,
18494the @var{pass} is disabled for that function.  The @var{uid} is shown in the
18495function header of a dump file, and the pass names can be dumped by using
18496option @option{-fdump-passes}.
18497
18498@item -fdisable-tree-@var{pass}
18499@itemx -fdisable-tree-@var{pass}=@var{range-list}
18500Disable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description of
18501option arguments.
18502
18503@item -fenable-ipa-@var{pass}
18504Enable IPA pass @var{pass}.  @var{pass} is the pass name.  If the same pass is
18505statically invoked in the compiler multiple times, the pass name should be
18506appended with a sequential number starting from 1.
18507
18508@item -fenable-rtl-@var{pass}
18509@itemx -fenable-rtl-@var{pass}=@var{range-list}
18510Enable RTL pass @var{pass}.  See @option{-fdisable-rtl} for option argument
18511description and examples.
18512
18513@item -fenable-tree-@var{pass}
18514@itemx -fenable-tree-@var{pass}=@var{range-list}
18515Enable tree pass @var{pass}.  See @option{-fdisable-rtl} for the description
18516of option arguments.
18517
18518@end table
18519
18520Here are some examples showing uses of these options.
18521
18522@smallexample
18523
18524# disable ccp1 for all functions
18525   -fdisable-tree-ccp1
18526# disable complete unroll for function whose cgraph node uid is 1
18527   -fenable-tree-cunroll=1
18528# disable gcse2 for functions at the following ranges [1,1],
18529# [300,400], and [400,1000]
18530# disable gcse2 for functions foo and foo2
18531   -fdisable-rtl-gcse2=foo,foo2
18532# disable early inlining
18533   -fdisable-tree-einline
18534# disable ipa inlining
18535   -fdisable-ipa-inline
18536# enable tree full unroll
18537   -fenable-tree-unroll
18538
18539@end smallexample
18540
18541@item -fchecking
18542@itemx -fchecking=@var{n}
18543@opindex fchecking
18544@opindex fno-checking
18545Enable internal consistency checking.  The default depends on
18546the compiler configuration.  @option{-fchecking=2} enables further
18547internal consistency checking that might affect code generation.
18548
18549@item -frandom-seed=@var{string}
18550@opindex frandom-seed
18551This option provides a seed that GCC uses in place of
18552random numbers in generating certain symbol names
18553that have to be different in every compiled file.  It is also used to
18554place unique stamps in coverage data files and the object files that
18555produce them.  You can use the @option{-frandom-seed} option to produce
18556reproducibly identical object files.
18557
18558The @var{string} can either be a number (decimal, octal or hex) or an
18559arbitrary string (in which case it's converted to a number by
18560computing CRC32).
18561
18562The @var{string} should be different for every file you compile.
18563
18564@item -save-temps
18565@opindex save-temps
18566Store the usual ``temporary'' intermediate files permanently; name them
18567as auxiliary output files, as specified described under
18568@option{-dumpbase} and @option{-dumpdir}.
18569
18570When used in combination with the @option{-x} command-line option,
18571@option{-save-temps} is sensible enough to avoid overwriting an
18572input source file with the same extension as an intermediate file.
18573The corresponding intermediate file may be obtained by renaming the
18574source file before using @option{-save-temps}.
18575
18576@item -save-temps=cwd
18577@opindex save-temps=cwd
18578Equivalent to @option{-save-temps -dumpdir ./}.
18579
18580@item -save-temps=obj
18581@opindex save-temps=obj
18582Equivalent to @option{-save-temps -dumpdir @file{outdir/}}, where
18583@file{outdir/} is the directory of the output file specified after the
18584@option{-o} option, including any directory separators.  If the
18585@option{-o} option is not used, the @option{-save-temps=obj} switch
18586behaves like @option{-save-temps=cwd}.
18587
18588@item -time@r{[}=@var{file}@r{]}
18589@opindex time
18590Report the CPU time taken by each subprocess in the compilation
18591sequence.  For C source files, this is the compiler proper and assembler
18592(plus the linker if linking is done).
18593
18594Without the specification of an output file, the output looks like this:
18595
18596@smallexample
18597# cc1 0.12 0.01
18598# as 0.00 0.01
18599@end smallexample
18600
18601The first number on each line is the ``user time'', that is time spent
18602executing the program itself.  The second number is ``system time'',
18603time spent executing operating system routines on behalf of the program.
18604Both numbers are in seconds.
18605
18606With the specification of an output file, the output is appended to the
18607named file, and it looks like this:
18608
18609@smallexample
186100.12 0.01 cc1 @var{options}
186110.00 0.01 as @var{options}
18612@end smallexample
18613
18614The ``user time'' and the ``system time'' are moved before the program
18615name, and the options passed to the program are displayed, so that one
18616can later tell what file was being compiled, and with which options.
18617
18618@item -fdump-final-insns@r{[}=@var{file}@r{]}
18619@opindex fdump-final-insns
18620Dump the final internal representation (RTL) to @var{file}.  If the
18621optional argument is omitted (or if @var{file} is @code{.}), the name
18622of the dump file is determined by appending @code{.gkd} to the
18623dump base name, see @option{-dumpbase}.
18624
18625@item -fcompare-debug@r{[}=@var{opts}@r{]}
18626@opindex fcompare-debug
18627@opindex fno-compare-debug
18628If no error occurs during compilation, run the compiler a second time,
18629adding @var{opts} and @option{-fcompare-debug-second} to the arguments
18630passed to the second compilation.  Dump the final internal
18631representation in both compilations, and print an error if they differ.
18632
18633If the equal sign is omitted, the default @option{-gtoggle} is used.
18634
18635The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
18636and nonzero, implicitly enables @option{-fcompare-debug}.  If
18637@env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
18638then it is used for @var{opts}, otherwise the default @option{-gtoggle}
18639is used.
18640
18641@option{-fcompare-debug=}, with the equal sign but without @var{opts},
18642is equivalent to @option{-fno-compare-debug}, which disables the dumping
18643of the final representation and the second compilation, preventing even
18644@env{GCC_COMPARE_DEBUG} from taking effect.
18645
18646To verify full coverage during @option{-fcompare-debug} testing, set
18647@env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
18648which GCC rejects as an invalid option in any actual compilation
18649(rather than preprocessing, assembly or linking).  To get just a
18650warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
18651not overridden} will do.
18652
18653@item -fcompare-debug-second
18654@opindex fcompare-debug-second
18655This option is implicitly passed to the compiler for the second
18656compilation requested by @option{-fcompare-debug}, along with options to
18657silence warnings, and omitting other options that would cause the compiler
18658to produce output to files or to standard output as a side effect.  Dump
18659files and preserved temporary files are renamed so as to contain the
18660@code{.gk} additional extension during the second compilation, to avoid
18661overwriting those generated by the first.
18662
18663When this option is passed to the compiler driver, it causes the
18664@emph{first} compilation to be skipped, which makes it useful for little
18665other than debugging the compiler proper.
18666
18667@item -gtoggle
18668@opindex gtoggle
18669Turn off generation of debug info, if leaving out this option
18670generates it, or turn it on at level 2 otherwise.  The position of this
18671argument in the command line does not matter; it takes effect after all
18672other options are processed, and it does so only once, no matter how
18673many times it is given.  This is mainly intended to be used with
18674@option{-fcompare-debug}.
18675
18676@item -fvar-tracking-assignments-toggle
18677@opindex fvar-tracking-assignments-toggle
18678@opindex fno-var-tracking-assignments-toggle
18679Toggle @option{-fvar-tracking-assignments}, in the same way that
18680@option{-gtoggle} toggles @option{-g}.
18681
18682@item -Q
18683@opindex Q
18684Makes the compiler print out each function name as it is compiled, and
18685print some statistics about each pass when it finishes.
18686
18687@item -ftime-report
18688@opindex ftime-report
18689Makes the compiler print some statistics about the time consumed by each
18690pass when it finishes.
18691
18692@item -ftime-report-details
18693@opindex ftime-report-details
18694Record the time consumed by infrastructure parts separately for each pass.
18695
18696@item -fira-verbose=@var{n}
18697@opindex fira-verbose
18698Control the verbosity of the dump file for the integrated register allocator.
18699The default value is 5.  If the value @var{n} is greater or equal to 10,
18700the dump output is sent to stderr using the same format as @var{n} minus 10.
18701
18702@item -flto-report
18703@opindex flto-report
18704Prints a report with internal details on the workings of the link-time
18705optimizer.  The contents of this report vary from version to version.
18706It is meant to be useful to GCC developers when processing object
18707files in LTO mode (via @option{-flto}).
18708
18709Disabled by default.
18710
18711@item -flto-report-wpa
18712@opindex flto-report-wpa
18713Like @option{-flto-report}, but only print for the WPA phase of link-time
18714optimization.
18715
18716@item -fmem-report
18717@opindex fmem-report
18718Makes the compiler print some statistics about permanent memory
18719allocation when it finishes.
18720
18721@item -fmem-report-wpa
18722@opindex fmem-report-wpa
18723Makes the compiler print some statistics about permanent memory
18724allocation for the WPA phase only.
18725
18726@item -fpre-ipa-mem-report
18727@opindex fpre-ipa-mem-report
18728@item -fpost-ipa-mem-report
18729@opindex fpost-ipa-mem-report
18730Makes the compiler print some statistics about permanent memory
18731allocation before or after interprocedural optimization.
18732
18733@item -fprofile-report
18734@opindex fprofile-report
18735Makes the compiler print some statistics about consistency of the
18736(estimated) profile and effect of individual passes.
18737
18738@item -fstack-usage
18739@opindex fstack-usage
18740Makes the compiler output stack usage information for the program, on a
18741per-function basis.  The filename for the dump is made by appending
18742@file{.su} to the @var{auxname}.  @var{auxname} is generated from the name of
18743the output file, if explicitly specified and it is not an executable,
18744otherwise it is the basename of the source file.  An entry is made up
18745of three fields:
18746
18747@itemize
18748@item
18749The name of the function.
18750@item
18751A number of bytes.
18752@item
18753One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
18754@end itemize
18755
18756The qualifier @code{static} means that the function manipulates the stack
18757statically: a fixed number of bytes are allocated for the frame on function
18758entry and released on function exit; no stack adjustments are otherwise made
18759in the function.  The second field is this fixed number of bytes.
18760
18761The qualifier @code{dynamic} means that the function manipulates the stack
18762dynamically: in addition to the static allocation described above, stack
18763adjustments are made in the body of the function, for example to push/pop
18764arguments around function calls.  If the qualifier @code{bounded} is also
18765present, the amount of these adjustments is bounded at compile time and
18766the second field is an upper bound of the total amount of stack used by
18767the function.  If it is not present, the amount of these adjustments is
18768not bounded at compile time and the second field only represents the
18769bounded part.
18770
18771@item -fstats
18772@opindex fstats
18773Emit statistics about front-end processing at the end of the compilation.
18774This option is supported only by the C++ front end, and
18775the information is generally only useful to the G++ development team.
18776
18777@item -fdbg-cnt-list
18778@opindex fdbg-cnt-list
18779Print the name and the counter upper bound for all debug counters.
18780
18781
18782@item -fdbg-cnt=@var{counter-value-list}
18783@opindex fdbg-cnt
18784Set the internal debug counter lower and upper bound.  @var{counter-value-list}
18785is a comma-separated list of @var{name}:@var{lower_bound1}-@var{upper_bound1}
18786[:@var{lower_bound2}-@var{upper_bound2}...] tuples which sets
18787the name of the counter and list of closed intervals.
18788The @var{lower_bound} is optional and is zero
18789initialized if not set.
18790For example, with @option{-fdbg-cnt=dce:2-4:10-11,tail_call:10},
18791@code{dbg_cnt(dce)} returns true only for second, third, fourth, tenth and
18792eleventh invocation.
18793For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
18794
18795@item -print-file-name=@var{library}
18796@opindex print-file-name
18797Print the full absolute name of the library file @var{library} that
18798would be used when linking---and don't do anything else.  With this
18799option, GCC does not compile or link anything; it just prints the
18800file name.
18801
18802@item -print-multi-directory
18803@opindex print-multi-directory
18804Print the directory name corresponding to the multilib selected by any
18805other switches present in the command line.  This directory is supposed
18806to exist in @env{GCC_EXEC_PREFIX}.
18807
18808@item -print-multi-lib
18809@opindex print-multi-lib
18810Print the mapping from multilib directory names to compiler switches
18811that enable them.  The directory name is separated from the switches by
18812@samp{;}, and each switch starts with an @samp{@@} instead of the
18813@samp{-}, without spaces between multiple switches.  This is supposed to
18814ease shell processing.
18815
18816@item -print-multi-os-directory
18817@opindex print-multi-os-directory
18818Print the path to OS libraries for the selected
18819multilib, relative to some @file{lib} subdirectory.  If OS libraries are
18820present in the @file{lib} subdirectory and no multilibs are used, this is
18821usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
18822sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
18823@file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
18824subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
18825
18826@item -print-multiarch
18827@opindex print-multiarch
18828Print the path to OS libraries for the selected multiarch,
18829relative to some @file{lib} subdirectory.
18830
18831@item -print-prog-name=@var{program}
18832@opindex print-prog-name
18833Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
18834
18835@item -print-libgcc-file-name
18836@opindex print-libgcc-file-name
18837Same as @option{-print-file-name=libgcc.a}.
18838
18839This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
18840but you do want to link with @file{libgcc.a}.  You can do:
18841
18842@smallexample
18843gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
18844@end smallexample
18845
18846@item -print-search-dirs
18847@opindex print-search-dirs
18848Print the name of the configured installation directory and a list of
18849program and library directories @command{gcc} searches---and don't do anything else.
18850
18851This is useful when @command{gcc} prints the error message
18852@samp{installation problem, cannot exec cpp0: No such file or directory}.
18853To resolve this you either need to put @file{cpp0} and the other compiler
18854components where @command{gcc} expects to find them, or you can set the environment
18855variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
18856Don't forget the trailing @samp{/}.
18857@xref{Environment Variables}.
18858
18859@item -print-sysroot
18860@opindex print-sysroot
18861Print the target sysroot directory that is used during
18862compilation.  This is the target sysroot specified either at configure
18863time or using the @option{--sysroot} option, possibly with an extra
18864suffix that depends on compilation options.  If no target sysroot is
18865specified, the option prints nothing.
18866
18867@item -print-sysroot-headers-suffix
18868@opindex print-sysroot-headers-suffix
18869Print the suffix added to the target sysroot when searching for
18870headers, or give an error if the compiler is not configured with such
18871a suffix---and don't do anything else.
18872
18873@item -dumpmachine
18874@opindex dumpmachine
18875Print the compiler's target machine (for example,
18876@samp{i686-pc-linux-gnu})---and don't do anything else.
18877
18878@item -dumpversion
18879@opindex dumpversion
18880Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
18881anything else.  This is the compiler version used in filesystem paths and
18882specs. Depending on how the compiler has been configured it can be just
18883a single number (major version), two numbers separated by a dot (major and
18884minor version) or three numbers separated by dots (major, minor and patchlevel
18885version).
18886
18887@item -dumpfullversion
18888@opindex dumpfullversion
18889Print the full compiler version---and don't do anything else. The output is
18890always three numbers separated by dots, major, minor and patchlevel version.
18891
18892@item -dumpspecs
18893@opindex dumpspecs
18894Print the compiler's built-in specs---and don't do anything else.  (This
18895is used when GCC itself is being built.)  @xref{Spec Files}.
18896@end table
18897
18898@node Submodel Options
18899@section Machine-Dependent Options
18900@cindex submodel options
18901@cindex specifying hardware config
18902@cindex hardware models and configurations, specifying
18903@cindex target-dependent options
18904@cindex machine-dependent options
18905
18906Each target machine supported by GCC can have its own options---for
18907example, to allow you to compile for a particular processor variant or
18908ABI, or to control optimizations specific to that machine.  By
18909convention, the names of machine-specific options start with
18910@samp{-m}.
18911
18912Some configurations of the compiler also support additional target-specific
18913options, usually for compatibility with other compilers on the same
18914platform.
18915
18916@c This list is ordered alphanumerically by subsection name.
18917@c It should be the same order and spelling as these options are listed
18918@c in Machine Dependent Options
18919
18920@menu
18921* AArch64 Options::
18922* Adapteva Epiphany Options::
18923* AMD GCN Options::
18924* ARC Options::
18925* ARM Options::
18926* AVR Options::
18927* Blackfin Options::
18928* C6X Options::
18929* CRIS Options::
18930* CR16 Options::
18931* C-SKY Options::
18932* Darwin Options::
18933* DEC Alpha Options::
18934* eBPF Options::
18935* FR30 Options::
18936* FT32 Options::
18937* FRV Options::
18938* GNU/Linux Options::
18939* H8/300 Options::
18940* HPPA Options::
18941* IA-64 Options::
18942* LM32 Options::
18943* LoongArch Options::
18944* M32C Options::
18945* M32R/D Options::
18946* M680x0 Options::
18947* MCore Options::
18948* MeP Options::
18949* MicroBlaze Options::
18950* MIPS Options::
18951* MMIX Options::
18952* MN10300 Options::
18953* Moxie Options::
18954* MSP430 Options::
18955* NDS32 Options::
18956* Nios II Options::
18957* Nvidia PTX Options::
18958* OpenRISC Options::
18959* PDP-11 Options::
18960* picoChip Options::
18961* PowerPC Options::
18962* PRU Options::
18963* RISC-V Options::
18964* RL78 Options::
18965* RS/6000 and PowerPC Options::
18966* RX Options::
18967* S/390 and zSeries Options::
18968* Score Options::
18969* SH Options::
18970* Solaris 2 Options::
18971* SPARC Options::
18972* System V Options::
18973* TILE-Gx Options::
18974* TILEPro Options::
18975* V850 Options::
18976* VAX Options::
18977* Visium Options::
18978* VMS Options::
18979* VxWorks Options::
18980* x86 Options::
18981* x86 Windows Options::
18982* Xstormy16 Options::
18983* Xtensa Options::
18984* zSeries Options::
18985@end menu
18986
18987@node AArch64 Options
18988@subsection AArch64 Options
18989@cindex AArch64 Options
18990
18991These options are defined for AArch64 implementations:
18992
18993@table @gcctabopt
18994
18995@item -mabi=@var{name}
18996@opindex mabi
18997Generate code for the specified data model.  Permissible values
18998are @samp{ilp32} for SysV-like data model where int, long int and pointers
18999are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
19000but long int and pointers are 64 bits.
19001
19002The default depends on the specific target configuration.  Note that
19003the LP64 and ILP32 ABIs are not link-compatible; you must compile your
19004entire program with the same ABI, and link with a compatible set of libraries.
19005
19006@item -mbig-endian
19007@opindex mbig-endian
19008Generate big-endian code.  This is the default when GCC is configured for an
19009@samp{aarch64_be-*-*} target.
19010
19011@item -mgeneral-regs-only
19012@opindex mgeneral-regs-only
19013Generate code which uses only the general-purpose registers.  This will prevent
19014the compiler from using floating-point and Advanced SIMD registers but will not
19015impose any restrictions on the assembler.
19016
19017@item -mlittle-endian
19018@opindex mlittle-endian
19019Generate little-endian code.  This is the default when GCC is configured for an
19020@samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
19021
19022@item -mcmodel=tiny
19023@opindex mcmodel=tiny
19024Generate code for the tiny code model.  The program and its statically defined
19025symbols must be within 1MB of each other.  Programs can be statically or
19026dynamically linked.
19027
19028@item -mcmodel=small
19029@opindex mcmodel=small
19030Generate code for the small code model.  The program and its statically defined
19031symbols must be within 4GB of each other.  Programs can be statically or
19032dynamically linked.  This is the default code model.
19033
19034@item -mcmodel=large
19035@opindex mcmodel=large
19036Generate code for the large code model.  This makes no assumptions about
19037addresses and sizes of sections.  Programs can be statically linked only.  The
19038@option{-mcmodel=large} option is incompatible with @option{-mabi=ilp32},
19039@option{-fpic} and @option{-fPIC}.
19040
19041@item -mstrict-align
19042@itemx -mno-strict-align
19043@opindex mstrict-align
19044@opindex mno-strict-align
19045Avoid or allow generating memory accesses that may not be aligned on a natural
19046object boundary as described in the architecture specification.
19047
19048@item -momit-leaf-frame-pointer
19049@itemx -mno-omit-leaf-frame-pointer
19050@opindex momit-leaf-frame-pointer
19051@opindex mno-omit-leaf-frame-pointer
19052Omit or keep the frame pointer in leaf functions.  The former behavior is the
19053default.
19054
19055@item -mstack-protector-guard=@var{guard}
19056@itemx -mstack-protector-guard-reg=@var{reg}
19057@itemx -mstack-protector-guard-offset=@var{offset}
19058@opindex mstack-protector-guard
19059@opindex mstack-protector-guard-reg
19060@opindex mstack-protector-guard-offset
19061Generate stack protection code using canary at @var{guard}.  Supported
19062locations are @samp{global} for a global canary or @samp{sysreg} for a
19063canary in an appropriate system register.
19064
19065With the latter choice the options
19066@option{-mstack-protector-guard-reg=@var{reg}} and
19067@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
19068which system register to use as base register for reading the canary,
19069and from what offset from that base register. There is no default
19070register or offset as this is entirely for use within the Linux
19071kernel.
19072
19073@item -mtls-dialect=desc
19074@opindex mtls-dialect=desc
19075Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
19076of TLS variables.  This is the default.
19077
19078@item -mtls-dialect=traditional
19079@opindex mtls-dialect=traditional
19080Use traditional TLS as the thread-local storage mechanism for dynamic accesses
19081of TLS variables.
19082
19083@item -mtls-size=@var{size}
19084@opindex mtls-size
19085Specify bit size of immediate TLS offsets.  Valid values are 12, 24, 32, 48.
19086This option requires binutils 2.26 or newer.
19087
19088@item -mfix-cortex-a53-835769
19089@itemx -mno-fix-cortex-a53-835769
19090@opindex mfix-cortex-a53-835769
19091@opindex mno-fix-cortex-a53-835769
19092Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
19093This involves inserting a NOP instruction between memory instructions and
1909464-bit integer multiply-accumulate instructions.
19095
19096@item -mfix-cortex-a53-843419
19097@itemx -mno-fix-cortex-a53-843419
19098@opindex mfix-cortex-a53-843419
19099@opindex mno-fix-cortex-a53-843419
19100Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
19101This erratum workaround is made at link time and this will only pass the
19102corresponding flag to the linker.
19103
19104@item -mlow-precision-recip-sqrt
19105@itemx -mno-low-precision-recip-sqrt
19106@opindex mlow-precision-recip-sqrt
19107@opindex mno-low-precision-recip-sqrt
19108Enable or disable the reciprocal square root approximation.
19109This option only has an effect if @option{-ffast-math} or
19110@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
19111precision of reciprocal square root results to about 16 bits for
19112single precision and to 32 bits for double precision.
19113
19114@item -mlow-precision-sqrt
19115@itemx -mno-low-precision-sqrt
19116@opindex mlow-precision-sqrt
19117@opindex mno-low-precision-sqrt
19118Enable or disable the square root approximation.
19119This option only has an effect if @option{-ffast-math} or
19120@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
19121precision of square root results to about 16 bits for
19122single precision and to 32 bits for double precision.
19123If enabled, it implies @option{-mlow-precision-recip-sqrt}.
19124
19125@item -mlow-precision-div
19126@itemx -mno-low-precision-div
19127@opindex mlow-precision-div
19128@opindex mno-low-precision-div
19129Enable or disable the division approximation.
19130This option only has an effect if @option{-ffast-math} or
19131@option{-funsafe-math-optimizations} is used as well.  Enabling this reduces
19132precision of division results to about 16 bits for
19133single precision and to 32 bits for double precision.
19134
19135@item -mtrack-speculation
19136@itemx -mno-track-speculation
19137Enable or disable generation of additional code to track speculative
19138execution through conditional branches.  The tracking state can then
19139be used by the compiler when expanding calls to
19140@code{__builtin_speculation_safe_copy} to permit a more efficient code
19141sequence to be generated.
19142
19143@item -moutline-atomics
19144@itemx -mno-outline-atomics
19145Enable or disable calls to out-of-line helpers to implement atomic operations.
19146These helpers will, at runtime, determine if the LSE instructions from
19147ARMv8.1-A can be used; if not, they will use the load/store-exclusive
19148instructions that are present in the base ARMv8.0 ISA.
19149
19150This option is only applicable when compiling for the base ARMv8.0
19151instruction set.  If using a later revision, e.g. @option{-march=armv8.1-a}
19152or @option{-march=armv8-a+lse}, the ARMv8.1-Atomics instructions will be
19153used directly.  The same applies when using @option{-mcpu=} when the
19154selected cpu supports the @samp{lse} feature.
19155This option is on by default.
19156
19157@item -march=@var{name}
19158@opindex march
19159Specify the name of the target architecture and, optionally, one or
19160more feature modifiers.  This option has the form
19161@option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
19162
19163The table below summarizes the permissible values for @var{arch}
19164and the features that they enable by default:
19165
19166@multitable @columnfractions 0.20 0.20 0.60
19167@headitem @var{arch} value @tab Architecture @tab Includes by default
19168@item @samp{armv8-a} @tab Armv8-A @tab @samp{+fp}, @samp{+simd}
19169@item @samp{armv8.1-a} @tab Armv8.1-A @tab @samp{armv8-a}, @samp{+crc}, @samp{+lse}, @samp{+rdma}
19170@item @samp{armv8.2-a} @tab Armv8.2-A @tab @samp{armv8.1-a}
19171@item @samp{armv8.3-a} @tab Armv8.3-A @tab @samp{armv8.2-a}, @samp{+pauth}
19172@item @samp{armv8.4-a} @tab Armv8.4-A @tab @samp{armv8.3-a}, @samp{+flagm}, @samp{+fp16fml}, @samp{+dotprod}
19173@item @samp{armv8.5-a} @tab Armv8.5-A @tab @samp{armv8.4-a}, @samp{+sb}, @samp{+ssbs}, @samp{+predres}
19174@item @samp{armv8.6-a} @tab Armv8.6-A @tab @samp{armv8.5-a}, @samp{+bf16}, @samp{+i8mm}
19175@item @samp{armv8.7-a} @tab Armv8.7-A @tab @samp{armv8.6-a}, @samp{+ls64}
19176@item @samp{armv8.8-a} @tab Armv8.8-a @tab @samp{armv8.7-a}, @samp{+mops}
19177@item @samp{armv9-a} @tab Armv9-A @tab @samp{armv8.5-a}, @samp{+sve}, @samp{+sve2}
19178@item @samp{armv8-r} @tab Armv8-R @tab @samp{armv8-r}
19179@end multitable
19180
19181The value @samp{native} is available on native AArch64 GNU/Linux and
19182causes the compiler to pick the architecture of the host system.  This
19183option has no effect if the compiler is unable to recognize the
19184architecture of the host system,
19185
19186The permissible values for @var{feature} are listed in the sub-section
19187on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
19188Feature Modifiers}.  Where conflicting feature modifiers are
19189specified, the right-most feature is used.
19190
19191GCC uses @var{name} to determine what kind of instructions it can emit
19192when generating assembly code.  If @option{-march} is specified
19193without either of @option{-mtune} or @option{-mcpu} also being
19194specified, the code is tuned to perform well across a range of target
19195processors implementing the target architecture.
19196
19197@item -mtune=@var{name}
19198@opindex mtune
19199Specify the name of the target processor for which GCC should tune the
19200performance of the code.  Permissible values for this option are:
19201@samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
19202@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
19203@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
19204@samp{cortex-a65}, @samp{cortex-a65ae}, @samp{cortex-a34},
19205@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c},
19206@samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
19207@samp{neoverse-512tvb}, @samp{neoverse-e1}, @samp{neoverse-n1},
19208@samp{neoverse-n2}, @samp{neoverse-v1}, @samp{neoverse-v2}, @samp{qdf24xx},
19209@samp{saphira}, @samp{phecda}, @samp{xgene1}, @samp{vulcan},
19210@samp{octeontx}, @samp{octeontx81},  @samp{octeontx83},
19211@samp{octeontx2}, @samp{octeontx2t98}, @samp{octeontx2t96}
19212@samp{octeontx2t93}, @samp{octeontx2f95}, @samp{octeontx2f95n},
19213@samp{octeontx2f95mm},
19214@samp{a64fx},
19215@samp{thunderx}, @samp{thunderxt88},
19216@samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
19217@samp{thunderxt83}, @samp{thunderx2t99}, @samp{thunderx3t110}, @samp{zeus},
19218@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
19219@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
19220@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55},
19221@samp{cortex-r82}, @samp{cortex-x1}, @samp{cortex-x2},
19222@samp{cortex-a510}, @samp{cortex-a710}, @samp{ampere1},
19223@samp{ampere1a}, @samp{cobalt-100} and @samp{native}.
19224
19225The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
19226@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
19227@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
19228should tune for a big.LITTLE system.
19229
19230The value @samp{neoverse-512tvb} specifies that GCC should tune
19231for Neoverse cores that (a) implement SVE and (b) have a total vector
19232bandwidth of 512 bits per cycle.  In other words, the option tells GCC to
19233tune for Neoverse cores that can execute 4 128-bit Advanced SIMD arithmetic
19234instructions a cycle and that can execute an equivalent number of SVE
19235arithmetic instructions per cycle (2 for 256-bit SVE, 4 for 128-bit SVE).
19236This is more general than tuning for a specific core like Neoverse V1
19237but is more specific than the default tuning described below.
19238
19239Additionally on native AArch64 GNU/Linux systems the value
19240@samp{native} tunes performance to the host system.  This option has no effect
19241if the compiler is unable to recognize the processor of the host system.
19242
19243Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
19244are specified, the code is tuned to perform well across a range
19245of target processors.
19246
19247This option cannot be suffixed by feature modifiers.
19248
19249@item -mcpu=@var{name}
19250@opindex mcpu
19251Specify the name of the target processor, optionally suffixed by one
19252or more feature modifiers.  This option has the form
19253@option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
19254the permissible values for @var{cpu} are the same as those available
19255for @option{-mtune}.  The permissible values for @var{feature} are
19256documented in the sub-section on
19257@ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
19258Feature Modifiers}.  Where conflicting feature modifiers are
19259specified, the right-most feature is used.
19260
19261GCC uses @var{name} to determine what kind of instructions it can emit when
19262generating assembly code (as if by @option{-march}) and to determine
19263the target processor for which to tune for performance (as if
19264by @option{-mtune}).  Where this option is used in conjunction
19265with @option{-march} or @option{-mtune}, those options take precedence
19266over the appropriate part of this option.
19267
19268@option{-mcpu=neoverse-512tvb} is special in that it does not refer
19269to a specific core, but instead refers to all Neoverse cores that
19270(a) implement SVE and (b) have a total vector bandwidth of 512 bits
19271a cycle.  Unless overridden by @option{-march},
19272@option{-mcpu=neoverse-512tvb} generates code that can run on a
19273Neoverse V1 core, since Neoverse V1 is the first Neoverse core with
19274these properties.  Unless overridden by @option{-mtune},
19275@option{-mcpu=neoverse-512tvb} tunes code in the same way as for
19276@option{-mtune=neoverse-512tvb}.
19277
19278@item -moverride=@var{string}
19279@opindex moverride
19280Override tuning decisions made by the back-end in response to a
19281@option{-mtune=} switch.  The syntax, semantics, and accepted values
19282for @var{string} in this option are not guaranteed to be consistent
19283across releases.
19284
19285This option is only intended to be useful when developing GCC.
19286
19287@item -mverbose-cost-dump
19288@opindex mverbose-cost-dump
19289Enable verbose cost model dumping in the debug dump files.  This option is
19290provided for use in debugging the compiler.
19291
19292@item -mpc-relative-literal-loads
19293@itemx -mno-pc-relative-literal-loads
19294@opindex mpc-relative-literal-loads
19295@opindex mno-pc-relative-literal-loads
19296Enable or disable PC-relative literal loads.  With this option literal pools are
19297accessed using a single instruction and emitted after each function.  This
19298limits the maximum size of functions to 1MB.  This is enabled by default for
19299@option{-mcmodel=tiny}.
19300
19301@item -msign-return-address=@var{scope}
19302@opindex msign-return-address
19303Select the function scope on which return address signing will be applied.
19304Permissible values are @samp{none}, which disables return address signing,
19305@samp{non-leaf}, which enables pointer signing for functions which are not leaf
19306functions, and @samp{all}, which enables pointer signing for all functions.  The
19307default value is @samp{none}. This option has been deprecated by
19308-mbranch-protection.
19309
19310@item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
19311@opindex mbranch-protection
19312Select the branch protection features to use.
19313@samp{none} is the default and turns off all types of branch protection.
19314@samp{standard} turns on all types of branch protection features.  If a feature
19315has additional tuning options, then @samp{standard} sets it to its standard
19316level.
19317@samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
19318level: signing functions that save the return address to memory (non-leaf
19319functions will practically always do this) using the a-key.  The optional
19320argument @samp{leaf} can be used to extend the signing to include leaf
19321functions.  The optional argument @samp{b-key} can be used to sign the functions
19322with the B-key instead of the A-key.
19323@samp{bti} turns on branch target identification mechanism.
19324
19325@item -mharden-sls=@var{opts}
19326@opindex mharden-sls
19327Enable compiler hardening against straight line speculation (SLS).
19328@var{opts} is a comma-separated list of the following options:
19329@table @samp
19330@item retbr
19331@item blr
19332@end table
19333In addition, @samp{-mharden-sls=all} enables all SLS hardening while
19334@samp{-mharden-sls=none} disables all SLS hardening.
19335
19336@item -msve-vector-bits=@var{bits}
19337@opindex msve-vector-bits
19338Specify the number of bits in an SVE vector register.  This option only has
19339an effect when SVE is enabled.
19340
19341GCC supports two forms of SVE code generation: ``vector-length
19342agnostic'' output that works with any size of vector register and
19343``vector-length specific'' output that allows GCC to make assumptions
19344about the vector length when it is useful for optimization reasons.
19345The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
19346@samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
19347Specifying @samp{scalable} selects vector-length agnostic
19348output.  At present @samp{-msve-vector-bits=128} also generates vector-length
19349agnostic output for big-endian targets.  All other values generate
19350vector-length specific code.  The behavior of these values may change
19351in future releases and no value except @samp{scalable} should be
19352relied on for producing code that is portable across different
19353hardware SVE vector lengths.
19354
19355The default is @samp{-msve-vector-bits=scalable}, which produces
19356vector-length agnostic code.
19357@end table
19358
19359@subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
19360@anchor{aarch64-feature-modifiers}
19361@cindex @option{-march} feature modifiers
19362@cindex @option{-mcpu} feature modifiers
19363Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
19364the following and their inverses @option{no@var{feature}}:
19365
19366@table @samp
19367@item crc
19368Enable CRC extension.  This is on by default for
19369@option{-march=armv8.1-a}.
19370@item crypto
19371Enable Crypto extension.  This also enables Advanced SIMD and floating-point
19372instructions.
19373@item fp
19374Enable floating-point instructions.  This is on by default for all possible
19375values for options @option{-march} and @option{-mcpu}.
19376@item simd
19377Enable Advanced SIMD instructions.  This also enables floating-point
19378instructions.  This is on by default for all possible values for options
19379@option{-march} and @option{-mcpu}.
19380@item sve
19381Enable Scalable Vector Extension instructions.  This also enables Advanced
19382SIMD and floating-point instructions.
19383@item lse
19384Enable Large System Extension instructions.  This is on by default for
19385@option{-march=armv8.1-a}.
19386@item rdma
19387Enable Round Double Multiply Accumulate instructions.  This is on by default
19388for @option{-march=armv8.1-a}.
19389@item fp16
19390Enable FP16 extension.  This also enables floating-point instructions.
19391@item fp16fml
19392Enable FP16 fmla extension.  This also enables FP16 extensions and
19393floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
19394
19395@item rcpc
19396Enable the RcPc extension.  This does not change code generation from GCC,
19397but is passed on to the assembler, enabling inline asm statements to use
19398instructions from the RcPc extension.
19399@item dotprod
19400Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
19401@item aes
19402Enable the Armv8-a aes and pmull crypto extension.  This also enables Advanced
19403SIMD instructions.
19404@item sha2
19405Enable the Armv8-a sha2 crypto extension.  This also enables Advanced SIMD instructions.
19406@item sha3
19407Enable the sha512 and sha3 crypto extension.  This also enables Advanced SIMD
19408instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
19409@item sm4
19410Enable the sm3 and sm4 crypto extension.  This also enables Advanced SIMD instructions.
19411Use of this option with architectures prior to Armv8.2-A is not supported.
19412@item profile
19413Enable the Statistical Profiling extension.  This option is only to enable the
19414extension at the assembler level and does not affect code generation.
19415@item rng
19416Enable the Armv8.5-a Random Number instructions.  This option is only to
19417enable the extension at the assembler level and does not affect code
19418generation.
19419@item memtag
19420Enable the Armv8.5-a Memory Tagging Extensions.
19421Use of this option with architectures prior to Armv8.5-A is not supported.
19422@item sb
19423Enable the Armv8-a Speculation Barrier instruction.  This option is only to
19424enable the extension at the assembler level and does not affect code
19425generation.  This option is enabled by default for @option{-march=armv8.5-a}.
19426@item ssbs
19427Enable the Armv8-a Speculative Store Bypass Safe instruction.  This option
19428is only to enable the extension at the assembler level and does not affect code
19429generation.  This option is enabled by default for @option{-march=armv8.5-a}.
19430@item predres
19431Enable the Armv8-a Execution and Data Prediction Restriction instructions.
19432This option is only to enable the extension at the assembler level and does
19433not affect code generation.  This option is enabled by default for
19434@option{-march=armv8.5-a}.
19435@item sve2
19436Enable the Armv8-a Scalable Vector Extension 2.  This also enables SVE
19437instructions.
19438@item sve2-bitperm
19439Enable SVE2 bitperm instructions.  This also enables SVE2 instructions.
19440@item sve2-sm4
19441Enable SVE2 sm4 instructions.  This also enables SVE2 instructions.
19442@item sve2-aes
19443Enable SVE2 aes instructions.  This also enables SVE2 instructions.
19444@item sve2-sha3
19445Enable SVE2 sha3 instructions.  This also enables SVE2 instructions.
19446@item tme
19447Enable the Transactional Memory Extension.
19448@item i8mm
19449Enable 8-bit Integer Matrix Multiply instructions.  This also enables
19450Advanced SIMD and floating-point instructions.  This option is enabled by
19451default for @option{-march=armv8.6-a}.  Use of this option with architectures
19452prior to Armv8.2-A is not supported.
19453@item f32mm
19454Enable 32-bit Floating point Matrix Multiply instructions.  This also enables
19455SVE instructions.  Use of this option with architectures prior to Armv8.2-A is
19456not supported.
19457@item f64mm
19458Enable 64-bit Floating point Matrix Multiply instructions.  This also enables
19459SVE instructions.  Use of this option with architectures prior to Armv8.2-A is
19460not supported.
19461@item bf16
19462Enable brain half-precision floating-point instructions.  This also enables
19463Advanced SIMD and floating-point instructions.  This option is enabled by
19464default for @option{-march=armv8.6-a}.  Use of this option with architectures
19465prior to Armv8.2-A is not supported.
19466@item ls64
19467Enable the 64-byte atomic load and store instructions for accelerators.
19468This option is enabled by default for @option{-march=armv8.7-a}.
19469@item mops
19470Enable the instructions to accelerate memory operations like @code{memcpy},
19471@code{memmove}, @code{memset}.  This option is enabled by default for
19472@option{-march=armv8.8-a}
19473@item flagm
19474Enable the Flag Manipulation instructions Extension.
19475@item pauth
19476Enable the Pointer Authentication Extension.
19477
19478@end table
19479
19480Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
19481which implies @option{fp}.
19482Conversely, @option{nofp} implies @option{nosimd}, which implies
19483@option{nocrypto}, @option{noaes} and @option{nosha2}.
19484
19485@node Adapteva Epiphany Options
19486@subsection Adapteva Epiphany Options
19487
19488These @samp{-m} options are defined for Adapteva Epiphany:
19489
19490@table @gcctabopt
19491@item -mhalf-reg-file
19492@opindex mhalf-reg-file
19493Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
19494That allows code to run on hardware variants that lack these registers.
19495
19496@item -mprefer-short-insn-regs
19497@opindex mprefer-short-insn-regs
19498Preferentially allocate registers that allow short instruction generation.
19499This can result in increased instruction count, so this may either reduce or
19500increase overall code size.
19501
19502@item -mbranch-cost=@var{num}
19503@opindex mbranch-cost
19504Set the cost of branches to roughly @var{num} ``simple'' instructions.
19505This cost is only a heuristic and is not guaranteed to produce
19506consistent results across releases.
19507
19508@item -mcmove
19509@opindex mcmove
19510Enable the generation of conditional moves.
19511
19512@item -mnops=@var{num}
19513@opindex mnops
19514Emit @var{num} NOPs before every other generated instruction.
19515
19516@item -mno-soft-cmpsf
19517@opindex mno-soft-cmpsf
19518@opindex msoft-cmpsf
19519For single-precision floating-point comparisons, emit an @code{fsub} instruction
19520and test the flags.  This is faster than a software comparison, but can
19521get incorrect results in the presence of NaNs, or when two different small
19522numbers are compared such that their difference is calculated as zero.
19523The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
19524software comparisons.
19525
19526@item -mstack-offset=@var{num}
19527@opindex mstack-offset
19528Set the offset between the top of the stack and the stack pointer.
19529E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
19530can be used by leaf functions without stack allocation.
19531Values other than @samp{8} or @samp{16} are untested and unlikely to work.
19532Note also that this option changes the ABI; compiling a program with a
19533different stack offset than the libraries have been compiled with
19534generally does not work.
19535This option can be useful if you want to evaluate if a different stack
19536offset would give you better code, but to actually use a different stack
19537offset to build working programs, it is recommended to configure the
19538toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
19539
19540@item -mno-round-nearest
19541@opindex mno-round-nearest
19542@opindex mround-nearest
19543Make the scheduler assume that the rounding mode has been set to
19544truncating.  The default is @option{-mround-nearest}.
19545
19546@item -mlong-calls
19547@opindex mlong-calls
19548If not otherwise specified by an attribute, assume all calls might be beyond
19549the offset range of the @code{b} / @code{bl} instructions, and therefore load the
19550function address into a register before performing a (otherwise direct) call.
19551This is the default.
19552
19553@item -mshort-calls
19554@opindex short-calls
19555If not otherwise specified by an attribute, assume all direct calls are
19556in the range of the @code{b} / @code{bl} instructions, so use these instructions
19557for direct calls.  The default is @option{-mlong-calls}.
19558
19559@item -msmall16
19560@opindex msmall16
19561Assume addresses can be loaded as 16-bit unsigned values.  This does not
19562apply to function addresses for which @option{-mlong-calls} semantics
19563are in effect.
19564
19565@item -mfp-mode=@var{mode}
19566@opindex mfp-mode
19567Set the prevailing mode of the floating-point unit.
19568This determines the floating-point mode that is provided and expected
19569at function call and return time.  Making this mode match the mode you
19570predominantly need at function start can make your programs smaller and
19571faster by avoiding unnecessary mode switches.
19572
19573@var{mode} can be set to one the following values:
19574
19575@table @samp
19576@item caller
19577Any mode at function entry is valid, and retained or restored when
19578the function returns, and when it calls other functions.
19579This mode is useful for compiling libraries or other compilation units
19580you might want to incorporate into different programs with different
19581prevailing FPU modes, and the convenience of being able to use a single
19582object file outweighs the size and speed overhead for any extra
19583mode switching that might be needed, compared with what would be needed
19584with a more specific choice of prevailing FPU mode.
19585
19586@item truncate
19587This is the mode used for floating-point calculations with
19588truncating (i.e.@: round towards zero) rounding mode.  That includes
19589conversion from floating point to integer.
19590
19591@item round-nearest
19592This is the mode used for floating-point calculations with
19593round-to-nearest-or-even rounding mode.
19594
19595@item int
19596This is the mode used to perform integer calculations in the FPU, e.g.@:
19597integer multiply, or integer multiply-and-accumulate.
19598@end table
19599
19600The default is @option{-mfp-mode=caller}
19601
19602@item -mno-split-lohi
19603@itemx -mno-postinc
19604@itemx -mno-postmodify
19605@opindex mno-split-lohi
19606@opindex msplit-lohi
19607@opindex mno-postinc
19608@opindex mpostinc
19609@opindex mno-postmodify
19610@opindex mpostmodify
19611Code generation tweaks that disable, respectively, splitting of 32-bit
19612loads, generation of post-increment addresses, and generation of
19613post-modify addresses.  The defaults are @option{msplit-lohi},
19614@option{-mpost-inc}, and @option{-mpost-modify}.
19615
19616@item -mnovect-double
19617@opindex mno-vect-double
19618@opindex mvect-double
19619Change the preferred SIMD mode to SImode.  The default is
19620@option{-mvect-double}, which uses DImode as preferred SIMD mode.
19621
19622@item -max-vect-align=@var{num}
19623@opindex max-vect-align
19624The maximum alignment for SIMD vector mode types.
19625@var{num} may be 4 or 8.  The default is 8.
19626Note that this is an ABI change, even though many library function
19627interfaces are unaffected if they don't use SIMD vector modes
19628in places that affect size and/or alignment of relevant types.
19629
19630@item -msplit-vecmove-early
19631@opindex msplit-vecmove-early
19632Split vector moves into single word moves before reload.  In theory this
19633can give better register allocation, but so far the reverse seems to be
19634generally the case.
19635
19636@item -m1reg-@var{reg}
19637@opindex m1reg-
19638Specify a register to hold the constant @minus{}1, which makes loading small negative
19639constants and certain bitmasks faster.
19640Allowable values for @var{reg} are @samp{r43} and @samp{r63},
19641which specify use of that register as a fixed register,
19642and @samp{none}, which means that no register is used for this
19643purpose.  The default is @option{-m1reg-none}.
19644
19645@end table
19646
19647@node AMD GCN Options
19648@subsection AMD GCN Options
19649@cindex AMD GCN Options
19650
19651These options are defined specifically for the AMD GCN port.
19652
19653@table @gcctabopt
19654
19655@item -march=@var{gpu}
19656@opindex march
19657@itemx -mtune=@var{gpu}
19658@opindex mtune
19659Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
19660are
19661
19662@table @samp
19663@opindex fiji
19664@item fiji
19665Compile for GCN3 Fiji devices (gfx803).
19666
19667@item gfx900
19668Compile for GCN5 Vega 10 devices (gfx900).
19669
19670@item gfx906
19671Compile for GCN5 Vega 20 devices (gfx906).
19672
19673@end table
19674
19675@item -msram-ecc=on
19676@itemx -msram-ecc=off
19677@itemx -msram-ecc=any
19678@opindex msram-ecc
19679Compile binaries suitable for devices with the SRAM-ECC feature enabled,
19680disabled, or either mode.  This feature can be enabled per-process on some
19681devices.  The compiled code must match the device mode. The default is
19682@samp{any}, for devices that support it.
19683
19684@item -mstack-size=@var{bytes}
19685@opindex mstack-size
19686Specify how many @var{bytes} of stack space will be requested for each GPU
19687thread (wave-front).  Beware that there may be many threads and limited memory
19688available.  The size of the stack allocation may also have an impact on
19689run-time performance.  The default is 32KB when using OpenACC or OpenMP, and
196901MB otherwise.
19691
19692@item -mxnack
19693@opindex mxnack
19694Compile binaries suitable for devices with the XNACK feature enabled.  Some
19695devices always require XNACK and some allow the user to configure XNACK.  The
19696compiled code must match the device mode.  The default is @samp{-mno-xnack}.
19697At present this option is a placeholder for support that is not yet
19698implemented.
19699
19700@end table
19701
19702@node ARC Options
19703@subsection ARC Options
19704@cindex ARC options
19705
19706The following options control the architecture variant for which code
19707is being compiled:
19708
19709@c architecture variants
19710@table @gcctabopt
19711
19712@item -mbarrel-shifter
19713@opindex mbarrel-shifter
19714Generate instructions supported by barrel shifter.  This is the default
19715unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
19716
19717@item -mjli-always
19718@opindex mjli-always
19719Force to call a function using jli_s instruction.  This option is
19720valid only for ARCv2 architecture.
19721
19722@item -mcpu=@var{cpu}
19723@opindex mcpu
19724Set architecture type, register usage, and instruction scheduling
19725parameters for @var{cpu}.  There are also shortcut alias options
19726available for backward compatibility and convenience.  Supported
19727values for @var{cpu} are
19728
19729@table @samp
19730@opindex mA6
19731@opindex mARC600
19732@item arc600
19733Compile for ARC600.  Aliases: @option{-mA6}, @option{-mARC600}.
19734
19735@item arc601
19736@opindex mARC601
19737Compile for ARC601.  Alias: @option{-mARC601}.
19738
19739@item arc700
19740@opindex mA7
19741@opindex mARC700
19742Compile for ARC700.  Aliases: @option{-mA7}, @option{-mARC700}.
19743This is the default when configured with @option{--with-cpu=arc700}@.
19744
19745@item arcem
19746Compile for ARC EM.
19747
19748@item archs
19749Compile for ARC HS.
19750
19751@item em
19752Compile for ARC EM CPU with no hardware extensions.
19753
19754@item em4
19755Compile for ARC EM4 CPU.
19756
19757@item em4_dmips
19758Compile for ARC EM4 DMIPS CPU.
19759
19760@item em4_fpus
19761Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
19762extension.
19763
19764@item em4_fpuda
19765Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
19766double assist instructions.
19767
19768@item hs
19769Compile for ARC HS CPU with no hardware extensions except the atomic
19770instructions.
19771
19772@item hs34
19773Compile for ARC HS34 CPU.
19774
19775@item hs38
19776Compile for ARC HS38 CPU.
19777
19778@item hs38_linux
19779Compile for ARC HS38 CPU with all hardware extensions on.
19780
19781@item arc600_norm
19782Compile for ARC 600 CPU with @code{norm} instructions enabled.
19783
19784@item arc600_mul32x16
19785Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply 
19786instructions enabled.
19787
19788@item arc600_mul64
19789Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family 
19790instructions enabled.
19791
19792@item arc601_norm
19793Compile for ARC 601 CPU with @code{norm} instructions enabled.
19794
19795@item arc601_mul32x16
19796Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
19797instructions enabled.
19798
19799@item arc601_mul64
19800Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
19801instructions enabled.
19802
19803@item nps400
19804Compile for ARC 700 on NPS400 chip.
19805
19806@item em_mini
19807Compile for ARC EM minimalist configuration featuring reduced register
19808set.
19809
19810@end table
19811
19812@item -mdpfp
19813@opindex mdpfp
19814@itemx -mdpfp-compact
19815@opindex mdpfp-compact
19816Generate double-precision FPX instructions, tuned for the compact
19817implementation.
19818
19819@item -mdpfp-fast
19820@opindex mdpfp-fast
19821Generate double-precision FPX instructions, tuned for the fast
19822implementation.
19823
19824@item -mno-dpfp-lrsr
19825@opindex mno-dpfp-lrsr
19826Disable @code{lr} and @code{sr} instructions from using FPX extension
19827aux registers.
19828
19829@item -mea
19830@opindex mea
19831Generate extended arithmetic instructions.  Currently only
19832@code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
19833supported.  Only valid for @option{-mcpu=ARC700}.
19834
19835@item -mno-mpy
19836@opindex mno-mpy
19837@opindex mmpy
19838Do not generate @code{mpy}-family instructions for ARC700.  This option is
19839deprecated.
19840
19841@item -mmul32x16
19842@opindex mmul32x16
19843Generate 32x16-bit multiply and multiply-accumulate instructions.
19844
19845@item -mmul64
19846@opindex mmul64
19847Generate @code{mul64} and @code{mulu64} instructions.  
19848Only valid for @option{-mcpu=ARC600}.
19849
19850@item -mnorm
19851@opindex mnorm
19852Generate @code{norm} instructions.  This is the default if @option{-mcpu=ARC700}
19853is in effect.
19854
19855@item -mspfp
19856@opindex mspfp
19857@itemx -mspfp-compact
19858@opindex mspfp-compact
19859Generate single-precision FPX instructions, tuned for the compact
19860implementation.
19861
19862@item -mspfp-fast
19863@opindex mspfp-fast
19864Generate single-precision FPX instructions, tuned for the fast
19865implementation.
19866
19867@item -msimd
19868@opindex msimd
19869Enable generation of ARC SIMD instructions via target-specific
19870builtins.  Only valid for @option{-mcpu=ARC700}.
19871
19872@item -msoft-float
19873@opindex msoft-float
19874This option ignored; it is provided for compatibility purposes only.
19875Software floating-point code is emitted by default, and this default
19876can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
19877@option{-mspfp-fast} for single precision, and @option{-mdpfp},
19878@option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
19879
19880@item -mswap
19881@opindex mswap
19882Generate @code{swap} instructions.
19883
19884@item -matomic
19885@opindex matomic
19886This enables use of the locked load/store conditional extension to implement
19887atomic memory built-in functions.  Not available for ARC 6xx or ARC
19888EM cores.
19889
19890@item -mdiv-rem
19891@opindex mdiv-rem
19892Enable @code{div} and @code{rem} instructions for ARCv2 cores.
19893
19894@item -mcode-density
19895@opindex mcode-density
19896Enable code density instructions for ARC EM.  
19897This option is on by default for ARC HS.
19898
19899@item -mll64
19900@opindex mll64
19901Enable double load/store operations for ARC HS cores.
19902
19903@item -mtp-regno=@var{regno}
19904@opindex mtp-regno
19905Specify thread pointer register number.
19906
19907@item -mmpy-option=@var{multo}
19908@opindex mmpy-option
19909Compile ARCv2 code with a multiplier design option.  You can specify 
19910the option using either a string or numeric value for @var{multo}.  
19911@samp{wlh1} is the default value.  The recognized values are:
19912
19913@table @samp
19914@item 0
19915@itemx none
19916No multiplier available.
19917
19918@item 1
19919@itemx w
1992016x16 multiplier, fully pipelined.
19921The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
19922
19923@item 2
19924@itemx wlh1
1992532x32 multiplier, fully
19926pipelined (1 stage).  The following instructions are additionally
19927enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
19928
19929@item 3
19930@itemx wlh2
1993132x32 multiplier, fully pipelined
19932(2 stages).  The following instructions are additionally enabled: @code{mpy},
19933@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
19934
19935@item 4
19936@itemx wlh3
19937Two 16x16 multipliers, blocking,
19938sequential.  The following instructions are additionally enabled: @code{mpy},
19939@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
19940
19941@item 5
19942@itemx wlh4
19943One 16x16 multiplier, blocking,
19944sequential.  The following instructions are additionally enabled: @code{mpy},
19945@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
19946
19947@item 6
19948@itemx wlh5
19949One 32x4 multiplier, blocking,
19950sequential.  The following instructions are additionally enabled: @code{mpy},
19951@code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
19952
19953@item 7
19954@itemx plus_dmpy
19955ARC HS SIMD support.
19956
19957@item 8
19958@itemx plus_macd
19959ARC HS SIMD support.
19960
19961@item 9
19962@itemx plus_qmacw
19963ARC HS SIMD support.
19964
19965@end table
19966
19967This option is only available for ARCv2 cores@.
19968
19969@item -mfpu=@var{fpu}
19970@opindex mfpu
19971Enables support for specific floating-point hardware extensions for ARCv2
19972cores.  Supported values for @var{fpu} are:
19973
19974@table @samp
19975
19976@item fpus
19977Enables support for single-precision floating-point hardware
19978extensions@.
19979
19980@item fpud
19981Enables support for double-precision floating-point hardware
19982extensions.  The single-precision floating-point extension is also
19983enabled.  Not available for ARC EM@.
19984
19985@item fpuda
19986Enables support for double-precision floating-point hardware
19987extensions using double-precision assist instructions.  The single-precision
19988floating-point extension is also enabled.  This option is
19989only available for ARC EM@.
19990
19991@item fpuda_div
19992Enables support for double-precision floating-point hardware
19993extensions using double-precision assist instructions.
19994The single-precision floating-point, square-root, and divide 
19995extensions are also enabled.  This option is
19996only available for ARC EM@.
19997
19998@item fpuda_fma
19999Enables support for double-precision floating-point hardware
20000extensions using double-precision assist instructions.
20001The single-precision floating-point and fused multiply and add 
20002hardware extensions are also enabled.  This option is
20003only available for ARC EM@.
20004
20005@item fpuda_all
20006Enables support for double-precision floating-point hardware
20007extensions using double-precision assist instructions.
20008All single-precision floating-point hardware extensions are also
20009enabled.  This option is only available for ARC EM@.
20010
20011@item fpus_div
20012Enables support for single-precision floating-point, square-root and divide 
20013hardware extensions@.
20014
20015@item fpud_div
20016Enables support for double-precision floating-point, square-root and divide 
20017hardware extensions.  This option
20018includes option @samp{fpus_div}. Not available for ARC EM@.
20019
20020@item fpus_fma
20021Enables support for single-precision floating-point and 
20022fused multiply and add hardware extensions@.
20023
20024@item fpud_fma
20025Enables support for double-precision floating-point and 
20026fused multiply and add hardware extensions.  This option
20027includes option @samp{fpus_fma}.  Not available for ARC EM@.
20028
20029@item fpus_all
20030Enables support for all single-precision floating-point hardware
20031extensions@.
20032
20033@item fpud_all
20034Enables support for all single- and double-precision floating-point
20035hardware extensions.  Not available for ARC EM@.
20036
20037@end table
20038
20039@item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
20040@opindex mirq-ctrl-saved
20041Specifies general-purposes registers that the processor automatically
20042saves/restores on interrupt entry and exit.  @var{register-range} is
20043specified as two registers separated by a dash.  The register range
20044always starts with @code{r0}, the upper limit is @code{fp} register.
20045@var{blink} and @var{lp_count} are optional.  This option is only
20046valid for ARC EM and ARC HS cores.
20047
20048@item -mrgf-banked-regs=@var{number}
20049@opindex mrgf-banked-regs
20050Specifies the number of registers replicated in second register bank
20051on entry to fast interrupt.  Fast interrupts are interrupts with the
20052highest priority level P0.  These interrupts save only PC and STATUS32
20053registers to avoid memory transactions during interrupt entry and exit
20054sequences.  Use this option when you are using fast interrupts in an
20055ARC V2 family processor.  Permitted values are 4, 8, 16, and 32.
20056
20057@item -mlpc-width=@var{width}
20058@opindex mlpc-width
20059Specify the width of the @code{lp_count} register.  Valid values for
20060@var{width} are 8, 16, 20, 24, 28 and 32 bits.  The default width is
20061fixed to 32 bits.  If the width is less than 32, the compiler does not
20062attempt to transform loops in your program to use the zero-delay loop
20063mechanism unless it is known that the @code{lp_count} register can
20064hold the required loop-counter value.  Depending on the width
20065specified, the compiler and run-time library might continue to use the
20066loop mechanism for various needs.  This option defines macro
20067@code{__ARC_LPC_WIDTH__} with the value of @var{width}.
20068
20069@item -mrf16
20070@opindex mrf16
20071This option instructs the compiler to generate code for a 16-entry
20072register file.  This option defines the @code{__ARC_RF16__}
20073preprocessor macro.
20074
20075@item -mbranch-index
20076@opindex mbranch-index
20077Enable use of @code{bi} or @code{bih} instructions to implement jump
20078tables.
20079
20080@end table
20081
20082The following options are passed through to the assembler, and also
20083define preprocessor macro symbols.
20084
20085@c Flags used by the assembler, but for which we define preprocessor
20086@c macro symbols as well.
20087@table @gcctabopt
20088@item -mdsp-packa
20089@opindex mdsp-packa
20090Passed down to the assembler to enable the DSP Pack A extensions.
20091Also sets the preprocessor symbol @code{__Xdsp_packa}.  This option is
20092deprecated.
20093
20094@item -mdvbf
20095@opindex mdvbf
20096Passed down to the assembler to enable the dual Viterbi butterfly
20097extension.  Also sets the preprocessor symbol @code{__Xdvbf}.  This
20098option is deprecated.
20099
20100@c ARC700 4.10 extension instruction
20101@item -mlock
20102@opindex mlock
20103Passed down to the assembler to enable the locked load/store
20104conditional extension.  Also sets the preprocessor symbol
20105@code{__Xlock}.
20106
20107@item -mmac-d16
20108@opindex mmac-d16
20109Passed down to the assembler.  Also sets the preprocessor symbol
20110@code{__Xxmac_d16}.  This option is deprecated.
20111
20112@item -mmac-24
20113@opindex mmac-24
20114Passed down to the assembler.  Also sets the preprocessor symbol
20115@code{__Xxmac_24}.  This option is deprecated.
20116
20117@c ARC700 4.10 extension instruction
20118@item -mrtsc
20119@opindex mrtsc
20120Passed down to the assembler to enable the 64-bit time-stamp counter
20121extension instruction.  Also sets the preprocessor symbol
20122@code{__Xrtsc}.  This option is deprecated.
20123
20124@c ARC700 4.10 extension instruction
20125@item -mswape
20126@opindex mswape
20127Passed down to the assembler to enable the swap byte ordering
20128extension instruction.  Also sets the preprocessor symbol
20129@code{__Xswape}.
20130
20131@item -mtelephony
20132@opindex mtelephony
20133Passed down to the assembler to enable dual- and single-operand
20134instructions for telephony.  Also sets the preprocessor symbol
20135@code{__Xtelephony}.  This option is deprecated.
20136
20137@item -mxy
20138@opindex mxy
20139Passed down to the assembler to enable the XY memory extension.  Also
20140sets the preprocessor symbol @code{__Xxy}.
20141
20142@end table
20143
20144The following options control how the assembly code is annotated:
20145
20146@c Assembly annotation options
20147@table @gcctabopt
20148@item -misize
20149@opindex misize
20150Annotate assembler instructions with estimated addresses.
20151
20152@item -mannotate-align
20153@opindex mannotate-align
20154Explain what alignment considerations lead to the decision to make an
20155instruction short or long.
20156
20157@end table
20158
20159The following options are passed through to the linker:
20160
20161@c options passed through to the linker
20162@table @gcctabopt
20163@item -marclinux
20164@opindex marclinux
20165Passed through to the linker, to specify use of the @code{arclinux} emulation.
20166This option is enabled by default in tool chains built for
20167@w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
20168when profiling is not requested.
20169
20170@item -marclinux_prof
20171@opindex marclinux_prof
20172Passed through to the linker, to specify use of the
20173@code{arclinux_prof} emulation.  This option is enabled by default in
20174tool chains built for @w{@code{arc-linux-uclibc}} and
20175@w{@code{arceb-linux-uclibc}} targets when profiling is requested.
20176
20177@end table
20178
20179The following options control the semantics of generated code:
20180
20181@c semantically relevant code generation options
20182@table @gcctabopt
20183@item -mlong-calls
20184@opindex mlong-calls
20185Generate calls as register indirect calls, thus providing access
20186to the full 32-bit address range.
20187
20188@item -mmedium-calls
20189@opindex mmedium-calls
20190Don't use less than 25-bit addressing range for calls, which is the
20191offset available for an unconditional branch-and-link
20192instruction.  Conditional execution of function calls is suppressed, to
20193allow use of the 25-bit range, rather than the 21-bit range with
20194conditional branch-and-link.  This is the default for tool chains built
20195for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
20196
20197@item -G @var{num}
20198@opindex G
20199Put definitions of externally-visible data in a small data section if
20200that data is no bigger than @var{num} bytes.  The default value of
20201@var{num} is 4 for any ARC configuration, or 8 when we have double
20202load/store operations.
20203
20204@item -mno-sdata
20205@opindex mno-sdata
20206@opindex msdata
20207Do not generate sdata references.  This is the default for tool chains
20208built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
20209targets.
20210
20211@item -mvolatile-cache
20212@opindex mvolatile-cache
20213Use ordinarily cached memory accesses for volatile references.  This is the
20214default.
20215
20216@item -mno-volatile-cache
20217@opindex mno-volatile-cache
20218@opindex mvolatile-cache
20219Enable cache bypass for volatile references.
20220
20221@end table
20222
20223The following options fine tune code generation:
20224@c code generation tuning options
20225@table @gcctabopt
20226@item -malign-call
20227@opindex malign-call
20228Does nothing.  Preserved for backward compatibility.
20229
20230@item -mauto-modify-reg
20231@opindex mauto-modify-reg
20232Enable the use of pre/post modify with register displacement.
20233
20234@item -mbbit-peephole
20235@opindex mbbit-peephole
20236Enable bbit peephole2.
20237
20238@item -mno-brcc
20239@opindex mno-brcc
20240This option disables a target-specific pass in @file{arc_reorg} to
20241generate compare-and-branch (@code{br@var{cc}}) instructions.  
20242It has no effect on
20243generation of these instructions driven by the combiner pass.
20244
20245@item -mcase-vector-pcrel
20246@opindex mcase-vector-pcrel
20247Use PC-relative switch case tables to enable case table shortening.
20248This is the default for @option{-Os}.
20249
20250@item -mcompact-casesi
20251@opindex mcompact-casesi
20252Enable compact @code{casesi} pattern.  This is the default for @option{-Os},
20253and only available for ARCv1 cores.  This option is deprecated.
20254
20255@item -mno-cond-exec
20256@opindex mno-cond-exec
20257Disable the ARCompact-specific pass to generate conditional 
20258execution instructions.
20259
20260Due to delay slot scheduling and interactions between operand numbers,
20261literal sizes, instruction lengths, and the support for conditional execution,
20262the target-independent pass to generate conditional execution is often lacking,
20263so the ARC port has kept a special pass around that tries to find more
20264conditional execution generation opportunities after register allocation,
20265branch shortening, and delay slot scheduling have been done.  This pass
20266generally, but not always, improves performance and code size, at the cost of
20267extra compilation time, which is why there is an option to switch it off.
20268If you have a problem with call instructions exceeding their allowable
20269offset range because they are conditionalized, you should consider using
20270@option{-mmedium-calls} instead.
20271
20272@item -mearly-cbranchsi
20273@opindex mearly-cbranchsi
20274Enable pre-reload use of the @code{cbranchsi} pattern.
20275
20276@item -mexpand-adddi
20277@opindex mexpand-adddi
20278Expand @code{adddi3} and @code{subdi3} at RTL generation time into
20279@code{add.f}, @code{adc} etc.  This option is deprecated.
20280
20281@item -mindexed-loads
20282@opindex mindexed-loads
20283Enable the use of indexed loads.  This can be problematic because some
20284optimizers then assume that indexed stores exist, which is not
20285the case.
20286
20287@item -mlra
20288@opindex mlra
20289Enable Local Register Allocation.  This is still experimental for ARC,
20290so by default the compiler uses standard reload
20291(i.e.@: @option{-mno-lra}).
20292
20293@item -mlra-priority-none
20294@opindex mlra-priority-none
20295Don't indicate any priority for target registers.
20296
20297@item -mlra-priority-compact
20298@opindex mlra-priority-compact
20299Indicate target register priority for r0..r3 / r12..r15.
20300
20301@item -mlra-priority-noncompact
20302@opindex mlra-priority-noncompact
20303Reduce target register priority for r0..r3 / r12..r15.
20304
20305@item -mmillicode
20306@opindex mmillicode
20307When optimizing for size (using @option{-Os}), prologues and epilogues
20308that have to save or restore a large number of registers are often
20309shortened by using call to a special function in libgcc; this is
20310referred to as a @emph{millicode} call.  As these calls can pose
20311performance issues, and/or cause linking issues when linking in a
20312nonstandard way, this option is provided to turn on or off millicode
20313call generation.
20314
20315@item -mcode-density-frame
20316@opindex mcode-density-frame
20317This option enable the compiler to emit @code{enter} and @code{leave}
20318instructions.  These instructions are only valid for CPUs with
20319code-density feature.
20320
20321@item -mmixed-code
20322@opindex mmixed-code
20323Does nothing.  Preserved for backward compatibility.
20324
20325@item -mq-class
20326@opindex mq-class
20327Ths option is deprecated.  Enable @samp{q} instruction alternatives.
20328This is the default for @option{-Os}.
20329
20330@item -mRcq
20331@opindex mRcq
20332Enable @samp{Rcq} constraint handling.  
20333Most short code generation depends on this.
20334This is the default.
20335
20336@item -mRcw
20337@opindex mRcw
20338Enable @samp{Rcw} constraint handling.  
20339Most ccfsm condexec mostly depends on this.
20340This is the default.
20341
20342@item -msize-level=@var{level}
20343@opindex msize-level
20344Fine-tune size optimization with regards to instruction lengths and alignment.
20345The recognized values for @var{level} are:
20346@table @samp
20347@item 0
20348No size optimization.  This level is deprecated and treated like @samp{1}.
20349
20350@item 1
20351Short instructions are used opportunistically.
20352
20353@item 2
20354In addition, alignment of loops and of code after barriers are dropped.
20355
20356@item 3
20357In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
20358
20359@end table
20360
20361This defaults to @samp{3} when @option{-Os} is in effect.  Otherwise,
20362the behavior when this is not set is equivalent to level @samp{1}.
20363
20364@item -mtune=@var{cpu}
20365@opindex mtune
20366Set instruction scheduling parameters for @var{cpu}, overriding any implied
20367by @option{-mcpu=}.
20368
20369Supported values for @var{cpu} are
20370
20371@table @samp
20372@item ARC600
20373Tune for ARC600 CPU.
20374
20375@item ARC601
20376Tune for ARC601 CPU.
20377
20378@item ARC700
20379Tune for ARC700 CPU with standard multiplier block.
20380
20381@item ARC700-xmac
20382Tune for ARC700 CPU with XMAC block.
20383
20384@item ARC725D
20385Tune for ARC725D CPU.
20386
20387@item ARC750D
20388Tune for ARC750D CPU.
20389
20390@end table
20391
20392@item -mmultcost=@var{num}
20393@opindex mmultcost
20394Cost to assume for a multiply instruction, with @samp{4} being equal to a
20395normal instruction.
20396
20397@item -munalign-prob-threshold=@var{probability}
20398@opindex munalign-prob-threshold
20399Does nothing.  Preserved for backward compatibility.
20400
20401@end table
20402
20403The following options are maintained for backward compatibility, but
20404are now deprecated and will be removed in a future release:
20405
20406@c Deprecated options
20407@table @gcctabopt
20408
20409@item -margonaut
20410@opindex margonaut
20411Obsolete FPX.
20412
20413@item -mbig-endian
20414@opindex mbig-endian
20415@itemx -EB
20416@opindex EB
20417Compile code for big-endian targets.  Use of these options is now
20418deprecated.  Big-endian code is supported by configuring GCC to build
20419@w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
20420for which big endian is the default.
20421
20422@item -mlittle-endian
20423@opindex mlittle-endian
20424@itemx -EL
20425@opindex EL
20426Compile code for little-endian targets.  Use of these options is now
20427deprecated.  Little-endian code is supported by configuring GCC to build 
20428@w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
20429for which little endian is the default.
20430
20431@item -mbarrel_shifter
20432@opindex mbarrel_shifter
20433Replaced by @option{-mbarrel-shifter}.
20434
20435@item -mdpfp_compact
20436@opindex mdpfp_compact
20437Replaced by @option{-mdpfp-compact}.
20438
20439@item -mdpfp_fast
20440@opindex mdpfp_fast
20441Replaced by @option{-mdpfp-fast}.
20442
20443@item -mdsp_packa
20444@opindex mdsp_packa
20445Replaced by @option{-mdsp-packa}.
20446
20447@item -mEA
20448@opindex mEA
20449Replaced by @option{-mea}.
20450
20451@item -mmac_24
20452@opindex mmac_24
20453Replaced by @option{-mmac-24}.
20454
20455@item -mmac_d16
20456@opindex mmac_d16
20457Replaced by @option{-mmac-d16}.
20458
20459@item -mspfp_compact
20460@opindex mspfp_compact
20461Replaced by @option{-mspfp-compact}.
20462
20463@item -mspfp_fast
20464@opindex mspfp_fast
20465Replaced by @option{-mspfp-fast}.
20466
20467@item -mtune=@var{cpu}
20468@opindex mtune
20469Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
20470@samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
20471@samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
20472
20473@item -multcost=@var{num}
20474@opindex multcost
20475Replaced by @option{-mmultcost}.
20476
20477@end table
20478
20479@node ARM Options
20480@subsection ARM Options
20481@cindex ARM options
20482
20483These @samp{-m} options are defined for the ARM port:
20484
20485@table @gcctabopt
20486@item -mabi=@var{name}
20487@opindex mabi
20488Generate code for the specified ABI@.  Permissible values are: @samp{apcs-gnu},
20489@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
20490
20491@item -mapcs-frame
20492@opindex mapcs-frame
20493Generate a stack frame that is compliant with the ARM Procedure Call
20494Standard for all functions, even if this is not strictly necessary for
20495correct execution of the code.  Specifying @option{-fomit-frame-pointer}
20496with this option causes the stack frames not to be generated for
20497leaf functions.  The default is @option{-mno-apcs-frame}.
20498This option is deprecated.
20499
20500@item -mapcs
20501@opindex mapcs
20502This is a synonym for @option{-mapcs-frame} and is deprecated.
20503
20504@ignore
20505@c not currently implemented
20506@item -mapcs-stack-check
20507@opindex mapcs-stack-check
20508Generate code to check the amount of stack space available upon entry to
20509every function (that actually uses some stack space).  If there is
20510insufficient space available then either the function
20511@code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
20512called, depending upon the amount of stack space required.  The runtime
20513system is required to provide these functions.  The default is
20514@option{-mno-apcs-stack-check}, since this produces smaller code.
20515
20516@c not currently implemented
20517@item -mapcs-reentrant
20518@opindex mapcs-reentrant
20519Generate reentrant, position-independent code.  The default is
20520@option{-mno-apcs-reentrant}.
20521@end ignore
20522
20523@item -mthumb-interwork
20524@opindex mthumb-interwork
20525Generate code that supports calling between the ARM and Thumb
20526instruction sets.  Without this option, on pre-v5 architectures, the
20527two instruction sets cannot be reliably used inside one program.  The
20528default is @option{-mno-thumb-interwork}, since slightly larger code
20529is generated when @option{-mthumb-interwork} is specified.  In AAPCS
20530configurations this option is meaningless.
20531
20532@item -mno-sched-prolog
20533@opindex mno-sched-prolog
20534@opindex msched-prolog
20535Prevent the reordering of instructions in the function prologue, or the
20536merging of those instruction with the instructions in the function's
20537body.  This means that all functions start with a recognizable set
20538of instructions (or in fact one of a choice from a small set of
20539different function prologues), and this information can be used to
20540locate the start of functions inside an executable piece of code.  The
20541default is @option{-msched-prolog}.
20542
20543@item -mfloat-abi=@var{name}
20544@opindex mfloat-abi
20545Specifies which floating-point ABI to use.  Permissible values
20546are: @samp{soft}, @samp{softfp} and @samp{hard}.
20547
20548Specifying @samp{soft} causes GCC to generate output containing
20549library calls for floating-point operations.
20550@samp{softfp} allows the generation of code using hardware floating-point
20551instructions, but still uses the soft-float calling conventions.
20552@samp{hard} allows generation of floating-point instructions
20553and uses FPU-specific calling conventions.
20554
20555The default depends on the specific target configuration.  Note that
20556the hard-float and soft-float ABIs are not link-compatible; you must
20557compile your entire program with the same ABI, and link with a
20558compatible set of libraries.
20559
20560@item -mgeneral-regs-only
20561@opindex mgeneral-regs-only
20562Generate code which uses only the general-purpose registers.  This will prevent
20563the compiler from using floating-point and Advanced SIMD registers but will not
20564impose any restrictions on the assembler.
20565
20566@item -mlittle-endian
20567@opindex mlittle-endian
20568Generate code for a processor running in little-endian mode.  This is
20569the default for all standard configurations.
20570
20571@item -mbig-endian
20572@opindex mbig-endian
20573Generate code for a processor running in big-endian mode; the default is
20574to compile code for a little-endian processor.
20575
20576@item -mbe8
20577@itemx -mbe32
20578@opindex mbe8
20579When linking a big-endian image select between BE8 and BE32 formats.
20580The option has no effect for little-endian images and is ignored.  The
20581default is dependent on the selected target architecture.  For ARMv6
20582and later architectures the default is BE8, for older architectures
20583the default is BE32.  BE32 format has been deprecated by ARM.
20584
20585@item -march=@var{name}@r{[}+extension@dots{}@r{]}
20586@opindex march
20587This specifies the name of the target ARM architecture.  GCC uses this
20588name to determine what kind of instructions it can emit when generating
20589assembly code.  This option can be used in conjunction with or instead
20590of the @option{-mcpu=} option.
20591
20592Permissible names are:
20593@samp{armv4t},
20594@samp{armv5t}, @samp{armv5te},
20595@samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
20596@samp{armv6z}, @samp{armv6zk},
20597@samp{armv7}, @samp{armv7-a}, @samp{armv7ve}, 
20598@samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
20599@samp{armv8.4-a},
20600@samp{armv8.5-a},
20601@samp{armv8.6-a},
20602@samp{armv9-a},
20603@samp{armv7-r},
20604@samp{armv8-r},
20605@samp{armv6-m}, @samp{armv6s-m},
20606@samp{armv7-m}, @samp{armv7e-m},
20607@samp{armv8-m.base}, @samp{armv8-m.main},
20608@samp{armv8.1-m.main},
20609@samp{armv9-a},
20610@samp{iwmmxt} and @samp{iwmmxt2}.
20611
20612Additionally, the following architectures, which lack support for the
20613Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
20614
20615Many of the architectures support extensions.  These can be added by
20616appending @samp{+@var{extension}} to the architecture name.  Extension
20617options are processed in order and capabilities accumulate.  An extension
20618will also enable any necessary base extensions
20619upon which it depends.  For example, the @samp{+crypto} extension
20620will always enable the @samp{+simd} extension.  The exception to the
20621additive construction is for extensions that are prefixed with
20622@samp{+no@dots{}}: these extensions disable the specified option and
20623any other extensions that may depend on the presence of that
20624extension.
20625
20626For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
20627writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
20628entirely disabled by the @samp{+nofp} option that follows it.
20629
20630Most extension names are generically named, but have an effect that is
20631dependent upon the architecture to which it is applied.  For example,
20632the @samp{+simd} option can be applied to both @samp{armv7-a} and
20633@samp{armv8-a} architectures, but will enable the original ARMv7-A
20634Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
20635variant for @samp{armv8-a}.
20636
20637The table below lists the supported extensions for each architecture.
20638Architectures not mentioned do not support any extensions.
20639
20640@table @samp
20641@item armv5te
20642@itemx armv6
20643@itemx armv6j
20644@itemx armv6k
20645@itemx armv6kz
20646@itemx armv6t2
20647@itemx armv6z
20648@itemx armv6zk
20649@table @samp
20650@item +fp
20651The VFPv2 floating-point instructions.  The extension @samp{+vfpv2} can be
20652used as an alias for this extension.
20653
20654@item +nofp
20655Disable the floating-point instructions.
20656@end table
20657
20658@item armv7
20659The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
20660@table @samp
20661@item +fp
20662The VFPv3 floating-point instructions, with 16 double-precision
20663registers.  The extension @samp{+vfpv3-d16} can be used as an alias
20664for this extension.  Note that floating-point is not supported by the
20665base ARMv7-M architecture, but is compatible with both the ARMv7-A and
20666ARMv7-R architectures.
20667
20668@item +nofp
20669Disable the floating-point instructions.
20670@end table
20671
20672@item armv7-a
20673@table @samp
20674@item +mp
20675The multiprocessing extension.
20676
20677@item +sec
20678The security extension.
20679
20680@item +fp
20681The VFPv3 floating-point instructions, with 16 double-precision
20682registers.  The extension @samp{+vfpv3-d16} can be used as an alias
20683for this extension.
20684
20685@item +simd
20686The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
20687The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
20688for this extension.
20689
20690@item +vfpv3
20691The VFPv3 floating-point instructions, with 32 double-precision
20692registers.
20693
20694@item +vfpv3-d16-fp16
20695The VFPv3 floating-point instructions, with 16 double-precision
20696registers and the half-precision floating-point conversion operations.
20697
20698@item +vfpv3-fp16
20699The VFPv3 floating-point instructions, with 32 double-precision
20700registers and the half-precision floating-point conversion operations.
20701
20702@item +vfpv4-d16
20703The VFPv4 floating-point instructions, with 16 double-precision
20704registers.
20705
20706@item +vfpv4
20707The VFPv4 floating-point instructions, with 32 double-precision
20708registers.
20709
20710@item +neon-fp16
20711The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
20712the half-precision floating-point conversion operations.
20713
20714@item +neon-vfpv4
20715The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
20716
20717@item +nosimd
20718Disable the Advanced SIMD instructions (does not disable floating point).
20719
20720@item +nofp
20721Disable the floating-point and Advanced SIMD instructions.
20722@end table
20723
20724@item armv7ve
20725The extended version of the ARMv7-A architecture with support for
20726virtualization.
20727@table @samp
20728@item +fp
20729The VFPv4 floating-point instructions, with 16 double-precision registers.
20730The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
20731
20732@item +simd
20733The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.  The
20734extension @samp{+neon-vfpv4} can be used as an alias for this extension.
20735
20736@item +vfpv3-d16
20737The VFPv3 floating-point instructions, with 16 double-precision
20738registers.
20739
20740@item +vfpv3
20741The VFPv3 floating-point instructions, with 32 double-precision
20742registers.
20743
20744@item +vfpv3-d16-fp16
20745The VFPv3 floating-point instructions, with 16 double-precision
20746registers and the half-precision floating-point conversion operations.
20747
20748@item +vfpv3-fp16
20749The VFPv3 floating-point instructions, with 32 double-precision
20750registers and the half-precision floating-point conversion operations.
20751
20752@item +vfpv4-d16
20753The VFPv4 floating-point instructions, with 16 double-precision
20754registers.
20755
20756@item +vfpv4
20757The VFPv4 floating-point instructions, with 32 double-precision
20758registers.
20759
20760@item +neon
20761The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
20762The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
20763
20764@item +neon-fp16
20765The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
20766the half-precision floating-point conversion operations.
20767
20768@item +nosimd
20769Disable the Advanced SIMD instructions (does not disable floating point).
20770
20771@item +nofp
20772Disable the floating-point and Advanced SIMD instructions.
20773@end table
20774
20775@item armv8-a
20776@table @samp
20777@item +crc
20778The Cyclic Redundancy Check (CRC) instructions.
20779@item +simd
20780The ARMv8-A Advanced SIMD and floating-point instructions.
20781@item +crypto
20782The cryptographic instructions.
20783@item +nocrypto
20784Disable the cryptographic instructions.
20785@item +nofp
20786Disable the floating-point, Advanced SIMD and cryptographic instructions.
20787@item +sb
20788Speculation Barrier Instruction.
20789@item +predres
20790Execution and Data Prediction Restriction Instructions.
20791@end table
20792
20793@item armv8.1-a
20794@table @samp
20795@item +simd
20796The ARMv8.1-A Advanced SIMD and floating-point instructions.
20797
20798@item +crypto
20799The cryptographic instructions.  This also enables the Advanced SIMD and
20800floating-point instructions.
20801
20802@item +nocrypto
20803Disable the cryptographic instructions.
20804
20805@item +nofp
20806Disable the floating-point, Advanced SIMD and cryptographic instructions.
20807
20808@item +sb
20809Speculation Barrier Instruction.
20810
20811@item +predres
20812Execution and Data Prediction Restriction Instructions.
20813@end table
20814
20815@item armv8.2-a
20816@itemx armv8.3-a
20817@table @samp
20818@item +fp16
20819The half-precision floating-point data processing instructions.
20820This also enables the Advanced SIMD and floating-point instructions.
20821
20822@item +fp16fml
20823The half-precision floating-point fmla extension.  This also enables
20824the half-precision floating-point extension and Advanced SIMD and
20825floating-point instructions.
20826
20827@item +simd
20828The ARMv8.1-A Advanced SIMD and floating-point instructions.
20829
20830@item +crypto
20831The cryptographic instructions.  This also enables the Advanced SIMD and
20832floating-point instructions.
20833
20834@item +dotprod
20835Enable the Dot Product extension.  This also enables Advanced SIMD instructions.
20836
20837@item +nocrypto
20838Disable the cryptographic extension.
20839
20840@item +nofp
20841Disable the floating-point, Advanced SIMD and cryptographic instructions.
20842
20843@item +sb
20844Speculation Barrier Instruction.
20845
20846@item +predres
20847Execution and Data Prediction Restriction Instructions.
20848
20849@item +i8mm
208508-bit Integer Matrix Multiply instructions.
20851This also enables Advanced SIMD and floating-point instructions.
20852
20853@item +bf16
20854Brain half-precision floating-point instructions.
20855This also enables Advanced SIMD and floating-point instructions.
20856@end table
20857
20858@item armv8.4-a
20859@table @samp
20860@item +fp16
20861The half-precision floating-point data processing instructions.
20862This also enables the Advanced SIMD and floating-point instructions as well
20863as the Dot Product extension and the half-precision floating-point fmla
20864extension.
20865
20866@item +simd
20867The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
20868Dot Product extension.
20869
20870@item +crypto
20871The cryptographic instructions.  This also enables the Advanced SIMD and
20872floating-point instructions as well as the Dot Product extension.
20873
20874@item +nocrypto
20875Disable the cryptographic extension.
20876
20877@item +nofp
20878Disable the floating-point, Advanced SIMD and cryptographic instructions.
20879
20880@item +sb
20881Speculation Barrier Instruction.
20882
20883@item +predres
20884Execution and Data Prediction Restriction Instructions.
20885
20886@item +i8mm
208878-bit Integer Matrix Multiply instructions.
20888This also enables Advanced SIMD and floating-point instructions.
20889
20890@item +bf16
20891Brain half-precision floating-point instructions.
20892This also enables Advanced SIMD and floating-point instructions.
20893@end table
20894
20895@item armv8.5-a
20896@table @samp
20897@item +fp16
20898The half-precision floating-point data processing instructions.
20899This also enables the Advanced SIMD and floating-point instructions as well
20900as the Dot Product extension and the half-precision floating-point fmla
20901extension.
20902
20903@item +simd
20904The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
20905Dot Product extension.
20906
20907@item +crypto
20908The cryptographic instructions.  This also enables the Advanced SIMD and
20909floating-point instructions as well as the Dot Product extension.
20910
20911@item +nocrypto
20912Disable the cryptographic extension.
20913
20914@item +nofp
20915Disable the floating-point, Advanced SIMD and cryptographic instructions.
20916
20917@item +i8mm
209188-bit Integer Matrix Multiply instructions.
20919This also enables Advanced SIMD and floating-point instructions.
20920
20921@item +bf16
20922Brain half-precision floating-point instructions.
20923This also enables Advanced SIMD and floating-point instructions.
20924@end table
20925
20926@item armv8.6-a
20927@table @samp
20928@item +fp16
20929The half-precision floating-point data processing instructions.
20930This also enables the Advanced SIMD and floating-point instructions as well
20931as the Dot Product extension and the half-precision floating-point fmla
20932extension.
20933
20934@item +simd
20935The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
20936Dot Product extension.
20937
20938@item +crypto
20939The cryptographic instructions.  This also enables the Advanced SIMD and
20940floating-point instructions as well as the Dot Product extension.
20941
20942@item +nocrypto
20943Disable the cryptographic extension.
20944
20945@item +nofp
20946Disable the floating-point, Advanced SIMD and cryptographic instructions.
20947
20948@item +i8mm
209498-bit Integer Matrix Multiply instructions.
20950This also enables Advanced SIMD and floating-point instructions.
20951
20952@item +bf16
20953Brain half-precision floating-point instructions.
20954This also enables Advanced SIMD and floating-point instructions.
20955@end table
20956
20957@item armv7-r
20958@table @samp
20959@item +fp.sp
20960The single-precision VFPv3 floating-point instructions.  The extension
20961@samp{+vfpv3xd} can be used as an alias for this extension.
20962
20963@item +fp
20964The VFPv3 floating-point instructions with 16 double-precision registers.
20965The extension +vfpv3-d16 can be used as an alias for this extension.
20966
20967@item +vfpv3xd-d16-fp16
20968The single-precision VFPv3 floating-point instructions with 16 double-precision
20969registers and the half-precision floating-point conversion operations.
20970
20971@item +vfpv3-d16-fp16
20972The VFPv3 floating-point instructions with 16 double-precision
20973registers and the half-precision floating-point conversion operations.
20974
20975@item +nofp
20976Disable the floating-point extension.
20977
20978@item +idiv
20979The ARM-state integer division instructions.
20980
20981@item +noidiv
20982Disable the ARM-state integer division extension.
20983@end table
20984
20985@item armv7e-m
20986@table @samp
20987@item +fp
20988The single-precision VFPv4 floating-point instructions.
20989
20990@item +fpv5
20991The single-precision FPv5 floating-point instructions.
20992
20993@item +fp.dp
20994The single- and double-precision FPv5 floating-point instructions.
20995
20996@item +nofp
20997Disable the floating-point extensions.
20998@end table
20999
21000@item  armv8.1-m.main
21001@table @samp
21002
21003@item +dsp
21004The DSP instructions.
21005
21006@item +mve
21007The M-Profile Vector Extension (MVE) integer instructions.
21008
21009@item +mve.fp
21010The M-Profile Vector Extension (MVE) integer and single precision
21011floating-point instructions.
21012
21013@item +fp
21014The single-precision floating-point instructions.
21015
21016@item +fp.dp
21017The single- and double-precision floating-point instructions.
21018
21019@item +nofp
21020Disable the floating-point extension.
21021
21022@item +cdecp0, +cdecp1, ... , +cdecp7
21023Enable the Custom Datapath Extension (CDE) on selected coprocessors according
21024to the numbers given in the options in the range 0 to 7.
21025@end table
21026
21027@item  armv8-m.main
21028@table @samp
21029@item +dsp
21030The DSP instructions.
21031
21032@item +nodsp
21033Disable the DSP extension.
21034
21035@item +fp
21036The single-precision floating-point instructions.
21037
21038@item +fp.dp
21039The single- and double-precision floating-point instructions.
21040
21041@item +nofp
21042Disable the floating-point extension.
21043
21044@item +cdecp0, +cdecp1, ... , +cdecp7
21045Enable the Custom Datapath Extension (CDE) on selected coprocessors according
21046to the numbers given in the options in the range 0 to 7.
21047@end table
21048
21049@item armv8-r
21050@table @samp
21051@item +crc
21052The Cyclic Redundancy Check (CRC) instructions.
21053@item +fp.sp
21054The single-precision FPv5 floating-point instructions.
21055@item +simd
21056The ARMv8-A Advanced SIMD and floating-point instructions.
21057@item +crypto
21058The cryptographic instructions.
21059@item +nocrypto
21060Disable the cryptographic instructions.
21061@item +nofp
21062Disable the floating-point, Advanced SIMD and cryptographic instructions.
21063@end table
21064
21065@end table
21066
21067@option{-march=native} causes the compiler to auto-detect the architecture
21068of the build computer.  At present, this feature is only supported on
21069GNU/Linux, and not all architectures are recognized.  If the auto-detect
21070is unsuccessful the option has no effect.
21071
21072@item -mtune=@var{name}
21073@opindex mtune
21074This option specifies the name of the target ARM processor for
21075which GCC should tune the performance of the code.
21076For some ARM implementations better performance can be obtained by using
21077this option.
21078Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
21079@samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
21080@samp{strongarm1100}, @samp{strongarm1110}, @samp{arm8}, @samp{arm810},
21081@samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
21082@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
21083@samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
21084@samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
21085@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
21086@samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
21087@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
21088@samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
21089@samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
21090@samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
21091@samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
21092@samp{cortex-a78}, @samp{cortex-a78ae}, @samp{cortex-a78c}, @samp{cortex-a710},
21093@samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5},
21094@samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52}, @samp{cortex-r52plus},
21095@samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
21096@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
21097@samp{cortex-m35p}, @samp{cortex-m55}, @samp{cortex-x1},
21098@samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
21099@samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
21100@samp{neoverse-n1}, @samp{neoverse-n2}, @samp{neoverse-v1}, @samp{xscale},
21101@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}, @samp{fa526}, @samp{fa626},
21102@samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
21103
21104Additionally, this option can specify that GCC should tune the performance
21105of the code for a big.LITTLE system.  Permissible names are:
21106@samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
21107@samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
21108@samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
21109@samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
21110
21111@option{-mtune=generic-@var{arch}} specifies that GCC should tune the
21112performance for a blend of processors within architecture @var{arch}.
21113The aim is to generate code that run well on the current most popular
21114processors, balancing between optimizations that benefit some CPUs in the
21115range, and avoiding performance pitfalls of other CPUs.  The effects of
21116this option may change in future GCC versions as CPU models come and go.
21117
21118@option{-mtune} permits the same extension options as @option{-mcpu}, but
21119the extension options do not affect the tuning of the generated code.
21120
21121@option{-mtune=native} causes the compiler to auto-detect the CPU
21122of the build computer.  At present, this feature is only supported on
21123GNU/Linux, and not all architectures are recognized.  If the auto-detect is
21124unsuccessful the option has no effect.
21125
21126@item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
21127@opindex mcpu
21128This specifies the name of the target ARM processor.  GCC uses this name
21129to derive the name of the target ARM architecture (as if specified
21130by @option{-march}) and the ARM processor type for which to tune for
21131performance (as if specified by @option{-mtune}).  Where this option
21132is used in conjunction with @option{-march} or @option{-mtune},
21133those options take precedence over the appropriate part of this option.
21134
21135Many of the supported CPUs implement optional architectural
21136extensions.  Where this is so the architectural extensions are
21137normally enabled by default.  If implementations that lack the
21138extension exist, then the extension syntax can be used to disable
21139those extensions that have been omitted.  For floating-point and
21140Advanced SIMD (Neon) instructions, the settings of the options
21141@option{-mfloat-abi} and @option{-mfpu} must also be considered:
21142floating-point and Advanced SIMD instructions will only be used if
21143@option{-mfloat-abi} is not set to @samp{soft}; and any setting of
21144@option{-mfpu} other than @samp{auto} will override the available
21145floating-point and SIMD extension instructions.
21146
21147For example, @samp{cortex-a9} can be found in three major
21148configurations: integer only, with just a floating-point unit or with
21149floating-point and Advanced SIMD.  The default is to enable all the
21150instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
21151be used to disable just the SIMD or both the SIMD and floating-point
21152instructions respectively.
21153
21154Permissible names for this option are the same as those for
21155@option{-mtune}.
21156
21157The following extension options are common to the listed CPUs:
21158
21159@table @samp
21160@item +nodsp
21161Disable the DSP instructions on @samp{cortex-m33}, @samp{cortex-m35p}.
21162
21163@item  +nofp
21164Disables the floating-point instructions on @samp{arm9e},
21165@samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
21166@samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
21167@samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
21168@samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m33} and @samp{cortex-m35p}.
21169Disables the floating-point and SIMD instructions on
21170@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
21171@samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
21172@samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
21173@samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
21174@samp{cortex-a53} and @samp{cortex-a55}.
21175
21176@item +nofp.dp
21177Disables the double-precision component of the floating-point instructions
21178on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
21179@samp{cortex-r52plus} and @samp{cortex-m7}.
21180
21181@item +nosimd
21182Disables the SIMD (but not floating-point) instructions on
21183@samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
21184and @samp{cortex-a9}.
21185
21186@item +crypto
21187Enables the cryptographic instructions on @samp{cortex-a32},
21188@samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
21189@samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
21190@samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
21191@samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
21192@samp{cortex-a75.cortex-a55}.
21193@end table
21194
21195Additionally the @samp{generic-armv7-a} pseudo target defaults to
21196VFPv3 with 16 double-precision registers.  It supports the following
21197extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
21198@samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
21199@samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
21200@samp{neon-fp16}, @samp{neon-vfpv4}.  The meanings are the same as for
21201the extensions to @option{-march=armv7-a}.
21202
21203@option{-mcpu=generic-@var{arch}} is also permissible, and is
21204equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
21205See @option{-mtune} for more information.
21206
21207@option{-mcpu=native} causes the compiler to auto-detect the CPU
21208of the build computer.  At present, this feature is only supported on
21209GNU/Linux, and not all architectures are recognized.  If the auto-detect
21210is unsuccessful the option has no effect.
21211
21212@item -mfpu=@var{name}
21213@opindex mfpu
21214This specifies what floating-point hardware (or hardware emulation) is
21215available on the target.  Permissible names are: @samp{auto}, @samp{vfpv2},
21216@samp{vfpv3},
21217@samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
21218@samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
21219@samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
21220@samp{fpv5-d16}, @samp{fpv5-sp-d16},
21221@samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
21222Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
21223is an alias for @samp{vfpv2}.
21224
21225The setting @samp{auto} is the default and is special.  It causes the
21226compiler to select the floating-point and Advanced SIMD instructions
21227based on the settings of @option{-mcpu} and @option{-march}.
21228
21229If the selected floating-point hardware includes the NEON extension
21230(e.g.@: @option{-mfpu=neon}), note that floating-point
21231operations are not generated by GCC's auto-vectorization pass unless
21232@option{-funsafe-math-optimizations} is also specified.  This is
21233because NEON hardware does not fully implement the IEEE 754 standard for
21234floating-point arithmetic (in particular denormal values are treated as
21235zero), so the use of NEON instructions may lead to a loss of precision.
21236
21237You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
21238
21239@item -mfp16-format=@var{name}
21240@opindex mfp16-format
21241Specify the format of the @code{__fp16} half-precision floating-point type.
21242Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
21243the default is @samp{none}, in which case the @code{__fp16} type is not
21244defined.  @xref{Half-Precision}, for more information.
21245
21246@item -mstructure-size-boundary=@var{n}
21247@opindex mstructure-size-boundary
21248The sizes of all structures and unions are rounded up to a multiple
21249of the number of bits set by this option.  Permissible values are 8, 32
21250and 64.  The default value varies for different toolchains.  For the COFF
21251targeted toolchain the default value is 8.  A value of 64 is only allowed
21252if the underlying ABI supports it.
21253
21254Specifying a larger number can produce faster, more efficient code, but
21255can also increase the size of the program.  Different values are potentially
21256incompatible.  Code compiled with one value cannot necessarily expect to
21257work with code or libraries compiled with another value, if they exchange
21258information using structures or unions.
21259
21260This option is deprecated.
21261
21262@item -mabort-on-noreturn
21263@opindex mabort-on-noreturn
21264Generate a call to the function @code{abort} at the end of a
21265@code{noreturn} function.  It is executed if the function tries to
21266return.
21267
21268@item -mlong-calls
21269@itemx -mno-long-calls
21270@opindex mlong-calls
21271@opindex mno-long-calls
21272Tells the compiler to perform function calls by first loading the
21273address of the function into a register and then performing a subroutine
21274call on this register.  This switch is needed if the target function
21275lies outside of the 64-megabyte addressing range of the offset-based
21276version of subroutine call instruction.
21277
21278Even if this switch is enabled, not all function calls are turned
21279into long calls.  The heuristic is that static functions, functions
21280that have the @code{short_call} attribute, functions that are inside
21281the scope of a @code{#pragma no_long_calls} directive, and functions whose
21282definitions have already been compiled within the current compilation
21283unit are not turned into long calls.  The exceptions to this rule are
21284that weak function definitions, functions with the @code{long_call}
21285attribute or the @code{section} attribute, and functions that are within
21286the scope of a @code{#pragma long_calls} directive are always
21287turned into long calls.
21288
21289This feature is not enabled by default.  Specifying
21290@option{-mno-long-calls} restores the default behavior, as does
21291placing the function calls within the scope of a @code{#pragma
21292long_calls_off} directive.  Note these switches have no effect on how
21293the compiler generates code to handle function calls via function
21294pointers.
21295
21296@item -msingle-pic-base
21297@opindex msingle-pic-base
21298Treat the register used for PIC addressing as read-only, rather than
21299loading it in the prologue for each function.  The runtime system is
21300responsible for initializing this register with an appropriate value
21301before execution begins.
21302
21303@item -mpic-register=@var{reg}
21304@opindex mpic-register
21305Specify the register to be used for PIC addressing.
21306For standard PIC base case, the default is any suitable register
21307determined by compiler.  For single PIC base case, the default is
21308@samp{R9} if target is EABI based or stack-checking is enabled,
21309otherwise the default is @samp{R10}.
21310
21311@item -mpic-data-is-text-relative
21312@opindex mpic-data-is-text-relative
21313Assume that the displacement between the text and data segments is fixed
21314at static link time.  This permits using PC-relative addressing
21315operations to access data known to be in the data segment.  For
21316non-VxWorks RTP targets, this option is enabled by default.  When
21317disabled on such targets, it will enable @option{-msingle-pic-base} by
21318default.
21319
21320@item -mpoke-function-name
21321@opindex mpoke-function-name
21322Write the name of each function into the text section, directly
21323preceding the function prologue.  The generated code is similar to this:
21324
21325@smallexample
21326     t0
21327         .ascii "arm_poke_function_name", 0
21328         .align
21329     t1
21330         .word 0xff000000 + (t1 - t0)
21331     arm_poke_function_name
21332         mov     ip, sp
21333         stmfd   sp!, @{fp, ip, lr, pc@}
21334         sub     fp, ip, #4
21335@end smallexample
21336
21337When performing a stack backtrace, code can inspect the value of
21338@code{pc} stored at @code{fp + 0}.  If the trace function then looks at
21339location @code{pc - 12} and the top 8 bits are set, then we know that
21340there is a function name embedded immediately preceding this location
21341and has length @code{((pc[-3]) & 0xff000000)}.
21342
21343@item -mthumb
21344@itemx -marm
21345@opindex marm
21346@opindex mthumb
21347
21348Select between generating code that executes in ARM and Thumb
21349states.  The default for most configurations is to generate code
21350that executes in ARM state, but the default can be changed by
21351configuring GCC with the @option{--with-mode=}@var{state}
21352configure option.
21353
21354You can also override the ARM and Thumb mode for each function
21355by using the @code{target("thumb")} and @code{target("arm")} function attributes
21356(@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
21357
21358@item -mflip-thumb 
21359@opindex mflip-thumb
21360Switch ARM/Thumb modes on alternating functions.
21361This option is provided for regression testing of mixed Thumb/ARM code
21362generation, and is not intended for ordinary use in compiling code.
21363
21364@item -mtpcs-frame
21365@opindex mtpcs-frame
21366Generate a stack frame that is compliant with the Thumb Procedure Call
21367Standard for all non-leaf functions.  (A leaf function is one that does
21368not call any other functions.)  The default is @option{-mno-tpcs-frame}.
21369
21370@item -mtpcs-leaf-frame
21371@opindex mtpcs-leaf-frame
21372Generate a stack frame that is compliant with the Thumb Procedure Call
21373Standard for all leaf functions.  (A leaf function is one that does
21374not call any other functions.)  The default is @option{-mno-apcs-leaf-frame}.
21375
21376@item -mcallee-super-interworking
21377@opindex mcallee-super-interworking
21378Gives all externally visible functions in the file being compiled an ARM
21379instruction set header which switches to Thumb mode before executing the
21380rest of the function.  This allows these functions to be called from
21381non-interworking code.  This option is not valid in AAPCS configurations
21382because interworking is enabled by default.
21383
21384@item -mcaller-super-interworking
21385@opindex mcaller-super-interworking
21386Allows calls via function pointers (including virtual functions) to
21387execute correctly regardless of whether the target code has been
21388compiled for interworking or not.  There is a small overhead in the cost
21389of executing a function pointer if this option is enabled.  This option
21390is not valid in AAPCS configurations because interworking is enabled
21391by default.
21392
21393@item -mtp=@var{name}
21394@opindex mtp
21395Specify the access model for the thread local storage pointer.  The valid
21396models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
21397@samp{cp15}, which fetches the thread pointer from @code{cp15} directly
21398(supported in the arm6k architecture), and @samp{auto}, which uses the
21399best available method for the selected processor.  The default setting is
21400@samp{auto}.
21401
21402@item -mtls-dialect=@var{dialect}
21403@opindex mtls-dialect
21404Specify the dialect to use for accessing thread local storage.  Two
21405@var{dialect}s are supported---@samp{gnu} and @samp{gnu2}.  The
21406@samp{gnu} dialect selects the original GNU scheme for supporting
21407local and global dynamic TLS models.  The @samp{gnu2} dialect
21408selects the GNU descriptor scheme, which provides better performance
21409for shared libraries.  The GNU descriptor scheme is compatible with
21410the original scheme, but does require new assembler, linker and
21411library support.  Initial and local exec TLS models are unaffected by
21412this option and always use the original scheme.
21413
21414@item -mword-relocations
21415@opindex mword-relocations
21416Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
21417This is enabled by default on targets (uClinux, SymbianOS) where the runtime
21418loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
21419is specified. This option conflicts with @option{-mslow-flash-data}.
21420
21421@item -mfix-cortex-m3-ldrd
21422@opindex mfix-cortex-m3-ldrd
21423Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
21424with overlapping destination and base registers are used.  This option avoids
21425generating these instructions.  This option is enabled by default when
21426@option{-mcpu=cortex-m3} is specified.
21427
21428@item -mfix-cortex-a57-aes-1742098
21429@itemx -mno-fix-cortex-a57-aes-1742098
21430@itemx -mfix-cortex-a72-aes-1655431
21431@itemx -mno-fix-cortex-a72-aes-1655431
21432Enable (disable) mitigation for an erratum on Cortex-A57 and
21433Cortex-A72 that affects the AES cryptographic instructions.  This
21434option is enabled by default when either @option{-mcpu=cortex-a57} or
21435@option{-mcpu=cortex-a72} is specified.
21436
21437@item -munaligned-access
21438@itemx -mno-unaligned-access
21439@opindex munaligned-access
21440@opindex mno-unaligned-access
21441Enables (or disables) reading and writing of 16- and 32- bit values
21442from addresses that are not 16- or 32- bit aligned.  By default
21443unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
21444ARMv8-M Baseline architectures, and enabled for all other
21445architectures.  If unaligned access is not enabled then words in packed
21446data structures are accessed a byte at a time.
21447
21448The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
21449generated object file to either true or false, depending upon the
21450setting of this option.  If unaligned access is enabled then the
21451preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
21452defined.
21453
21454@item -mneon-for-64bits
21455@opindex mneon-for-64bits
21456This option is deprecated and has no effect.
21457
21458@item -mslow-flash-data
21459@opindex mslow-flash-data
21460Assume loading data from flash is slower than fetching instruction.
21461Therefore literal load is minimized for better performance.
21462This option is only supported when compiling for ARMv7 M-profile and
21463off by default. It conflicts with @option{-mword-relocations}.
21464
21465@item -masm-syntax-unified
21466@opindex masm-syntax-unified
21467Assume inline assembler is using unified asm syntax.  The default is
21468currently off which implies divided syntax.  This option has no impact
21469on Thumb2. However, this may change in future releases of GCC.
21470Divided syntax should be considered deprecated.
21471
21472@item -mrestrict-it
21473@opindex mrestrict-it
21474Restricts generation of IT blocks to conform to the rules of ARMv8-A.
21475IT blocks can only contain a single 16-bit instruction from a select
21476set of instructions. This option is on by default for ARMv8-A Thumb mode.
21477
21478@item -mprint-tune-info
21479@opindex mprint-tune-info
21480Print CPU tuning information as comment in assembler file.  This is
21481an option used only for regression testing of the compiler and not
21482intended for ordinary use in compiling code.  This option is disabled
21483by default.
21484
21485@item -mverbose-cost-dump
21486@opindex mverbose-cost-dump
21487Enable verbose cost model dumping in the debug dump files.  This option is
21488provided for use in debugging the compiler.
21489
21490@item -mpure-code
21491@opindex mpure-code
21492Do not allow constant data to be placed in code sections.
21493Additionally, when compiling for ELF object format give all text sections the
21494ELF processor-specific section attribute @code{SHF_ARM_PURECODE}.  This option
21495is only available when generating non-pic code for M-profile targets.
21496
21497@item -mcmse
21498@opindex mcmse
21499Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
21500Development Tools Engineering Specification", which can be found on
21501@url{https://developer.arm.com/documentation/ecm0359818/latest/}.
21502
21503@item -mfix-cmse-cve-2021-35465
21504@opindex mfix-cmse-cve-2021-35465
21505Mitigate against a potential security issue with the @code{VLLDM} instruction
21506in some M-profile devices when using CMSE (CVE-2021-365465).  This option is
21507enabled by default when the option @option{-mcpu=} is used with
21508@code{cortex-m33}, @code{cortex-m35p} or @code{cortex-m55}.  The option
21509@option{-mno-fix-cmse-cve-2021-35465} can be used to disable the mitigation.
21510
21511@item -mstack-protector-guard=@var{guard}
21512@itemx -mstack-protector-guard-offset=@var{offset}
21513@opindex mstack-protector-guard
21514@opindex mstack-protector-guard-offset
21515Generate stack protection code using canary at @var{guard}.  Supported
21516locations are @samp{global} for a global canary or @samp{tls} for a
21517canary accessible via the TLS register. The option
21518@option{-mstack-protector-guard-offset=} is for use with
21519@option{-fstack-protector-guard=tls} and not for use in user-land code.
21520
21521@item -mfdpic
21522@itemx -mno-fdpic
21523@opindex mfdpic
21524@opindex mno-fdpic
21525Select the FDPIC ABI, which uses 64-bit function descriptors to
21526represent pointers to functions.  When the compiler is configured for
21527@code{arm-*-uclinuxfdpiceabi} targets, this option is on by default
21528and implies @option{-fPIE} if none of the PIC/PIE-related options is
21529provided.  On other targets, it only enables the FDPIC-specific code
21530generation features, and the user should explicitly provide the
21531PIC/PIE-related options as needed.
21532
21533Note that static linking is not supported because it would still
21534involve the dynamic linker when the program self-relocates.  If such
21535behavior is acceptable, use -static and -Wl,-dynamic-linker options.
21536
21537The opposite @option{-mno-fdpic} option is useful (and required) to
21538build the Linux kernel using the same (@code{arm-*-uclinuxfdpiceabi})
21539toolchain as the one used to build the userland programs.
21540
21541@end table
21542
21543@node AVR Options
21544@subsection AVR Options
21545@cindex AVR Options
21546
21547These options are defined for AVR implementations:
21548
21549@table @gcctabopt
21550@item -mmcu=@var{mcu}
21551@opindex mmcu
21552Specify Atmel AVR instruction set architectures (ISA) or MCU type.
21553
21554The default for this option is@tie{}@samp{avr2}.
21555
21556GCC supports the following AVR devices and ISAs:
21557
21558@include avr-mmcu.texi
21559
21560@item -mabsdata
21561@opindex mabsdata
21562
21563Assume that all data in static storage can be accessed by LDS / STS
21564instructions.  This option has only an effect on reduced Tiny devices like
21565ATtiny40.  See also the @code{absdata}
21566@ref{AVR Variable Attributes,variable attribute}.
21567
21568@item -maccumulate-args
21569@opindex maccumulate-args
21570Accumulate outgoing function arguments and acquire/release the needed
21571stack space for outgoing function arguments once in function
21572prologue/epilogue.  Without this option, outgoing arguments are pushed
21573before calling a function and popped afterwards.
21574
21575Popping the arguments after the function call can be expensive on
21576AVR so that accumulating the stack space might lead to smaller
21577executables because arguments need not be removed from the
21578stack after such a function call.
21579
21580This option can lead to reduced code size for functions that perform
21581several calls to functions that get their arguments on the stack like
21582calls to printf-like functions.
21583
21584@item -mbranch-cost=@var{cost}
21585@opindex mbranch-cost
21586Set the branch costs for conditional branch instructions to
21587@var{cost}.  Reasonable values for @var{cost} are small, non-negative
21588integers. The default branch cost is 0.
21589
21590@item -mcall-prologues
21591@opindex mcall-prologues
21592Functions prologues/epilogues are expanded as calls to appropriate
21593subroutines.  Code size is smaller.
21594
21595@item -mdouble=@var{bits}
21596@itemx -mlong-double=@var{bits}
21597@opindex mdouble
21598@opindex mlong-double
21599Set the size (in bits) of the @code{double} or @code{long double} type,
21600respectively.  Possible values for @var{bits} are 32 and 64.
21601Whether or not a specific value for @var{bits} is allowed depends on
21602the @code{--with-double=} and @code{--with-long-double=}
21603@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure options}},
21604and the same applies for the default values of the options.
21605
21606@item -mgas-isr-prologues
21607@opindex mgas-isr-prologues
21608Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
21609instruction supported by GNU Binutils.
21610If this option is on, the feature can still be disabled for individual
21611ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
21612function attribute.  This feature is activated per default
21613if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
21614and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
21615
21616@item -mint8
21617@opindex mint8
21618Assume @code{int} to be 8-bit integer.  This affects the sizes of all types: a
21619@code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
21620and @code{long long} is 4 bytes.  Please note that this option does not
21621conform to the C standards, but it results in smaller code
21622size.
21623
21624@item -mmain-is-OS_task
21625@opindex mmain-is-OS_task
21626Do not save registers in @code{main}.  The effect is the same like
21627attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
21628to @code{main}. It is activated per default if optimization is on.
21629
21630@item -mn-flash=@var{num}
21631@opindex mn-flash
21632Assume that the flash memory has a size of 
21633@var{num} times 64@tie{}KiB.
21634
21635@item -mno-interrupts
21636@opindex mno-interrupts
21637Generated code is not compatible with hardware interrupts.
21638Code size is smaller.
21639
21640@item -mrelax
21641@opindex mrelax
21642Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
21643@code{RCALL} resp.@: @code{RJMP} instruction if applicable.
21644Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
21645the assembler's command line and the @option{--relax} option to the
21646linker's command line.
21647
21648Jump relaxing is performed by the linker because jump offsets are not
21649known before code is located. Therefore, the assembler code generated by the
21650compiler is the same, but the instructions in the executable may
21651differ from instructions in the assembler code.
21652
21653Relaxing must be turned on if linker stubs are needed, see the
21654section on @code{EIND} and linker stubs below.
21655
21656@item -mrmw
21657@opindex mrmw
21658Assume that the device supports the Read-Modify-Write
21659instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
21660
21661@item -mshort-calls
21662@opindex mshort-calls
21663
21664Assume that @code{RJMP} and @code{RCALL} can target the whole
21665program memory.
21666
21667This option is used internally for multilib selection.  It is
21668not an optimization option, and you don't need to set it by hand.
21669
21670@item -msp8
21671@opindex msp8
21672Treat the stack pointer register as an 8-bit register,
21673i.e.@: assume the high byte of the stack pointer is zero.
21674In general, you don't need to set this option by hand.
21675
21676This option is used internally by the compiler to select and
21677build multilibs for architectures @code{avr2} and @code{avr25}.
21678These architectures mix devices with and without @code{SPH}.
21679For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
21680the compiler driver adds or removes this option from the compiler
21681proper's command line, because the compiler then knows if the device
21682or architecture has an 8-bit stack pointer and thus no @code{SPH}
21683register or not.
21684
21685@item -mstrict-X
21686@opindex mstrict-X
21687Use address register @code{X} in a way proposed by the hardware.  This means
21688that @code{X} is only used in indirect, post-increment or
21689pre-decrement addressing.
21690
21691Without this option, the @code{X} register may be used in the same way
21692as @code{Y} or @code{Z} which then is emulated by additional
21693instructions.  
21694For example, loading a value with @code{X+const} addressing with a
21695small non-negative @code{const < 64} to a register @var{Rn} is
21696performed as
21697
21698@example
21699adiw r26, const   ; X += const
21700ld   @var{Rn}, X        ; @var{Rn} = *X
21701sbiw r26, const   ; X -= const
21702@end example
21703
21704@item -mtiny-stack
21705@opindex mtiny-stack
21706Only change the lower 8@tie{}bits of the stack pointer.
21707
21708@item -mfract-convert-truncate
21709@opindex mfract-convert-truncate
21710Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
21711
21712@item -nodevicelib
21713@opindex nodevicelib
21714Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
21715
21716@item -nodevicespecs
21717@opindex nodevicespecs
21718Don't add @option{-specs=device-specs/specs-@var{mcu}} to the compiler driver's
21719command line.  The user takes responsibility for supplying the sub-processes
21720like compiler proper, assembler and linker with appropriate command line
21721options.  This means that the user has to supply her private device specs
21722file by means of @option{-specs=@var{path-to-specs-file}}.  There is no
21723more need for option @option{-mmcu=@var{mcu}}.
21724
21725This option can also serve as a replacement for the older way of
21726specifying custom device-specs files that needed @option{-B @var{some-path}} to point to a directory
21727which contains a folder named @code{device-specs} which contains a specs file named
21728@code{specs-@var{mcu}}, where @var{mcu} was specified by @option{-mmcu=@var{mcu}}.
21729
21730@item -Waddr-space-convert
21731@opindex Waddr-space-convert
21732@opindex Wno-addr-space-convert
21733Warn about conversions between address spaces in the case where the
21734resulting address space is not contained in the incoming address space.
21735
21736@item -Wmisspelled-isr
21737@opindex Wmisspelled-isr
21738@opindex Wno-misspelled-isr
21739Warn if the ISR is misspelled, i.e.@: without __vector prefix.
21740Enabled by default.
21741@end table
21742
21743@subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
21744@cindex @code{EIND}
21745Pointers in the implementation are 16@tie{}bits wide.
21746The address of a function or label is represented as word address so
21747that indirect jumps and calls can target any code address in the
21748range of 64@tie{}Ki words.
21749
21750In order to facilitate indirect jump on devices with more than 128@tie{}Ki
21751bytes of program memory space, there is a special function register called
21752@code{EIND} that serves as most significant part of the target address
21753when @code{EICALL} or @code{EIJMP} instructions are used.
21754
21755Indirect jumps and calls on these devices are handled as follows by
21756the compiler and are subject to some limitations:
21757
21758@itemize @bullet
21759
21760@item
21761The compiler never sets @code{EIND}.
21762
21763@item
21764The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
21765instructions or might read @code{EIND} directly in order to emulate an
21766indirect call/jump by means of a @code{RET} instruction.
21767
21768@item
21769The compiler assumes that @code{EIND} never changes during the startup
21770code or during the application. In particular, @code{EIND} is not
21771saved/restored in function or interrupt service routine
21772prologue/epilogue.
21773
21774@item
21775For indirect calls to functions and computed goto, the linker
21776generates @emph{stubs}. Stubs are jump pads sometimes also called
21777@emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
21778The stub contains a direct jump to the desired address.
21779
21780@item
21781Linker relaxation must be turned on so that the linker generates
21782the stubs correctly in all situations. See the compiler option
21783@option{-mrelax} and the linker option @option{--relax}.
21784There are corner cases where the linker is supposed to generate stubs
21785but aborts without relaxation and without a helpful error message.
21786
21787@item
21788The default linker script is arranged for code with @code{EIND = 0}.
21789If code is supposed to work for a setup with @code{EIND != 0}, a custom
21790linker script has to be used in order to place the sections whose
21791name start with @code{.trampolines} into the segment where @code{EIND}
21792points to.
21793
21794@item
21795The startup code from libgcc never sets @code{EIND}.
21796Notice that startup code is a blend of code from libgcc and AVR-LibC.
21797For the impact of AVR-LibC on @code{EIND}, see the
21798@w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
21799
21800@item
21801It is legitimate for user-specific startup code to set up @code{EIND}
21802early, for example by means of initialization code located in
21803section @code{.init3}. Such code runs prior to general startup code
21804that initializes RAM and calls constructors, but after the bit
21805of startup code from AVR-LibC that sets @code{EIND} to the segment
21806where the vector table is located.
21807@example
21808#include <avr/io.h>
21809
21810static void
21811__attribute__((section(".init3"),naked,used,no_instrument_function))
21812init3_set_eind (void)
21813@{
21814  __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
21815                  "out %i0,r24" :: "n" (&EIND) : "r24","memory");
21816@}
21817@end example
21818
21819@noindent
21820The @code{__trampolines_start} symbol is defined in the linker script.
21821
21822@item
21823Stubs are generated automatically by the linker if
21824the following two conditions are met:
21825@itemize @minus
21826
21827@item The address of a label is taken by means of the @code{gs} modifier
21828(short for @emph{generate stubs}) like so:
21829@example
21830LDI r24, lo8(gs(@var{func}))
21831LDI r25, hi8(gs(@var{func}))
21832@end example
21833@item The final location of that label is in a code segment
21834@emph{outside} the segment where the stubs are located.
21835@end itemize
21836
21837@item
21838The compiler emits such @code{gs} modifiers for code labels in the
21839following situations:
21840@itemize @minus
21841@item Taking address of a function or code label.
21842@item Computed goto.
21843@item If prologue-save function is used, see @option{-mcall-prologues}
21844command-line option.
21845@item Switch/case dispatch tables. If you do not want such dispatch
21846tables you can specify the @option{-fno-jump-tables} command-line option.
21847@item C and C++ constructors/destructors called during startup/shutdown.
21848@item If the tools hit a @code{gs()} modifier explained above.
21849@end itemize
21850
21851@item
21852Jumping to non-symbolic addresses like so is @emph{not} supported:
21853
21854@example
21855int main (void)
21856@{
21857    /* Call function at word address 0x2 */
21858    return ((int(*)(void)) 0x2)();
21859@}
21860@end example
21861
21862Instead, a stub has to be set up, i.e.@: the function has to be called
21863through a symbol (@code{func_4} in the example):
21864
21865@example
21866int main (void)
21867@{
21868    extern int func_4 (void);
21869
21870    /* Call function at byte address 0x4 */
21871    return func_4();
21872@}
21873@end example
21874
21875and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
21876Alternatively, @code{func_4} can be defined in the linker script.
21877@end itemize
21878
21879@subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
21880@cindex @code{RAMPD}
21881@cindex @code{RAMPX}
21882@cindex @code{RAMPY}
21883@cindex @code{RAMPZ}
21884Some AVR devices support memories larger than the 64@tie{}KiB range
21885that can be accessed with 16-bit pointers.  To access memory locations
21886outside this 64@tie{}KiB range, the content of a @code{RAMP}
21887register is used as high part of the address:
21888The @code{X}, @code{Y}, @code{Z} address register is concatenated
21889with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
21890register, respectively, to get a wide address. Similarly,
21891@code{RAMPD} is used together with direct addressing.
21892
21893@itemize
21894@item
21895The startup code initializes the @code{RAMP} special function
21896registers with zero.
21897
21898@item
21899If a @ref{AVR Named Address Spaces,named address space} other than
21900generic or @code{__flash} is used, then @code{RAMPZ} is set
21901as needed before the operation.
21902
21903@item
21904If the device supports RAM larger than 64@tie{}KiB and the compiler
21905needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
21906is reset to zero after the operation.
21907
21908@item
21909If the device comes with a specific @code{RAMP} register, the ISR
21910prologue/epilogue saves/restores that SFR and initializes it with
21911zero in case the ISR code might (implicitly) use it.
21912
21913@item
21914RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
21915If you use inline assembler to read from locations outside the
2191616-bit address range and change one of the @code{RAMP} registers,
21917you must reset it to zero after the access.
21918
21919@end itemize
21920
21921@subsubsection AVR Built-in Macros
21922
21923GCC defines several built-in macros so that the user code can test
21924for the presence or absence of features.  Almost any of the following
21925built-in macros are deduced from device capabilities and thus
21926triggered by the @option{-mmcu=} command-line option.
21927
21928For even more AVR-specific built-in macros see
21929@ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
21930
21931@table @code
21932
21933@item __AVR_ARCH__
21934Build-in macro that resolves to a decimal number that identifies the
21935architecture and depends on the @option{-mmcu=@var{mcu}} option.
21936Possible values are:
21937
21938@code{2}, @code{25}, @code{3}, @code{31}, @code{35},
21939@code{4}, @code{5}, @code{51}, @code{6}
21940
21941for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
21942@code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
21943
21944respectively and
21945
21946@code{100},
21947@code{102}, @code{103}, @code{104},
21948@code{105}, @code{106}, @code{107}
21949
21950for @var{mcu}=@code{avrtiny},
21951@code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
21952@code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
21953If @var{mcu} specifies a device, this built-in macro is set
21954accordingly. For example, with @option{-mmcu=atmega8} the macro is
21955defined to @code{4}.
21956
21957@item __AVR_@var{Device}__
21958Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
21959the device's name. For example, @option{-mmcu=atmega8} defines the
21960built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
21961@code{__AVR_ATtiny261A__}, etc.
21962
21963The built-in macros' names follow
21964the scheme @code{__AVR_@var{Device}__} where @var{Device} is
21965the device name as from the AVR user manual. The difference between
21966@var{Device} in the built-in macro and @var{device} in
21967@option{-mmcu=@var{device}} is that the latter is always lowercase.
21968
21969If @var{device} is not a device but only a core architecture like
21970@samp{avr51}, this macro is not defined.
21971
21972@item __AVR_DEVICE_NAME__
21973Setting @option{-mmcu=@var{device}} defines this built-in macro to
21974the device's name. For example, with @option{-mmcu=atmega8} the macro
21975is defined to @code{atmega8}.
21976
21977If @var{device} is not a device but only a core architecture like
21978@samp{avr51}, this macro is not defined.
21979
21980@item __AVR_XMEGA__
21981The device / architecture belongs to the XMEGA family of devices.
21982
21983@item __AVR_HAVE_ELPM__
21984The device has the @code{ELPM} instruction.
21985
21986@item __AVR_HAVE_ELPMX__
21987The device has the @code{ELPM R@var{n},Z} and @code{ELPM
21988R@var{n},Z+} instructions.
21989
21990@item __AVR_HAVE_MOVW__
21991The device has the @code{MOVW} instruction to perform 16-bit
21992register-register moves.
21993
21994@item __AVR_HAVE_LPMX__
21995The device has the @code{LPM R@var{n},Z} and
21996@code{LPM R@var{n},Z+} instructions.
21997
21998@item __AVR_HAVE_MUL__
21999The device has a hardware multiplier. 
22000
22001@item __AVR_HAVE_JMP_CALL__
22002The device has the @code{JMP} and @code{CALL} instructions.
22003This is the case for devices with more than 8@tie{}KiB of program
22004memory.
22005
22006@item __AVR_HAVE_EIJMP_EICALL__
22007@itemx __AVR_3_BYTE_PC__
22008The device has the @code{EIJMP} and @code{EICALL} instructions.
22009This is the case for devices with more than 128@tie{}KiB of program memory.
22010This also means that the program counter
22011(PC) is 3@tie{}bytes wide.
22012
22013@item __AVR_2_BYTE_PC__
22014The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
22015with up to 128@tie{}KiB of program memory.
22016
22017@item __AVR_HAVE_8BIT_SP__
22018@itemx __AVR_HAVE_16BIT_SP__
22019The stack pointer (SP) register is treated as 8-bit respectively
2202016-bit register by the compiler.
22021The definition of these macros is affected by @option{-mtiny-stack}.
22022
22023@item __AVR_HAVE_SPH__
22024@itemx __AVR_SP8__
22025The device has the SPH (high part of stack pointer) special function
22026register or has an 8-bit stack pointer, respectively.
22027The definition of these macros is affected by @option{-mmcu=} and
22028in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
22029by @option{-msp8}.
22030
22031@item __AVR_HAVE_RAMPD__
22032@itemx __AVR_HAVE_RAMPX__
22033@itemx __AVR_HAVE_RAMPY__
22034@itemx __AVR_HAVE_RAMPZ__
22035The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
22036@code{RAMPZ} special function register, respectively.
22037
22038@item __NO_INTERRUPTS__
22039This macro reflects the @option{-mno-interrupts} command-line option.
22040
22041@item __AVR_ERRATA_SKIP__
22042@itemx __AVR_ERRATA_SKIP_JMP_CALL__
22043Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
22044instructions because of a hardware erratum.  Skip instructions are
22045@code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
22046The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
22047set.
22048
22049@item __AVR_ISA_RMW__
22050The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
22051
22052@item __AVR_SFR_OFFSET__=@var{offset}
22053Instructions that can address I/O special function registers directly
22054like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
22055address as if addressed by an instruction to access RAM like @code{LD}
22056or @code{STS}. This offset depends on the device architecture and has
22057to be subtracted from the RAM address in order to get the
22058respective I/O@tie{}address.
22059
22060@item __AVR_SHORT_CALLS__
22061The @option{-mshort-calls} command line option is set.
22062
22063@item __AVR_PM_BASE_ADDRESS__=@var{addr}
22064Some devices support reading from flash memory by means of @code{LD*}
22065instructions.  The flash memory is seen in the data address space
22066at an offset of @code{__AVR_PM_BASE_ADDRESS__}.  If this macro
22067is not defined, this feature is not available.  If defined,
22068the address space is linear and there is no need to put
22069@code{.rodata} into RAM.  This is handled by the default linker
22070description file, and is currently available for
22071@code{avrtiny} and @code{avrxmega3}.  Even more convenient,
22072there is no need to use address spaces like @code{__flash} or
22073features like attribute @code{progmem} and @code{pgm_read_*}.
22074
22075@item __WITH_AVRLIBC__
22076The compiler is configured to be used together with AVR-Libc.
22077See the @option{--with-avrlibc} configure option.
22078
22079@item __HAVE_DOUBLE_MULTILIB__
22080Defined if @option{-mdouble=} acts as a multilib option.
22081
22082@item __HAVE_DOUBLE32__
22083@itemx __HAVE_DOUBLE64__
22084Defined if the compiler supports 32-bit double resp. 64-bit double.
22085The actual layout is specified by option @option{-mdouble=}.
22086
22087@item __DEFAULT_DOUBLE__
22088The size in bits of @code{double} if @option{-mdouble=} is not set.
22089To test the layout of @code{double} in a program, use the built-in
22090macro @code{__SIZEOF_DOUBLE__}.
22091
22092@item __HAVE_LONG_DOUBLE32__
22093@itemx __HAVE_LONG_DOUBLE64__
22094@itemx __HAVE_LONG_DOUBLE_MULTILIB__
22095@itemx __DEFAULT_LONG_DOUBLE__
22096Same as above, but for @code{long double} instead of @code{double}.
22097
22098@item __WITH_DOUBLE_COMPARISON__
22099Reflects the @code{--with-double-comparison=@{tristate|bool|libf7@}}
22100@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}
22101and is defined to @code{2} or @code{3}.
22102
22103@item __WITH_LIBF7_LIBGCC__
22104@itemx __WITH_LIBF7_MATH__
22105@itemx __WITH_LIBF7_MATH_SYMBOLS__
22106Reflects the @code{--with-libf7=@{libgcc|math|math-symbols@}}
22107@w{@uref{https://gcc.gnu.org/install/configure.html#avr,configure option}}.
22108
22109@end table
22110
22111@node Blackfin Options
22112@subsection Blackfin Options
22113@cindex Blackfin Options
22114
22115@table @gcctabopt
22116@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
22117@opindex mcpu=
22118Specifies the name of the target Blackfin processor.  Currently, @var{cpu}
22119can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
22120@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
22121@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
22122@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
22123@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
22124@samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
22125@samp{bf561}, @samp{bf592}.
22126
22127The optional @var{sirevision} specifies the silicon revision of the target
22128Blackfin processor.  Any workarounds available for the targeted silicon revision
22129are enabled.  If @var{sirevision} is @samp{none}, no workarounds are enabled.
22130If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
22131are enabled.  The @code{__SILICON_REVISION__} macro is defined to two
22132hexadecimal digits representing the major and minor numbers in the silicon
22133revision.  If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
22134is not defined.  If @var{sirevision} is @samp{any}, the
22135@code{__SILICON_REVISION__} is defined to be @code{0xffff}.
22136If this optional @var{sirevision} is not used, GCC assumes the latest known
22137silicon revision of the targeted Blackfin processor.
22138
22139GCC defines a preprocessor macro for the specified @var{cpu}.
22140For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
22141provided by libgloss to be linked in if @option{-msim} is not given.
22142
22143Without this option, @samp{bf532} is used as the processor by default.
22144
22145Note that support for @samp{bf561} is incomplete.  For @samp{bf561},
22146only the preprocessor macro is defined.
22147
22148@item -msim
22149@opindex msim
22150Specifies that the program will be run on the simulator.  This causes
22151the simulator BSP provided by libgloss to be linked in.  This option
22152has effect only for @samp{bfin-elf} toolchain.
22153Certain other options, such as @option{-mid-shared-library} and
22154@option{-mfdpic}, imply @option{-msim}.
22155
22156@item -momit-leaf-frame-pointer
22157@opindex momit-leaf-frame-pointer
22158Don't keep the frame pointer in a register for leaf functions.  This
22159avoids the instructions to save, set up and restore frame pointers and
22160makes an extra register available in leaf functions.
22161
22162@item -mspecld-anomaly
22163@opindex mspecld-anomaly
22164When enabled, the compiler ensures that the generated code does not
22165contain speculative loads after jump instructions. If this option is used,
22166@code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
22167
22168@item -mno-specld-anomaly
22169@opindex mno-specld-anomaly
22170@opindex mspecld-anomaly
22171Don't generate extra code to prevent speculative loads from occurring.
22172
22173@item -mcsync-anomaly
22174@opindex mcsync-anomaly
22175When enabled, the compiler ensures that the generated code does not
22176contain CSYNC or SSYNC instructions too soon after conditional branches.
22177If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
22178
22179@item -mno-csync-anomaly
22180@opindex mno-csync-anomaly
22181@opindex mcsync-anomaly
22182Don't generate extra code to prevent CSYNC or SSYNC instructions from
22183occurring too soon after a conditional branch.
22184
22185@item -mlow64k
22186@opindex mlow64k
22187When enabled, the compiler is free to take advantage of the knowledge that
22188the entire program fits into the low 64k of memory.
22189
22190@item -mno-low64k
22191@opindex mno-low64k
22192Assume that the program is arbitrarily large.  This is the default.
22193
22194@item -mstack-check-l1
22195@opindex mstack-check-l1
22196Do stack checking using information placed into L1 scratchpad memory by the
22197uClinux kernel.
22198
22199@item -mid-shared-library
22200@opindex mid-shared-library
22201Generate code that supports shared libraries via the library ID method.
22202This allows for execute in place and shared libraries in an environment
22203without virtual memory management.  This option implies @option{-fPIC}.
22204With a @samp{bfin-elf} target, this option implies @option{-msim}.
22205
22206@item -mno-id-shared-library
22207@opindex mno-id-shared-library
22208@opindex mid-shared-library
22209Generate code that doesn't assume ID-based shared libraries are being used.
22210This is the default.
22211
22212@item -mleaf-id-shared-library
22213@opindex mleaf-id-shared-library
22214Generate code that supports shared libraries via the library ID method,
22215but assumes that this library or executable won't link against any other
22216ID shared libraries.  That allows the compiler to use faster code for jumps
22217and calls.
22218
22219@item -mno-leaf-id-shared-library
22220@opindex mno-leaf-id-shared-library
22221@opindex mleaf-id-shared-library
22222Do not assume that the code being compiled won't link against any ID shared
22223libraries.  Slower code is generated for jump and call insns.
22224
22225@item -mshared-library-id=n
22226@opindex mshared-library-id
22227Specifies the identification number of the ID-based shared library being
22228compiled.  Specifying a value of 0 generates more compact code; specifying
22229other values forces the allocation of that number to the current
22230library but is no more space- or time-efficient than omitting this option.
22231
22232@item -msep-data
22233@opindex msep-data
22234Generate code that allows the data segment to be located in a different
22235area of memory from the text segment.  This allows for execute in place in
22236an environment without virtual memory management by eliminating relocations
22237against the text section.
22238
22239@item -mno-sep-data
22240@opindex mno-sep-data
22241@opindex msep-data
22242Generate code that assumes that the data segment follows the text segment.
22243This is the default.
22244
22245@item -mlong-calls
22246@itemx -mno-long-calls
22247@opindex mlong-calls
22248@opindex mno-long-calls
22249Tells the compiler to perform function calls by first loading the
22250address of the function into a register and then performing a subroutine
22251call on this register.  This switch is needed if the target function
22252lies outside of the 24-bit addressing range of the offset-based
22253version of subroutine call instruction.
22254
22255This feature is not enabled by default.  Specifying
22256@option{-mno-long-calls} restores the default behavior.  Note these
22257switches have no effect on how the compiler generates code to handle
22258function calls via function pointers.
22259
22260@item -mfast-fp
22261@opindex mfast-fp
22262Link with the fast floating-point library. This library relaxes some of
22263the IEEE floating-point standard's rules for checking inputs against
22264Not-a-Number (NAN), in the interest of performance.
22265
22266@item -minline-plt
22267@opindex minline-plt
22268Enable inlining of PLT entries in function calls to functions that are
22269not known to bind locally.  It has no effect without @option{-mfdpic}.
22270
22271@item -mmulticore
22272@opindex mmulticore
22273Build a standalone application for multicore Blackfin processors. 
22274This option causes proper start files and link scripts supporting 
22275multicore to be used, and defines the macro @code{__BFIN_MULTICORE}. 
22276It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. 
22277
22278This option can be used with @option{-mcorea} or @option{-mcoreb}, which
22279selects the one-application-per-core programming model.  Without
22280@option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
22281programming model is used. In this model, the main function of Core B
22282should be named as @code{coreb_main}.
22283
22284If this option is not used, the single-core application programming
22285model is used.
22286
22287@item -mcorea
22288@opindex mcorea
22289Build a standalone application for Core A of BF561 when using
22290the one-application-per-core programming model. Proper start files
22291and link scripts are used to support Core A, and the macro
22292@code{__BFIN_COREA} is defined.
22293This option can only be used in conjunction with @option{-mmulticore}.
22294
22295@item -mcoreb
22296@opindex mcoreb
22297Build a standalone application for Core B of BF561 when using
22298the one-application-per-core programming model. Proper start files
22299and link scripts are used to support Core B, and the macro
22300@code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
22301should be used instead of @code{main}. 
22302This option can only be used in conjunction with @option{-mmulticore}.
22303
22304@item -msdram
22305@opindex msdram
22306Build a standalone application for SDRAM. Proper start files and
22307link scripts are used to put the application into SDRAM, and the macro
22308@code{__BFIN_SDRAM} is defined.
22309The loader should initialize SDRAM before loading the application.
22310
22311@item -micplb
22312@opindex micplb
22313Assume that ICPLBs are enabled at run time.  This has an effect on certain
22314anomaly workarounds.  For Linux targets, the default is to assume ICPLBs
22315are enabled; for standalone applications the default is off.
22316@end table
22317
22318@node C6X Options
22319@subsection C6X Options
22320@cindex C6X Options
22321
22322@table @gcctabopt
22323@item -march=@var{name}
22324@opindex march
22325This specifies the name of the target architecture.  GCC uses this
22326name to determine what kind of instructions it can emit when generating
22327assembly code.  Permissible names are: @samp{c62x},
22328@samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
22329
22330@item -mbig-endian
22331@opindex mbig-endian
22332Generate code for a big-endian target.
22333
22334@item -mlittle-endian
22335@opindex mlittle-endian
22336Generate code for a little-endian target.  This is the default.
22337
22338@item -msim
22339@opindex msim
22340Choose startup files and linker script suitable for the simulator.
22341
22342@item -msdata=default
22343@opindex msdata=default
22344Put small global and static data in the @code{.neardata} section,
22345which is pointed to by register @code{B14}.  Put small uninitialized
22346global and static data in the @code{.bss} section, which is adjacent
22347to the @code{.neardata} section.  Put small read-only data into the
22348@code{.rodata} section.  The corresponding sections used for large
22349pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
22350
22351@item -msdata=all
22352@opindex msdata=all
22353Put all data, not just small objects, into the sections reserved for
22354small data, and use addressing relative to the @code{B14} register to
22355access them.
22356
22357@item -msdata=none
22358@opindex msdata=none
22359Make no use of the sections reserved for small data, and use absolute
22360addresses to access all data.  Put all initialized global and static
22361data in the @code{.fardata} section, and all uninitialized data in the
22362@code{.far} section.  Put all constant data into the @code{.const}
22363section.
22364@end table
22365
22366@node CRIS Options
22367@subsection CRIS Options
22368@cindex CRIS Options
22369
22370These options are defined specifically for the CRIS ports.
22371
22372@table @gcctabopt
22373@item -march=@var{architecture-type}
22374@itemx -mcpu=@var{architecture-type}
22375@opindex march
22376@opindex mcpu
22377Generate code for the specified architecture.  The choices for
22378@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
22379respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
22380Default is @samp{v0}.
22381
22382@item -mtune=@var{architecture-type}
22383@opindex mtune
22384Tune to @var{architecture-type} everything applicable about the generated
22385code, except for the ABI and the set of available instructions.  The
22386choices for @var{architecture-type} are the same as for
22387@option{-march=@var{architecture-type}}.
22388
22389@item -mmax-stack-frame=@var{n}
22390@opindex mmax-stack-frame
22391Warn when the stack frame of a function exceeds @var{n} bytes.
22392
22393@item -metrax4
22394@itemx -metrax100
22395@opindex metrax4
22396@opindex metrax100
22397The options @option{-metrax4} and @option{-metrax100} are synonyms for
22398@option{-march=v3} and @option{-march=v8} respectively.
22399
22400@item -mmul-bug-workaround
22401@itemx -mno-mul-bug-workaround
22402@opindex mmul-bug-workaround
22403@opindex mno-mul-bug-workaround
22404Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
22405models where it applies.  This option is disabled by default.
22406
22407@item -mpdebug
22408@opindex mpdebug
22409Enable CRIS-specific verbose debug-related information in the assembly
22410code.  This option also has the effect of turning off the @samp{#NO_APP}
22411formatted-code indicator to the assembler at the beginning of the
22412assembly file.
22413
22414@item -mcc-init
22415@opindex mcc-init
22416Do not use condition-code results from previous instruction; always emit
22417compare and test instructions before use of condition codes.
22418
22419@item -mno-side-effects
22420@opindex mno-side-effects
22421@opindex mside-effects
22422Do not emit instructions with side effects in addressing modes other than
22423post-increment.
22424
22425@item -mstack-align
22426@itemx -mno-stack-align
22427@itemx -mdata-align
22428@itemx -mno-data-align
22429@itemx -mconst-align
22430@itemx -mno-const-align
22431@opindex mstack-align
22432@opindex mno-stack-align
22433@opindex mdata-align
22434@opindex mno-data-align
22435@opindex mconst-align
22436@opindex mno-const-align
22437These options (@samp{no-} options) arrange (eliminate arrangements) for the
22438stack frame, individual data and constants to be aligned for the maximum
22439single data access size for the chosen CPU model.  The default is to
22440arrange for 32-bit alignment.  ABI details such as structure layout are
22441not affected by these options.
22442
22443@item -m32-bit
22444@itemx -m16-bit
22445@itemx -m8-bit
22446@opindex m32-bit
22447@opindex m16-bit
22448@opindex m8-bit
22449Similar to the stack- data- and const-align options above, these options
22450arrange for stack frame, writable data and constants to all be 32-bit,
2245116-bit or 8-bit aligned.  The default is 32-bit alignment.
22452
22453@item -mno-prologue-epilogue
22454@itemx -mprologue-epilogue
22455@opindex mno-prologue-epilogue
22456@opindex mprologue-epilogue
22457With @option{-mno-prologue-epilogue}, the normal function prologue and
22458epilogue which set up the stack frame are omitted and no return
22459instructions or return sequences are generated in the code.  Use this
22460option only together with visual inspection of the compiled code: no
22461warnings or errors are generated when call-saved registers must be saved,
22462or storage for local variables needs to be allocated.
22463
22464@item -melf
22465@opindex melf
22466Legacy no-op option.
22467
22468@item -sim
22469@opindex sim
22470This option arranges
22471to link with input-output functions from a simulator library.  Code,
22472initialized data and zero-initialized data are allocated consecutively.
22473
22474@item -sim2
22475@opindex sim2
22476Like @option{-sim}, but pass linker options to locate initialized data at
224770x40000000 and zero-initialized data at 0x80000000.
22478@end table
22479
22480@node CR16 Options
22481@subsection CR16 Options
22482@cindex CR16 Options
22483
22484These options are defined specifically for the CR16 ports.
22485
22486@table @gcctabopt
22487
22488@item -mmac
22489@opindex mmac
22490Enable the use of multiply-accumulate instructions. Disabled by default.
22491
22492@item -mcr16cplus
22493@itemx -mcr16c
22494@opindex mcr16cplus
22495@opindex mcr16c
22496Generate code for CR16C or CR16C+ architecture. CR16C+ architecture 
22497is default.
22498
22499@item -msim
22500@opindex msim
22501Links the library libsim.a which is in compatible with simulator. Applicable
22502to ELF compiler only.
22503
22504@item -mint32
22505@opindex mint32
22506Choose integer type as 32-bit wide.
22507
22508@item -mbit-ops
22509@opindex mbit-ops
22510Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
22511
22512@item -mdata-model=@var{model}
22513@opindex mdata-model
22514Choose a data model. The choices for @var{model} are @samp{near},
22515@samp{far} or @samp{medium}. @samp{medium} is default.
22516However, @samp{far} is not valid with @option{-mcr16c}, as the
22517CR16C architecture does not support the far data model.
22518@end table
22519
22520@node C-SKY Options
22521@subsection C-SKY Options
22522@cindex C-SKY Options
22523
22524GCC supports these options when compiling for C-SKY V2 processors.
22525
22526@table @gcctabopt
22527
22528@item -march=@var{arch}
22529@opindex march=
22530Specify the C-SKY target architecture.  Valid values for @var{arch} are:
22531@samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
22532The default is @samp{ck810}.
22533
22534@item -mcpu=@var{cpu}
22535@opindex mcpu=
22536Specify the C-SKY target processor.  Valid values for @var{cpu} are:
22537@samp{ck801}, @samp{ck801t},
22538@samp{ck802}, @samp{ck802t}, @samp{ck802j},
22539@samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
22540@samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
22541@samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
22542@samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
22543@samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
22544@samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
22545@samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
22546@samp{ck803eftr1}, @samp{ck803efhtr1},
22547@samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
22548@samp{ck803sef}, @samp{ck803seft},
22549@samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
22550@samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
22551@samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
22552@samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
22553
22554@item -mbig-endian
22555@opindex mbig-endian
22556@itemx -EB
22557@opindex EB
22558@itemx -mlittle-endian
22559@opindex mlittle-endian
22560@itemx -EL
22561@opindex EL
22562
22563Select big- or little-endian code.  The default is little-endian.
22564
22565@item -mfloat-abi=@var{name}
22566@opindex mfloat-abi
22567Specifies which floating-point ABI to use.  Permissible values
22568are: @samp{soft}, @samp{softfp} and @samp{hard}.
22569
22570Specifying @samp{soft} causes GCC to generate output containing
22571library calls for floating-point operations.
22572@samp{softfp} allows the generation of code using hardware floating-point
22573instructions, but still uses the soft-float calling conventions.
22574@samp{hard} allows generation of floating-point instructions
22575and uses FPU-specific calling conventions.
22576
22577The default depends on the specific target configuration.  Note that
22578the hard-float and soft-float ABIs are not link-compatible; you must
22579compile your entire program with the same ABI, and link with a
22580compatible set of libraries.
22581
22582@item -mhard-float
22583@opindex mhard-float
22584@itemx -msoft-float
22585@opindex msoft-float
22586
22587Select hardware or software floating-point implementations.
22588The default is soft float.
22589
22590@item -mdouble-float
22591@itemx -mno-double-float
22592@opindex mdouble-float
22593When @option{-mhard-float} is in effect, enable generation of
22594double-precision float instructions.  This is the default except
22595when compiling for CK803.
22596
22597@item -mfdivdu
22598@itemx -mno-fdivdu
22599@opindex mfdivdu
22600When @option{-mhard-float} is in effect, enable generation of
22601@code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
22602This is the default except when compiling for CK803.
22603
22604@item -mfpu=@var{fpu}
22605@opindex mfpu=
22606Select the floating-point processor.  This option can only be used with
22607@option{-mhard-float}.
22608Values for @var{fpu} are
22609@samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
22610@samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
22611@samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
22612
22613@item -melrw
22614@itemx -mno-elrw
22615@opindex melrw
22616Enable the extended @code{lrw} instruction.  This option defaults to on
22617for CK801 and off otherwise.
22618
22619@item -mistack
22620@itemx -mno-istack
22621@opindex mistack
22622Enable interrupt stack instructions; the default is off.
22623
22624The @option{-mistack} option is required to handle the
22625@code{interrupt} and @code{isr} function attributes
22626(@pxref{C-SKY Function Attributes}).
22627
22628@item -mmp
22629@opindex mmp
22630Enable multiprocessor instructions; the default is off.
22631
22632@item -mcp
22633@opindex mcp
22634Enable coprocessor instructions; the default is off.
22635
22636@item -mcache
22637@opindex mcache
22638Enable coprocessor instructions; the default is off.
22639
22640@item -msecurity
22641@opindex msecurity
22642Enable C-SKY security instructions; the default is off.
22643
22644@item -mtrust
22645@opindex mtrust
22646Enable C-SKY trust instructions; the default is off.
22647
22648@item -mdsp
22649@opindex mdsp
22650@itemx -medsp
22651@opindex medsp
22652@itemx -mvdsp
22653@opindex mvdsp
22654Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
22655All of these options default to off.
22656
22657@item -mdiv
22658@itemx -mno-div
22659@opindex mdiv
22660Generate divide instructions.  Default is off.
22661
22662@item -msmart
22663@itemx -mno-smart
22664@opindex msmart
22665Generate code for Smart Mode, using only registers numbered 0-7 to allow
22666use of 16-bit instructions.  This option is ignored for CK801 where this
22667is the required behavior, and it defaults to on for CK802.
22668For other targets, the default is off.
22669
22670@item -mhigh-registers
22671@itemx -mno-high-registers
22672@opindex mhigh-registers
22673Generate code using the high registers numbered 16-31.  This option
22674is not supported on CK801, CK802, or CK803, and is enabled by default
22675for other processors.
22676
22677@item -manchor
22678@itemx -mno-anchor
22679@opindex manchor
22680Generate code using global anchor symbol addresses.
22681
22682@item -mpushpop
22683@itemx -mno-pushpop
22684@opindex mpushpop
22685Generate code using @code{push} and @code{pop} instructions.  This option
22686defaults to on.
22687
22688@item -mmultiple-stld
22689@itemx -mstm
22690@itemx -mno-multiple-stld
22691@itemx -mno-stm
22692@opindex mmultiple-stld
22693Generate code using @code{stm} and @code{ldm} instructions.  This option
22694isn't supported on CK801 but is enabled by default on other processors.
22695
22696@item -mconstpool
22697@itemx -mno-constpool
22698@opindex mconstpool
22699Create constant pools in the compiler instead of deferring it to the
22700assembler.  This option is the default and required for correct code
22701generation on CK801 and CK802, and is optional on other processors.
22702
22703@item -mstack-size
22704@item -mno-stack-size
22705@opindex mstack-size
22706Emit @code{.stack_size} directives for each function in the assembly
22707output.  This option defaults to off.
22708
22709@item -mccrt
22710@itemx -mno-ccrt
22711@opindex mccrt
22712Generate code for the C-SKY compiler runtime instead of libgcc.  This
22713option defaults to off.
22714
22715@item -mbranch-cost=@var{n}
22716@opindex mbranch-cost=
22717Set the branch costs to roughly @code{n} instructions.  The default is 1.
22718
22719@item -msched-prolog
22720@itemx -mno-sched-prolog
22721@opindex msched-prolog
22722Permit scheduling of function prologue and epilogue sequences.  Using
22723this option can result in code that is not compliant with the C-SKY V2 ABI
22724prologue requirements and that cannot be debugged or backtraced.
22725It is disabled by default.
22726
22727@item -msim
22728@opindex msim
22729Links the library libsemi.a which is in compatible with simulator. Applicable
22730to ELF compiler only.
22731
22732@end table
22733
22734@node Darwin Options
22735@subsection Darwin Options
22736@cindex Darwin options
22737
22738These options are defined for all architectures running the Darwin operating
22739system.
22740
22741FSF GCC on Darwin does not create ``fat'' object files; it creates
22742an object file for the single architecture that GCC was built to
22743target.  Apple's GCC on Darwin does create ``fat'' files if multiple
22744@option{-arch} options are used; it does so by running the compiler or
22745linker multiple times and joining the results together with
22746@file{lipo}.
22747
22748The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
22749@samp{i686}) is determined by the flags that specify the ISA
22750that GCC is targeting, like @option{-mcpu} or @option{-march}.  The
22751@option{-force_cpusubtype_ALL} option can be used to override this.
22752
22753The Darwin tools vary in their behavior when presented with an ISA
22754mismatch.  The assembler, @file{as}, only permits instructions to
22755be used that are valid for the subtype of the file it is generating,
22756so you cannot put 64-bit instructions in a @samp{ppc750} object file.
22757The linker for shared libraries, @file{/usr/bin/libtool}, fails
22758and prints an error if asked to create a shared library with a less
22759restrictive subtype than its input files (for instance, trying to put
22760a @samp{ppc970} object file in a @samp{ppc7400} library).  The linker
22761for executables, @command{ld}, quietly gives the executable the most
22762restrictive subtype of any of its input files.
22763
22764@table @gcctabopt
22765@item -F@var{dir}
22766@opindex F
22767Add the framework directory @var{dir} to the head of the list of
22768directories to be searched for header files.  These directories are
22769interleaved with those specified by @option{-I} options and are
22770scanned in a left-to-right order.
22771
22772A framework directory is a directory with frameworks in it.  A
22773framework is a directory with a @file{Headers} and/or
22774@file{PrivateHeaders} directory contained directly in it that ends
22775in @file{.framework}.  The name of a framework is the name of this
22776directory excluding the @file{.framework}.  Headers associated with
22777the framework are found in one of those two directories, with
22778@file{Headers} being searched first.  A subframework is a framework
22779directory that is in a framework's @file{Frameworks} directory.
22780Includes of subframework headers can only appear in a header of a
22781framework that contains the subframework, or in a sibling subframework
22782header.  Two subframeworks are siblings if they occur in the same
22783framework.  A subframework should not have the same name as a
22784framework; a warning is issued if this is violated.  Currently a
22785subframework cannot have subframeworks; in the future, the mechanism
22786may be extended to support this.  The standard frameworks can be found
22787in @file{/System/Library/Frameworks} and
22788@file{/Library/Frameworks}.  An example include looks like
22789@code{#include <Framework/header.h>}, where @file{Framework} denotes
22790the name of the framework and @file{header.h} is found in the
22791@file{PrivateHeaders} or @file{Headers} directory.
22792
22793@item -iframework@var{dir}
22794@opindex iframework
22795Like @option{-F} except the directory is a treated as a system
22796directory.  The main difference between this @option{-iframework} and
22797@option{-F} is that with @option{-iframework} the compiler does not
22798warn about constructs contained within header files found via
22799@var{dir}.  This option is valid only for the C family of languages.
22800
22801@item -gused
22802@opindex gused
22803Emit debugging information for symbols that are used.  For stabs
22804debugging format, this enables @option{-feliminate-unused-debug-symbols}.
22805This is by default ON@.
22806
22807@item -gfull
22808@opindex gfull
22809Emit debugging information for all symbols and types.
22810
22811@opindex fconstant-cfstrings
22812@item -fconstant-cfstrings
22813The @option{-fconstant-cfstrings} is an alias for @option{-mconstant-cfstrings}.
22814
22815@opindex mconstant-cfstrings
22816@item -mconstant-cfstrings
22817When the NeXT runtime is being used (the default on these systems), override
22818any @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"}
22819literals to be laid out as constant CoreFoundation strings.
22820
22821@opindex mmacosx-version-min
22822@item -mmacosx-version-min=@var{version}
22823The earliest version of MacOS X that this executable will run on is
22824@var{version}.  Typical values supported for @var{version} include @code{12},
22825@code{10.12}, and @code{10.5.8}.
22826
22827If the compiler was built to use the system's headers by default,
22828then the default for this option is the system version on which the
22829compiler is running, otherwise the default is to make choices that
22830are compatible with as many systems and code bases as possible.
22831
22832@item -mkernel
22833@opindex mkernel
22834Enable kernel development mode.  The @option{-mkernel} option sets
22835@option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
22836@option{-fno-exceptions}, @option{-fno-non-call-exceptions},
22837@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
22838applicable.  This mode also sets @option{-mno-altivec},
22839@option{-msoft-float}, @option{-fno-builtin} and
22840@option{-mlong-branch} for PowerPC targets.
22841
22842@item -mone-byte-bool
22843@opindex mone-byte-bool
22844Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
22845By default @code{sizeof(bool)} is @code{4} when compiling for
22846Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
22847option has no effect on x86.
22848
22849@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
22850to generate code that is not binary compatible with code generated
22851without that switch.  Using this switch may require recompiling all
22852other modules in a program, including system libraries.  Use this
22853switch to conform to a non-default data model.
22854
22855@item -mfix-and-continue
22856@itemx -ffix-and-continue
22857@itemx -findirect-data
22858@opindex mfix-and-continue
22859@opindex ffix-and-continue
22860@opindex findirect-data
22861Generate code suitable for fast turnaround development, such as to
22862allow GDB to dynamically load @file{.o} files into already-running
22863programs.  @option{-findirect-data} and @option{-ffix-and-continue}
22864are provided for backwards compatibility.
22865
22866@item -all_load
22867@opindex all_load
22868Loads all members of static archive libraries.
22869See man ld(1) for more information.
22870
22871@item -arch_errors_fatal
22872@opindex arch_errors_fatal
22873Cause the errors having to do with files that have the wrong architecture
22874to be fatal.
22875
22876@item -bind_at_load
22877@opindex bind_at_load
22878Causes the output file to be marked such that the dynamic linker will
22879bind all undefined references when the file is loaded or launched.
22880
22881@item -bundle
22882@opindex bundle
22883Produce a Mach-o bundle format file.
22884See man ld(1) for more information.
22885
22886@item -bundle_loader @var{executable}
22887@opindex bundle_loader
22888This option specifies the @var{executable} that will load the build
22889output file being linked.  See man ld(1) for more information.
22890
22891@item -dynamiclib
22892@opindex dynamiclib
22893When passed this option, GCC produces a dynamic library instead of
22894an executable when linking, using the Darwin @file{libtool} command.
22895
22896@item -force_cpusubtype_ALL
22897@opindex force_cpusubtype_ALL
22898This causes GCC's output file to have the @samp{ALL} subtype, instead of
22899one controlled by the @option{-mcpu} or @option{-march} option.
22900
22901@item -allowable_client  @var{client_name}
22902@itemx -client_name
22903@itemx -compatibility_version
22904@itemx -current_version
22905@itemx -dead_strip
22906@itemx -dependency-file
22907@itemx -dylib_file
22908@itemx -dylinker_install_name
22909@itemx -dynamic
22910@itemx -exported_symbols_list
22911@itemx -filelist
22912@need 800
22913@itemx -flat_namespace
22914@itemx -force_flat_namespace
22915@itemx -headerpad_max_install_names
22916@itemx -image_base
22917@itemx -init
22918@itemx -install_name
22919@itemx -keep_private_externs
22920@itemx -multi_module
22921@itemx -multiply_defined
22922@itemx -multiply_defined_unused
22923@need 800
22924@itemx -noall_load
22925@itemx -no_dead_strip_inits_and_terms
22926@itemx -nofixprebinding
22927@itemx -nomultidefs
22928@itemx -noprebind
22929@itemx -noseglinkedit
22930@itemx -pagezero_size
22931@itemx -prebind
22932@itemx -prebind_all_twolevel_modules
22933@itemx -private_bundle
22934@need 800
22935@itemx -read_only_relocs
22936@itemx -sectalign
22937@itemx -sectobjectsymbols
22938@itemx -whyload
22939@itemx -seg1addr
22940@itemx -sectcreate
22941@itemx -sectobjectsymbols
22942@itemx -sectorder
22943@itemx -segaddr
22944@itemx -segs_read_only_addr
22945@need 800
22946@itemx -segs_read_write_addr
22947@itemx -seg_addr_table
22948@itemx -seg_addr_table_filename
22949@itemx -seglinkedit
22950@itemx -segprot
22951@itemx -segs_read_only_addr
22952@itemx -segs_read_write_addr
22953@itemx -single_module
22954@itemx -static
22955@itemx -sub_library
22956@need 800
22957@itemx -sub_umbrella
22958@itemx -twolevel_namespace
22959@itemx -umbrella
22960@itemx -undefined
22961@itemx -unexported_symbols_list
22962@itemx -weak_reference_mismatches
22963@itemx -whatsloaded
22964@opindex allowable_client
22965@opindex client_name
22966@opindex compatibility_version
22967@opindex current_version
22968@opindex dead_strip
22969@opindex dependency-file
22970@opindex dylib_file
22971@opindex dylinker_install_name
22972@opindex dynamic
22973@opindex exported_symbols_list
22974@opindex filelist
22975@opindex flat_namespace
22976@opindex force_flat_namespace
22977@opindex headerpad_max_install_names
22978@opindex image_base
22979@opindex init
22980@opindex install_name
22981@opindex keep_private_externs
22982@opindex multi_module
22983@opindex multiply_defined
22984@opindex multiply_defined_unused
22985@opindex noall_load
22986@opindex no_dead_strip_inits_and_terms
22987@opindex nofixprebinding
22988@opindex nomultidefs
22989@opindex noprebind
22990@opindex noseglinkedit
22991@opindex pagezero_size
22992@opindex prebind
22993@opindex prebind_all_twolevel_modules
22994@opindex private_bundle
22995@opindex read_only_relocs
22996@opindex sectalign
22997@opindex sectobjectsymbols
22998@opindex whyload
22999@opindex seg1addr
23000@opindex sectcreate
23001@opindex sectobjectsymbols
23002@opindex sectorder
23003@opindex segaddr
23004@opindex segs_read_only_addr
23005@opindex segs_read_write_addr
23006@opindex seg_addr_table
23007@opindex seg_addr_table_filename
23008@opindex seglinkedit
23009@opindex segprot
23010@opindex segs_read_only_addr
23011@opindex segs_read_write_addr
23012@opindex single_module
23013@opindex static
23014@opindex sub_library
23015@opindex sub_umbrella
23016@opindex twolevel_namespace
23017@opindex umbrella
23018@opindex undefined
23019@opindex unexported_symbols_list
23020@opindex weak_reference_mismatches
23021@opindex whatsloaded
23022These options are passed to the Darwin linker.  The Darwin linker man page
23023describes them in detail.
23024@end table
23025
23026@node DEC Alpha Options
23027@subsection DEC Alpha Options
23028
23029These @samp{-m} options are defined for the DEC Alpha implementations:
23030
23031@table @gcctabopt
23032@item -mno-soft-float
23033@itemx -msoft-float
23034@opindex mno-soft-float
23035@opindex msoft-float
23036Use (do not use) the hardware floating-point instructions for
23037floating-point operations.  When @option{-msoft-float} is specified,
23038functions in @file{libgcc.a} are used to perform floating-point
23039operations.  Unless they are replaced by routines that emulate the
23040floating-point operations, or compiled in such a way as to call such
23041emulations routines, these routines issue floating-point
23042operations.   If you are compiling for an Alpha without floating-point
23043operations, you must ensure that the library is built so as not to call
23044them.
23045
23046Note that Alpha implementations without floating-point operations are
23047required to have floating-point registers.
23048
23049@item -mfp-reg
23050@itemx -mno-fp-regs
23051@opindex mfp-reg
23052@opindex mno-fp-regs
23053Generate code that uses (does not use) the floating-point register set.
23054@option{-mno-fp-regs} implies @option{-msoft-float}.  If the floating-point
23055register set is not used, floating-point operands are passed in integer
23056registers as if they were integers and floating-point results are passed
23057in @code{$0} instead of @code{$f0}.  This is a non-standard calling sequence,
23058so any function with a floating-point argument or return value called by code
23059compiled with @option{-mno-fp-regs} must also be compiled with that
23060option.
23061
23062A typical use of this option is building a kernel that does not use,
23063and hence need not save and restore, any floating-point registers.
23064
23065@item -mieee
23066@opindex mieee
23067The Alpha architecture implements floating-point hardware optimized for
23068maximum performance.  It is mostly compliant with the IEEE floating-point
23069standard.  However, for full compliance, software assistance is
23070required.  This option generates code fully IEEE-compliant code
23071@emph{except} that the @var{inexact-flag} is not maintained (see below).
23072If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
23073defined during compilation.  The resulting code is less efficient but is
23074able to correctly support denormalized numbers and exceptional IEEE
23075values such as not-a-number and plus/minus infinity.  Other Alpha
23076compilers call this option @option{-ieee_with_no_inexact}.
23077
23078@item -mieee-with-inexact
23079@opindex mieee-with-inexact
23080This is like @option{-mieee} except the generated code also maintains
23081the IEEE @var{inexact-flag}.  Turning on this option causes the
23082generated code to implement fully-compliant IEEE math.  In addition to
23083@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
23084macro.  On some Alpha implementations the resulting code may execute
23085significantly slower than the code generated by default.  Since there is
23086very little code that depends on the @var{inexact-flag}, you should
23087normally not specify this option.  Other Alpha compilers call this
23088option @option{-ieee_with_inexact}.
23089
23090@item -mfp-trap-mode=@var{trap-mode}
23091@opindex mfp-trap-mode
23092This option controls what floating-point related traps are enabled.
23093Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
23094The trap mode can be set to one of four values:
23095
23096@table @samp
23097@item n
23098This is the default (normal) setting.  The only traps that are enabled
23099are the ones that cannot be disabled in software (e.g., division by zero
23100trap).
23101
23102@item u
23103In addition to the traps enabled by @samp{n}, underflow traps are enabled
23104as well.
23105
23106@item su
23107Like @samp{u}, but the instructions are marked to be safe for software
23108completion (see Alpha architecture manual for details).
23109
23110@item sui
23111Like @samp{su}, but inexact traps are enabled as well.
23112@end table
23113
23114@item -mfp-rounding-mode=@var{rounding-mode}
23115@opindex mfp-rounding-mode
23116Selects the IEEE rounding mode.  Other Alpha compilers call this option
23117@option{-fprm @var{rounding-mode}}.  The @var{rounding-mode} can be one
23118of:
23119
23120@table @samp
23121@item n
23122Normal IEEE rounding mode.  Floating-point numbers are rounded towards
23123the nearest machine number or towards the even machine number in case
23124of a tie.
23125
23126@item m
23127Round towards minus infinity.
23128
23129@item c
23130Chopped rounding mode.  Floating-point numbers are rounded towards zero.
23131
23132@item d
23133Dynamic rounding mode.  A field in the floating-point control register
23134(@var{fpcr}, see Alpha architecture reference manual) controls the
23135rounding mode in effect.  The C library initializes this register for
23136rounding towards plus infinity.  Thus, unless your program modifies the
23137@var{fpcr}, @samp{d} corresponds to round towards plus infinity.
23138@end table
23139
23140@item -mtrap-precision=@var{trap-precision}
23141@opindex mtrap-precision
23142In the Alpha architecture, floating-point traps are imprecise.  This
23143means without software assistance it is impossible to recover from a
23144floating trap and program execution normally needs to be terminated.
23145GCC can generate code that can assist operating system trap handlers
23146in determining the exact location that caused a floating-point trap.
23147Depending on the requirements of an application, different levels of
23148precisions can be selected:
23149
23150@table @samp
23151@item p
23152Program precision.  This option is the default and means a trap handler
23153can only identify which program caused a floating-point exception.
23154
23155@item f
23156Function precision.  The trap handler can determine the function that
23157caused a floating-point exception.
23158
23159@item i
23160Instruction precision.  The trap handler can determine the exact
23161instruction that caused a floating-point exception.
23162@end table
23163
23164Other Alpha compilers provide the equivalent options called
23165@option{-scope_safe} and @option{-resumption_safe}.
23166
23167@item -mieee-conformant
23168@opindex mieee-conformant
23169This option marks the generated code as IEEE conformant.  You must not
23170use this option unless you also specify @option{-mtrap-precision=i} and either
23171@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}.  Its only effect
23172is to emit the line @samp{.eflag 48} in the function prologue of the
23173generated assembly file.
23174
23175@item -mbuild-constants
23176@opindex mbuild-constants
23177Normally GCC examines a 32- or 64-bit integer constant to
23178see if it can construct it from smaller constants in two or three
23179instructions.  If it cannot, it outputs the constant as a literal and
23180generates code to load it from the data segment at run time.
23181
23182Use this option to require GCC to construct @emph{all} integer constants
23183using code, even if it takes more instructions (the maximum is six).
23184
23185You typically use this option to build a shared library dynamic
23186loader.  Itself a shared library, it must relocate itself in memory
23187before it can find the variables and constants in its own data segment.
23188
23189@item -mbwx
23190@itemx -mno-bwx
23191@itemx -mcix
23192@itemx -mno-cix
23193@itemx -mfix
23194@itemx -mno-fix
23195@itemx -mmax
23196@itemx -mno-max
23197@opindex mbwx
23198@opindex mno-bwx
23199@opindex mcix
23200@opindex mno-cix
23201@opindex mfix
23202@opindex mno-fix
23203@opindex mmax
23204@opindex mno-max
23205Indicate whether GCC should generate code to use the optional BWX,
23206CIX, FIX and MAX instruction sets.  The default is to use the instruction
23207sets supported by the CPU type specified via @option{-mcpu=} option or that
23208of the CPU on which GCC was built if none is specified.
23209
23210@item -mfloat-vax
23211@itemx -mfloat-ieee
23212@opindex mfloat-vax
23213@opindex mfloat-ieee
23214Generate code that uses (does not use) VAX F and G floating-point
23215arithmetic instead of IEEE single and double precision.
23216
23217@item -mexplicit-relocs
23218@itemx -mno-explicit-relocs
23219@opindex mexplicit-relocs
23220@opindex mno-explicit-relocs
23221Older Alpha assemblers provided no way to generate symbol relocations
23222except via assembler macros.  Use of these macros does not allow
23223optimal instruction scheduling.  GNU binutils as of version 2.12
23224supports a new syntax that allows the compiler to explicitly mark
23225which relocations should apply to which instructions.  This option
23226is mostly useful for debugging, as GCC detects the capabilities of
23227the assembler when it is built and sets the default accordingly.
23228
23229@item -msmall-data
23230@itemx -mlarge-data
23231@opindex msmall-data
23232@opindex mlarge-data
23233When @option{-mexplicit-relocs} is in effect, static data is
23234accessed via @dfn{gp-relative} relocations.  When @option{-msmall-data}
23235is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
23236(the @code{.sdata} and @code{.sbss} sections) and are accessed via
2323716-bit relocations off of the @code{$gp} register.  This limits the
23238size of the small data area to 64KB, but allows the variables to be
23239directly accessed via a single instruction.
23240
23241The default is @option{-mlarge-data}.  With this option the data area
23242is limited to just below 2GB@.  Programs that require more than 2GB of
23243data must use @code{malloc} or @code{mmap} to allocate the data in the
23244heap instead of in the program's data segment.
23245
23246When generating code for shared libraries, @option{-fpic} implies
23247@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
23248
23249@item -msmall-text
23250@itemx -mlarge-text
23251@opindex msmall-text
23252@opindex mlarge-text
23253When @option{-msmall-text} is used, the compiler assumes that the
23254code of the entire program (or shared library) fits in 4MB, and is
23255thus reachable with a branch instruction.  When @option{-msmall-data}
23256is used, the compiler can assume that all local symbols share the
23257same @code{$gp} value, and thus reduce the number of instructions
23258required for a function call from 4 to 1.
23259
23260The default is @option{-mlarge-text}.
23261
23262@item -mcpu=@var{cpu_type}
23263@opindex mcpu
23264Set the instruction set and instruction scheduling parameters for
23265machine type @var{cpu_type}.  You can specify either the @samp{EV}
23266style name or the corresponding chip number.  GCC supports scheduling
23267parameters for the EV4, EV5 and EV6 family of processors and
23268chooses the default values for the instruction set from the processor
23269you specify.  If you do not specify a processor type, GCC defaults
23270to the processor on which the compiler was built.
23271
23272Supported values for @var{cpu_type} are
23273
23274@table @samp
23275@item ev4
23276@itemx ev45
23277@itemx 21064
23278Schedules as an EV4 and has no instruction set extensions.
23279
23280@item ev5
23281@itemx 21164
23282Schedules as an EV5 and has no instruction set extensions.
23283
23284@item ev56
23285@itemx 21164a
23286Schedules as an EV5 and supports the BWX extension.
23287
23288@item pca56
23289@itemx 21164pc
23290@itemx 21164PC
23291Schedules as an EV5 and supports the BWX and MAX extensions.
23292
23293@item ev6
23294@itemx 21264
23295Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
23296
23297@item ev67
23298@itemx 21264a
23299Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
23300@end table
23301
23302Native toolchains also support the value @samp{native},
23303which selects the best architecture option for the host processor.
23304@option{-mcpu=native} has no effect if GCC does not recognize
23305the processor.
23306
23307@item -mtune=@var{cpu_type}
23308@opindex mtune
23309Set only the instruction scheduling parameters for machine type
23310@var{cpu_type}.  The instruction set is not changed.
23311
23312Native toolchains also support the value @samp{native},
23313which selects the best architecture option for the host processor.
23314@option{-mtune=native} has no effect if GCC does not recognize
23315the processor.
23316
23317@item -mmemory-latency=@var{time}
23318@opindex mmemory-latency
23319Sets the latency the scheduler should assume for typical memory
23320references as seen by the application.  This number is highly
23321dependent on the memory access patterns used by the application
23322and the size of the external cache on the machine.
23323
23324Valid options for @var{time} are
23325
23326@table @samp
23327@item @var{number}
23328A decimal number representing clock cycles.
23329
23330@item L1
23331@itemx L2
23332@itemx L3
23333@itemx main
23334The compiler contains estimates of the number of clock cycles for
23335``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
23336(also called Dcache, Scache, and Bcache), as well as to main memory.
23337Note that L3 is only valid for EV5.
23338
23339@end table
23340@end table
23341
23342@node eBPF Options
23343@subsection eBPF Options
23344@cindex eBPF Options
23345
23346@table @gcctabopt
23347@item -mframe-limit=@var{bytes}
23348This specifies the hard limit for frame sizes, in bytes.  Currently,
23349the value that can be specified should be less than or equal to
23350@samp{32767}.  Defaults to whatever limit is imposed by the version of
23351the Linux kernel targeted.
23352
23353@item -mkernel=@var{version}
23354@opindex mkernel
23355This specifies the minimum version of the kernel that will run the
23356compiled program.  GCC uses this version to determine which
23357instructions to use, what kernel helpers to allow, etc.  Currently,
23358@var{version} can be one of @samp{4.0}, @samp{4.1}, @samp{4.2},
23359@samp{4.3}, @samp{4.4}, @samp{4.5}, @samp{4.6}, @samp{4.7},
23360@samp{4.8}, @samp{4.9}, @samp{4.10}, @samp{4.11}, @samp{4.12},
23361@samp{4.13}, @samp{4.14}, @samp{4.15}, @samp{4.16}, @samp{4.17},
23362@samp{4.18}, @samp{4.19}, @samp{4.20}, @samp{5.0}, @samp{5.1},
23363@samp{5.2}, @samp{latest} and @samp{native}.
23364
23365@item -mbig-endian
23366@opindex mbig-endian
23367Generate code for a big-endian target.
23368
23369@item -mlittle-endian
23370@opindex mlittle-endian
23371Generate code for a little-endian target.  This is the default.
23372
23373@item -mjmpext
23374@opindex mjmpext
23375Enable generation of extra conditional-branch instructions.
23376Enabled for CPU v2 and above.
23377
23378@item -mjmp32
23379@opindex mjmp32
23380Enable 32-bit jump instructions. Enabled for CPU v3 and above.
23381
23382@item -malu32
23383@opindex malu32
23384Enable 32-bit ALU instructions. Enabled for CPU v3 and above.
23385
23386@item -mcpu=@var{version}
23387@opindex mcpu
23388This specifies which version of the eBPF ISA to target. Newer versions
23389may not be supported by all kernels. The default is @samp{v3}.
23390
23391Supported values for @var{version} are:
23392
23393@table @samp
23394@item v1
23395The first stable eBPF ISA with no special features or extensions.
23396
23397@item v2
23398Supports the jump extensions, as in @option{-mjmpext}.
23399
23400@item v3
23401All features of v2, plus:
23402@itemize @minus
23403@item 32-bit jump operations, as in @option{-mjmp32}
23404@item 32-bit ALU operations, as in @option{-malu32}
23405@end itemize
23406
23407@end table
23408
23409@item -mco-re
23410@opindex mco-re
23411Enable BPF Compile Once - Run Everywhere (CO-RE) support. Requires and
23412is implied by @option{-gbtf}.
23413
23414@item -mno-co-re
23415@opindex mno-co-re
23416Disable BPF Compile Once - Run Everywhere (CO-RE) support. BPF CO-RE
23417support is enabled by default when generating BTF debug information for
23418the BPF target.
23419
23420@item -mxbpf
23421Generate code for an expanded version of BPF, which relaxes some of
23422the restrictions imposed by the BPF architecture:
23423@itemize @minus
23424@item Save and restore callee-saved registers at function entry and
23425exit, respectively.
23426@end itemize
23427@end table
23428
23429@node FR30 Options
23430@subsection FR30 Options
23431@cindex FR30 Options
23432
23433These options are defined specifically for the FR30 port.
23434
23435@table @gcctabopt
23436
23437@item -msmall-model
23438@opindex msmall-model
23439Use the small address space model.  This can produce smaller code, but
23440it does assume that all symbolic values and addresses fit into a
2344120-bit range.
23442
23443@item -mno-lsim
23444@opindex mno-lsim
23445Assume that runtime support has been provided and so there is no need
23446to include the simulator library (@file{libsim.a}) on the linker
23447command line.
23448
23449@end table
23450
23451@node FT32 Options
23452@subsection FT32 Options
23453@cindex FT32 Options
23454
23455These options are defined specifically for the FT32 port.
23456
23457@table @gcctabopt
23458
23459@item -msim
23460@opindex msim
23461Specifies that the program will be run on the simulator.  This causes
23462an alternate runtime startup and library to be linked.
23463You must not use this option when generating programs that will run on
23464real hardware; you must provide your own runtime library for whatever
23465I/O functions are needed.
23466
23467@item -mlra
23468@opindex mlra
23469Enable Local Register Allocation.  This is still experimental for FT32,
23470so by default the compiler uses standard reload.
23471
23472@item -mnodiv
23473@opindex mnodiv
23474Do not use div and mod instructions.
23475
23476@item -mft32b
23477@opindex mft32b
23478Enable use of the extended instructions of the FT32B processor.
23479
23480@item -mcompress
23481@opindex mcompress
23482Compress all code using the Ft32B code compression scheme.
23483
23484@item -mnopm
23485@opindex  mnopm
23486Do not generate code that reads program memory.
23487
23488@end table
23489
23490@node FRV Options
23491@subsection FRV Options
23492@cindex FRV Options
23493
23494@table @gcctabopt
23495@item -mgpr-32
23496@opindex mgpr-32
23497
23498Only use the first 32 general-purpose registers.
23499
23500@item -mgpr-64
23501@opindex mgpr-64
23502
23503Use all 64 general-purpose registers.
23504
23505@item -mfpr-32
23506@opindex mfpr-32
23507
23508Use only the first 32 floating-point registers.
23509
23510@item -mfpr-64
23511@opindex mfpr-64
23512
23513Use all 64 floating-point registers.
23514
23515@item -mhard-float
23516@opindex mhard-float
23517
23518Use hardware instructions for floating-point operations.
23519
23520@item -msoft-float
23521@opindex msoft-float
23522
23523Use library routines for floating-point operations.
23524
23525@item -malloc-cc
23526@opindex malloc-cc
23527
23528Dynamically allocate condition code registers.
23529
23530@item -mfixed-cc
23531@opindex mfixed-cc
23532
23533Do not try to dynamically allocate condition code registers, only
23534use @code{icc0} and @code{fcc0}.
23535
23536@item -mdword
23537@opindex mdword
23538
23539Change ABI to use double word insns.
23540
23541@item -mno-dword
23542@opindex mno-dword
23543@opindex mdword
23544
23545Do not use double word instructions.
23546
23547@item -mdouble
23548@opindex mdouble
23549
23550Use floating-point double instructions.
23551
23552@item -mno-double
23553@opindex mno-double
23554
23555Do not use floating-point double instructions.
23556
23557@item -mmedia
23558@opindex mmedia
23559
23560Use media instructions.
23561
23562@item -mno-media
23563@opindex mno-media
23564
23565Do not use media instructions.
23566
23567@item -mmuladd
23568@opindex mmuladd
23569
23570Use multiply and add/subtract instructions.
23571
23572@item -mno-muladd
23573@opindex mno-muladd
23574
23575Do not use multiply and add/subtract instructions.
23576
23577@item -mfdpic
23578@opindex mfdpic
23579
23580Select the FDPIC ABI, which uses function descriptors to represent
23581pointers to functions.  Without any PIC/PIE-related options, it
23582implies @option{-fPIE}.  With @option{-fpic} or @option{-fpie}, it
23583assumes GOT entries and small data are within a 12-bit range from the
23584GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
23585are computed with 32 bits.
23586With a @samp{bfin-elf} target, this option implies @option{-msim}.
23587
23588@item -minline-plt
23589@opindex minline-plt
23590
23591Enable inlining of PLT entries in function calls to functions that are
23592not known to bind locally.  It has no effect without @option{-mfdpic}.
23593It's enabled by default if optimizing for speed and compiling for
23594shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
23595optimization option such as @option{-O3} or above is present in the
23596command line.
23597
23598@item -mTLS
23599@opindex mTLS
23600
23601Assume a large TLS segment when generating thread-local code.
23602
23603@item -mtls
23604@opindex mtls
23605
23606Do not assume a large TLS segment when generating thread-local code.
23607
23608@item -mgprel-ro
23609@opindex mgprel-ro
23610
23611Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
23612that is known to be in read-only sections.  It's enabled by default,
23613except for @option{-fpic} or @option{-fpie}: even though it may help
23614make the global offset table smaller, it trades 1 instruction for 4.
23615With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
23616one of which may be shared by multiple symbols, and it avoids the need
23617for a GOT entry for the referenced symbol, so it's more likely to be a
23618win.  If it is not, @option{-mno-gprel-ro} can be used to disable it.
23619
23620@item -multilib-library-pic
23621@opindex multilib-library-pic
23622
23623Link with the (library, not FD) pic libraries.  It's implied by
23624@option{-mlibrary-pic}, as well as by @option{-fPIC} and
23625@option{-fpic} without @option{-mfdpic}.  You should never have to use
23626it explicitly.
23627
23628@item -mlinked-fp
23629@opindex mlinked-fp
23630
23631Follow the EABI requirement of always creating a frame pointer whenever
23632a stack frame is allocated.  This option is enabled by default and can
23633be disabled with @option{-mno-linked-fp}.
23634
23635@item -mlong-calls
23636@opindex mlong-calls
23637
23638Use indirect addressing to call functions outside the current
23639compilation unit.  This allows the functions to be placed anywhere
23640within the 32-bit address space.
23641
23642@item -malign-labels
23643@opindex malign-labels
23644
23645Try to align labels to an 8-byte boundary by inserting NOPs into the
23646previous packet.  This option only has an effect when VLIW packing
23647is enabled.  It doesn't create new packets; it merely adds NOPs to
23648existing ones.
23649
23650@item -mlibrary-pic
23651@opindex mlibrary-pic
23652
23653Generate position-independent EABI code.
23654
23655@item -macc-4
23656@opindex macc-4
23657
23658Use only the first four media accumulator registers.
23659
23660@item -macc-8
23661@opindex macc-8
23662
23663Use all eight media accumulator registers.
23664
23665@item -mpack
23666@opindex mpack
23667
23668Pack VLIW instructions.
23669
23670@item -mno-pack
23671@opindex mno-pack
23672
23673Do not pack VLIW instructions.
23674
23675@item -mno-eflags
23676@opindex mno-eflags
23677
23678Do not mark ABI switches in e_flags.
23679
23680@item -mcond-move
23681@opindex mcond-move
23682
23683Enable the use of conditional-move instructions (default).
23684
23685This switch is mainly for debugging the compiler and will likely be removed
23686in a future version.
23687
23688@item -mno-cond-move
23689@opindex mno-cond-move
23690
23691Disable the use of conditional-move instructions.
23692
23693This switch is mainly for debugging the compiler and will likely be removed
23694in a future version.
23695
23696@item -mscc
23697@opindex mscc
23698
23699Enable the use of conditional set instructions (default).
23700
23701This switch is mainly for debugging the compiler and will likely be removed
23702in a future version.
23703
23704@item -mno-scc
23705@opindex mno-scc
23706
23707Disable the use of conditional set instructions.
23708
23709This switch is mainly for debugging the compiler and will likely be removed
23710in a future version.
23711
23712@item -mcond-exec
23713@opindex mcond-exec
23714
23715Enable the use of conditional execution (default).
23716
23717This switch is mainly for debugging the compiler and will likely be removed
23718in a future version.
23719
23720@item -mno-cond-exec
23721@opindex mno-cond-exec
23722
23723Disable the use of conditional execution.
23724
23725This switch is mainly for debugging the compiler and will likely be removed
23726in a future version.
23727
23728@item -mvliw-branch
23729@opindex mvliw-branch
23730
23731Run a pass to pack branches into VLIW instructions (default).
23732
23733This switch is mainly for debugging the compiler and will likely be removed
23734in a future version.
23735
23736@item -mno-vliw-branch
23737@opindex mno-vliw-branch
23738
23739Do not run a pass to pack branches into VLIW instructions.
23740
23741This switch is mainly for debugging the compiler and will likely be removed
23742in a future version.
23743
23744@item -mmulti-cond-exec
23745@opindex mmulti-cond-exec
23746
23747Enable optimization of @code{&&} and @code{||} in conditional execution
23748(default).
23749
23750This switch is mainly for debugging the compiler and will likely be removed
23751in a future version.
23752
23753@item -mno-multi-cond-exec
23754@opindex mno-multi-cond-exec
23755
23756Disable optimization of @code{&&} and @code{||} in conditional execution.
23757
23758This switch is mainly for debugging the compiler and will likely be removed
23759in a future version.
23760
23761@item -mnested-cond-exec
23762@opindex mnested-cond-exec
23763
23764Enable nested conditional execution optimizations (default).
23765
23766This switch is mainly for debugging the compiler and will likely be removed
23767in a future version.
23768
23769@item -mno-nested-cond-exec
23770@opindex mno-nested-cond-exec
23771
23772Disable nested conditional execution optimizations.
23773
23774This switch is mainly for debugging the compiler and will likely be removed
23775in a future version.
23776
23777@item -moptimize-membar
23778@opindex moptimize-membar
23779
23780This switch removes redundant @code{membar} instructions from the
23781compiler-generated code.  It is enabled by default.
23782
23783@item -mno-optimize-membar
23784@opindex mno-optimize-membar
23785@opindex moptimize-membar
23786
23787This switch disables the automatic removal of redundant @code{membar}
23788instructions from the generated code.
23789
23790@item -mtomcat-stats
23791@opindex mtomcat-stats
23792
23793Cause gas to print out tomcat statistics.
23794
23795@item -mcpu=@var{cpu}
23796@opindex mcpu
23797
23798Select the processor type for which to generate code.  Possible values are
23799@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
23800@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
23801
23802@end table
23803
23804@node GNU/Linux Options
23805@subsection GNU/Linux Options
23806
23807These @samp{-m} options are defined for GNU/Linux targets:
23808
23809@table @gcctabopt
23810@item -mglibc
23811@opindex mglibc
23812Use the GNU C library.  This is the default except
23813on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
23814@samp{*-*-linux-*android*} targets.
23815
23816@item -muclibc
23817@opindex muclibc
23818Use uClibc C library.  This is the default on
23819@samp{*-*-linux-*uclibc*} targets.
23820
23821@item -mmusl
23822@opindex mmusl
23823Use the musl C library.  This is the default on
23824@samp{*-*-linux-*musl*} targets.
23825
23826@item -mbionic
23827@opindex mbionic
23828Use Bionic C library.  This is the default on
23829@samp{*-*-linux-*android*} targets.
23830
23831@item -mandroid
23832@opindex mandroid
23833Compile code compatible with Android platform.  This is the default on
23834@samp{*-*-linux-*android*} targets.
23835
23836When compiling, this option enables @option{-mbionic}, @option{-fPIC},
23837@option{-fno-exceptions} and @option{-fno-rtti} by default.  When linking,
23838this option makes the GCC driver pass Android-specific options to the linker.
23839Finally, this option causes the preprocessor macro @code{__ANDROID__}
23840to be defined.
23841
23842@item -tno-android-cc
23843@opindex tno-android-cc
23844Disable compilation effects of @option{-mandroid}, i.e., do not enable
23845@option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
23846@option{-fno-rtti} by default.
23847
23848@item -tno-android-ld
23849@opindex tno-android-ld
23850Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
23851linking options to the linker.
23852
23853@end table
23854
23855@node H8/300 Options
23856@subsection H8/300 Options
23857
23858These @samp{-m} options are defined for the H8/300 implementations:
23859
23860@table @gcctabopt
23861@item -mrelax
23862@opindex mrelax
23863Shorten some address references at link time, when possible; uses the
23864linker option @option{-relax}.  @xref{H8/300,, @code{ld} and the H8/300,
23865ld, Using ld}, for a fuller description.
23866
23867@item -mh
23868@opindex mh
23869Generate code for the H8/300H@.
23870
23871@item -ms
23872@opindex ms
23873Generate code for the H8S@.
23874
23875@item -mn
23876@opindex mn
23877Generate code for the H8S and H8/300H in the normal mode.  This switch
23878must be used either with @option{-mh} or @option{-ms}.
23879
23880@item -ms2600
23881@opindex ms2600
23882Generate code for the H8S/2600.  This switch must be used with @option{-ms}.
23883
23884@item -mexr
23885@opindex mexr
23886Extended registers are stored on stack before execution of function
23887with monitor attribute. Default option is @option{-mexr}.
23888This option is valid only for H8S targets.
23889
23890@item -mno-exr
23891@opindex mno-exr
23892@opindex mexr
23893Extended registers are not stored on stack before execution of function 
23894with monitor attribute. Default option is @option{-mno-exr}. 
23895This option is valid only for H8S targets.
23896
23897@item -mint32
23898@opindex mint32
23899Make @code{int} data 32 bits by default.
23900
23901@item -malign-300
23902@opindex malign-300
23903On the H8/300H and H8S, use the same alignment rules as for the H8/300.
23904The default for the H8/300H and H8S is to align longs and floats on
239054-byte boundaries.
23906@option{-malign-300} causes them to be aligned on 2-byte boundaries.
23907This option has no effect on the H8/300.
23908@end table
23909
23910@node HPPA Options
23911@subsection HPPA Options
23912@cindex HPPA Options
23913
23914These @samp{-m} options are defined for the HPPA family of computers:
23915
23916@table @gcctabopt
23917@item -march=@var{architecture-type}
23918@opindex march
23919Generate code for the specified architecture.  The choices for
23920@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
239211.1, and @samp{2.0} for PA 2.0 processors.  Refer to
23922@file{/usr/lib/sched.models} on an HP-UX system to determine the proper
23923architecture option for your machine.  Code compiled for lower numbered
23924architectures runs on higher numbered architectures, but not the
23925other way around.
23926
23927@item -mpa-risc-1-0
23928@itemx -mpa-risc-1-1
23929@itemx -mpa-risc-2-0
23930@opindex mpa-risc-1-0
23931@opindex mpa-risc-1-1
23932@opindex mpa-risc-2-0
23933Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
23934
23935@item -mcaller-copies
23936@opindex mcaller-copies
23937The caller copies function arguments passed by hidden reference.  This
23938option should be used with care as it is not compatible with the default
2393932-bit runtime.  However, only aggregates larger than eight bytes are
23940passed by hidden reference and the option provides better compatibility
23941with OpenMP.
23942
23943@item -mjump-in-delay
23944@opindex mjump-in-delay
23945This option is ignored and provided for compatibility purposes only.
23946
23947@item -mdisable-fpregs
23948@opindex mdisable-fpregs
23949Prevent floating-point registers from being used in any manner.  This is
23950necessary for compiling kernels that perform lazy context switching of
23951floating-point registers.  If you use this option and attempt to perform
23952floating-point operations, the compiler aborts.
23953
23954@item -mdisable-indexing
23955@opindex mdisable-indexing
23956Prevent the compiler from using indexing address modes.  This avoids some
23957rather obscure problems when compiling MIG generated code under MACH@.
23958
23959@item -mno-space-regs
23960@opindex mno-space-regs
23961@opindex mspace-regs
23962Generate code that assumes the target has no space registers.  This allows
23963GCC to generate faster indirect calls and use unscaled index address modes.
23964
23965Such code is suitable for level 0 PA systems and kernels.
23966
23967@item -mfast-indirect-calls
23968@opindex mfast-indirect-calls
23969Generate code that assumes calls never cross space boundaries.  This
23970allows GCC to emit code that performs faster indirect calls.
23971
23972This option does not work in the presence of shared libraries or nested
23973functions.
23974
23975@item -mfixed-range=@var{register-range}
23976@opindex mfixed-range
23977Generate code treating the given register range as fixed registers.
23978A fixed register is one that the register allocator cannot use.  This is
23979useful when compiling kernel code.  A register range is specified as
23980two registers separated by a dash.  Multiple register ranges can be
23981specified separated by a comma.
23982
23983@item -mlong-load-store
23984@opindex mlong-load-store
23985Generate 3-instruction load and store sequences as sometimes required by
23986the HP-UX 10 linker.  This is equivalent to the @samp{+k} option to
23987the HP compilers.
23988
23989@item -mportable-runtime
23990@opindex mportable-runtime
23991Use the portable calling conventions proposed by HP for ELF systems.
23992
23993@item -mgas
23994@opindex mgas
23995Enable the use of assembler directives only GAS understands.
23996
23997@item -mschedule=@var{cpu-type}
23998@opindex mschedule
23999Schedule code according to the constraints for the machine type
24000@var{cpu-type}.  The choices for @var{cpu-type} are @samp{700}
24001@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}.  Refer
24002to @file{/usr/lib/sched.models} on an HP-UX system to determine the
24003proper scheduling option for your machine.  The default scheduling is
24004@samp{8000}.
24005
24006@item -mlinker-opt
24007@opindex mlinker-opt
24008Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
24009debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
24010linkers in which they give bogus error messages when linking some programs.
24011
24012@item -msoft-float
24013@opindex msoft-float
24014Generate output containing library calls for floating point.
24015@strong{Warning:} the requisite libraries are not available for all HPPA
24016targets.  Normally the facilities of the machine's usual C compiler are
24017used, but this cannot be done directly in cross-compilation.  You must make
24018your own arrangements to provide suitable library functions for
24019cross-compilation.
24020
24021@option{-msoft-float} changes the calling convention in the output file;
24022therefore, it is only useful if you compile @emph{all} of a program with
24023this option.  In particular, you need to compile @file{libgcc.a}, the
24024library that comes with GCC, with @option{-msoft-float} in order for
24025this to work.
24026
24027@item -msio
24028@opindex msio
24029Generate the predefine, @code{_SIO}, for server IO@.  The default is
24030@option{-mwsio}.  This generates the predefines, @code{__hp9000s700},
24031@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@.  These
24032options are available under HP-UX and HI-UX@.
24033
24034@item -mgnu-ld
24035@opindex mgnu-ld
24036Use options specific to GNU @command{ld}.
24037This passes @option{-shared} to @command{ld} when
24038building a shared library.  It is the default when GCC is configured,
24039explicitly or implicitly, with the GNU linker.  This option does not
24040affect which @command{ld} is called; it only changes what parameters
24041are passed to that @command{ld}.
24042The @command{ld} that is called is determined by the
24043@option{--with-ld} configure option, GCC's program search path, and
24044finally by the user's @env{PATH}.  The linker used by GCC can be printed
24045using @samp{which `gcc -print-prog-name=ld`}.  This option is only available
24046on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
24047
24048@item -mhp-ld
24049@opindex mhp-ld
24050Use options specific to HP @command{ld}.
24051This passes @option{-b} to @command{ld} when building
24052a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
24053links.  It is the default when GCC is configured, explicitly or
24054implicitly, with the HP linker.  This option does not affect
24055which @command{ld} is called; it only changes what parameters are passed to that
24056@command{ld}.
24057The @command{ld} that is called is determined by the @option{--with-ld}
24058configure option, GCC's program search path, and finally by the user's
24059@env{PATH}.  The linker used by GCC can be printed using @samp{which
24060`gcc -print-prog-name=ld`}.  This option is only available on the 64-bit
24061HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
24062
24063@item -mlong-calls
24064@opindex mno-long-calls
24065@opindex mlong-calls
24066Generate code that uses long call sequences.  This ensures that a call
24067is always able to reach linker generated stubs.  The default is to generate
24068long calls only when the distance from the call site to the beginning
24069of the function or translation unit, as the case may be, exceeds a
24070predefined limit set by the branch type being used.  The limits for
24071normal calls are 7,600,000 and 240,000 bytes, respectively for the
24072PA 2.0 and PA 1.X architectures.  Sibcalls are always limited at
24073240,000 bytes.
24074
24075Distances are measured from the beginning of functions when using the
24076@option{-ffunction-sections} option, or when using the @option{-mgas}
24077and @option{-mno-portable-runtime} options together under HP-UX with
24078the SOM linker.
24079
24080It is normally not desirable to use this option as it degrades
24081performance.  However, it may be useful in large applications,
24082particularly when partial linking is used to build the application.
24083
24084The types of long calls used depends on the capabilities of the
24085assembler and linker, and the type of code being generated.  The
24086impact on systems that support long absolute calls, and long pic
24087symbol-difference or pc-relative calls should be relatively small.
24088However, an indirect call is used on 32-bit ELF systems in pic code
24089and it is quite long.
24090
24091@item -munix=@var{unix-std}
24092@opindex march
24093Generate compiler predefines and select a startfile for the specified
24094UNIX standard.  The choices for @var{unix-std} are @samp{93}, @samp{95}
24095and @samp{98}.  @samp{93} is supported on all HP-UX versions.  @samp{95}
24096is available on HP-UX 10.10 and later.  @samp{98} is available on HP-UX
2409711.11 and later.  The default values are @samp{93} for HP-UX 10.00,
24098@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
24099and later.
24100
24101@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
24102@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
24103and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
24104@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
24105@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
24106@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
24107
24108It is @emph{important} to note that this option changes the interfaces
24109for various library routines.  It also affects the operational behavior
24110of the C library.  Thus, @emph{extreme} care is needed in using this
24111option.
24112
24113Library code that is intended to operate with more than one UNIX
24114standard must test, set and restore the variable @code{__xpg4_extended_mask}
24115as appropriate.  Most GNU software doesn't provide this capability.
24116
24117@item -nolibdld
24118@opindex nolibdld
24119Suppress the generation of link options to search libdld.sl when the
24120@option{-static} option is specified on HP-UX 10 and later.
24121
24122@item -static
24123@opindex static
24124The HP-UX implementation of setlocale in libc has a dependency on
24125libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
24126when the @option{-static} option is specified, special link options
24127are needed to resolve this dependency.
24128
24129On HP-UX 10 and later, the GCC driver adds the necessary options to
24130link with libdld.sl when the @option{-static} option is specified.
24131This causes the resulting binary to be dynamic.  On the 64-bit port,
24132the linkers generate dynamic binaries by default in any case.  The
24133@option{-nolibdld} option can be used to prevent the GCC driver from
24134adding these link options.
24135
24136@item -threads
24137@opindex threads
24138Add support for multithreading with the @dfn{dce thread} library
24139under HP-UX@.  This option sets flags for both the preprocessor and
24140linker.
24141@end table
24142
24143@node IA-64 Options
24144@subsection IA-64 Options
24145@cindex IA-64 Options
24146
24147These are the @samp{-m} options defined for the Intel IA-64 architecture.
24148
24149@table @gcctabopt
24150@item -mbig-endian
24151@opindex mbig-endian
24152Generate code for a big-endian target.  This is the default for HP-UX@.
24153
24154@item -mlittle-endian
24155@opindex mlittle-endian
24156Generate code for a little-endian target.  This is the default for AIX5
24157and GNU/Linux.
24158
24159@item -mgnu-as
24160@itemx -mno-gnu-as
24161@opindex mgnu-as
24162@opindex mno-gnu-as
24163Generate (or don't) code for the GNU assembler.  This is the default.
24164@c Also, this is the default if the configure option @option{--with-gnu-as}
24165@c is used.
24166
24167@item -mgnu-ld
24168@itemx -mno-gnu-ld
24169@opindex mgnu-ld
24170@opindex mno-gnu-ld
24171Generate (or don't) code for the GNU linker.  This is the default.
24172@c Also, this is the default if the configure option @option{--with-gnu-ld}
24173@c is used.
24174
24175@item -mno-pic
24176@opindex mno-pic
24177Generate code that does not use a global pointer register.  The result
24178is not position independent code, and violates the IA-64 ABI@.
24179
24180@item -mvolatile-asm-stop
24181@itemx -mno-volatile-asm-stop
24182@opindex mvolatile-asm-stop
24183@opindex mno-volatile-asm-stop
24184Generate (or don't) a stop bit immediately before and after volatile asm
24185statements.
24186
24187@item -mregister-names
24188@itemx -mno-register-names
24189@opindex mregister-names
24190@opindex mno-register-names
24191Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
24192the stacked registers.  This may make assembler output more readable.
24193
24194@item -mno-sdata
24195@itemx -msdata
24196@opindex mno-sdata
24197@opindex msdata
24198Disable (or enable) optimizations that use the small data section.  This may
24199be useful for working around optimizer bugs.
24200
24201@item -mconstant-gp
24202@opindex mconstant-gp
24203Generate code that uses a single constant global pointer value.  This is
24204useful when compiling kernel code.
24205
24206@item -mauto-pic
24207@opindex mauto-pic
24208Generate code that is self-relocatable.  This implies @option{-mconstant-gp}.
24209This is useful when compiling firmware code.
24210
24211@item -minline-float-divide-min-latency
24212@opindex minline-float-divide-min-latency
24213Generate code for inline divides of floating-point values
24214using the minimum latency algorithm.
24215
24216@item -minline-float-divide-max-throughput
24217@opindex minline-float-divide-max-throughput
24218Generate code for inline divides of floating-point values
24219using the maximum throughput algorithm.
24220
24221@item -mno-inline-float-divide
24222@opindex mno-inline-float-divide
24223Do not generate inline code for divides of floating-point values.
24224
24225@item -minline-int-divide-min-latency
24226@opindex minline-int-divide-min-latency
24227Generate code for inline divides of integer values
24228using the minimum latency algorithm.
24229
24230@item -minline-int-divide-max-throughput
24231@opindex minline-int-divide-max-throughput
24232Generate code for inline divides of integer values
24233using the maximum throughput algorithm.
24234
24235@item -mno-inline-int-divide
24236@opindex mno-inline-int-divide
24237@opindex minline-int-divide
24238Do not generate inline code for divides of integer values.
24239
24240@item -minline-sqrt-min-latency
24241@opindex minline-sqrt-min-latency
24242Generate code for inline square roots
24243using the minimum latency algorithm.
24244
24245@item -minline-sqrt-max-throughput
24246@opindex minline-sqrt-max-throughput
24247Generate code for inline square roots
24248using the maximum throughput algorithm.
24249
24250@item -mno-inline-sqrt
24251@opindex mno-inline-sqrt
24252Do not generate inline code for @code{sqrt}.
24253
24254@item -mfused-madd
24255@itemx -mno-fused-madd
24256@opindex mfused-madd
24257@opindex mno-fused-madd
24258Do (don't) generate code that uses the fused multiply/add or multiply/subtract
24259instructions.  The default is to use these instructions.
24260
24261@item -mno-dwarf2-asm
24262@itemx -mdwarf2-asm
24263@opindex mno-dwarf2-asm
24264@opindex mdwarf2-asm
24265Don't (or do) generate assembler code for the DWARF line number debugging
24266info.  This may be useful when not using the GNU assembler.
24267
24268@item -mearly-stop-bits
24269@itemx -mno-early-stop-bits
24270@opindex mearly-stop-bits
24271@opindex mno-early-stop-bits
24272Allow stop bits to be placed earlier than immediately preceding the
24273instruction that triggered the stop bit.  This can improve instruction
24274scheduling, but does not always do so.
24275
24276@item -mfixed-range=@var{register-range}
24277@opindex mfixed-range
24278Generate code treating the given register range as fixed registers.
24279A fixed register is one that the register allocator cannot use.  This is
24280useful when compiling kernel code.  A register range is specified as
24281two registers separated by a dash.  Multiple register ranges can be
24282specified separated by a comma.
24283
24284@item -mtls-size=@var{tls-size}
24285@opindex mtls-size
24286Specify bit size of immediate TLS offsets.  Valid values are 14, 22, and
2428764.
24288
24289@item -mtune=@var{cpu-type}
24290@opindex mtune
24291Tune the instruction scheduling for a particular CPU, Valid values are
24292@samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
24293and @samp{mckinley}.
24294
24295@item -milp32
24296@itemx -mlp64
24297@opindex milp32
24298@opindex mlp64
24299Generate code for a 32-bit or 64-bit environment.
24300The 32-bit environment sets int, long and pointer to 32 bits.
24301The 64-bit environment sets int to 32 bits and long and pointer
24302to 64 bits.  These are HP-UX specific flags.
24303
24304@item -mno-sched-br-data-spec
24305@itemx -msched-br-data-spec
24306@opindex mno-sched-br-data-spec
24307@opindex msched-br-data-spec
24308(Dis/En)able data speculative scheduling before reload.
24309This results in generation of @code{ld.a} instructions and
24310the corresponding check instructions (@code{ld.c} / @code{chk.a}).
24311The default setting is disabled.
24312
24313@item -msched-ar-data-spec
24314@itemx -mno-sched-ar-data-spec
24315@opindex msched-ar-data-spec
24316@opindex mno-sched-ar-data-spec
24317(En/Dis)able data speculative scheduling after reload.
24318This results in generation of @code{ld.a} instructions and
24319the corresponding check instructions (@code{ld.c} / @code{chk.a}).
24320The default setting is enabled.
24321
24322@item -mno-sched-control-spec
24323@itemx -msched-control-spec
24324@opindex mno-sched-control-spec
24325@opindex msched-control-spec
24326(Dis/En)able control speculative scheduling.  This feature is
24327available only during region scheduling (i.e.@: before reload).
24328This results in generation of the @code{ld.s} instructions and
24329the corresponding check instructions @code{chk.s}.
24330The default setting is disabled.
24331
24332@item -msched-br-in-data-spec
24333@itemx -mno-sched-br-in-data-spec
24334@opindex msched-br-in-data-spec
24335@opindex mno-sched-br-in-data-spec
24336(En/Dis)able speculative scheduling of the instructions that
24337are dependent on the data speculative loads before reload.
24338This is effective only with @option{-msched-br-data-spec} enabled.
24339The default setting is enabled.
24340
24341@item -msched-ar-in-data-spec
24342@itemx -mno-sched-ar-in-data-spec
24343@opindex msched-ar-in-data-spec
24344@opindex mno-sched-ar-in-data-spec
24345(En/Dis)able speculative scheduling of the instructions that
24346are dependent on the data speculative loads after reload.
24347This is effective only with @option{-msched-ar-data-spec} enabled.
24348The default setting is enabled.
24349
24350@item -msched-in-control-spec
24351@itemx -mno-sched-in-control-spec
24352@opindex msched-in-control-spec
24353@opindex mno-sched-in-control-spec
24354(En/Dis)able speculative scheduling of the instructions that
24355are dependent on the control speculative loads.
24356This is effective only with @option{-msched-control-spec} enabled.
24357The default setting is enabled.
24358
24359@item -mno-sched-prefer-non-data-spec-insns
24360@itemx -msched-prefer-non-data-spec-insns
24361@opindex mno-sched-prefer-non-data-spec-insns
24362@opindex msched-prefer-non-data-spec-insns
24363If enabled, data-speculative instructions are chosen for schedule
24364only if there are no other choices at the moment.  This makes
24365the use of the data speculation much more conservative.
24366The default setting is disabled.
24367
24368@item -mno-sched-prefer-non-control-spec-insns
24369@itemx -msched-prefer-non-control-spec-insns
24370@opindex mno-sched-prefer-non-control-spec-insns
24371@opindex msched-prefer-non-control-spec-insns
24372If enabled, control-speculative instructions are chosen for schedule
24373only if there are no other choices at the moment.  This makes
24374the use of the control speculation much more conservative.
24375The default setting is disabled.
24376
24377@item -mno-sched-count-spec-in-critical-path
24378@itemx -msched-count-spec-in-critical-path
24379@opindex mno-sched-count-spec-in-critical-path
24380@opindex msched-count-spec-in-critical-path
24381If enabled, speculative dependencies are considered during
24382computation of the instructions priorities.  This makes the use of the
24383speculation a bit more conservative.
24384The default setting is disabled.
24385
24386@item -msched-spec-ldc
24387@opindex msched-spec-ldc
24388Use a simple data speculation check.  This option is on by default.
24389
24390@item -msched-control-spec-ldc
24391@opindex msched-spec-ldc
24392Use a simple check for control speculation.  This option is on by default.
24393
24394@item -msched-stop-bits-after-every-cycle
24395@opindex msched-stop-bits-after-every-cycle
24396Place a stop bit after every cycle when scheduling.  This option is on
24397by default.
24398
24399@item -msched-fp-mem-deps-zero-cost
24400@opindex msched-fp-mem-deps-zero-cost
24401Assume that floating-point stores and loads are not likely to cause a conflict
24402when placed into the same instruction group.  This option is disabled by
24403default.
24404
24405@item -msel-sched-dont-check-control-spec
24406@opindex msel-sched-dont-check-control-spec
24407Generate checks for control speculation in selective scheduling.
24408This flag is disabled by default.
24409
24410@item -msched-max-memory-insns=@var{max-insns}
24411@opindex msched-max-memory-insns
24412Limit on the number of memory insns per instruction group, giving lower
24413priority to subsequent memory insns attempting to schedule in the same
24414instruction group. Frequently useful to prevent cache bank conflicts.
24415The default value is 1.
24416
24417@item -msched-max-memory-insns-hard-limit
24418@opindex msched-max-memory-insns-hard-limit
24419Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
24420disallowing more than that number in an instruction group.
24421Otherwise, the limit is ``soft'', meaning that non-memory operations
24422are preferred when the limit is reached, but memory operations may still
24423be scheduled.
24424
24425@end table
24426
24427@node LM32 Options
24428@subsection LM32 Options
24429@cindex LM32 options
24430
24431These @option{-m} options are defined for the LatticeMico32 architecture:
24432
24433@table @gcctabopt
24434@item -mbarrel-shift-enabled
24435@opindex mbarrel-shift-enabled
24436Enable barrel-shift instructions.
24437
24438@item -mdivide-enabled
24439@opindex mdivide-enabled
24440Enable divide and modulus instructions.
24441
24442@item -mmultiply-enabled
24443@opindex multiply-enabled
24444Enable multiply instructions.
24445
24446@item -msign-extend-enabled
24447@opindex msign-extend-enabled
24448Enable sign extend instructions.
24449
24450@item -muser-enabled
24451@opindex muser-enabled
24452Enable user-defined instructions.
24453
24454@end table
24455
24456@node LoongArch Options
24457@subsection LoongArch Options
24458@cindex LoongArch Options
24459
24460These command-line options are defined for LoongArch targets:
24461
24462@table @gcctabopt
24463@item -march=@var{cpu-type}
24464@opindex -march
24465Generate instructions for the machine type @var{cpu-type}.  In contrast to
24466@option{-mtune=@var{cpu-type}}, which merely tunes the generated code
24467for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
24468to generate code that may not run at all on processors other than the one
24469indicated.  Specifying @option{-march=@var{cpu-type}} implies
24470@option{-mtune=@var{cpu-type}}, except where noted otherwise.
24471
24472The choices for @var{cpu-type} are:
24473
24474@table @samp
24475@item native
24476This selects the CPU to generate code for at compilation time by determining
24477the processor type of the compiling machine.  Using @option{-march=native}
24478enables all instruction subsets supported by the local machine (hence
24479the result might not run on different machines).  Using @option{-mtune=native}
24480produces code optimized for the local machine under the constraints
24481of the selected instruction set.
24482@item loongarch64
24483A generic CPU with 64-bit extensions.
24484@item la464
24485LoongArch LA464 CPU with LBT, LSX, LASX, LVZ.
24486@end table
24487
24488@item -mtune=@var{cpu-type}
24489@opindex mtune
24490Optimize the output for the given processor, specified by microarchitecture
24491name.
24492
24493@item -mabi=@var{base-abi-type}
24494@opindex mabi
24495Generate code for the specified calling convention.
24496@var{base-abi-type} can be one of:
24497@table @samp
24498@item lp64d
24499Uses 64-bit general purpose registers and 32/64-bit floating-point
24500registers for parameter passing.  Data model is LP64, where @samp{int}
24501is 32 bits, while @samp{long int} and pointers are 64 bits.
24502@item lp64f
24503Uses 64-bit general purpose registers and 32-bit floating-point
24504registers for parameter passing.  Data model is LP64, where @samp{int}
24505is 32 bits, while @samp{long int} and pointers are 64 bits.
24506@item lp64s
24507Uses 64-bit general purpose registers and no floating-point
24508registers for parameter passing.  Data model is LP64, where @samp{int}
24509is 32 bits, while @samp{long int} and pointers are 64 bits.
24510@end table
24511
24512@item -mfpu=@var{fpu-type}
24513@opindex mfpu
24514Generate code for the specified FPU type, which can be one of:
24515@table @samp
24516@item 64
24517Allow the use of hardware floating-point instructions for 32-bit
24518and 64-bit operations.
24519@item 32
24520Allow the use of hardware floating-point instructions for 32-bit
24521operations.
24522@item none
24523@item 0
24524Prevent the use of hardware floating-point instructions.
24525@end table
24526
24527@item -msoft-float
24528@opindex msoft-float
24529Force @option{-mfpu=none} and prevents the use of floating-point
24530registers for parameter passing.  This option may change the target
24531ABI.
24532
24533@item -msingle-float
24534@opindex -msingle-float
24535Force @option{-mfpu=32} and allow the use of 32-bit floating-point
24536registers for parameter passing.  This option may change the target
24537ABI.
24538
24539@item -mdouble-float
24540@opindex -mdouble-float
24541Force @option{-mfpu=64} and allow the use of 32/64-bit floating-point
24542registers for parameter passing.  This option may change the target
24543ABI.
24544
24545@item -mbranch-cost=@var{n}
24546@opindex -mbranch-cost
24547Set the cost of branches to roughly @var{n} instructions.
24548
24549@item -mcheck-zero-division
24550@itemx -mno-check-zero-divison
24551@opindex -mcheck-zero-division
24552Trap (do not trap) on integer division by zero.  The default is
24553@option{-mcheck-zero-division} for @option{-O0} or @option{-Og}, and
24554@option{-mno-check-zero-division} for other optimization levels.
24555
24556@item -mcond-move-int
24557@itemx -mno-cond-move-int
24558@opindex -mcond-move-int
24559Conditional moves for integral data in general-purpose registers
24560are enabled (disabled).  The default is @option{-mcond-move-int}.
24561
24562@item -mcond-move-float
24563@itemx -mno-cond-move-float
24564@opindex -mcond-move-float
24565Conditional moves for floating-point registers are enabled (disabled).
24566The default is @option{-mcond-move-float}.
24567
24568@item -mmemcpy
24569@itemx -mno-memcpy
24570@opindex -mmemcpy
24571Force (do not force) the use of @code{memcpy} for non-trivial block moves.
24572The default is @option{-mno-memcpy}, which allows GCC to inline most
24573constant-sized copies.  Setting optimization level to @option{-Os} also
24574forces the use of @code{memcpy}, but @option{-mno-memcpy} may override this
24575behavior if explicitly specified, regardless of the order these options on
24576the command line.
24577
24578@item -mstrict-align
24579@itemx -mno-strict-align
24580@opindex -mstrict-align
24581Avoid or allow generating memory accesses that may not be aligned on a natural
24582object boundary as described in the architecture specification. The default is
24583@option{-mno-strict-align}.
24584
24585@item -msmall-data-limit=@var{number}
24586@opindex -msmall-data-limit
24587Put global and static data smaller than @var{number} bytes into a special
24588section (on some targets).  The default value is 0.
24589
24590@item -mmax-inline-memcpy-size=@var{n}
24591@opindex -mmax-inline-memcpy-size
24592Inline all block moves (such as calls to @code{memcpy} or structure copies)
24593less than or equal to @var{n} bytes.  The default value of @var{n} is 1024.
24594
24595@item -mcmodel=@var{code-model}
24596Set the code model to one of:
24597@table @samp
24598@item tiny-static
24599@itemize @bullet
24600@item
24601local symbol and global strong symbol: The data section must be within +/-2MiB addressing space.
24602The text section must be within +/-128MiB addressing space.
24603@item
24604global weak symbol: The got table must be within +/-2GiB addressing space.
24605@end itemize
24606
24607@item tiny
24608@itemize @bullet
24609@item
24610local symbol: The data section must be within +/-2MiB addressing space.
24611The text section must be within +/-128MiB
24612addressing space.
24613@item
24614global symbol: The got table must be within +/-2GiB addressing space.
24615@end itemize
24616
24617@item normal
24618@itemize @bullet
24619@item
24620local symbol: The data section must be within +/-2GiB addressing space.
24621The text section must be within +/-128MiB addressing space.
24622@item
24623global symbol: The got table must be within +/-2GiB addressing space.
24624@end itemize
24625
24626@item large
24627@itemize @bullet
24628@item
24629local symbol: The data section must be within +/-2GiB addressing space.
24630The text section must be within +/-128GiB addressing space.
24631@item
24632global symbol: The got table must be within +/-2GiB addressing space.
24633@end itemize
24634
24635@item extreme(Not implemented yet)
24636@itemize @bullet
24637@item
24638local symbol: The data and text section must be within +/-8EiB addressing space.
24639@item
24640global symbol: The data got table must be within +/-8EiB addressing space.
24641@end itemize
24642@end table
24643The default code model is @code{normal}.
24644
24645@item -mrelax
24646@itemx -mno-relax
24647Take (do not take) advantage of linker relaxations.  If
24648@option{-mpass-mrelax-to-as} is enabled, this option is also passed to
24649the assembler.  The default is determined during GCC build-time by
24650detecting corresponding assembler support:
24651@option{-mrelax} if the assembler supports both the @option{-mrelax}
24652option and the conditional branch relaxation (it's required or the
24653@code{.align} directives and conditional branch instructions in the
24654assembly code outputted by GCC may be rejected by the assembler because
24655of a relocation overflow), @option{-mno-relax} otherwise.
24656
24657@item -mpass-mrelax-to-as
24658@itemx -mno-pass-mrelax-to-as
24659Pass (do not pass) the @option{-mrelax} or @option{-mno-relax} option
24660to the assembler.  The default is determined during GCC build-time by
24661detecting corresponding assembler support:
24662@option{-mpass-mrelax-to-as} if the assembler supports the
24663@option{-mrelax} option, @option{-mno-pass-mrelax-to-as} otherwise.
24664This option is mostly useful for debugging, or interoperation with
24665assemblers different from the build-time one.
24666@end table
24667
24668@node M32C Options
24669@subsection M32C Options
24670@cindex M32C options
24671
24672@table @gcctabopt
24673@item -mcpu=@var{name}
24674@opindex mcpu=
24675Select the CPU for which code is generated.  @var{name} may be one of
24676@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
24677/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
24678the M32C/80 series.
24679
24680@item -msim
24681@opindex msim
24682Specifies that the program will be run on the simulator.  This causes
24683an alternate runtime library to be linked in which supports, for
24684example, file I/O@.  You must not use this option when generating
24685programs that will run on real hardware; you must provide your own
24686runtime library for whatever I/O functions are needed.
24687
24688@item -memregs=@var{number}
24689@opindex memregs=
24690Specifies the number of memory-based pseudo-registers GCC uses
24691during code generation.  These pseudo-registers are used like real
24692registers, so there is a tradeoff between GCC's ability to fit the
24693code into available registers, and the performance penalty of using
24694memory instead of registers.  Note that all modules in a program must
24695be compiled with the same value for this option.  Because of that, you
24696must not use this option with GCC's default runtime libraries.
24697
24698@end table
24699
24700@node M32R/D Options
24701@subsection M32R/D Options
24702@cindex M32R/D options
24703
24704These @option{-m} options are defined for Renesas M32R/D architectures:
24705
24706@table @gcctabopt
24707@item -m32r2
24708@opindex m32r2
24709Generate code for the M32R/2@.
24710
24711@item -m32rx
24712@opindex m32rx
24713Generate code for the M32R/X@.
24714
24715@item -m32r
24716@opindex m32r
24717Generate code for the M32R@.  This is the default.
24718
24719@item -mmodel=small
24720@opindex mmodel=small
24721Assume all objects live in the lower 16MB of memory (so that their addresses
24722can be loaded with the @code{ld24} instruction), and assume all subroutines
24723are reachable with the @code{bl} instruction.
24724This is the default.
24725
24726The addressability of a particular object can be set with the
24727@code{model} attribute.
24728
24729@item -mmodel=medium
24730@opindex mmodel=medium
24731Assume objects may be anywhere in the 32-bit address space (the compiler
24732generates @code{seth/add3} instructions to load their addresses), and
24733assume all subroutines are reachable with the @code{bl} instruction.
24734
24735@item -mmodel=large
24736@opindex mmodel=large
24737Assume objects may be anywhere in the 32-bit address space (the compiler
24738generates @code{seth/add3} instructions to load their addresses), and
24739assume subroutines may not be reachable with the @code{bl} instruction
24740(the compiler generates the much slower @code{seth/add3/jl}
24741instruction sequence).
24742
24743@item -msdata=none
24744@opindex msdata=none
24745Disable use of the small data area.  Variables are put into
24746one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
24747@code{section} attribute has been specified).
24748This is the default.
24749
24750The small data area consists of sections @code{.sdata} and @code{.sbss}.
24751Objects may be explicitly put in the small data area with the
24752@code{section} attribute using one of these sections.
24753
24754@item -msdata=sdata
24755@opindex msdata=sdata
24756Put small global and static data in the small data area, but do not
24757generate special code to reference them.
24758
24759@item -msdata=use
24760@opindex msdata=use
24761Put small global and static data in the small data area, and generate
24762special instructions to reference them.
24763
24764@item -G @var{num}
24765@opindex G
24766@cindex smaller data references
24767Put global and static objects less than or equal to @var{num} bytes
24768into the small data or BSS sections instead of the normal data or BSS
24769sections.  The default value of @var{num} is 8.
24770The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
24771for this option to have any effect.
24772
24773All modules should be compiled with the same @option{-G @var{num}} value.
24774Compiling with different values of @var{num} may or may not work; if it
24775doesn't the linker gives an error message---incorrect code is not
24776generated.
24777
24778@item -mdebug
24779@opindex mdebug
24780Makes the M32R-specific code in the compiler display some statistics
24781that might help in debugging programs.
24782
24783@item -malign-loops
24784@opindex malign-loops
24785Align all loops to a 32-byte boundary.
24786
24787@item -mno-align-loops
24788@opindex mno-align-loops
24789Do not enforce a 32-byte alignment for loops.  This is the default.
24790
24791@item -missue-rate=@var{number}
24792@opindex missue-rate=@var{number}
24793Issue @var{number} instructions per cycle.  @var{number} can only be 1
24794or 2.
24795
24796@item -mbranch-cost=@var{number}
24797@opindex mbranch-cost=@var{number}
24798@var{number} can only be 1 or 2.  If it is 1 then branches are
24799preferred over conditional code, if it is 2, then the opposite applies.
24800
24801@item -mflush-trap=@var{number}
24802@opindex mflush-trap=@var{number}
24803Specifies the trap number to use to flush the cache.  The default is
2480412.  Valid numbers are between 0 and 15 inclusive.
24805
24806@item -mno-flush-trap
24807@opindex mno-flush-trap
24808Specifies that the cache cannot be flushed by using a trap.
24809
24810@item -mflush-func=@var{name}
24811@opindex mflush-func=@var{name}
24812Specifies the name of the operating system function to call to flush
24813the cache.  The default is @samp{_flush_cache}, but a function call
24814is only used if a trap is not available.
24815
24816@item -mno-flush-func
24817@opindex mno-flush-func
24818Indicates that there is no OS function for flushing the cache.
24819
24820@end table
24821
24822@node M680x0 Options
24823@subsection M680x0 Options
24824@cindex M680x0 options
24825
24826These are the @samp{-m} options defined for M680x0 and ColdFire processors.
24827The default settings depend on which architecture was selected when
24828the compiler was configured; the defaults for the most common choices
24829are given below.
24830
24831@table @gcctabopt
24832@item -march=@var{arch}
24833@opindex march
24834Generate code for a specific M680x0 or ColdFire instruction set
24835architecture.  Permissible values of @var{arch} for M680x0
24836architectures are: @samp{68000}, @samp{68010}, @samp{68020},
24837@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}.  ColdFire
24838architectures are selected according to Freescale's ISA classification
24839and the permissible values are: @samp{isaa}, @samp{isaaplus},
24840@samp{isab} and @samp{isac}.
24841
24842GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
24843code for a ColdFire target.  The @var{arch} in this macro is one of the
24844@option{-march} arguments given above.
24845
24846When used together, @option{-march} and @option{-mtune} select code
24847that runs on a family of similar processors but that is optimized
24848for a particular microarchitecture.
24849
24850@item -mcpu=@var{cpu}
24851@opindex mcpu
24852Generate code for a specific M680x0 or ColdFire processor.
24853The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
24854@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
24855and @samp{cpu32}.  The ColdFire @var{cpu}s are given by the table
24856below, which also classifies the CPUs into families:
24857
24858@multitable @columnfractions 0.20 0.80
24859@headitem @strong{Family} @tab @strong{@samp{-mcpu} arguments}
24860@item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
24861@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
24862@item @samp{5206e} @tab @samp{5206e}
24863@item @samp{5208} @tab @samp{5207} @samp{5208}
24864@item @samp{5211a} @tab @samp{5210a} @samp{5211a}
24865@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
24866@item @samp{5216} @tab @samp{5214} @samp{5216}
24867@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
24868@item @samp{5225} @tab @samp{5224} @samp{5225}
24869@item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
24870@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
24871@item @samp{5249} @tab @samp{5249}
24872@item @samp{5250} @tab @samp{5250}
24873@item @samp{5271} @tab @samp{5270} @samp{5271}
24874@item @samp{5272} @tab @samp{5272}
24875@item @samp{5275} @tab @samp{5274} @samp{5275}
24876@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
24877@item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
24878@item @samp{5307} @tab @samp{5307}
24879@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
24880@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
24881@item @samp{5407} @tab @samp{5407}
24882@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
24883@end multitable
24884
24885@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
24886@var{arch} is compatible with @var{cpu}.  Other combinations of
24887@option{-mcpu} and @option{-march} are rejected.
24888
24889GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
24890@var{cpu} is selected.  It also defines @code{__mcf_family_@var{family}},
24891where the value of @var{family} is given by the table above.
24892
24893@item -mtune=@var{tune}
24894@opindex mtune
24895Tune the code for a particular microarchitecture within the
24896constraints set by @option{-march} and @option{-mcpu}.
24897The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
24898@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
24899and @samp{cpu32}.  The ColdFire microarchitectures
24900are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
24901
24902You can also use @option{-mtune=68020-40} for code that needs
24903to run relatively well on 68020, 68030 and 68040 targets.
24904@option{-mtune=68020-60} is similar but includes 68060 targets
24905as well.  These two options select the same tuning decisions as
24906@option{-m68020-40} and @option{-m68020-60} respectively.
24907
24908GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
24909when tuning for 680x0 architecture @var{arch}.  It also defines
24910@code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
24911option is used.  If GCC is tuning for a range of architectures,
24912as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
24913it defines the macros for every architecture in the range.
24914
24915GCC also defines the macro @code{__m@var{uarch}__} when tuning for
24916ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
24917of the arguments given above.
24918
24919@item -m68000
24920@itemx -mc68000
24921@opindex m68000
24922@opindex mc68000
24923Generate output for a 68000.  This is the default
24924when the compiler is configured for 68000-based systems.
24925It is equivalent to @option{-march=68000}.
24926
24927Use this option for microcontrollers with a 68000 or EC000 core,
24928including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
24929
24930@item -m68010
24931@opindex m68010
24932Generate output for a 68010.  This is the default
24933when the compiler is configured for 68010-based systems.
24934It is equivalent to @option{-march=68010}.
24935
24936@item -m68020
24937@itemx -mc68020
24938@opindex m68020
24939@opindex mc68020
24940Generate output for a 68020.  This is the default
24941when the compiler is configured for 68020-based systems.
24942It is equivalent to @option{-march=68020}.
24943
24944@item -m68030
24945@opindex m68030
24946Generate output for a 68030.  This is the default when the compiler is
24947configured for 68030-based systems.  It is equivalent to
24948@option{-march=68030}.
24949
24950@item -m68040
24951@opindex m68040
24952Generate output for a 68040.  This is the default when the compiler is
24953configured for 68040-based systems.  It is equivalent to
24954@option{-march=68040}.
24955
24956This option inhibits the use of 68881/68882 instructions that have to be
24957emulated by software on the 68040.  Use this option if your 68040 does not
24958have code to emulate those instructions.
24959
24960@item -m68060
24961@opindex m68060
24962Generate output for a 68060.  This is the default when the compiler is
24963configured for 68060-based systems.  It is equivalent to
24964@option{-march=68060}.
24965
24966This option inhibits the use of 68020 and 68881/68882 instructions that
24967have to be emulated by software on the 68060.  Use this option if your 68060
24968does not have code to emulate those instructions.
24969
24970@item -mcpu32
24971@opindex mcpu32
24972Generate output for a CPU32.  This is the default
24973when the compiler is configured for CPU32-based systems.
24974It is equivalent to @option{-march=cpu32}.
24975
24976Use this option for microcontrollers with a
24977CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
2497868336, 68340, 68341, 68349 and 68360.
24979
24980@item -m5200
24981@opindex m5200
24982Generate output for a 520X ColdFire CPU@.  This is the default
24983when the compiler is configured for 520X-based systems.
24984It is equivalent to @option{-mcpu=5206}, and is now deprecated
24985in favor of that option.
24986
24987Use this option for microcontroller with a 5200 core, including
24988the MCF5202, MCF5203, MCF5204 and MCF5206.
24989
24990@item -m5206e
24991@opindex m5206e
24992Generate output for a 5206e ColdFire CPU@.  The option is now
24993deprecated in favor of the equivalent @option{-mcpu=5206e}.
24994
24995@item -m528x
24996@opindex m528x
24997Generate output for a member of the ColdFire 528X family.
24998The option is now deprecated in favor of the equivalent
24999@option{-mcpu=528x}.
25000
25001@item -m5307
25002@opindex m5307
25003Generate output for a ColdFire 5307 CPU@.  The option is now deprecated
25004in favor of the equivalent @option{-mcpu=5307}.
25005
25006@item -m5407
25007@opindex m5407
25008Generate output for a ColdFire 5407 CPU@.  The option is now deprecated
25009in favor of the equivalent @option{-mcpu=5407}.
25010
25011@item -mcfv4e
25012@opindex mcfv4e
25013Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
25014This includes use of hardware floating-point instructions.
25015The option is equivalent to @option{-mcpu=547x}, and is now
25016deprecated in favor of that option.
25017
25018@item -m68020-40
25019@opindex m68020-40
25020Generate output for a 68040, without using any of the new instructions.
25021This results in code that can run relatively efficiently on either a
2502268020/68881 or a 68030 or a 68040.  The generated code does use the
2502368881 instructions that are emulated on the 68040.
25024
25025The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
25026
25027@item -m68020-60
25028@opindex m68020-60
25029Generate output for a 68060, without using any of the new instructions.
25030This results in code that can run relatively efficiently on either a
2503168020/68881 or a 68030 or a 68040.  The generated code does use the
2503268881 instructions that are emulated on the 68060.
25033
25034The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
25035
25036@item -mhard-float
25037@itemx -m68881
25038@opindex mhard-float
25039@opindex m68881
25040Generate floating-point instructions.  This is the default for 68020
25041and above, and for ColdFire devices that have an FPU@.  It defines the
25042macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
25043on ColdFire targets.
25044
25045@item -msoft-float
25046@opindex msoft-float
25047Do not generate floating-point instructions; use library calls instead.
25048This is the default for 68000, 68010, and 68832 targets.  It is also
25049the default for ColdFire devices that have no FPU.
25050
25051@item -mdiv
25052@itemx -mno-div
25053@opindex mdiv
25054@opindex mno-div
25055Generate (do not generate) ColdFire hardware divide and remainder
25056instructions.  If @option{-march} is used without @option{-mcpu},
25057the default is ``on'' for ColdFire architectures and ``off'' for M680x0
25058architectures.  Otherwise, the default is taken from the target CPU
25059(either the default CPU, or the one specified by @option{-mcpu}).  For
25060example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
25061@option{-mcpu=5206e}.
25062
25063GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
25064
25065@item -mshort
25066@opindex mshort
25067Consider type @code{int} to be 16 bits wide, like @code{short int}.
25068Additionally, parameters passed on the stack are also aligned to a
2506916-bit boundary even on targets whose API mandates promotion to 32-bit.
25070
25071@item -mno-short
25072@opindex mno-short
25073Do not consider type @code{int} to be 16 bits wide.  This is the default.
25074
25075@item -mnobitfield
25076@itemx -mno-bitfield
25077@opindex mnobitfield
25078@opindex mno-bitfield
25079Do not use the bit-field instructions.  The @option{-m68000}, @option{-mcpu32}
25080and @option{-m5200} options imply @w{@option{-mnobitfield}}.
25081
25082@item -mbitfield
25083@opindex mbitfield
25084Do use the bit-field instructions.  The @option{-m68020} option implies
25085@option{-mbitfield}.  This is the default if you use a configuration
25086designed for a 68020.
25087
25088@item -mrtd
25089@opindex mrtd
25090Use a different function-calling convention, in which functions
25091that take a fixed number of arguments return with the @code{rtd}
25092instruction, which pops their arguments while returning.  This
25093saves one instruction in the caller since there is no need to pop
25094the arguments there.
25095
25096This calling convention is incompatible with the one normally
25097used on Unix, so you cannot use it if you need to call libraries
25098compiled with the Unix compiler.
25099
25100Also, you must provide function prototypes for all functions that
25101take variable numbers of arguments (including @code{printf});
25102otherwise incorrect code is generated for calls to those
25103functions.
25104
25105In addition, seriously incorrect code results if you call a
25106function with too many arguments.  (Normally, extra arguments are
25107harmlessly ignored.)
25108
25109The @code{rtd} instruction is supported by the 68010, 68020, 68030,
2511068040, 68060 and CPU32 processors, but not by the 68000 or 5200.
25111
25112The default is @option{-mno-rtd}.
25113
25114@item -malign-int
25115@itemx -mno-align-int
25116@opindex malign-int
25117@opindex mno-align-int
25118Control whether GCC aligns @code{int}, @code{long}, @code{long long},
25119@code{float}, @code{double}, and @code{long double} variables on a 32-bit
25120boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
25121Aligning variables on 32-bit boundaries produces code that runs somewhat
25122faster on processors with 32-bit busses at the expense of more memory.
25123
25124@strong{Warning:} if you use the @option{-malign-int} switch, GCC
25125aligns structures containing the above types differently than
25126most published application binary interface specifications for the m68k.
25127
25128@opindex mpcrel
25129Use the pc-relative addressing mode of the 68000 directly, instead of
25130using a global offset table.  At present, this option implies @option{-fpic},
25131allowing at most a 16-bit offset for pc-relative addressing.  @option{-fPIC} is
25132not presently supported with @option{-mpcrel}, though this could be supported for
2513368020 and higher processors.
25134
25135@item -mno-strict-align
25136@itemx -mstrict-align
25137@opindex mno-strict-align
25138@opindex mstrict-align
25139Do not (do) assume that unaligned memory references are handled by
25140the system.
25141
25142@item -msep-data
25143Generate code that allows the data segment to be located in a different
25144area of memory from the text segment.  This allows for execute-in-place in
25145an environment without virtual memory management.  This option implies
25146@option{-fPIC}.
25147
25148@item -mno-sep-data
25149Generate code that assumes that the data segment follows the text segment.
25150This is the default.
25151
25152@item -mid-shared-library
25153Generate code that supports shared libraries via the library ID method.
25154This allows for execute-in-place and shared libraries in an environment
25155without virtual memory management.  This option implies @option{-fPIC}.
25156
25157@item -mno-id-shared-library
25158Generate code that doesn't assume ID-based shared libraries are being used.
25159This is the default.
25160
25161@item -mshared-library-id=n
25162Specifies the identification number of the ID-based shared library being
25163compiled.  Specifying a value of 0 generates more compact code; specifying
25164other values forces the allocation of that number to the current
25165library, but is no more space- or time-efficient than omitting this option.
25166
25167@item -mxgot
25168@itemx -mno-xgot
25169@opindex mxgot
25170@opindex mno-xgot
25171When generating position-independent code for ColdFire, generate code
25172that works if the GOT has more than 8192 entries.  This code is
25173larger and slower than code generated without this option.  On M680x0
25174processors, this option is not needed; @option{-fPIC} suffices.
25175
25176GCC normally uses a single instruction to load values from the GOT@.
25177While this is relatively efficient, it only works if the GOT
25178is smaller than about 64k.  Anything larger causes the linker
25179to report an error such as:
25180
25181@cindex relocation truncated to fit (ColdFire)
25182@smallexample
25183relocation truncated to fit: R_68K_GOT16O foobar
25184@end smallexample
25185
25186If this happens, you should recompile your code with @option{-mxgot}.
25187It should then work with very large GOTs.  However, code generated with
25188@option{-mxgot} is less efficient, since it takes 4 instructions to fetch
25189the value of a global symbol.
25190
25191Note that some linkers, including newer versions of the GNU linker,
25192can create multiple GOTs and sort GOT entries.  If you have such a linker,
25193you should only need to use @option{-mxgot} when compiling a single
25194object file that accesses more than 8192 GOT entries.  Very few do.
25195
25196These options have no effect unless GCC is generating
25197position-independent code.
25198
25199@item -mlong-jump-table-offsets
25200@opindex mlong-jump-table-offsets
25201Use 32-bit offsets in @code{switch} tables.  The default is to use
2520216-bit offsets.
25203
25204@end table
25205
25206@node MCore Options
25207@subsection MCore Options
25208@cindex MCore options
25209
25210These are the @samp{-m} options defined for the Motorola M*Core
25211processors.
25212
25213@table @gcctabopt
25214
25215@item -mhardlit
25216@itemx -mno-hardlit
25217@opindex mhardlit
25218@opindex mno-hardlit
25219Inline constants into the code stream if it can be done in two
25220instructions or less.
25221
25222@item -mdiv
25223@itemx -mno-div
25224@opindex mdiv
25225@opindex mno-div
25226Use the divide instruction.  (Enabled by default).
25227
25228@item -mrelax-immediate
25229@itemx -mno-relax-immediate
25230@opindex mrelax-immediate
25231@opindex mno-relax-immediate
25232Allow arbitrary-sized immediates in bit operations.
25233
25234@item -mwide-bitfields
25235@itemx -mno-wide-bitfields
25236@opindex mwide-bitfields
25237@opindex mno-wide-bitfields
25238Always treat bit-fields as @code{int}-sized.
25239
25240@item -m4byte-functions
25241@itemx -mno-4byte-functions
25242@opindex m4byte-functions
25243@opindex mno-4byte-functions
25244Force all functions to be aligned to a 4-byte boundary.
25245
25246@item -mcallgraph-data
25247@itemx -mno-callgraph-data
25248@opindex mcallgraph-data
25249@opindex mno-callgraph-data
25250Emit callgraph information.
25251
25252@item -mslow-bytes
25253@itemx -mno-slow-bytes
25254@opindex mslow-bytes
25255@opindex mno-slow-bytes
25256Prefer word access when reading byte quantities.
25257
25258@item -mlittle-endian
25259@itemx -mbig-endian
25260@opindex mlittle-endian
25261@opindex mbig-endian
25262Generate code for a little-endian target.
25263
25264@item -m210
25265@itemx -m340
25266@opindex m210
25267@opindex m340
25268Generate code for the 210 processor.
25269
25270@item -mno-lsim
25271@opindex mno-lsim
25272Assume that runtime support has been provided and so omit the
25273simulator library (@file{libsim.a)} from the linker command line.
25274
25275@item -mstack-increment=@var{size}
25276@opindex mstack-increment
25277Set the maximum amount for a single stack increment operation.  Large
25278values can increase the speed of programs that contain functions
25279that need a large amount of stack space, but they can also trigger a
25280segmentation fault if the stack is extended too much.  The default
25281value is 0x1000.
25282
25283@end table
25284
25285@node MeP Options
25286@subsection MeP Options
25287@cindex MeP options
25288
25289@table @gcctabopt
25290
25291@item -mabsdiff
25292@opindex mabsdiff
25293Enables the @code{abs} instruction, which is the absolute difference
25294between two registers.
25295
25296@item -mall-opts
25297@opindex mall-opts
25298Enables all the optional instructions---average, multiply, divide, bit
25299operations, leading zero, absolute difference, min/max, clip, and
25300saturation.
25301
25302
25303@item -maverage
25304@opindex maverage
25305Enables the @code{ave} instruction, which computes the average of two
25306registers.
25307
25308@item -mbased=@var{n}
25309@opindex mbased=
25310Variables of size @var{n} bytes or smaller are placed in the
25311@code{.based} section by default.  Based variables use the @code{$tp}
25312register as a base register, and there is a 128-byte limit to the
25313@code{.based} section.
25314
25315@item -mbitops
25316@opindex mbitops
25317Enables the bit operation instructions---bit test (@code{btstm}), set
25318(@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
25319test-and-set (@code{tas}).
25320
25321@item -mc=@var{name}
25322@opindex mc=
25323Selects which section constant data is placed in.  @var{name} may
25324be @samp{tiny}, @samp{near}, or @samp{far}.
25325
25326@item -mclip
25327@opindex mclip
25328Enables the @code{clip} instruction.  Note that @option{-mclip} is not
25329useful unless you also provide @option{-mminmax}.
25330
25331@item -mconfig=@var{name}
25332@opindex mconfig=
25333Selects one of the built-in core configurations.  Each MeP chip has
25334one or more modules in it; each module has a core CPU and a variety of
25335coprocessors, optional instructions, and peripherals.  The
25336@code{MeP-Integrator} tool, not part of GCC, provides these
25337configurations through this option; using this option is the same as
25338using all the corresponding command-line options.  The default
25339configuration is @samp{default}.
25340
25341@item -mcop
25342@opindex mcop
25343Enables the coprocessor instructions.  By default, this is a 32-bit
25344coprocessor.  Note that the coprocessor is normally enabled via the
25345@option{-mconfig=} option.
25346
25347@item -mcop32
25348@opindex mcop32
25349Enables the 32-bit coprocessor's instructions.
25350
25351@item -mcop64
25352@opindex mcop64
25353Enables the 64-bit coprocessor's instructions.
25354
25355@item -mivc2
25356@opindex mivc2
25357Enables IVC2 scheduling.  IVC2 is a 64-bit VLIW coprocessor.
25358
25359@item -mdc
25360@opindex mdc
25361Causes constant variables to be placed in the @code{.near} section.
25362
25363@item -mdiv
25364@opindex mdiv
25365Enables the @code{div} and @code{divu} instructions.
25366
25367@item -meb
25368@opindex meb
25369Generate big-endian code.
25370
25371@item -mel
25372@opindex mel
25373Generate little-endian code.
25374
25375@item -mio-volatile
25376@opindex mio-volatile
25377Tells the compiler that any variable marked with the @code{io}
25378attribute is to be considered volatile.
25379
25380@item -ml
25381@opindex ml
25382Causes variables to be assigned to the @code{.far} section by default.
25383
25384@item -mleadz
25385@opindex mleadz
25386Enables the @code{leadz} (leading zero) instruction.
25387
25388@item -mm
25389@opindex mm
25390Causes variables to be assigned to the @code{.near} section by default.
25391
25392@item -mminmax
25393@opindex mminmax
25394Enables the @code{min} and @code{max} instructions.
25395
25396@item -mmult
25397@opindex mmult
25398Enables the multiplication and multiply-accumulate instructions.
25399
25400@item -mno-opts
25401@opindex mno-opts
25402Disables all the optional instructions enabled by @option{-mall-opts}.
25403
25404@item -mrepeat
25405@opindex mrepeat
25406Enables the @code{repeat} and @code{erepeat} instructions, used for
25407low-overhead looping.
25408
25409@item -ms
25410@opindex ms
25411Causes all variables to default to the @code{.tiny} section.  Note
25412that there is a 65536-byte limit to this section.  Accesses to these
25413variables use the @code{%gp} base register.
25414
25415@item -msatur
25416@opindex msatur
25417Enables the saturation instructions.  Note that the compiler does not
25418currently generate these itself, but this option is included for
25419compatibility with other tools, like @code{as}.
25420
25421@item -msdram
25422@opindex msdram
25423Link the SDRAM-based runtime instead of the default ROM-based runtime.
25424
25425@item -msim
25426@opindex msim
25427Link the simulator run-time libraries.
25428
25429@item -msimnovec
25430@opindex msimnovec
25431Link the simulator runtime libraries, excluding built-in support
25432for reset and exception vectors and tables.
25433
25434@item -mtf
25435@opindex mtf
25436Causes all functions to default to the @code{.far} section.  Without
25437this option, functions default to the @code{.near} section.
25438
25439@item -mtiny=@var{n}
25440@opindex mtiny=
25441Variables that are @var{n} bytes or smaller are allocated to the
25442@code{.tiny} section.  These variables use the @code{$gp} base
25443register.  The default for this option is 4, but note that there's a
2544465536-byte limit to the @code{.tiny} section.
25445
25446@end table
25447
25448@node MicroBlaze Options
25449@subsection MicroBlaze Options
25450@cindex MicroBlaze Options
25451
25452@table @gcctabopt
25453
25454@item -msoft-float
25455@opindex msoft-float
25456Use software emulation for floating point (default).
25457
25458@item -mhard-float
25459@opindex mhard-float
25460Use hardware floating-point instructions.
25461
25462@item -mmemcpy
25463@opindex mmemcpy
25464Do not optimize block moves, use @code{memcpy}.
25465
25466@item -mno-clearbss
25467@opindex mno-clearbss
25468This option is deprecated.  Use @option{-fno-zero-initialized-in-bss} instead.
25469
25470@item -mcpu=@var{cpu-type}
25471@opindex mcpu=
25472Use features of, and schedule code for, the given CPU.
25473Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
25474where @var{X} is a major version, @var{YY} is the minor version, and
25475@var{Z} is compatibility code.  Example values are @samp{v3.00.a},
25476@samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
25477
25478@item -mxl-soft-mul
25479@opindex mxl-soft-mul
25480Use software multiply emulation (default).
25481
25482@item -mxl-soft-div
25483@opindex mxl-soft-div
25484Use software emulation for divides (default).
25485
25486@item -mxl-barrel-shift
25487@opindex mxl-barrel-shift
25488Use the hardware barrel shifter.
25489
25490@item -mxl-pattern-compare
25491@opindex mxl-pattern-compare
25492Use pattern compare instructions.
25493
25494@item -msmall-divides
25495@opindex msmall-divides
25496Use table lookup optimization for small signed integer divisions.
25497
25498@item -mxl-stack-check
25499@opindex mxl-stack-check
25500This option is deprecated.  Use @option{-fstack-check} instead.
25501
25502@item -mxl-gp-opt
25503@opindex mxl-gp-opt
25504Use GP-relative @code{.sdata}/@code{.sbss} sections.
25505
25506@item -mxl-multiply-high
25507@opindex mxl-multiply-high
25508Use multiply high instructions for high part of 32x32 multiply.
25509
25510@item -mxl-float-convert
25511@opindex mxl-float-convert
25512Use hardware floating-point conversion instructions.
25513
25514@item -mxl-float-sqrt
25515@opindex mxl-float-sqrt
25516Use hardware floating-point square root instruction.
25517
25518@item -mbig-endian
25519@opindex mbig-endian
25520Generate code for a big-endian target.
25521
25522@item -mlittle-endian
25523@opindex mlittle-endian
25524Generate code for a little-endian target.
25525
25526@item -mxl-reorder
25527@opindex mxl-reorder
25528Use reorder instructions (swap and byte reversed load/store).
25529
25530@item -mxl-mode-@var{app-model}
25531Select application model @var{app-model}.  Valid models are
25532@table @samp
25533@item executable
25534normal executable (default), uses startup code @file{crt0.o}.
25535
25536@item xmdstub
25537for use with Xilinx Microprocessor Debugger (XMD) based
25538software intrusive debug agent called xmdstub. This uses startup file
25539@file{crt1.o} and sets the start address of the program to 0x800.
25540
25541@item bootstrap
25542for applications that are loaded using a bootloader.
25543This model uses startup file @file{crt2.o} which does not contain a processor
25544reset vector handler. This is suitable for transferring control on a
25545processor reset to the bootloader rather than the application.
25546
25547@item novectors
25548for applications that do not require any of the
25549MicroBlaze vectors. This option may be useful for applications running
25550within a monitoring application. This model uses @file{crt3.o} as a startup file.
25551@end table
25552
25553Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
25554@option{-mxl-mode-@var{app-model}}.
25555
25556@item -mpic-data-is-text-relative
25557@opindex mpic-data-is-text-relative
25558Assume that the displacement between the text and data segments is fixed
25559at static link time.  This allows data to be referenced by offset from start of
25560text address instead of GOT since PC-relative addressing is not supported.
25561
25562@end table
25563
25564@node MIPS Options
25565@subsection MIPS Options
25566@cindex MIPS options
25567
25568@table @gcctabopt
25569
25570@item -EB
25571@opindex EB
25572Generate big-endian code.
25573
25574@item -EL
25575@opindex EL
25576Generate little-endian code.  This is the default for @samp{mips*el-*-*}
25577configurations.
25578
25579@item -march=@var{arch}
25580@opindex march
25581Generate code that runs on @var{arch}, which can be the name of a
25582generic MIPS ISA, or the name of a particular processor.
25583The ISA names are:
25584@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
25585@samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
25586@samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
25587@samp{mips64r5} and @samp{mips64r6}.
25588The processor names are:
25589@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
25590@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
25591@samp{5kc}, @samp{5kf},
25592@samp{20kc},
25593@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
25594@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
25595@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
25596@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
25597@samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
25598@samp{i6400}, @samp{i6500},
25599@samp{interaptiv},
25600@samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
25601@samp{gs464e}, @samp{gs264e},
25602@samp{m4k},
25603@samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
25604@samp{m5100}, @samp{m5101},
25605@samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
25606@samp{orion},
25607@samp{p5600}, @samp{p6600},
25608@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
25609@samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
25610@samp{r6000}, @samp{r8000},
25611@samp{rm7000}, @samp{rm9000},
25612@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
25613@samp{sb1},
25614@samp{sr71000},
25615@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
25616@samp{vr5000}, @samp{vr5400}, @samp{vr5500},
25617@samp{xlr} and @samp{xlp}.
25618The special value @samp{from-abi} selects the
25619most compatible architecture for the selected ABI (that is,
25620@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
25621
25622The native Linux/GNU toolchain also supports the value @samp{native},
25623which selects the best architecture option for the host processor.
25624@option{-march=native} has no effect if GCC does not recognize
25625the processor.
25626
25627In processor names, a final @samp{000} can be abbreviated as @samp{k}
25628(for example, @option{-march=r2k}).  Prefixes are optional, and
25629@samp{vr} may be written @samp{r}.
25630
25631Names of the form @samp{@var{n}f2_1} refer to processors with
25632FPUs clocked at half the rate of the core, names of the form
25633@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
25634rate as the core, and names of the form @samp{@var{n}f3_2} refer to
25635processors with FPUs clocked a ratio of 3:2 with respect to the core.
25636For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
25637for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
25638accepted as synonyms for @samp{@var{n}f1_1}.
25639
25640GCC defines two macros based on the value of this option.  The first
25641is @code{_MIPS_ARCH}, which gives the name of target architecture, as
25642a string.  The second has the form @code{_MIPS_ARCH_@var{foo}},
25643where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
25644For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
25645to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
25646
25647Note that the @code{_MIPS_ARCH} macro uses the processor names given
25648above.  In other words, it has the full prefix and does not
25649abbreviate @samp{000} as @samp{k}.  In the case of @samp{from-abi},
25650the macro names the resolved architecture (either @code{"mips1"} or
25651@code{"mips3"}).  It names the default architecture when no
25652@option{-march} option is given.
25653
25654@item -mtune=@var{arch}
25655@opindex mtune
25656Optimize for @var{arch}.  Among other things, this option controls
25657the way instructions are scheduled, and the perceived cost of arithmetic
25658operations.  The list of @var{arch} values is the same as for
25659@option{-march}.
25660
25661When this option is not used, GCC optimizes for the processor
25662specified by @option{-march}.  By using @option{-march} and
25663@option{-mtune} together, it is possible to generate code that
25664runs on a family of processors, but optimize the code for one
25665particular member of that family.
25666
25667@option{-mtune} defines the macros @code{_MIPS_TUNE} and
25668@code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
25669@option{-march} ones described above.
25670
25671@item -mips1
25672@opindex mips1
25673Equivalent to @option{-march=mips1}.
25674
25675@item -mips2
25676@opindex mips2
25677Equivalent to @option{-march=mips2}.
25678
25679@item -mips3
25680@opindex mips3
25681Equivalent to @option{-march=mips3}.
25682
25683@item -mips4
25684@opindex mips4
25685Equivalent to @option{-march=mips4}.
25686
25687@item -mips32
25688@opindex mips32
25689Equivalent to @option{-march=mips32}.
25690
25691@item -mips32r3
25692@opindex mips32r3
25693Equivalent to @option{-march=mips32r3}.
25694
25695@item -mips32r5
25696@opindex mips32r5
25697Equivalent to @option{-march=mips32r5}.
25698
25699@item -mips32r6
25700@opindex mips32r6
25701Equivalent to @option{-march=mips32r6}.
25702
25703@item -mips64
25704@opindex mips64
25705Equivalent to @option{-march=mips64}.
25706
25707@item -mips64r2
25708@opindex mips64r2
25709Equivalent to @option{-march=mips64r2}.
25710
25711@item -mips64r3
25712@opindex mips64r3
25713Equivalent to @option{-march=mips64r3}.
25714
25715@item -mips64r5
25716@opindex mips64r5
25717Equivalent to @option{-march=mips64r5}.
25718
25719@item -mips64r6
25720@opindex mips64r6
25721Equivalent to @option{-march=mips64r6}.
25722
25723@item -mips16
25724@itemx -mno-mips16
25725@opindex mips16
25726@opindex mno-mips16
25727Generate (do not generate) MIPS16 code.  If GCC is targeting a
25728MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
25729
25730MIPS16 code generation can also be controlled on a per-function basis
25731by means of @code{mips16} and @code{nomips16} attributes.
25732@xref{Function Attributes}, for more information.
25733
25734@item -mflip-mips16
25735@opindex mflip-mips16
25736Generate MIPS16 code on alternating functions.  This option is provided
25737for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
25738not intended for ordinary use in compiling user code.
25739
25740@item -minterlink-compressed
25741@itemx -mno-interlink-compressed
25742@opindex minterlink-compressed
25743@opindex mno-interlink-compressed
25744Require (do not require) that code using the standard (uncompressed) MIPS ISA
25745be link-compatible with MIPS16 and microMIPS code, and vice versa.
25746
25747For example, code using the standard ISA encoding cannot jump directly
25748to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
25749@option{-minterlink-compressed} therefore disables direct jumps unless GCC
25750knows that the target of the jump is not compressed.
25751
25752@item -minterlink-mips16
25753@itemx -mno-interlink-mips16
25754@opindex minterlink-mips16
25755@opindex mno-interlink-mips16
25756Aliases of @option{-minterlink-compressed} and
25757@option{-mno-interlink-compressed}.  These options predate the microMIPS ASE
25758and are retained for backwards compatibility.
25759
25760@item -mabi=32
25761@itemx -mabi=o64
25762@itemx -mabi=n32
25763@itemx -mabi=64
25764@itemx -mabi=eabi
25765@opindex mabi=32
25766@opindex mabi=o64
25767@opindex mabi=n32
25768@opindex mabi=64
25769@opindex mabi=eabi
25770Generate code for the given ABI@.
25771
25772Note that the EABI has a 32-bit and a 64-bit variant.  GCC normally
25773generates 64-bit code when you select a 64-bit architecture, but you
25774can use @option{-mgp32} to get 32-bit code instead.
25775
25776For information about the O64 ABI, see
25777@uref{https://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
25778
25779GCC supports a variant of the o32 ABI in which floating-point registers
25780are 64 rather than 32 bits wide.  You can select this combination with
25781@option{-mabi=32} @option{-mfp64}.  This ABI relies on the @code{mthc1}
25782and @code{mfhc1} instructions and is therefore only supported for
25783MIPS32R2, MIPS32R3 and MIPS32R5 processors.
25784
25785The register assignments for arguments and return values remain the
25786same, but each scalar value is passed in a single 64-bit register
25787rather than a pair of 32-bit registers.  For example, scalar
25788floating-point values are returned in @samp{$f0} only, not a
25789@samp{$f0}/@samp{$f1} pair.  The set of call-saved registers also
25790remains the same in that the even-numbered double-precision registers
25791are saved.
25792
25793Two additional variants of the o32 ABI are supported to enable
25794a transition from 32-bit to 64-bit registers.  These are FPXX
25795(@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
25796The FPXX extension mandates that all code must execute correctly
25797when run using 32-bit or 64-bit registers.  The code can be interlinked
25798with either FP32 or FP64, but not both.
25799The FP64A extension is similar to the FP64 extension but forbids the
25800use of odd-numbered single-precision registers.  This can be used
25801in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
25802processors and allows both FP32 and FP64A code to interlink and
25803run in the same process without changing FPU modes.
25804
25805@item -mabicalls
25806@itemx -mno-abicalls
25807@opindex mabicalls
25808@opindex mno-abicalls
25809Generate (do not generate) code that is suitable for SVR4-style
25810dynamic objects.  @option{-mabicalls} is the default for SVR4-based
25811systems.
25812
25813@item -mshared
25814@itemx -mno-shared
25815Generate (do not generate) code that is fully position-independent,
25816and that can therefore be linked into shared libraries.  This option
25817only affects @option{-mabicalls}.
25818
25819All @option{-mabicalls} code has traditionally been position-independent,
25820regardless of options like @option{-fPIC} and @option{-fpic}.  However,
25821as an extension, the GNU toolchain allows executables to use absolute
25822accesses for locally-binding symbols.  It can also use shorter GP
25823initialization sequences and generate direct calls to locally-defined
25824functions.  This mode is selected by @option{-mno-shared}.
25825
25826@option{-mno-shared} depends on binutils 2.16 or higher and generates
25827objects that can only be linked by the GNU linker.  However, the option
25828does not affect the ABI of the final executable; it only affects the ABI
25829of relocatable objects.  Using @option{-mno-shared} generally makes
25830executables both smaller and quicker.
25831
25832@option{-mshared} is the default.
25833
25834@item -mplt
25835@itemx -mno-plt
25836@opindex mplt
25837@opindex mno-plt
25838Assume (do not assume) that the static and dynamic linkers
25839support PLTs and copy relocations.  This option only affects
25840@option{-mno-shared -mabicalls}.  For the n64 ABI, this option
25841has no effect without @option{-msym32}.
25842
25843You can make @option{-mplt} the default by configuring
25844GCC with @option{--with-mips-plt}.  The default is
25845@option{-mno-plt} otherwise.
25846
25847@item -mxgot
25848@itemx -mno-xgot
25849@opindex mxgot
25850@opindex mno-xgot
25851Lift (do not lift) the usual restrictions on the size of the global
25852offset table.
25853
25854GCC normally uses a single instruction to load values from the GOT@.
25855While this is relatively efficient, it only works if the GOT
25856is smaller than about 64k.  Anything larger causes the linker
25857to report an error such as:
25858
25859@cindex relocation truncated to fit (MIPS)
25860@smallexample
25861relocation truncated to fit: R_MIPS_GOT16 foobar
25862@end smallexample
25863
25864If this happens, you should recompile your code with @option{-mxgot}.
25865This works with very large GOTs, although the code is also
25866less efficient, since it takes three instructions to fetch the
25867value of a global symbol.
25868
25869Note that some linkers can create multiple GOTs.  If you have such a
25870linker, you should only need to use @option{-mxgot} when a single object
25871file accesses more than 64k's worth of GOT entries.  Very few do.
25872
25873These options have no effect unless GCC is generating position
25874independent code.
25875
25876@item -mgp32
25877@opindex mgp32
25878Assume that general-purpose registers are 32 bits wide.
25879
25880@item -mgp64
25881@opindex mgp64
25882Assume that general-purpose registers are 64 bits wide.
25883
25884@item -mfp32
25885@opindex mfp32
25886Assume that floating-point registers are 32 bits wide.
25887
25888@item -mfp64
25889@opindex mfp64
25890Assume that floating-point registers are 64 bits wide.
25891
25892@item -mfpxx
25893@opindex mfpxx
25894Do not assume the width of floating-point registers.
25895
25896@item -mhard-float
25897@opindex mhard-float
25898Use floating-point coprocessor instructions.
25899
25900@item -msoft-float
25901@opindex msoft-float
25902Do not use floating-point coprocessor instructions.  Implement
25903floating-point calculations using library calls instead.
25904
25905@item -mno-float
25906@opindex mno-float
25907Equivalent to @option{-msoft-float}, but additionally asserts that the
25908program being compiled does not perform any floating-point operations.
25909This option is presently supported only by some bare-metal MIPS
25910configurations, where it may select a special set of libraries
25911that lack all floating-point support (including, for example, the
25912floating-point @code{printf} formats).  
25913If code compiled with @option{-mno-float} accidentally contains
25914floating-point operations, it is likely to suffer a link-time
25915or run-time failure.
25916
25917@item -msingle-float
25918@opindex msingle-float
25919Assume that the floating-point coprocessor only supports single-precision
25920operations.
25921
25922@item -mdouble-float
25923@opindex mdouble-float
25924Assume that the floating-point coprocessor supports double-precision
25925operations.  This is the default.
25926
25927@item -modd-spreg
25928@itemx -mno-odd-spreg
25929@opindex modd-spreg
25930@opindex mno-odd-spreg
25931Enable the use of odd-numbered single-precision floating-point registers
25932for the o32 ABI.  This is the default for processors that are known to
25933support these registers.  When using the o32 FPXX ABI, @option{-mno-odd-spreg}
25934is set by default.
25935
25936@item -mabs=2008
25937@itemx -mabs=legacy
25938@opindex mabs=2008
25939@opindex mabs=legacy
25940These options control the treatment of the special not-a-number (NaN)
25941IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
25942@code{neg.@i{fmt}} machine instructions.
25943
25944By default or when @option{-mabs=legacy} is used the legacy
25945treatment is selected.  In this case these instructions are considered
25946arithmetic and avoided where correct operation is required and the
25947input operand might be a NaN.  A longer sequence of instructions that
25948manipulate the sign bit of floating-point datum manually is used
25949instead unless the @option{-ffinite-math-only} option has also been
25950specified.
25951
25952The @option{-mabs=2008} option selects the IEEE 754-2008 treatment.  In
25953this case these instructions are considered non-arithmetic and therefore
25954operating correctly in all cases, including in particular where the
25955input operand is a NaN.  These instructions are therefore always used
25956for the respective operations.
25957
25958@item -mnan=2008
25959@itemx -mnan=legacy
25960@opindex mnan=2008
25961@opindex mnan=legacy
25962These options control the encoding of the special not-a-number (NaN)
25963IEEE 754 floating-point data.
25964
25965The @option{-mnan=legacy} option selects the legacy encoding.  In this
25966case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
25967significand field being 0, whereas signaling NaNs (sNaNs) are denoted
25968by the first bit of their trailing significand field being 1.
25969
25970The @option{-mnan=2008} option selects the IEEE 754-2008 encoding.  In
25971this case qNaNs are denoted by the first bit of their trailing
25972significand field being 1, whereas sNaNs are denoted by the first bit of
25973their trailing significand field being 0.
25974
25975The default is @option{-mnan=legacy} unless GCC has been configured with
25976@option{--with-nan=2008}.
25977
25978@item -mllsc
25979@itemx -mno-llsc
25980@opindex mllsc
25981@opindex mno-llsc
25982Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
25983implement atomic memory built-in functions.  When neither option is
25984specified, GCC uses the instructions if the target architecture
25985supports them.
25986
25987@option{-mllsc} is useful if the runtime environment can emulate the
25988instructions and @option{-mno-llsc} can be useful when compiling for
25989nonstandard ISAs.  You can make either option the default by
25990configuring GCC with @option{--with-llsc} and @option{--without-llsc}
25991respectively.  @option{--with-llsc} is the default for some
25992configurations; see the installation documentation for details.
25993
25994@item -mdsp
25995@itemx -mno-dsp
25996@opindex mdsp
25997@opindex mno-dsp
25998Use (do not use) revision 1 of the MIPS DSP ASE@.
25999@xref{MIPS DSP Built-in Functions}.  This option defines the
26000preprocessor macro @code{__mips_dsp}.  It also defines
26001@code{__mips_dsp_rev} to 1.
26002
26003@item -mdspr2
26004@itemx -mno-dspr2
26005@opindex mdspr2
26006@opindex mno-dspr2
26007Use (do not use) revision 2 of the MIPS DSP ASE@.
26008@xref{MIPS DSP Built-in Functions}.  This option defines the
26009preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
26010It also defines @code{__mips_dsp_rev} to 2.
26011
26012@item -msmartmips
26013@itemx -mno-smartmips
26014@opindex msmartmips
26015@opindex mno-smartmips
26016Use (do not use) the MIPS SmartMIPS ASE.
26017
26018@item -mpaired-single
26019@itemx -mno-paired-single
26020@opindex mpaired-single
26021@opindex mno-paired-single
26022Use (do not use) paired-single floating-point instructions.
26023@xref{MIPS Paired-Single Support}.  This option requires
26024hardware floating-point support to be enabled.
26025
26026@item -mdmx
26027@itemx -mno-mdmx
26028@opindex mdmx
26029@opindex mno-mdmx
26030Use (do not use) MIPS Digital Media Extension instructions.
26031This option can only be used when generating 64-bit code and requires
26032hardware floating-point support to be enabled.
26033
26034@item -mips3d
26035@itemx -mno-mips3d
26036@opindex mips3d
26037@opindex mno-mips3d
26038Use (do not use) the MIPS-3D ASE@.  @xref{MIPS-3D Built-in Functions}.
26039The option @option{-mips3d} implies @option{-mpaired-single}.
26040
26041@item -mmicromips
26042@itemx -mno-micromips
26043@opindex mmicromips
26044@opindex mno-mmicromips
26045Generate (do not generate) microMIPS code.
26046
26047MicroMIPS code generation can also be controlled on a per-function basis
26048by means of @code{micromips} and @code{nomicromips} attributes.
26049@xref{Function Attributes}, for more information.
26050
26051@item -mmt
26052@itemx -mno-mt
26053@opindex mmt
26054@opindex mno-mt
26055Use (do not use) MT Multithreading instructions.
26056
26057@item -mmcu
26058@itemx -mno-mcu
26059@opindex mmcu
26060@opindex mno-mcu
26061Use (do not use) the MIPS MCU ASE instructions.
26062
26063@item -meva
26064@itemx -mno-eva
26065@opindex meva
26066@opindex mno-eva
26067Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
26068
26069@item -mvirt
26070@itemx -mno-virt
26071@opindex mvirt
26072@opindex mno-virt
26073Use (do not use) the MIPS Virtualization (VZ) instructions.
26074
26075@item -mxpa
26076@itemx -mno-xpa
26077@opindex mxpa
26078@opindex mno-xpa
26079Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
26080
26081@item -mcrc
26082@itemx -mno-crc
26083@opindex mcrc
26084@opindex mno-crc
26085Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
26086
26087@item -mginv
26088@itemx -mno-ginv
26089@opindex mginv
26090@opindex mno-ginv
26091Use (do not use) the MIPS Global INValidate (GINV) instructions.
26092
26093@item -mloongson-mmi
26094@itemx -mno-loongson-mmi
26095@opindex mloongson-mmi
26096@opindex mno-loongson-mmi
26097Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
26098
26099@item -mloongson-ext
26100@itemx -mno-loongson-ext
26101@opindex mloongson-ext
26102@opindex mno-loongson-ext
26103Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
26104
26105@item -mloongson-ext2
26106@itemx -mno-loongson-ext2
26107@opindex mloongson-ext2
26108@opindex mno-loongson-ext2
26109Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
26110
26111@item -mlong64
26112@opindex mlong64
26113Force @code{long} types to be 64 bits wide.  See @option{-mlong32} for
26114an explanation of the default and the way that the pointer size is
26115determined.
26116
26117@item -mlong32
26118@opindex mlong32
26119Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
26120
26121The default size of @code{int}s, @code{long}s and pointers depends on
26122the ABI@.  All the supported ABIs use 32-bit @code{int}s.  The n64 ABI
26123uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
2612432-bit @code{long}s.  Pointers are the same size as @code{long}s,
26125or the same size as integer registers, whichever is smaller.
26126
26127@item -msym32
26128@itemx -mno-sym32
26129@opindex msym32
26130@opindex mno-sym32
26131Assume (do not assume) that all symbols have 32-bit values, regardless
26132of the selected ABI@.  This option is useful in combination with
26133@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
26134to generate shorter and faster references to symbolic addresses.
26135
26136@item -G @var{num}
26137@opindex G
26138Put definitions of externally-visible data in a small data section
26139if that data is no bigger than @var{num} bytes.  GCC can then generate
26140more efficient accesses to the data; see @option{-mgpopt} for details.
26141
26142The default @option{-G} option depends on the configuration.
26143
26144@item -mlocal-sdata
26145@itemx -mno-local-sdata
26146@opindex mlocal-sdata
26147@opindex mno-local-sdata
26148Extend (do not extend) the @option{-G} behavior to local data too,
26149such as to static variables in C@.  @option{-mlocal-sdata} is the
26150default for all configurations.
26151
26152If the linker complains that an application is using too much small data,
26153you might want to try rebuilding the less performance-critical parts with
26154@option{-mno-local-sdata}.  You might also want to build large
26155libraries with @option{-mno-local-sdata}, so that the libraries leave
26156more room for the main program.
26157
26158@item -mextern-sdata
26159@itemx -mno-extern-sdata
26160@opindex mextern-sdata
26161@opindex mno-extern-sdata
26162Assume (do not assume) that externally-defined data is in
26163a small data section if the size of that data is within the @option{-G} limit.
26164@option{-mextern-sdata} is the default for all configurations.
26165
26166If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
26167@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
26168that is no bigger than @var{num} bytes, you must make sure that @var{Var}
26169is placed in a small data section.  If @var{Var} is defined by another
26170module, you must either compile that module with a high-enough
26171@option{-G} setting or attach a @code{section} attribute to @var{Var}'s
26172definition.  If @var{Var} is common, you must link the application
26173with a high-enough @option{-G} setting.
26174
26175The easiest way of satisfying these restrictions is to compile
26176and link every module with the same @option{-G} option.  However,
26177you may wish to build a library that supports several different
26178small data limits.  You can do this by compiling the library with
26179the highest supported @option{-G} setting and additionally using
26180@option{-mno-extern-sdata} to stop the library from making assumptions
26181about externally-defined data.
26182
26183@item -mgpopt
26184@itemx -mno-gpopt
26185@opindex mgpopt
26186@opindex mno-gpopt
26187Use (do not use) GP-relative accesses for symbols that are known to be
26188in a small data section; see @option{-G}, @option{-mlocal-sdata} and
26189@option{-mextern-sdata}.  @option{-mgpopt} is the default for all
26190configurations.
26191
26192@option{-mno-gpopt} is useful for cases where the @code{$gp} register
26193might not hold the value of @code{_gp}.  For example, if the code is
26194part of a library that might be used in a boot monitor, programs that
26195call boot monitor routines pass an unknown value in @code{$gp}.
26196(In such situations, the boot monitor itself is usually compiled
26197with @option{-G0}.)
26198
26199@option{-mno-gpopt} implies @option{-mno-local-sdata} and
26200@option{-mno-extern-sdata}.
26201
26202@item -membedded-data
26203@itemx -mno-embedded-data
26204@opindex membedded-data
26205@opindex mno-embedded-data
26206Allocate variables to the read-only data section first if possible, then
26207next in the small data section if possible, otherwise in data.  This gives
26208slightly slower code than the default, but reduces the amount of RAM required
26209when executing, and thus may be preferred for some embedded systems.
26210
26211@item -muninit-const-in-rodata
26212@itemx -mno-uninit-const-in-rodata
26213@opindex muninit-const-in-rodata
26214@opindex mno-uninit-const-in-rodata
26215Put uninitialized @code{const} variables in the read-only data section.
26216This option is only meaningful in conjunction with @option{-membedded-data}.
26217
26218@item -mcode-readable=@var{setting}
26219@opindex mcode-readable
26220Specify whether GCC may generate code that reads from executable sections.
26221There are three possible settings:
26222
26223@table @gcctabopt
26224@item -mcode-readable=yes
26225Instructions may freely access executable sections.  This is the
26226default setting.
26227
26228@item -mcode-readable=pcrel
26229MIPS16 PC-relative load instructions can access executable sections,
26230but other instructions must not do so.  This option is useful on 4KSc
26231and 4KSd processors when the code TLBs have the Read Inhibit bit set.
26232It is also useful on processors that can be configured to have a dual
26233instruction/data SRAM interface and that, like the M4K, automatically
26234redirect PC-relative loads to the instruction RAM.
26235
26236@item -mcode-readable=no
26237Instructions must not access executable sections.  This option can be
26238useful on targets that are configured to have a dual instruction/data
26239SRAM interface but that (unlike the M4K) do not automatically redirect
26240PC-relative loads to the instruction RAM.
26241@end table
26242
26243@item -msplit-addresses
26244@itemx -mno-split-addresses
26245@opindex msplit-addresses
26246@opindex mno-split-addresses
26247Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
26248relocation operators.  This option has been superseded by
26249@option{-mexplicit-relocs} but is retained for backwards compatibility.
26250
26251@item -mexplicit-relocs
26252@itemx -mno-explicit-relocs
26253@opindex mexplicit-relocs
26254@opindex mno-explicit-relocs
26255Use (do not use) assembler relocation operators when dealing with symbolic
26256addresses.  The alternative, selected by @option{-mno-explicit-relocs},
26257is to use assembler macros instead.
26258
26259@option{-mexplicit-relocs} is the default if GCC was configured
26260to use an assembler that supports relocation operators.
26261
26262@item -mcheck-zero-division
26263@itemx -mno-check-zero-division
26264@opindex mcheck-zero-division
26265@opindex mno-check-zero-division
26266Trap (do not trap) on integer division by zero.
26267
26268The default is @option{-mcheck-zero-division}.
26269
26270@item -mdivide-traps
26271@itemx -mdivide-breaks
26272@opindex mdivide-traps
26273@opindex mdivide-breaks
26274MIPS systems check for division by zero by generating either a
26275conditional trap or a break instruction.  Using traps results in
26276smaller code, but is only supported on MIPS II and later.  Also, some
26277versions of the Linux kernel have a bug that prevents trap from
26278generating the proper signal (@code{SIGFPE}).  Use @option{-mdivide-traps} to
26279allow conditional traps on architectures that support them and
26280@option{-mdivide-breaks} to force the use of breaks.
26281
26282The default is usually @option{-mdivide-traps}, but this can be
26283overridden at configure time using @option{--with-divide=breaks}.
26284Divide-by-zero checks can be completely disabled using
26285@option{-mno-check-zero-division}.
26286
26287@item -mload-store-pairs
26288@itemx -mno-load-store-pairs
26289@opindex mload-store-pairs
26290@opindex mno-load-store-pairs
26291Enable (disable) an optimization that pairs consecutive load or store
26292instructions to enable load/store bonding.  This option is enabled by
26293default but only takes effect when the selected architecture is known
26294to support bonding.
26295
26296@item -munaligned-access
26297@itemx -mno-unaligned-access
26298@opindex munaligned-access
26299@opindex mno-unaligned-access
26300Enable (disable) direct unaligned access for MIPS Release 6.
26301MIPSr6 requires load/store unaligned-access support,
26302by hardware or trap&emulate.
26303So @option{-mno-unaligned-access} may be needed by kernel.
26304
26305@item -mmemcpy
26306@itemx -mno-memcpy
26307@opindex mmemcpy
26308@opindex mno-memcpy
26309Force (do not force) the use of @code{memcpy} for non-trivial block
26310moves.  The default is @option{-mno-memcpy}, which allows GCC to inline
26311most constant-sized copies.
26312
26313@item -mlong-calls
26314@itemx -mno-long-calls
26315@opindex mlong-calls
26316@opindex mno-long-calls
26317Disable (do not disable) use of the @code{jal} instruction.  Calling
26318functions using @code{jal} is more efficient but requires the caller
26319and callee to be in the same 256 megabyte segment.
26320
26321This option has no effect on abicalls code.  The default is
26322@option{-mno-long-calls}.
26323
26324@item -mmad
26325@itemx -mno-mad
26326@opindex mmad
26327@opindex mno-mad
26328Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
26329instructions, as provided by the R4650 ISA@.
26330
26331@item -mimadd
26332@itemx -mno-imadd
26333@opindex mimadd
26334@opindex mno-imadd
26335Enable (disable) use of the @code{madd} and @code{msub} integer
26336instructions.  The default is @option{-mimadd} on architectures
26337that support @code{madd} and @code{msub} except for the 74k 
26338architecture where it was found to generate slower code.
26339
26340@item -mfused-madd
26341@itemx -mno-fused-madd
26342@opindex mfused-madd
26343@opindex mno-fused-madd
26344Enable (disable) use of the floating-point multiply-accumulate
26345instructions, when they are available.  The default is
26346@option{-mfused-madd}.
26347
26348On the R8000 CPU when multiply-accumulate instructions are used,
26349the intermediate product is calculated to infinite precision
26350and is not subject to the FCSR Flush to Zero bit.  This may be
26351undesirable in some circumstances.  On other processors the result
26352is numerically identical to the equivalent computation using
26353separate multiply, add, subtract and negate instructions.
26354
26355@item -nocpp
26356@opindex nocpp
26357Tell the MIPS assembler to not run its preprocessor over user
26358assembler files (with a @samp{.s} suffix) when assembling them.
26359
26360@item -mfix-24k
26361@itemx -mno-fix-24k
26362@opindex mfix-24k
26363@opindex mno-fix-24k
26364Work around the 24K E48 (lost data on stores during refill) errata.
26365The workarounds are implemented by the assembler rather than by GCC@.
26366
26367@item -mfix-r4000
26368@itemx -mno-fix-r4000
26369@opindex mfix-r4000
26370@opindex mno-fix-r4000
26371Work around certain R4000 CPU errata:
26372@itemize @minus
26373@item
26374A double-word or a variable shift may give an incorrect result if executed
26375immediately after starting an integer division.
26376@item
26377A double-word or a variable shift may give an incorrect result if executed
26378while an integer multiplication is in progress.
26379@item
26380An integer division may give an incorrect result if started in a delay slot
26381of a taken branch or a jump.
26382@end itemize
26383
26384@item -mfix-r4400
26385@itemx -mno-fix-r4400
26386@opindex mfix-r4400
26387@opindex mno-fix-r4400
26388Work around certain R4400 CPU errata:
26389@itemize @minus
26390@item
26391A double-word or a variable shift may give an incorrect result if executed
26392immediately after starting an integer division.
26393@end itemize
26394
26395@item -mfix-r10000
26396@itemx -mno-fix-r10000
26397@opindex mfix-r10000
26398@opindex mno-fix-r10000
26399Work around certain R10000 errata:
26400@itemize @minus
26401@item
26402@code{ll}/@code{sc} sequences may not behave atomically on revisions
26403prior to 3.0.  They may deadlock on revisions 2.6 and earlier.
26404@end itemize
26405
26406This option can only be used if the target architecture supports
26407branch-likely instructions.  @option{-mfix-r10000} is the default when
26408@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
26409otherwise.
26410
26411@item -mfix-r5900
26412@itemx -mno-fix-r5900
26413@opindex mfix-r5900
26414Do not attempt to schedule the preceding instruction into the delay slot
26415of a branch instruction placed at the end of a short loop of six
26416instructions or fewer and always schedule a @code{nop} instruction there
26417instead.  The short loop bug under certain conditions causes loops to
26418execute only once or twice, due to a hardware bug in the R5900 chip.  The
26419workaround is implemented by the assembler rather than by GCC@.
26420
26421@item -mfix-rm7000
26422@itemx -mno-fix-rm7000
26423@opindex mfix-rm7000
26424Work around the RM7000 @code{dmult}/@code{dmultu} errata.  The
26425workarounds are implemented by the assembler rather than by GCC@.
26426
26427@item -mfix-vr4120
26428@itemx -mno-fix-vr4120
26429@opindex mfix-vr4120
26430Work around certain VR4120 errata:
26431@itemize @minus
26432@item
26433@code{dmultu} does not always produce the correct result.
26434@item
26435@code{div} and @code{ddiv} do not always produce the correct result if one
26436of the operands is negative.
26437@end itemize
26438The workarounds for the division errata rely on special functions in
26439@file{libgcc.a}.  At present, these functions are only provided by
26440the @code{mips64vr*-elf} configurations.
26441
26442Other VR4120 errata require a NOP to be inserted between certain pairs of
26443instructions.  These errata are handled by the assembler, not by GCC itself.
26444
26445@item -mfix-vr4130
26446@opindex mfix-vr4130
26447Work around the VR4130 @code{mflo}/@code{mfhi} errata.  The
26448workarounds are implemented by the assembler rather than by GCC,
26449although GCC avoids using @code{mflo} and @code{mfhi} if the
26450VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
26451instructions are available instead.
26452
26453@item -mfix-sb1
26454@itemx -mno-fix-sb1
26455@opindex mfix-sb1
26456Work around certain SB-1 CPU core errata.
26457(This flag currently works around the SB-1 revision 2
26458``F1'' and ``F2'' floating-point errata.)
26459
26460@item -mr10k-cache-barrier=@var{setting}
26461@opindex mr10k-cache-barrier
26462Specify whether GCC should insert cache barriers to avoid the
26463side effects of speculation on R10K processors.
26464
26465In common with many processors, the R10K tries to predict the outcome
26466of a conditional branch and speculatively executes instructions from
26467the ``taken'' branch.  It later aborts these instructions if the
26468predicted outcome is wrong.  However, on the R10K, even aborted
26469instructions can have side effects.
26470
26471This problem only affects kernel stores and, depending on the system,
26472kernel loads.  As an example, a speculatively-executed store may load
26473the target memory into cache and mark the cache line as dirty, even if
26474the store itself is later aborted.  If a DMA operation writes to the
26475same area of memory before the ``dirty'' line is flushed, the cached
26476data overwrites the DMA-ed data.  See the R10K processor manual
26477for a full description, including other potential problems.
26478
26479One workaround is to insert cache barrier instructions before every memory
26480access that might be speculatively executed and that might have side
26481effects even if aborted.  @option{-mr10k-cache-barrier=@var{setting}}
26482controls GCC's implementation of this workaround.  It assumes that
26483aborted accesses to any byte in the following regions does not have
26484side effects:
26485
26486@enumerate
26487@item
26488the memory occupied by the current function's stack frame;
26489
26490@item
26491the memory occupied by an incoming stack argument;
26492
26493@item
26494the memory occupied by an object with a link-time-constant address.
26495@end enumerate
26496
26497It is the kernel's responsibility to ensure that speculative
26498accesses to these regions are indeed safe.
26499
26500If the input program contains a function declaration such as:
26501
26502@smallexample
26503void foo (void);
26504@end smallexample
26505
26506then the implementation of @code{foo} must allow @code{j foo} and
26507@code{jal foo} to be executed speculatively.  GCC honors this
26508restriction for functions it compiles itself.  It expects non-GCC
26509functions (such as hand-written assembly code) to do the same.
26510
26511The option has three forms:
26512
26513@table @gcctabopt
26514@item -mr10k-cache-barrier=load-store
26515Insert a cache barrier before a load or store that might be
26516speculatively executed and that might have side effects even
26517if aborted.
26518
26519@item -mr10k-cache-barrier=store
26520Insert a cache barrier before a store that might be speculatively
26521executed and that might have side effects even if aborted.
26522
26523@item -mr10k-cache-barrier=none
26524Disable the insertion of cache barriers.  This is the default setting.
26525@end table
26526
26527@item -mflush-func=@var{func}
26528@itemx -mno-flush-func
26529@opindex mflush-func
26530Specifies the function to call to flush the I and D caches, or to not
26531call any such function.  If called, the function must take the same
26532arguments as the common @code{_flush_func}, that is, the address of the
26533memory range for which the cache is being flushed, the size of the
26534memory range, and the number 3 (to flush both caches).  The default
26535depends on the target GCC was configured for, but commonly is either
26536@code{_flush_func} or @code{__cpu_flush}.
26537
26538@item mbranch-cost=@var{num}
26539@opindex mbranch-cost
26540Set the cost of branches to roughly @var{num} ``simple'' instructions.
26541This cost is only a heuristic and is not guaranteed to produce
26542consistent results across releases.  A zero cost redundantly selects
26543the default, which is based on the @option{-mtune} setting.
26544
26545@item -mbranch-likely
26546@itemx -mno-branch-likely
26547@opindex mbranch-likely
26548@opindex mno-branch-likely
26549Enable or disable use of Branch Likely instructions, regardless of the
26550default for the selected architecture.  By default, Branch Likely
26551instructions may be generated if they are supported by the selected
26552architecture.  An exception is for the MIPS32 and MIPS64 architectures
26553and processors that implement those architectures; for those, Branch
26554Likely instructions are not be generated by default because the MIPS32
26555and MIPS64 architectures specifically deprecate their use.
26556
26557@item -mcompact-branches=never
26558@itemx -mcompact-branches=optimal
26559@itemx -mcompact-branches=always
26560@opindex mcompact-branches=never
26561@opindex mcompact-branches=optimal
26562@opindex mcompact-branches=always
26563These options control which form of branches will be generated.  The
26564default is @option{-mcompact-branches=optimal}.
26565
26566The @option{-mcompact-branches=never} option ensures that compact branch
26567instructions will never be generated.
26568
26569The @option{-mcompact-branches=always} option ensures that a compact
26570branch instruction will be generated if available.  If a compact branch
26571instruction is not available, a delay slot form of the branch will be
26572used instead.
26573
26574This option is supported from MIPS Release 6 onwards.
26575
26576The @option{-mcompact-branches=optimal} option will cause a delay slot
26577branch to be used if one is available in the current ISA and the delay
26578slot is successfully filled.  If the delay slot is not filled, a compact
26579branch will be chosen if one is available.
26580
26581@item -mfp-exceptions
26582@itemx -mno-fp-exceptions
26583@opindex mfp-exceptions
26584Specifies whether FP exceptions are enabled.  This affects how
26585FP instructions are scheduled for some processors.
26586The default is that FP exceptions are
26587enabled.
26588
26589For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
2659064-bit code, then we can use both FP pipes.  Otherwise, we can only use one
26591FP pipe.
26592
26593@item -mvr4130-align
26594@itemx -mno-vr4130-align
26595@opindex mvr4130-align
26596The VR4130 pipeline is two-way superscalar, but can only issue two
26597instructions together if the first one is 8-byte aligned.  When this
26598option is enabled, GCC aligns pairs of instructions that it
26599thinks should execute in parallel.
26600
26601This option only has an effect when optimizing for the VR4130.
26602It normally makes code faster, but at the expense of making it bigger.
26603It is enabled by default at optimization level @option{-O3}.
26604
26605@item -msynci
26606@itemx -mno-synci
26607@opindex msynci
26608Enable (disable) generation of @code{synci} instructions on
26609architectures that support it.  The @code{synci} instructions (if
26610enabled) are generated when @code{__builtin___clear_cache} is
26611compiled.
26612
26613This option defaults to @option{-mno-synci}, but the default can be
26614overridden by configuring GCC with @option{--with-synci}.
26615
26616When compiling code for single processor systems, it is generally safe
26617to use @code{synci}.  However, on many multi-core (SMP) systems, it
26618does not invalidate the instruction caches on all cores and may lead
26619to undefined behavior.
26620
26621@item -mrelax-pic-calls
26622@itemx -mno-relax-pic-calls
26623@opindex mrelax-pic-calls
26624Try to turn PIC calls that are normally dispatched via register
26625@code{$25} into direct calls.  This is only possible if the linker can
26626resolve the destination at link time and if the destination is within
26627range for a direct call.
26628
26629@option{-mrelax-pic-calls} is the default if GCC was configured to use
26630an assembler and a linker that support the @code{.reloc} assembly
26631directive and @option{-mexplicit-relocs} is in effect.  With
26632@option{-mno-explicit-relocs}, this optimization can be performed by the
26633assembler and the linker alone without help from the compiler.
26634
26635@item -mmcount-ra-address
26636@itemx -mno-mcount-ra-address
26637@opindex mmcount-ra-address
26638@opindex mno-mcount-ra-address
26639Emit (do not emit) code that allows @code{_mcount} to modify the
26640calling function's return address.  When enabled, this option extends
26641the usual @code{_mcount} interface with a new @var{ra-address}
26642parameter, which has type @code{intptr_t *} and is passed in register
26643@code{$12}.  @code{_mcount} can then modify the return address by
26644doing both of the following:
26645@itemize
26646@item
26647Returning the new address in register @code{$31}.
26648@item
26649Storing the new address in @code{*@var{ra-address}},
26650if @var{ra-address} is nonnull.
26651@end itemize
26652
26653The default is @option{-mno-mcount-ra-address}.
26654
26655@item -mframe-header-opt
26656@itemx -mno-frame-header-opt
26657@opindex mframe-header-opt
26658Enable (disable) frame header optimization in the o32 ABI.  When using the
26659o32 ABI, calling functions will allocate 16 bytes on the stack for the called
26660function to write out register arguments.  When enabled, this optimization
26661will suppress the allocation of the frame header if it can be determined that
26662it is unused.
26663
26664This optimization is off by default at all optimization levels.
26665
26666@item -mlxc1-sxc1
26667@itemx -mno-lxc1-sxc1
26668@opindex mlxc1-sxc1
26669When applicable, enable (disable) the generation of @code{lwxc1},
26670@code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions.  Enabled by default.
26671
26672@item -mmadd4
26673@itemx -mno-madd4
26674@opindex mmadd4
26675When applicable, enable (disable) the generation of 4-operand @code{madd.s},
26676@code{madd.d} and related instructions.  Enabled by default.
26677
26678@end table
26679
26680@node MMIX Options
26681@subsection MMIX Options
26682@cindex MMIX Options
26683
26684These options are defined for the MMIX:
26685
26686@table @gcctabopt
26687@item -mlibfuncs
26688@itemx -mno-libfuncs
26689@opindex mlibfuncs
26690@opindex mno-libfuncs
26691Specify that intrinsic library functions are being compiled, passing all
26692values in registers, no matter the size.
26693
26694@item -mepsilon
26695@itemx -mno-epsilon
26696@opindex mepsilon
26697@opindex mno-epsilon
26698Generate floating-point comparison instructions that compare with respect
26699to the @code{rE} epsilon register.
26700
26701@item -mabi=mmixware
26702@itemx -mabi=gnu
26703@opindex mabi=mmixware
26704@opindex mabi=gnu
26705Generate code that passes function parameters and return values that (in
26706the called function) are seen as registers @code{$0} and up, as opposed to
26707the GNU ABI which uses global registers @code{$231} and up.
26708
26709@item -mzero-extend
26710@itemx -mno-zero-extend
26711@opindex mzero-extend
26712@opindex mno-zero-extend
26713When reading data from memory in sizes shorter than 64 bits, use (do not
26714use) zero-extending load instructions by default, rather than
26715sign-extending ones.
26716
26717@item -mknuthdiv
26718@itemx -mno-knuthdiv
26719@opindex mknuthdiv
26720@opindex mno-knuthdiv
26721Make the result of a division yielding a remainder have the same sign as
26722the divisor.  With the default, @option{-mno-knuthdiv}, the sign of the
26723remainder follows the sign of the dividend.  Both methods are
26724arithmetically valid, the latter being almost exclusively used.
26725
26726@item -mtoplevel-symbols
26727@itemx -mno-toplevel-symbols
26728@opindex mtoplevel-symbols
26729@opindex mno-toplevel-symbols
26730Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
26731code can be used with the @code{PREFIX} assembly directive.
26732
26733@item -melf
26734@opindex melf
26735Generate an executable in the ELF format, rather than the default
26736@samp{mmo} format used by the @command{mmix} simulator.
26737
26738@item -mbranch-predict
26739@itemx -mno-branch-predict
26740@opindex mbranch-predict
26741@opindex mno-branch-predict
26742Use (do not use) the probable-branch instructions, when static branch
26743prediction indicates a probable branch.
26744
26745@item -mbase-addresses
26746@itemx -mno-base-addresses
26747@opindex mbase-addresses
26748@opindex mno-base-addresses
26749Generate (do not generate) code that uses @emph{base addresses}.  Using a
26750base address automatically generates a request (handled by the assembler
26751and the linker) for a constant to be set up in a global register.  The
26752register is used for one or more base address requests within the range 0
26753to 255 from the value held in the register.  The generally leads to short
26754and fast code, but the number of different data items that can be
26755addressed is limited.  This means that a program that uses lots of static
26756data may require @option{-mno-base-addresses}.
26757
26758@item -msingle-exit
26759@itemx -mno-single-exit
26760@opindex msingle-exit
26761@opindex mno-single-exit
26762Force (do not force) generated code to have a single exit point in each
26763function.
26764@end table
26765
26766@node MN10300 Options
26767@subsection MN10300 Options
26768@cindex MN10300 options
26769
26770These @option{-m} options are defined for Matsushita MN10300 architectures:
26771
26772@table @gcctabopt
26773@item -mmult-bug
26774@opindex mmult-bug
26775Generate code to avoid bugs in the multiply instructions for the MN10300
26776processors.  This is the default.
26777
26778@item -mno-mult-bug
26779@opindex mno-mult-bug
26780Do not generate code to avoid bugs in the multiply instructions for the
26781MN10300 processors.
26782
26783@item -mam33
26784@opindex mam33
26785Generate code using features specific to the AM33 processor.
26786
26787@item -mno-am33
26788@opindex mno-am33
26789Do not generate code using features specific to the AM33 processor.  This
26790is the default.
26791
26792@item -mam33-2
26793@opindex mam33-2
26794Generate code using features specific to the AM33/2.0 processor.
26795
26796@item -mam34
26797@opindex mam34
26798Generate code using features specific to the AM34 processor.
26799
26800@item -mtune=@var{cpu-type}
26801@opindex mtune
26802Use the timing characteristics of the indicated CPU type when
26803scheduling instructions.  This does not change the targeted processor
26804type.  The CPU type must be one of @samp{mn10300}, @samp{am33},
26805@samp{am33-2} or @samp{am34}.
26806
26807@item -mreturn-pointer-on-d0
26808@opindex mreturn-pointer-on-d0
26809When generating a function that returns a pointer, return the pointer
26810in both @code{a0} and @code{d0}.  Otherwise, the pointer is returned
26811only in @code{a0}, and attempts to call such functions without a prototype
26812result in errors.  Note that this option is on by default; use
26813@option{-mno-return-pointer-on-d0} to disable it.
26814
26815@item -mno-crt0
26816@opindex mno-crt0
26817Do not link in the C run-time initialization object file.
26818
26819@item -mrelax
26820@opindex mrelax
26821Indicate to the linker that it should perform a relaxation optimization pass
26822to shorten branches, calls and absolute memory addresses.  This option only
26823has an effect when used on the command line for the final link step.
26824
26825This option makes symbolic debugging impossible.
26826
26827@item -mliw
26828@opindex mliw
26829Allow the compiler to generate @emph{Long Instruction Word}
26830instructions if the target is the @samp{AM33} or later.  This is the
26831default.  This option defines the preprocessor macro @code{__LIW__}.
26832
26833@item -mno-liw
26834@opindex mno-liw
26835Do not allow the compiler to generate @emph{Long Instruction Word}
26836instructions.  This option defines the preprocessor macro
26837@code{__NO_LIW__}.
26838
26839@item -msetlb
26840@opindex msetlb
26841Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
26842instructions if the target is the @samp{AM33} or later.  This is the
26843default.  This option defines the preprocessor macro @code{__SETLB__}.
26844
26845@item -mno-setlb
26846@opindex mno-setlb
26847Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
26848instructions.  This option defines the preprocessor macro
26849@code{__NO_SETLB__}.
26850
26851@end table
26852
26853@node Moxie Options
26854@subsection Moxie Options
26855@cindex Moxie Options
26856
26857@table @gcctabopt
26858
26859@item -meb
26860@opindex meb
26861Generate big-endian code.  This is the default for @samp{moxie-*-*}
26862configurations.
26863
26864@item -mel
26865@opindex mel
26866Generate little-endian code.
26867
26868@item -mmul.x
26869@opindex mmul.x
26870Generate mul.x and umul.x instructions.  This is the default for
26871@samp{moxiebox-*-*} configurations.
26872
26873@item -mno-crt0
26874@opindex mno-crt0
26875Do not link in the C run-time initialization object file.
26876
26877@end table
26878
26879@node MSP430 Options
26880@subsection MSP430 Options
26881@cindex MSP430 Options
26882
26883These options are defined for the MSP430:
26884
26885@table @gcctabopt
26886
26887@item -masm-hex
26888@opindex masm-hex
26889Force assembly output to always use hex constants.  Normally such
26890constants are signed decimals, but this option is available for
26891testsuite and/or aesthetic purposes.
26892
26893@item -mmcu=
26894@opindex mmcu=
26895Select the MCU to target.  This is used to create a C preprocessor
26896symbol based upon the MCU name, converted to upper case and pre- and
26897post-fixed with @samp{__}.  This in turn is used by the
26898@file{msp430.h} header file to select an MCU-specific supplementary
26899header file.
26900
26901The option also sets the ISA to use.  If the MCU name is one that is
26902known to only support the 430 ISA then that is selected, otherwise the
26903430X ISA is selected.  A generic MCU name of @samp{msp430} can also be
26904used to select the 430 ISA.  Similarly the generic @samp{msp430x} MCU
26905name selects the 430X ISA.
26906
26907In addition an MCU-specific linker script is added to the linker
26908command line.  The script's name is the name of the MCU with
26909@file{.ld} appended.  Thus specifying @option{-mmcu=xxx} on the @command{gcc}
26910command line defines the C preprocessor symbol @code{__XXX__} and
26911cause the linker to search for a script called @file{xxx.ld}.
26912
26913The ISA and hardware multiply supported for the different MCUs is hard-coded
26914into GCC.  However, an external @samp{devices.csv} file can be used to
26915extend device support beyond those that have been hard-coded.
26916
26917GCC searches for the @samp{devices.csv} file using the following methods in the
26918given precedence order, where the first method takes precendence over the
26919second which takes precedence over the third.
26920
26921@table @asis
26922@item Include path specified with @code{-I} and @code{-L}
26923@samp{devices.csv} will be searched for in each of the directories specified by
26924include paths and linker library search paths.
26925@item Path specified by the environment variable @samp{MSP430_GCC_INCLUDE_DIR}
26926Define the value of the global environment variable
26927@samp{MSP430_GCC_INCLUDE_DIR}
26928to the full path to the directory containing devices.csv, and GCC will search
26929this directory for devices.csv.  If devices.csv is found, this directory will
26930also be registered as an include path, and linker library path.  Header files
26931and linker scripts in this directory can therefore be used without manually
26932specifying @code{-I} and @code{-L} on the command line.
26933@item The @samp{msp430-elf@{,bare@}/include/devices} directory
26934Finally, GCC will examine @samp{msp430-elf@{,bare@}/include/devices} from the
26935toolchain root directory.  This directory does not exist in a default
26936installation, but if the user has created it and copied @samp{devices.csv}
26937there, then the MCU data will be read.  As above, this directory will
26938also be registered as an include path, and linker library path.
26939
26940@end table
26941If none of the above search methods find @samp{devices.csv}, then the
26942hard-coded MCU data is used.
26943
26944
26945@item -mwarn-mcu
26946@itemx -mno-warn-mcu
26947@opindex mwarn-mcu
26948@opindex mno-warn-mcu
26949This option enables or disables warnings about conflicts between the
26950MCU name specified by the @option{-mmcu} option and the ISA set by the
26951@option{-mcpu} option and/or the hardware multiply support set by the
26952@option{-mhwmult} option.  It also toggles warnings about unrecognized
26953MCU names.  This option is on by default.
26954
26955@item -mcpu=
26956@opindex mcpu=
26957Specifies the ISA to use.  Accepted values are @samp{msp430},
26958@samp{msp430x} and @samp{msp430xv2}.  This option is deprecated.  The
26959@option{-mmcu=} option should be used to select the ISA.
26960
26961@item -msim
26962@opindex msim
26963Link to the simulator runtime libraries and linker script.  Overrides
26964any scripts that would be selected by the @option{-mmcu=} option.
26965
26966@item -mlarge
26967@opindex mlarge
26968Use large-model addressing (20-bit pointers, 20-bit @code{size_t}).
26969
26970@item -msmall
26971@opindex msmall
26972Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
26973
26974@item -mrelax
26975@opindex mrelax
26976This option is passed to the assembler and linker, and allows the
26977linker to perform certain optimizations that cannot be done until
26978the final link.
26979
26980@item mhwmult=
26981@opindex mhwmult=
26982Describes the type of hardware multiply supported by the target.
26983Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
26984for the original 16-bit-only multiply supported by early MCUs.
26985@samp{32bit} for the 16/32-bit multiply supported by later MCUs and
26986@samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
26987A value of @samp{auto} can also be given.  This tells GCC to deduce
26988the hardware multiply support based upon the MCU name provided by the
26989@option{-mmcu} option.  If no @option{-mmcu} option is specified or if
26990the MCU name is not recognized then no hardware multiply support is
26991assumed.  @code{auto} is the default setting.
26992
26993Hardware multiplies are normally performed by calling a library
26994routine.  This saves space in the generated code.  When compiling at
26995@option{-O3} or higher however the hardware multiplier is invoked
26996inline.  This makes for bigger, but faster code.
26997
26998The hardware multiply routines disable interrupts whilst running and
26999restore the previous interrupt state when they finish.  This makes
27000them safe to use inside interrupt handlers as well as in normal code.
27001
27002@item -minrt
27003@opindex minrt
27004Enable the use of a minimum runtime environment - no static
27005initializers or constructors.  This is intended for memory-constrained
27006devices.  The compiler includes special symbols in some objects
27007that tell the linker and runtime which code fragments are required.
27008
27009@item -mtiny-printf
27010@opindex mtiny-printf
27011Enable reduced code size @code{printf} and @code{puts} library functions.
27012The @samp{tiny} implementations of these functions are not reentrant, so
27013must be used with caution in multi-threaded applications.
27014
27015Support for streams has been removed and the string to be printed will
27016always be sent to stdout via the @code{write} syscall.  The string is not
27017buffered before it is sent to write.
27018
27019This option requires Newlib Nano IO, so GCC must be configured with
27020@samp{--enable-newlib-nano-formatted-io}.
27021
27022@item -mmax-inline-shift=
27023@opindex mmax-inline-shift=
27024This option takes an integer between 0 and 64 inclusive, and sets
27025the maximum number of inline shift instructions which should be emitted to
27026perform a shift operation by a constant amount.  When this value needs to be
27027exceeded, an mspabi helper function is used instead.  The default value is 4.
27028
27029This only affects cases where a shift by multiple positions cannot be
27030completed with a single instruction (e.g. all shifts >1 on the 430 ISA).
27031
27032Shifts of a 32-bit value are at least twice as costly, so the value passed for
27033this option is divided by 2 and the resulting value used instead.
27034
27035@item -mcode-region=
27036@itemx -mdata-region=
27037@opindex mcode-region
27038@opindex mdata-region
27039These options tell the compiler where to place functions and data that
27040do not have one of the @code{lower}, @code{upper}, @code{either} or
27041@code{section} attributes.  Possible values are @code{lower},
27042@code{upper}, @code{either} or @code{any}.  The first three behave
27043like the corresponding attribute.  The fourth possible value -
27044@code{any} - is the default.  It leaves placement entirely up to the
27045linker script and how it assigns the standard sections
27046(@code{.text}, @code{.data}, etc) to the memory regions.
27047
27048@item -msilicon-errata=
27049@opindex msilicon-errata
27050This option passes on a request to assembler to enable the fixes for
27051the named silicon errata.
27052
27053@item -msilicon-errata-warn=
27054@opindex msilicon-errata-warn
27055This option passes on a request to the assembler to enable warning
27056messages when a silicon errata might need to be applied.
27057
27058@item -mwarn-devices-csv
27059@itemx -mno-warn-devices-csv
27060@opindex mwarn-devices-csv
27061@opindex mno-warn-devices-csv
27062Warn if @samp{devices.csv} is not found or there are problem parsing it
27063(default: on).
27064
27065@end table
27066
27067@node NDS32 Options
27068@subsection NDS32 Options
27069@cindex NDS32 Options
27070
27071These options are defined for NDS32 implementations:
27072
27073@table @gcctabopt
27074
27075@item -mbig-endian
27076@opindex mbig-endian
27077Generate code in big-endian mode.
27078
27079@item -mlittle-endian
27080@opindex mlittle-endian
27081Generate code in little-endian mode.
27082
27083@item -mreduced-regs
27084@opindex mreduced-regs
27085Use reduced-set registers for register allocation.
27086
27087@item -mfull-regs
27088@opindex mfull-regs
27089Use full-set registers for register allocation.
27090
27091@item -mcmov
27092@opindex mcmov
27093Generate conditional move instructions.
27094
27095@item -mno-cmov
27096@opindex mno-cmov
27097Do not generate conditional move instructions.
27098
27099@item -mext-perf
27100@opindex mext-perf
27101Generate performance extension instructions.
27102
27103@item -mno-ext-perf
27104@opindex mno-ext-perf
27105Do not generate performance extension instructions.
27106
27107@item -mext-perf2
27108@opindex mext-perf2
27109Generate performance extension 2 instructions.
27110
27111@item -mno-ext-perf2
27112@opindex mno-ext-perf2
27113Do not generate performance extension 2 instructions.
27114
27115@item -mext-string
27116@opindex mext-string
27117Generate string extension instructions.
27118
27119@item -mno-ext-string
27120@opindex mno-ext-string
27121Do not generate string extension instructions.
27122
27123@item -mv3push
27124@opindex mv3push
27125Generate v3 push25/pop25 instructions.
27126
27127@item -mno-v3push
27128@opindex mno-v3push
27129Do not generate v3 push25/pop25 instructions.
27130
27131@item -m16-bit
27132@opindex m16-bit
27133Generate 16-bit instructions.
27134
27135@item -mno-16-bit
27136@opindex mno-16-bit
27137Do not generate 16-bit instructions.
27138
27139@item -misr-vector-size=@var{num}
27140@opindex misr-vector-size
27141Specify the size of each interrupt vector, which must be 4 or 16.
27142
27143@item -mcache-block-size=@var{num}
27144@opindex mcache-block-size
27145Specify the size of each cache block,
27146which must be a power of 2 between 4 and 512.
27147
27148@item -march=@var{arch}
27149@opindex march
27150Specify the name of the target architecture.
27151
27152@item -mcmodel=@var{code-model}
27153@opindex mcmodel
27154Set the code model to one of
27155@table @asis
27156@item @samp{small}
27157All the data and read-only data segments must be within 512KB addressing space.
27158The text segment must be within 16MB addressing space.
27159@item @samp{medium}
27160The data segment must be within 512KB while the read-only data segment can be
27161within 4GB addressing space.  The text segment should be still within 16MB
27162addressing space.
27163@item @samp{large}
27164All the text and data segments can be within 4GB addressing space.
27165@end table
27166
27167@item -mctor-dtor
27168@opindex mctor-dtor
27169Enable constructor/destructor feature.
27170
27171@item -mrelax
27172@opindex mrelax
27173Guide linker to relax instructions.
27174
27175@end table
27176
27177@node Nios II Options
27178@subsection Nios II Options
27179@cindex Nios II options
27180@cindex Altera Nios II options
27181
27182These are the options defined for the Altera Nios II processor.
27183
27184@table @gcctabopt
27185
27186@item -G @var{num}
27187@opindex G
27188@cindex smaller data references
27189Put global and static objects less than or equal to @var{num} bytes
27190into the small data or BSS sections instead of the normal data or BSS
27191sections.  The default value of @var{num} is 8.
27192
27193@item -mgpopt=@var{option}
27194@itemx -mgpopt
27195@itemx -mno-gpopt
27196@opindex mgpopt
27197@opindex mno-gpopt
27198Generate (do not generate) GP-relative accesses.  The following 
27199@var{option} names are recognized:
27200
27201@table @samp
27202
27203@item none
27204Do not generate GP-relative accesses.
27205
27206@item local
27207Generate GP-relative accesses for small data objects that are not 
27208external, weak, or uninitialized common symbols.  
27209Also use GP-relative addressing for objects that
27210have been explicitly placed in a small data section via a @code{section}
27211attribute.
27212
27213@item global
27214As for @samp{local}, but also generate GP-relative accesses for
27215small data objects that are external, weak, or common.  If you use this option,
27216you must ensure that all parts of your program (including libraries) are
27217compiled with the same @option{-G} setting.
27218
27219@item data
27220Generate GP-relative accesses for all data objects in the program.  If you
27221use this option, the entire data and BSS segments
27222of your program must fit in 64K of memory and you must use an appropriate
27223linker script to allocate them within the addressable range of the
27224global pointer.
27225
27226@item all
27227Generate GP-relative addresses for function pointers as well as data
27228pointers.  If you use this option, the entire text, data, and BSS segments
27229of your program must fit in 64K of memory and you must use an appropriate
27230linker script to allocate them within the addressable range of the
27231global pointer.
27232
27233@end table
27234
27235@option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
27236@option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
27237
27238The default is @option{-mgpopt} except when @option{-fpic} or
27239@option{-fPIC} is specified to generate position-independent code.
27240Note that the Nios II ABI does not permit GP-relative accesses from
27241shared libraries.
27242
27243You may need to specify @option{-mno-gpopt} explicitly when building
27244programs that include large amounts of small data, including large
27245GOT data sections.  In this case, the 16-bit offset for GP-relative
27246addressing may not be large enough to allow access to the entire 
27247small data section.
27248
27249@item -mgprel-sec=@var{regexp}
27250@opindex mgprel-sec
27251This option specifies additional section names that can be accessed via
27252GP-relative addressing.  It is most useful in conjunction with 
27253@code{section} attributes on variable declarations 
27254(@pxref{Common Variable Attributes}) and a custom linker script.  
27255The @var{regexp} is a POSIX Extended Regular Expression.
27256
27257This option does not affect the behavior of the @option{-G} option, and 
27258the specified sections are in addition to the standard @code{.sdata}
27259and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
27260
27261@item -mr0rel-sec=@var{regexp}
27262@opindex mr0rel-sec
27263This option specifies names of sections that can be accessed via a 
2726416-bit offset from @code{r0}; that is, in the low 32K or high 32K 
27265of the 32-bit address space.  It is most useful in conjunction with 
27266@code{section} attributes on variable declarations 
27267(@pxref{Common Variable Attributes}) and a custom linker script.  
27268The @var{regexp} is a POSIX Extended Regular Expression.
27269
27270In contrast to the use of GP-relative addressing for small data, 
27271zero-based addressing is never generated by default and there are no 
27272conventional section names used in standard linker scripts for sections
27273in the low or high areas of memory.
27274
27275@item -mel
27276@itemx -meb
27277@opindex mel
27278@opindex meb
27279Generate little-endian (default) or big-endian (experimental) code,
27280respectively.
27281
27282@item -march=@var{arch}
27283@opindex march
27284This specifies the name of the target Nios II architecture.  GCC uses this
27285name to determine what kind of instructions it can emit when generating
27286assembly code.  Permissible names are: @samp{r1}, @samp{r2}.
27287
27288The preprocessor macro @code{__nios2_arch__} is available to programs,
27289with value 1 or 2, indicating the targeted ISA level.
27290
27291@item -mbypass-cache
27292@itemx -mno-bypass-cache
27293@opindex mno-bypass-cache
27294@opindex mbypass-cache
27295Force all load and store instructions to always bypass cache by 
27296using I/O variants of the instructions. The default is not to
27297bypass the cache.
27298
27299@item -mno-cache-volatile 
27300@itemx -mcache-volatile       
27301@opindex mcache-volatile 
27302@opindex mno-cache-volatile
27303Volatile memory access bypass the cache using the I/O variants of 
27304the load and store instructions. The default is not to bypass the cache.
27305
27306@item -mno-fast-sw-div
27307@itemx -mfast-sw-div
27308@opindex mno-fast-sw-div
27309@opindex mfast-sw-div
27310Do not use table-based fast divide for small numbers. The default 
27311is to use the fast divide at @option{-O3} and above.
27312
27313@item -mno-hw-mul
27314@itemx -mhw-mul
27315@itemx -mno-hw-mulx
27316@itemx -mhw-mulx
27317@itemx -mno-hw-div
27318@itemx -mhw-div
27319@opindex mno-hw-mul
27320@opindex mhw-mul
27321@opindex mno-hw-mulx
27322@opindex mhw-mulx
27323@opindex mno-hw-div
27324@opindex mhw-div
27325Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of 
27326instructions by the compiler. The default is to emit @code{mul}
27327and not emit @code{div} and @code{mulx}.
27328
27329@item -mbmx
27330@itemx -mno-bmx
27331@itemx -mcdx
27332@itemx -mno-cdx
27333Enable or disable generation of Nios II R2 BMX (bit manipulation) and
27334CDX (code density) instructions.  Enabling these instructions also
27335requires @option{-march=r2}.  Since these instructions are optional
27336extensions to the R2 architecture, the default is not to emit them.
27337
27338@item -mcustom-@var{insn}=@var{N}
27339@itemx -mno-custom-@var{insn}
27340@opindex mcustom-@var{insn}
27341@opindex mno-custom-@var{insn}
27342Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
27343custom instruction with encoding @var{N} when generating code that uses 
27344@var{insn}.  For example, @option{-mcustom-fadds=253} generates custom
27345instruction 253 for single-precision floating-point add operations instead
27346of the default behavior of using a library call.
27347
27348The following values of @var{insn} are supported.  Except as otherwise
27349noted, floating-point operations are expected to be implemented with
27350normal IEEE 754 semantics and correspond directly to the C operators or the
27351equivalent GCC built-in functions (@pxref{Other Builtins}).
27352
27353Single-precision floating point:
27354@table @asis
27355
27356@item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
27357Binary arithmetic operations.
27358
27359@item @samp{fnegs}
27360Unary negation.
27361
27362@item @samp{fabss}
27363Unary absolute value.
27364
27365@item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
27366Comparison operations.
27367
27368@item @samp{fmins}, @samp{fmaxs}
27369Floating-point minimum and maximum.  These instructions are only
27370generated if @option{-ffinite-math-only} is specified.
27371
27372@item @samp{fsqrts}
27373Unary square root operation.
27374
27375@item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
27376Floating-point trigonometric and exponential functions.  These instructions
27377are only generated if @option{-funsafe-math-optimizations} is also specified.
27378
27379@end table
27380
27381Double-precision floating point:
27382@table @asis
27383
27384@item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
27385Binary arithmetic operations.
27386
27387@item @samp{fnegd}
27388Unary negation.
27389
27390@item @samp{fabsd}
27391Unary absolute value.
27392
27393@item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
27394Comparison operations.
27395
27396@item @samp{fmind}, @samp{fmaxd}
27397Double-precision minimum and maximum.  These instructions are only
27398generated if @option{-ffinite-math-only} is specified.
27399
27400@item @samp{fsqrtd}
27401Unary square root operation.
27402
27403@item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
27404Double-precision trigonometric and exponential functions.  These instructions
27405are only generated if @option{-funsafe-math-optimizations} is also specified.
27406
27407@end table
27408
27409Conversions:
27410@table @asis
27411@item @samp{fextsd}
27412Conversion from single precision to double precision.
27413
27414@item @samp{ftruncds}
27415Conversion from double precision to single precision.
27416
27417@item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
27418Conversion from floating point to signed or unsigned integer types, with
27419truncation towards zero.
27420
27421@item @samp{round}
27422Conversion from single-precision floating point to signed integer,
27423rounding to the nearest integer and ties away from zero.
27424This corresponds to the @code{__builtin_lroundf} function when
27425@option{-fno-math-errno} is used.
27426
27427@item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
27428Conversion from signed or unsigned integer types to floating-point types.
27429
27430@end table
27431
27432In addition, all of the following transfer instructions for internal
27433registers X and Y must be provided to use any of the double-precision
27434floating-point instructions.  Custom instructions taking two
27435double-precision source operands expect the first operand in the
2743664-bit register X.  The other operand (or only operand of a unary
27437operation) is given to the custom arithmetic instruction with the
27438least significant half in source register @var{src1} and the most
27439significant half in @var{src2}.  A custom instruction that returns a
27440double-precision result returns the most significant 32 bits in the
27441destination register and the other half in 32-bit register Y.  
27442GCC automatically generates the necessary code sequences to write
27443register X and/or read register Y when double-precision floating-point
27444instructions are used.
27445
27446@table @asis
27447
27448@item @samp{fwrx}
27449Write @var{src1} into the least significant half of X and @var{src2} into
27450the most significant half of X.
27451
27452@item @samp{fwry}
27453Write @var{src1} into Y.
27454
27455@item @samp{frdxhi}, @samp{frdxlo}
27456Read the most or least (respectively) significant half of X and store it in
27457@var{dest}.
27458
27459@item @samp{frdy}
27460Read the value of Y and store it into @var{dest}.
27461@end table
27462
27463Note that you can gain more local control over generation of Nios II custom
27464instructions by using the @code{target("custom-@var{insn}=@var{N}")}
27465and @code{target("no-custom-@var{insn}")} function attributes
27466(@pxref{Function Attributes})
27467or pragmas (@pxref{Function Specific Option Pragmas}).
27468
27469@item -mcustom-fpu-cfg=@var{name}
27470@opindex mcustom-fpu-cfg
27471
27472This option enables a predefined, named set of custom instruction encodings
27473(see @option{-mcustom-@var{insn}} above).  
27474Currently, the following sets are defined:
27475
27476@option{-mcustom-fpu-cfg=60-1} is equivalent to:
27477@gccoptlist{-mcustom-fmuls=252 @gol
27478-mcustom-fadds=253 @gol
27479-mcustom-fsubs=254 @gol
27480-fsingle-precision-constant}
27481
27482@option{-mcustom-fpu-cfg=60-2} is equivalent to:
27483@gccoptlist{-mcustom-fmuls=252 @gol
27484-mcustom-fadds=253 @gol
27485-mcustom-fsubs=254 @gol
27486-mcustom-fdivs=255 @gol
27487-fsingle-precision-constant}
27488
27489@option{-mcustom-fpu-cfg=72-3} is equivalent to:
27490@gccoptlist{-mcustom-floatus=243 @gol
27491-mcustom-fixsi=244 @gol
27492-mcustom-floatis=245 @gol
27493-mcustom-fcmpgts=246 @gol
27494-mcustom-fcmples=249 @gol
27495-mcustom-fcmpeqs=250 @gol
27496-mcustom-fcmpnes=251 @gol
27497-mcustom-fmuls=252 @gol
27498-mcustom-fadds=253 @gol
27499-mcustom-fsubs=254 @gol
27500-mcustom-fdivs=255 @gol
27501-fsingle-precision-constant}
27502
27503@option{-mcustom-fpu-cfg=fph2} is equivalent to:
27504@gccoptlist{-mcustom-fabss=224 @gol
27505-mcustom-fnegs=225 @gol
27506-mcustom-fcmpnes=226 @gol
27507-mcustom-fcmpeqs=227 @gol
27508-mcustom-fcmpges=228 @gol
27509-mcustom-fcmpgts=229 @gol
27510-mcustom-fcmples=230 @gol
27511-mcustom-fcmplts=231 @gol
27512-mcustom-fmaxs=232 @gol
27513-mcustom-fmins=233 @gol
27514-mcustom-round=248 @gol
27515-mcustom-fixsi=249 @gol
27516-mcustom-floatis=250 @gol
27517-mcustom-fsqrts=251 @gol
27518-mcustom-fmuls=252 @gol
27519-mcustom-fadds=253 @gol
27520-mcustom-fsubs=254 @gol
27521-mcustom-fdivs=255 @gol}
27522
27523Custom instruction assignments given by individual
27524@option{-mcustom-@var{insn}=} options override those given by
27525@option{-mcustom-fpu-cfg=}, regardless of the
27526order of the options on the command line.
27527
27528Note that you can gain more local control over selection of a FPU
27529configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
27530function attribute (@pxref{Function Attributes})
27531or pragma (@pxref{Function Specific Option Pragmas}).
27532
27533The name @var{fph2} is an abbreviation for @emph{Nios II Floating Point
27534Hardware 2 Component}.  Please note that the custom instructions enabled by
27535@option{-mcustom-fmins=233} and @option{-mcustom-fmaxs=234} are only generated
27536if @option{-ffinite-math-only} is specified.  The custom instruction enabled by
27537@option{-mcustom-round=248} is only generated if @option{-fno-math-errno} is
27538specified.  In contrast to the other configurations,
27539@option{-fsingle-precision-constant} is not set.
27540
27541@end table
27542
27543These additional @samp{-m} options are available for the Altera Nios II
27544ELF (bare-metal) target:
27545
27546@table @gcctabopt
27547
27548@item -mhal
27549@opindex mhal
27550Link with HAL BSP.  This suppresses linking with the GCC-provided C runtime
27551startup and termination code, and is typically used in conjunction with
27552@option{-msys-crt0=} to specify the location of the alternate startup code
27553provided by the HAL BSP.
27554
27555@item -msmallc
27556@opindex msmallc
27557Link with a limited version of the C library, @option{-lsmallc}, rather than
27558Newlib.
27559
27560@item -msys-crt0=@var{startfile}
27561@opindex msys-crt0
27562@var{startfile} is the file name of the startfile (crt0) to use 
27563when linking.  This option is only useful in conjunction with @option{-mhal}.
27564
27565@item -msys-lib=@var{systemlib}
27566@opindex msys-lib
27567@var{systemlib} is the library name of the library that provides
27568low-level system calls required by the C library,
27569e.g.@: @code{read} and @code{write}.
27570This option is typically used to link with a library provided by a HAL BSP.
27571
27572@end table
27573
27574@node Nvidia PTX Options
27575@subsection Nvidia PTX Options
27576@cindex Nvidia PTX options
27577@cindex nvptx options
27578
27579These options are defined for Nvidia PTX:
27580
27581@table @gcctabopt
27582
27583@item -m64
27584@opindex m64
27585Ignored, but preserved for backward compatibility.  Only 64-bit ABI is
27586supported.
27587
27588@item -march=@var{architecture-string}
27589@opindex march
27590Generate code for the specified PTX ISA target architecture
27591(e.g.@: @samp{sm_35}).  Valid architecture strings are @samp{sm_30},
27592@samp{sm_35}, @samp{sm_53}, @samp{sm_70}, @samp{sm_75} and
27593@samp{sm_80}.  The default target architecture is sm_30.
27594
27595This option sets the value of the preprocessor macro
27596@code{__PTX_SM__}; for instance, for @samp{sm_35}, it has the value
27597@samp{350}.
27598
27599@item -misa=@var{architecture-string}
27600@opindex misa
27601Alias of @option{-march=}.
27602
27603@item -march-map=@var{architecture-string}
27604@opindex march
27605Select the closest available @option{-march=} value that is not more
27606capable.  For instance, for @option{-march-map=sm_50} select
27607@option{-march=sm_35}, and for @option{-march-map=sm_53} select
27608@option{-march=sm_53}.
27609
27610@item -mptx=@var{version-string}
27611@opindex mptx
27612Generate code for the specified PTX ISA version (e.g.@: @samp{7.0}).
27613Valid version strings include @samp{3.1}, @samp{6.0}, @samp{6.3}, and
27614@samp{7.0}.  The default PTX ISA version is 6.0, unless a higher
27615version is required for specified PTX ISA target architecture via
27616option @option{-march=}.
27617
27618This option sets the values of the preprocessor macros
27619@code{__PTX_ISA_VERSION_MAJOR__} and @code{__PTX_ISA_VERSION_MINOR__};
27620for instance, for @samp{3.1} the macros have the values @samp{3} and
27621@samp{1}, respectively.
27622
27623@item -mmainkernel
27624@opindex mmainkernel
27625Link in code for a __main kernel.  This is for stand-alone instead of
27626offloading execution.
27627
27628@item -moptimize
27629@opindex moptimize
27630Apply partitioned execution optimizations.  This is the default when any
27631level of optimization is selected.
27632
27633@item -msoft-stack
27634@opindex msoft-stack
27635Generate code that does not use @code{.local} memory
27636directly for stack storage. Instead, a per-warp stack pointer is
27637maintained explicitly. This enables variable-length stack allocation (with
27638variable-length arrays or @code{alloca}), and when global memory is used for
27639underlying storage, makes it possible to access automatic variables from other
27640threads, or with atomic instructions. This code generation variant is used
27641for OpenMP offloading, but the option is exposed on its own for the purpose
27642of testing the compiler; to generate code suitable for linking into programs
27643using OpenMP offloading, use option @option{-mgomp}.
27644
27645@item -muniform-simt
27646@opindex muniform-simt
27647Switch to code generation variant that allows to execute all threads in each
27648warp, while maintaining memory state and side effects as if only one thread
27649in each warp was active outside of OpenMP SIMD regions.  All atomic operations
27650and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
27651current lane index equals the master lane index), and the register being
27652assigned is copied via a shuffle instruction from the master lane.  Outside of
27653SIMD regions lane 0 is the master; inside, each thread sees itself as the
27654master.  Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
27655all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
27656regions).  Each thread can bitwise-and the bitmask at position @code{tid.y}
27657with current lane index to compute the master lane index.
27658
27659@item -mgomp
27660@opindex mgomp
27661Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
27662@option{-muniform-simt} options, and selects corresponding multilib variant.
27663
27664@end table
27665
27666@node OpenRISC Options
27667@subsection OpenRISC Options
27668@cindex OpenRISC Options
27669
27670These options are defined for OpenRISC:
27671
27672@table @gcctabopt
27673
27674@item -mboard=@var{name}
27675@opindex mboard
27676Configure a board specific runtime.  This will be passed to the linker for
27677newlib board library linking.  The default is @code{or1ksim}.
27678
27679@item -mnewlib
27680@opindex mnewlib
27681This option is ignored; it is for compatibility purposes only.  This used to
27682select linker and preprocessor options for use with newlib.
27683
27684@item -msoft-div
27685@itemx -mhard-div
27686@opindex msoft-div
27687@opindex mhard-div
27688Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
27689This default is hardware divide.
27690
27691@item -msoft-mul
27692@itemx -mhard-mul
27693@opindex msoft-mul
27694@opindex mhard-mul
27695Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
27696This default is hardware multiply.
27697
27698@item -msoft-float
27699@itemx -mhard-float
27700@opindex msoft-float
27701@opindex mhard-float
27702Select software or hardware for floating point operations.
27703The default is software.
27704
27705@item -mdouble-float
27706@opindex mdouble-float
27707When @option{-mhard-float} is selected, enables generation of double-precision
27708floating point instructions.  By default functions from @file{libgcc} are used
27709to perform double-precision floating point operations.
27710
27711@item -munordered-float
27712@opindex munordered-float
27713When @option{-mhard-float} is selected, enables generation of unordered
27714floating point compare and set flag (@code{lf.sfun*}) instructions.  By default
27715functions from @file{libgcc} are used to perform unordered floating point
27716compare and set flag operations.
27717
27718@item -mcmov
27719@opindex mcmov
27720Enable generation of conditional move (@code{l.cmov}) instructions.  By
27721default the equivalent will be generated using set and branch.
27722
27723@item -mror
27724@opindex mror
27725Enable generation of rotate right (@code{l.ror}) instructions.  By default
27726functions from @file{libgcc} are used to perform rotate right operations.
27727
27728@item -mrori
27729@opindex mrori
27730Enable generation of rotate right with immediate (@code{l.rori}) instructions.
27731By default functions from @file{libgcc} are used to perform rotate right with
27732immediate operations.
27733
27734@item -msext
27735@opindex msext
27736Enable generation of sign extension (@code{l.ext*}) instructions.  By default
27737memory loads are used to perform sign extension.
27738
27739@item -msfimm
27740@opindex msfimm
27741Enable generation of compare and set flag with immediate (@code{l.sf*i})
27742instructions.  By default extra instructions will be generated to store the
27743immediate to a register first.
27744
27745@item -mshftimm
27746@opindex mshftimm
27747Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
27748@code{l.slli}) instructions.  By default extra instructions will be generated
27749to store the immediate to a register first.
27750
27751@item -mcmodel=small
27752@opindex mcmodel=small
27753Generate OpenRISC code for the small model: The GOT is limited to 64k. This is
27754the default model.
27755
27756@item -mcmodel=large
27757@opindex mcmodel=large
27758Generate OpenRISC code for the large model: The GOT may grow up to 4G in size.
27759
27760
27761@end table
27762
27763@node PDP-11 Options
27764@subsection PDP-11 Options
27765@cindex PDP-11 Options
27766
27767These options are defined for the PDP-11:
27768
27769@table @gcctabopt
27770@item -mfpu
27771@opindex mfpu
27772Use hardware FPP floating point.  This is the default.  (FIS floating
27773point on the PDP-11/40 is not supported.)  Implies -m45.
27774
27775@item -msoft-float
27776@opindex msoft-float
27777Do not use hardware floating point.
27778
27779@item -mac0
27780@opindex mac0
27781Return floating-point results in ac0 (fr0 in Unix assembler syntax).
27782
27783@item -mno-ac0
27784@opindex mno-ac0
27785Return floating-point results in memory.  This is the default.
27786
27787@item -m40
27788@opindex m40
27789Generate code for a PDP-11/40.  Implies -msoft-float -mno-split.
27790
27791@item -m45
27792@opindex m45
27793Generate code for a PDP-11/45.  This is the default.
27794
27795@item -m10
27796@opindex m10
27797Generate code for a PDP-11/10.  Implies -msoft-float -mno-split.
27798
27799@item -mint16
27800@itemx -mno-int32
27801@opindex mint16
27802@opindex mno-int32
27803Use 16-bit @code{int}.  This is the default.
27804
27805@item -mint32
27806@itemx -mno-int16
27807@opindex mint32
27808@opindex mno-int16
27809Use 32-bit @code{int}.
27810
27811@item -msplit
27812@opindex msplit
27813Target has split instruction and data space.  Implies -m45.
27814
27815@item -munix-asm
27816@opindex munix-asm
27817Use Unix assembler syntax.
27818
27819@item -mdec-asm
27820@opindex mdec-asm
27821Use DEC assembler syntax.
27822
27823@item -mgnu-asm
27824@opindex mgnu-asm
27825Use GNU assembler syntax.  This is the default.
27826
27827@item -mlra
27828@opindex mlra
27829Use the new LRA register allocator.  By default, the old ``reload''
27830allocator is used.
27831@end table
27832
27833@node picoChip Options
27834@subsection picoChip Options
27835@cindex picoChip options
27836
27837These @samp{-m} options are defined for picoChip implementations:
27838
27839@table @gcctabopt
27840
27841@item -mae=@var{ae_type}
27842@opindex mcpu
27843Set the instruction set, register set, and instruction scheduling
27844parameters for array element type @var{ae_type}.  Supported values
27845for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
27846
27847@option{-mae=ANY} selects a completely generic AE type.  Code
27848generated with this option runs on any of the other AE types.  The
27849code is not as efficient as it would be if compiled for a specific
27850AE type, and some types of operation (e.g., multiplication) do not
27851work properly on all types of AE.
27852
27853@option{-mae=MUL} selects a MUL AE type.  This is the most useful AE type
27854for compiled code, and is the default.
27855
27856@option{-mae=MAC} selects a DSP-style MAC AE.  Code compiled with this
27857option may suffer from poor performance of byte (char) manipulation,
27858since the DSP AE does not provide hardware support for byte load/stores.
27859
27860@item -msymbol-as-address
27861Enable the compiler to directly use a symbol name as an address in a
27862load/store instruction, without first loading it into a
27863register.  Typically, the use of this option generates larger
27864programs, which run faster than when the option isn't used.  However, the
27865results vary from program to program, so it is left as a user option,
27866rather than being permanently enabled.
27867
27868@item -mno-inefficient-warnings
27869Disables warnings about the generation of inefficient code.  These
27870warnings can be generated, for example, when compiling code that
27871performs byte-level memory operations on the MAC AE type.  The MAC AE has
27872no hardware support for byte-level memory operations, so all byte
27873load/stores must be synthesized from word load/store operations.  This is
27874inefficient and a warning is generated to indicate
27875that you should rewrite the code to avoid byte operations, or to target
27876an AE type that has the necessary hardware support.  This option disables
27877these warnings.
27878
27879@end table
27880
27881@node PowerPC Options
27882@subsection PowerPC Options
27883@cindex PowerPC options
27884
27885These are listed under @xref{RS/6000 and PowerPC Options}.
27886
27887@node PRU Options
27888@subsection PRU Options
27889@cindex PRU Options
27890
27891These command-line options are defined for PRU target:
27892
27893@table @gcctabopt
27894@item -minrt
27895@opindex minrt
27896Link with a minimum runtime environment, with no support for static
27897initializers and constructors.  Using this option can significantly reduce
27898the size of the final ELF binary.  Beware that the compiler could still
27899generate code with static initializers and constructors.  It is up to the
27900programmer to ensure that the source program will not use those features.
27901
27902@item -mmcu=@var{mcu}
27903@opindex mmcu
27904Specify the PRU MCU variant to use.  Check Newlib for the exact list of
27905supported MCUs.
27906
27907@item -mno-relax
27908@opindex mno-relax
27909Make GCC pass the @option{--no-relax} command-line option to the linker
27910instead of the @option{--relax} option.
27911
27912@item -mloop
27913@opindex mloop
27914Allow (or do not allow) GCC to use the LOOP instruction.
27915
27916@item -mabi=@var{variant}
27917@opindex mabi
27918Specify the ABI variant to output code for.  @option{-mabi=ti} selects the
27919unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
27920more naturally with certain GCC assumptions.  These are the differences:
27921
27922@table @samp
27923@item Function Pointer Size
27924TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
27925supports only 32-bit data and code pointers.
27926
27927@item Optional Return Value Pointer
27928Function return values larger than 64 bits are passed by using a hidden
27929pointer as the first argument of the function.  TI ABI, though, mandates that
27930the pointer can be NULL in case the caller is not using the returned value.
27931GNU always passes and expects a valid return value pointer.
27932
27933@end table
27934
27935The current @option{-mabi=ti} implementation simply raises a compile error
27936when any of the above code constructs is detected.  As a consequence
27937the standard C library cannot be built and it is omitted when linking with
27938@option{-mabi=ti}.
27939
27940Relaxation is a GNU feature and for safety reasons is disabled when using
27941@option{-mabi=ti}.  The TI toolchain does not emit relocations for QBBx
27942instructions, so the GNU linker cannot adjust them when shortening adjacent
27943LDI32 pseudo instructions.
27944
27945@end table
27946
27947@node RISC-V Options
27948@subsection RISC-V Options
27949@cindex RISC-V Options
27950
27951These command-line options are defined for RISC-V targets:
27952
27953@table @gcctabopt
27954@item -mbranch-cost=@var{n}
27955@opindex mbranch-cost
27956Set the cost of branches to roughly @var{n} instructions.
27957
27958@item -mplt
27959@itemx -mno-plt
27960@opindex plt
27961When generating PIC code, do or don't allow the use of PLTs. Ignored for
27962non-PIC.  The default is @option{-mplt}.
27963
27964@item -mabi=@var{ABI-string}
27965@opindex mabi
27966Specify integer and floating-point calling convention.  @var{ABI-string}
27967contains two parts: the size of integer types and the registers used for
27968floating-point types.  For example @samp{-march=rv64ifd -mabi=lp64d} means that
27969@samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
2797032-bit), and that floating-point values up to 64 bits wide are passed in F
27971registers.  Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
27972allows the compiler to generate code that uses the F and D extensions but only
27973allows floating-point values up to 32 bits long to be passed in registers; or
27974@samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
27975passed in registers.
27976
27977The default for this argument is system dependent, users who want a specific
27978calling convention should specify one explicitly.  The valid calling
27979conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
27980@samp{lp64f}, and @samp{lp64d}.  Some calling conventions are impossible to
27981implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
27982invalid because the ABI requires 64-bit values be passed in F registers, but F
27983registers are only 32 bits wide.  There is also the @samp{ilp32e} ABI that can
27984only be used with the @samp{rv32e} architecture.  This ABI is not well
27985specified at present, and is subject to change.
27986
27987@item -mfdiv
27988@itemx -mno-fdiv
27989@opindex mfdiv
27990Do or don't use hardware floating-point divide and square root instructions.
27991This requires the F or D extensions for floating-point registers.  The default
27992is to use them if the specified architecture has these instructions.
27993
27994@item -mdiv
27995@itemx -mno-div
27996@opindex mdiv
27997Do or don't use hardware instructions for integer division.  This requires the
27998M extension.  The default is to use them if the specified architecture has
27999these instructions.
28000
28001@item -misa-spec=@var{ISA-spec-string}
28002@opindex misa-spec
28003Specify the version of the RISC-V Unprivileged (formerly User-Level)
28004ISA specification to produce code conforming to.  The possibilities
28005for @var{ISA-spec-string} are:
28006@table @code
28007@item 2.2
28008Produce code conforming to version 2.2.
28009@item 20190608
28010Produce code conforming to version 20190608.
28011@item 20191213
28012Produce code conforming to version 20191213.
28013@end table
28014The default is @option{-misa-spec=20191213} unless GCC has been configured
28015with @option{--with-isa-spec=} specifying a different default version.
28016
28017@item -march=@var{ISA-string}
28018@opindex march
28019Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}).  ISA strings must be
28020lower-case.  Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
28021@samp{rv32imaf}.
28022
28023When @option{-march=} is not specified, use the setting from @option{-mcpu}.
28024
28025If both @option{-march} and @option{-mcpu=} are not specified, the default for
28026this argument is system dependent, users who want a specific architecture
28027extensions should specify one explicitly.
28028
28029@item -mcpu=@var{processor-string}
28030@opindex mcpu
28031Use architecture of and optimize the output for the given processor, specified
28032by particular CPU name.
28033Permissible values for this option are: @samp{sifive-e20}, @samp{sifive-e21},
28034@samp{sifive-e24}, @samp{sifive-e31}, @samp{sifive-e34}, @samp{sifive-e76},
28035@samp{sifive-s21}, @samp{sifive-s51}, @samp{sifive-s54}, @samp{sifive-s76},
28036@samp{sifive-u54}, and @samp{sifive-u74}.
28037
28038@item -mtune=@var{processor-string}
28039@opindex mtune
28040Optimize the output for the given processor, specified by microarchitecture or
28041particular CPU name.  Permissible values for this option are: @samp{rocket},
28042@samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
28043@samp{size}, and all valid options for @option{-mcpu=}.
28044
28045When @option{-mtune=} is not specified, use the setting from @option{-mcpu},
28046the default is @samp{rocket} if both are not specified.
28047
28048The @samp{size} choice is not intended for use by end-users.  This is used
28049when @option{-Os} is specified.  It overrides the instruction cost info
28050provided by @option{-mtune=}, but does not override the pipeline info.  This
28051helps reduce code size while still giving good performance.
28052
28053@item -mpreferred-stack-boundary=@var{num}
28054@opindex mpreferred-stack-boundary
28055Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
28056byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
28057the default is 4 (16 bytes or 128-bits).
28058
28059@strong{Warning:} If you use this switch, then you must build all modules with
28060the same value, including any libraries.  This includes the system libraries
28061and startup modules.
28062
28063@item -msmall-data-limit=@var{n}
28064@opindex msmall-data-limit
28065Put global and static data smaller than @var{n} bytes into a special section
28066(on some targets).
28067
28068@item -msave-restore
28069@itemx -mno-save-restore
28070@opindex msave-restore
28071Do or don't use smaller but slower prologue and epilogue code that uses
28072library function calls.  The default is to use fast inline prologues and
28073epilogues.
28074
28075@item -mshorten-memrefs
28076@itemx -mno-shorten-memrefs
28077@opindex mshorten-memrefs
28078Do or do not attempt to make more use of compressed load/store instructions by
28079replacing a load/store of 'base register + large offset' with a new load/store
28080of 'new base + small offset'.  If the new base gets stored in a compressed
28081register, then the new load/store can be compressed.  Currently targets 32-bit
28082integer load/stores only.
28083
28084@item -mstrict-align
28085@itemx -mno-strict-align
28086@opindex mstrict-align
28087Do not or do generate unaligned memory accesses.  The default is set depending
28088on whether the processor we are optimizing for supports fast unaligned access
28089or not.
28090
28091@item -mcmodel=medlow
28092@opindex mcmodel=medlow
28093Generate code for the medium-low code model. The program and its statically
28094defined symbols must lie within a single 2 GiB address range and must lie
28095between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
28096statically or dynamically linked. This is the default code model.
28097
28098@item -mcmodel=medany
28099@opindex mcmodel=medany
28100Generate code for the medium-any code model. The program and its statically
28101defined symbols must be within any single 2 GiB address range. Programs can be
28102statically or dynamically linked.
28103
28104The code generated by the medium-any code model is position-independent, but is
28105not guaranteed to function correctly when linked into position-independent
28106executables or libraries.
28107
28108@item -mexplicit-relocs
28109@itemx -mno-exlicit-relocs
28110Use or do not use assembler relocation operators when dealing with symbolic
28111addresses.  The alternative is to use assembler macros instead, which may
28112limit optimization.
28113
28114@item -mrelax
28115@itemx -mno-relax
28116Take advantage of linker relaxations to reduce the number of instructions
28117required to materialize symbol addresses. The default is to take advantage of
28118linker relaxations.
28119
28120@item -memit-attribute
28121@itemx -mno-emit-attribute
28122Emit (do not emit) RISC-V attribute to record extra information into ELF
28123objects.  This feature requires at least binutils 2.32.
28124
28125@item -malign-data=@var{type}
28126@opindex malign-data
28127Control how GCC aligns variables and constants of array, structure, or union
28128types.  Supported values for @var{type} are @samp{xlen} which uses x register
28129width as the alignment value, and @samp{natural} which uses natural alignment.
28130@samp{xlen} is the default.
28131
28132@item -mbig-endian
28133@opindex mbig-endian
28134Generate big-endian code.  This is the default when GCC is configured for a
28135@samp{riscv64be-*-*} or @samp{riscv32be-*-*} target.
28136
28137@item -mlittle-endian
28138@opindex mlittle-endian
28139Generate little-endian code.  This is the default when GCC is configured for a
28140@samp{riscv64-*-*} or @samp{riscv32-*-*} but not a @samp{riscv64be-*-*} or
28141@samp{riscv32be-*-*} target.
28142
28143@item -mstack-protector-guard=@var{guard}
28144@itemx -mstack-protector-guard-reg=@var{reg}
28145@itemx -mstack-protector-guard-offset=@var{offset}
28146@opindex mstack-protector-guard
28147@opindex mstack-protector-guard-reg
28148@opindex mstack-protector-guard-offset
28149Generate stack protection code using canary at @var{guard}.  Supported
28150locations are @samp{global} for a global canary or @samp{tls} for per-thread
28151canary in the TLS block.
28152
28153With the latter choice the options
28154@option{-mstack-protector-guard-reg=@var{reg}} and
28155@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28156which register to use as base register for reading the canary,
28157and from what offset from that base register. There is no default
28158register or offset as this is entirely for use within the Linux
28159kernel.
28160@end table
28161
28162@node RL78 Options
28163@subsection RL78 Options
28164@cindex RL78 Options
28165
28166@table @gcctabopt
28167
28168@item -msim
28169@opindex msim
28170Links in additional target libraries to support operation within a
28171simulator.
28172
28173@item -mmul=none
28174@itemx -mmul=g10
28175@itemx -mmul=g13
28176@itemx -mmul=g14
28177@itemx -mmul=rl78
28178@opindex mmul
28179Specifies the type of hardware multiplication and division support to
28180be used.  The simplest is @code{none}, which uses software for both
28181multiplication and division.  This is the default.  The @code{g13}
28182value is for the hardware multiply/divide peripheral found on the
28183RL78/G13 (S2 core) targets.  The @code{g14} value selects the use of
28184the multiplication and division instructions supported by the RL78/G14
28185(S3 core) parts.  The value @code{rl78} is an alias for @code{g14} and
28186the value @code{mg10} is an alias for @code{none}.
28187
28188In addition a C preprocessor macro is defined, based upon the setting
28189of this option.  Possible values are: @code{__RL78_MUL_NONE__},
28190@code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
28191
28192@item -mcpu=g10
28193@itemx -mcpu=g13
28194@itemx -mcpu=g14
28195@itemx -mcpu=rl78
28196@opindex mcpu
28197Specifies the RL78 core to target.  The default is the G14 core, also
28198known as an S3 core or just RL78.  The G13 or S2 core does not have
28199multiply or divide instructions, instead it uses a hardware peripheral
28200for these operations.  The G10 or S1 core does not have register
28201banks, so it uses a different calling convention.
28202
28203If this option is set it also selects the type of hardware multiply
28204support to use, unless this is overridden by an explicit
28205@option{-mmul=none} option on the command line.  Thus specifying
28206@option{-mcpu=g13} enables the use of the G13 hardware multiply
28207peripheral and specifying @option{-mcpu=g10} disables the use of
28208hardware multiplications altogether.
28209
28210Note, although the RL78/G14 core is the default target, specifying
28211@option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
28212change the behavior of the toolchain since it also enables G14
28213hardware multiply support.  If these options are not specified on the
28214command line then software multiplication routines will be used even
28215though the code targets the RL78 core.  This is for backwards
28216compatibility with older toolchains which did not have hardware
28217multiply and divide support.
28218
28219In addition a C preprocessor macro is defined, based upon the setting
28220of this option.  Possible values are: @code{__RL78_G10__},
28221@code{__RL78_G13__} or @code{__RL78_G14__}.
28222
28223@item -mg10
28224@itemx -mg13
28225@itemx -mg14
28226@itemx -mrl78
28227@opindex mg10
28228@opindex mg13
28229@opindex mg14
28230@opindex mrl78
28231These are aliases for the corresponding @option{-mcpu=} option.  They
28232are provided for backwards compatibility.
28233
28234@item -mallregs
28235@opindex mallregs
28236Allow the compiler to use all of the available registers.  By default
28237registers @code{r24..r31} are reserved for use in interrupt handlers.
28238With this option enabled these registers can be used in ordinary
28239functions as well.
28240
28241@item -m64bit-doubles
28242@itemx -m32bit-doubles
28243@opindex m64bit-doubles
28244@opindex m32bit-doubles
28245Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
28246or 32 bits (@option{-m32bit-doubles}) in size.  The default is
28247@option{-m32bit-doubles}.
28248
28249@item -msave-mduc-in-interrupts
28250@itemx -mno-save-mduc-in-interrupts
28251@opindex msave-mduc-in-interrupts
28252@opindex mno-save-mduc-in-interrupts
28253Specifies that interrupt handler functions should preserve the
28254MDUC registers.  This is only necessary if normal code might use
28255the MDUC registers, for example because it performs multiplication
28256and division operations.  The default is to ignore the MDUC registers
28257as this makes the interrupt handlers faster.  The target option -mg13
28258needs to be passed for this to work as this feature is only available
28259on the G13 target (S2 core).  The MDUC registers will only be saved
28260if the interrupt handler performs a multiplication or division
28261operation or it calls another function.
28262
28263@end table
28264
28265@node RS/6000 and PowerPC Options
28266@subsection IBM RS/6000 and PowerPC Options
28267@cindex RS/6000 and PowerPC Options
28268@cindex IBM RS/6000 and PowerPC Options
28269
28270These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
28271@table @gcctabopt
28272@item -mpowerpc-gpopt
28273@itemx -mno-powerpc-gpopt
28274@itemx -mpowerpc-gfxopt
28275@itemx -mno-powerpc-gfxopt
28276@need 800
28277@itemx -mpowerpc64
28278@itemx -mno-powerpc64
28279@itemx -mmfcrf
28280@itemx -mno-mfcrf
28281@itemx -mpopcntb
28282@itemx -mno-popcntb
28283@itemx -mpopcntd
28284@itemx -mno-popcntd
28285@itemx -mfprnd
28286@itemx -mno-fprnd
28287@need 800
28288@itemx -mcmpb
28289@itemx -mno-cmpb
28290@itemx -mhard-dfp
28291@itemx -mno-hard-dfp
28292@opindex mpowerpc-gpopt
28293@opindex mno-powerpc-gpopt
28294@opindex mpowerpc-gfxopt
28295@opindex mno-powerpc-gfxopt
28296@opindex mpowerpc64
28297@opindex mno-powerpc64
28298@opindex mmfcrf
28299@opindex mno-mfcrf
28300@opindex mpopcntb
28301@opindex mno-popcntb
28302@opindex mpopcntd
28303@opindex mno-popcntd
28304@opindex mfprnd
28305@opindex mno-fprnd
28306@opindex mcmpb
28307@opindex mno-cmpb
28308@opindex mhard-dfp
28309@opindex mno-hard-dfp
28310You use these options to specify which instructions are available on the
28311processor you are using.  The default value of these options is
28312determined when configuring GCC@.  Specifying the
28313@option{-mcpu=@var{cpu_type}} overrides the specification of these
28314options.  We recommend you use the @option{-mcpu=@var{cpu_type}} option
28315rather than the options listed above.
28316
28317Specifying @option{-mpowerpc-gpopt} allows
28318GCC to use the optional PowerPC architecture instructions in the
28319General Purpose group, including floating-point square root.  Specifying
28320@option{-mpowerpc-gfxopt} allows GCC to
28321use the optional PowerPC architecture instructions in the Graphics
28322group, including floating-point select.
28323
28324The @option{-mmfcrf} option allows GCC to generate the move from
28325condition register field instruction implemented on the POWER4
28326processor and other processors that support the PowerPC V2.01
28327architecture.
28328The @option{-mpopcntb} option allows GCC to generate the popcount and
28329double-precision FP reciprocal estimate instruction implemented on the
28330POWER5 processor and other processors that support the PowerPC V2.02
28331architecture.
28332The @option{-mpopcntd} option allows GCC to generate the popcount
28333instruction implemented on the POWER7 processor and other processors
28334that support the PowerPC V2.06 architecture.
28335The @option{-mfprnd} option allows GCC to generate the FP round to
28336integer instructions implemented on the POWER5+ processor and other
28337processors that support the PowerPC V2.03 architecture.
28338The @option{-mcmpb} option allows GCC to generate the compare bytes
28339instruction implemented on the POWER6 processor and other processors
28340that support the PowerPC V2.05 architecture.
28341The @option{-mhard-dfp} option allows GCC to generate the decimal
28342floating-point instructions implemented on some POWER processors.
28343
28344The @option{-mpowerpc64} option allows GCC to generate the additional
2834564-bit instructions that are found in the full PowerPC64 architecture
28346and to treat GPRs as 64-bit, doubleword quantities.  GCC defaults to
28347@option{-mno-powerpc64}.
28348
28349@item -mcpu=@var{cpu_type}
28350@opindex mcpu
28351Set architecture type, register usage, and
28352instruction scheduling parameters for machine type @var{cpu_type}.
28353Supported values for @var{cpu_type} are @samp{401}, @samp{403},
28354@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
28355@samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
28356@samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
28357@samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
28358@samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
28359@samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
28360@samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
28361@samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
28362@samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
28363@samp{power9}, @samp{power10}, @samp{powerpc}, @samp{powerpc64},
28364@samp{powerpc64le}, @samp{rs64}, and @samp{native}.
28365
28366@option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
28367@option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
28368endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
28369architecture machine types, with an appropriate, generic processor
28370model assumed for scheduling purposes.
28371
28372Specifying @samp{native} as cpu type detects and selects the
28373architecture option that corresponds to the host processor of the
28374system performing the compilation.
28375@option{-mcpu=native} has no effect if GCC does not recognize the
28376processor.
28377
28378The other options specify a specific processor.  Code generated under
28379those options runs best on that processor, and may not run at all on
28380others.
28381
28382The @option{-mcpu} options automatically enable or disable the
28383following options:
28384
28385@gccoptlist{-maltivec  -mfprnd  -mhard-float  -mmfcrf  -mmultiple @gol
28386-mpopcntb  -mpopcntd  -mpowerpc64 @gol
28387-mpowerpc-gpopt  -mpowerpc-gfxopt @gol
28388-mmulhw  -mdlmzb  -mmfpgpr  -mvsx @gol
28389-mcrypto  -mhtm  -mpower8-fusion  -mpower8-vector @gol
28390-mquad-memory  -mquad-memory-atomic  -mfloat128 @gol
28391-mfloat128-hardware -mprefixed -mpcrel -mmma @gol
28392-mrop-protect}
28393
28394The particular options set for any particular CPU varies between
28395compiler versions, depending on what setting seems to produce optimal
28396code for that CPU; it doesn't necessarily reflect the actual hardware's
28397capabilities.  If you wish to set an individual option to a particular
28398value, you may specify it after the @option{-mcpu} option, like
28399@option{-mcpu=970 -mno-altivec}.
28400
28401On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
28402not enabled or disabled by the @option{-mcpu} option at present because
28403AIX does not have full support for these options.  You may still
28404enable or disable them individually if you're sure it'll work in your
28405environment.
28406
28407@item -mtune=@var{cpu_type}
28408@opindex mtune
28409Set the instruction scheduling parameters for machine type
28410@var{cpu_type}, but do not set the architecture type or register usage,
28411as @option{-mcpu=@var{cpu_type}} does.  The same
28412values for @var{cpu_type} are used for @option{-mtune} as for
28413@option{-mcpu}.  If both are specified, the code generated uses the
28414architecture and registers set by @option{-mcpu}, but the
28415scheduling parameters set by @option{-mtune}.
28416
28417@item -mcmodel=small
28418@opindex mcmodel=small
28419Generate PowerPC64 code for the small model: The TOC is limited to
2842064k.
28421
28422@item -mcmodel=medium
28423@opindex mcmodel=medium
28424Generate PowerPC64 code for the medium model: The TOC and other static
28425data may be up to a total of 4G in size.  This is the default for 64-bit
28426Linux.
28427
28428@item -mcmodel=large
28429@opindex mcmodel=large
28430Generate PowerPC64 code for the large model: The TOC may be up to 4G
28431in size.  Other data and code is only limited by the 64-bit address
28432space.
28433
28434@item -maltivec
28435@itemx -mno-altivec
28436@opindex maltivec
28437@opindex mno-altivec
28438Generate code that uses (does not use) AltiVec instructions, and also
28439enable the use of built-in functions that allow more direct access to
28440the AltiVec instruction set.  You may also need to set
28441@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
28442enhancements.
28443
28444When @option{-maltivec} is used, the element order for AltiVec intrinsics
28445such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert} 
28446match array element order corresponding to the endianness of the
28447target.  That is, element zero identifies the leftmost element in a
28448vector register when targeting a big-endian platform, and identifies
28449the rightmost element in a vector register when targeting a
28450little-endian platform.
28451
28452@item -mvrsave
28453@itemx -mno-vrsave
28454@opindex mvrsave
28455@opindex mno-vrsave
28456Generate VRSAVE instructions when generating AltiVec code.
28457
28458@item -msecure-plt
28459@opindex msecure-plt
28460Generate code that allows @command{ld} and @command{ld.so}
28461to build executables and shared
28462libraries with non-executable @code{.plt} and @code{.got} sections.
28463This is a PowerPC
2846432-bit SYSV ABI option.
28465
28466@item -mbss-plt
28467@opindex mbss-plt
28468Generate code that uses a BSS @code{.plt} section that @command{ld.so}
28469fills in, and
28470requires @code{.plt} and @code{.got}
28471sections that are both writable and executable.
28472This is a PowerPC 32-bit SYSV ABI option.
28473
28474@item -misel
28475@itemx -mno-isel
28476@opindex misel
28477@opindex mno-isel
28478This switch enables or disables the generation of ISEL instructions.
28479
28480@item -mvsx
28481@itemx -mno-vsx
28482@opindex mvsx
28483@opindex mno-vsx
28484Generate code that uses (does not use) vector/scalar (VSX)
28485instructions, and also enable the use of built-in functions that allow
28486more direct access to the VSX instruction set.
28487
28488@item -mcrypto
28489@itemx -mno-crypto
28490@opindex mcrypto
28491@opindex mno-crypto
28492Enable the use (disable) of the built-in functions that allow direct
28493access to the cryptographic instructions that were added in version
284942.07 of the PowerPC ISA.
28495
28496@item -mhtm
28497@itemx -mno-htm
28498@opindex mhtm
28499@opindex mno-htm
28500Enable (disable) the use of the built-in functions that allow direct
28501access to the Hardware Transactional Memory (HTM) instructions that
28502were added in version 2.07 of the PowerPC ISA.
28503
28504@item -mpower8-fusion
28505@itemx -mno-power8-fusion
28506@opindex mpower8-fusion
28507@opindex mno-power8-fusion
28508Generate code that keeps (does not keeps) some integer operations
28509adjacent so that the instructions can be fused together on power8 and
28510later processors.
28511
28512@item -mpower8-vector
28513@itemx -mno-power8-vector
28514@opindex mpower8-vector
28515@opindex mno-power8-vector
28516Generate code that uses (does not use) the vector and scalar
28517instructions that were added in version 2.07 of the PowerPC ISA.  Also
28518enable the use of built-in functions that allow more direct access to
28519the vector instructions.
28520
28521@item -mquad-memory
28522@itemx -mno-quad-memory
28523@opindex mquad-memory
28524@opindex mno-quad-memory
28525Generate code that uses (does not use) the non-atomic quad word memory
28526instructions.  The @option{-mquad-memory} option requires use of
2852764-bit mode.
28528
28529@item -mquad-memory-atomic
28530@itemx -mno-quad-memory-atomic
28531@opindex mquad-memory-atomic
28532@opindex mno-quad-memory-atomic
28533Generate code that uses (does not use) the atomic quad word memory
28534instructions.  The @option{-mquad-memory-atomic} option requires use of
2853564-bit mode.
28536
28537@item -mfloat128
28538@itemx -mno-float128
28539@opindex mfloat128
28540@opindex mno-float128
28541Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
28542and use either software emulation for IEEE 128-bit floating point or
28543hardware instructions.
28544
28545The VSX instruction set (@option{-mvsx}) must be enabled to use the IEEE
28546128-bit floating point support.  The IEEE 128-bit floating point is only
28547supported on Linux.
28548
28549The default for @option{-mfloat128} is enabled on PowerPC Linux
28550systems using the VSX instruction set, and disabled on other systems.
28551
28552If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
28553@option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
28554point support will also enable the generation of ISA 3.0 IEEE 128-bit
28555floating point instructions.  Otherwise, if you do not specify to
28556generate ISA 3.0 instructions or you are targeting a 32-bit big endian
28557system, IEEE 128-bit floating point will be done with software
28558emulation.
28559
28560@item -mfloat128-hardware
28561@itemx -mno-float128-hardware
28562@opindex mfloat128-hardware
28563@opindex mno-float128-hardware
28564Enable/disable using ISA 3.0 hardware instructions to support the
28565@var{__float128} data type.
28566
28567The default for @option{-mfloat128-hardware} is enabled on PowerPC
28568Linux systems using the ISA 3.0 instruction set, and disabled on other
28569systems.
28570
28571@item -m32
28572@itemx -m64
28573@opindex m32
28574@opindex m64
28575Generate code for 32-bit or 64-bit environments of Darwin and SVR4
28576targets (including GNU/Linux).  The 32-bit environment sets int, long
28577and pointer to 32 bits and generates code that runs on any PowerPC
28578variant.  The 64-bit environment sets int to 32 bits and long and
28579pointer to 64 bits, and generates code for PowerPC64, as for
28580@option{-mpowerpc64}.
28581
28582@item -mfull-toc
28583@itemx -mno-fp-in-toc
28584@itemx -mno-sum-in-toc
28585@itemx -mminimal-toc
28586@opindex mfull-toc
28587@opindex mno-fp-in-toc
28588@opindex mno-sum-in-toc
28589@opindex mminimal-toc
28590Modify generation of the TOC (Table Of Contents), which is created for
28591every executable file.  The @option{-mfull-toc} option is selected by
28592default.  In that case, GCC allocates at least one TOC entry for
28593each unique non-automatic variable reference in your program.  GCC
28594also places floating-point constants in the TOC@.  However, only
2859516,384 entries are available in the TOC@.
28596
28597If you receive a linker error message that saying you have overflowed
28598the available TOC space, you can reduce the amount of TOC space used
28599with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
28600@option{-mno-fp-in-toc} prevents GCC from putting floating-point
28601constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
28602generate code to calculate the sum of an address and a constant at
28603run time instead of putting that sum into the TOC@.  You may specify one
28604or both of these options.  Each causes GCC to produce very slightly
28605slower and larger code at the expense of conserving TOC space.
28606
28607If you still run out of space in the TOC even when you specify both of
28608these options, specify @option{-mminimal-toc} instead.  This option causes
28609GCC to make only one TOC entry for every file.  When you specify this
28610option, GCC produces code that is slower and larger but which
28611uses extremely little TOC space.  You may wish to use this option
28612only on files that contain less frequently-executed code.
28613
28614@item -maix64
28615@itemx -maix32
28616@opindex maix64
28617@opindex maix32
28618Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
28619@code{long} type, and the infrastructure needed to support them.
28620Specifying @option{-maix64} implies @option{-mpowerpc64},
28621while @option{-maix32} disables the 64-bit ABI and
28622implies @option{-mno-powerpc64}.  GCC defaults to @option{-maix32}.
28623
28624@item -mxl-compat
28625@itemx -mno-xl-compat
28626@opindex mxl-compat
28627@opindex mno-xl-compat
28628Produce code that conforms more closely to IBM XL compiler semantics
28629when using AIX-compatible ABI@.  Pass floating-point arguments to
28630prototyped functions beyond the register save area (RSA) on the stack
28631in addition to argument FPRs.  Do not assume that most significant
28632double in 128-bit long double value is properly rounded when comparing
28633values and converting to double.  Use XL symbol names for long double
28634support routines.
28635
28636The AIX calling convention was extended but not initially documented to
28637handle an obscure K&R C case of calling a function that takes the
28638address of its arguments with fewer arguments than declared.  IBM XL
28639compilers access floating-point arguments that do not fit in the
28640RSA from the stack when a subroutine is compiled without
28641optimization.  Because always storing floating-point arguments on the
28642stack is inefficient and rarely needed, this option is not enabled by
28643default and only is necessary when calling subroutines compiled by IBM
28644XL compilers without optimization.
28645
28646@item -mpe
28647@opindex mpe
28648Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@.  Link an
28649application written to use message passing with special startup code to
28650enable the application to run.  The system must have PE installed in the
28651standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
28652must be overridden with the @option{-specs=} option to specify the
28653appropriate directory location.  The Parallel Environment does not
28654support threads, so the @option{-mpe} option and the @option{-pthread}
28655option are incompatible.
28656
28657@item -malign-natural
28658@itemx -malign-power
28659@opindex malign-natural
28660@opindex malign-power
28661On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
28662@option{-malign-natural} overrides the ABI-defined alignment of larger
28663types, such as floating-point doubles, on their natural size-based boundary.
28664The option @option{-malign-power} instructs GCC to follow the ABI-specified
28665alignment rules.  GCC defaults to the standard alignment defined in the ABI@.
28666
28667On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
28668is not supported.
28669
28670@item -msoft-float
28671@itemx -mhard-float
28672@opindex msoft-float
28673@opindex mhard-float
28674Generate code that does not use (uses) the floating-point register set.
28675Software floating-point emulation is provided if you use the
28676@option{-msoft-float} option, and pass the option to GCC when linking.
28677
28678@item -mmultiple
28679@itemx -mno-multiple
28680@opindex mmultiple
28681@opindex mno-multiple
28682Generate code that uses (does not use) the load multiple word
28683instructions and the store multiple word instructions.  These
28684instructions are generated by default on POWER systems, and not
28685generated on PowerPC systems.  Do not use @option{-mmultiple} on little-endian
28686PowerPC systems, since those instructions do not work when the
28687processor is in little-endian mode.  The exceptions are PPC740 and
28688PPC750 which permit these instructions in little-endian mode.
28689
28690@item -mupdate
28691@itemx -mno-update
28692@opindex mupdate
28693@opindex mno-update
28694Generate code that uses (does not use) the load or store instructions
28695that update the base register to the address of the calculated memory
28696location.  These instructions are generated by default.  If you use
28697@option{-mno-update}, there is a small window between the time that the
28698stack pointer is updated and the address of the previous frame is
28699stored, which means code that walks the stack frame across interrupts or
28700signals may get corrupted data.
28701
28702@item -mavoid-indexed-addresses
28703@itemx -mno-avoid-indexed-addresses
28704@opindex mavoid-indexed-addresses
28705@opindex mno-avoid-indexed-addresses
28706Generate code that tries to avoid (not avoid) the use of indexed load
28707or store instructions. These instructions can incur a performance
28708penalty on Power6 processors in certain situations, such as when
28709stepping through large arrays that cross a 16M boundary.  This option
28710is enabled by default when targeting Power6 and disabled otherwise.
28711
28712@item -mfused-madd
28713@itemx -mno-fused-madd
28714@opindex mfused-madd
28715@opindex mno-fused-madd
28716Generate code that uses (does not use) the floating-point multiply and
28717accumulate instructions.  These instructions are generated by default
28718if hardware floating point is used.  The machine-dependent
28719@option{-mfused-madd} option is now mapped to the machine-independent
28720@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
28721mapped to @option{-ffp-contract=off}.
28722
28723@item -mmulhw
28724@itemx -mno-mulhw
28725@opindex mmulhw
28726@opindex mno-mulhw
28727Generate code that uses (does not use) the half-word multiply and
28728multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
28729These instructions are generated by default when targeting those
28730processors.
28731
28732@item -mdlmzb
28733@itemx -mno-dlmzb
28734@opindex mdlmzb
28735@opindex mno-dlmzb
28736Generate code that uses (does not use) the string-search @samp{dlmzb}
28737instruction on the IBM 405, 440, 464 and 476 processors.  This instruction is
28738generated by default when targeting those processors.
28739
28740@item -mno-bit-align
28741@itemx -mbit-align
28742@opindex mno-bit-align
28743@opindex mbit-align
28744On System V.4 and embedded PowerPC systems do not (do) force structures
28745and unions that contain bit-fields to be aligned to the base type of the
28746bit-field.
28747
28748For example, by default a structure containing nothing but 8
28749@code{unsigned} bit-fields of length 1 is aligned to a 4-byte
28750boundary and has a size of 4 bytes.  By using @option{-mno-bit-align},
28751the structure is aligned to a 1-byte boundary and is 1 byte in
28752size.
28753
28754@item -mno-strict-align
28755@itemx -mstrict-align
28756@opindex mno-strict-align
28757@opindex mstrict-align
28758On System V.4 and embedded PowerPC systems do not (do) assume that
28759unaligned memory references are handled by the system.
28760
28761@item -mrelocatable
28762@itemx -mno-relocatable
28763@opindex mrelocatable
28764@opindex mno-relocatable
28765Generate code that allows (does not allow) a static executable to be
28766relocated to a different address at run time.  A simple embedded
28767PowerPC system loader should relocate the entire contents of
28768@code{.got2} and 4-byte locations listed in the @code{.fixup} section,
28769a table of 32-bit addresses generated by this option.  For this to
28770work, all objects linked together must be compiled with
28771@option{-mrelocatable} or @option{-mrelocatable-lib}.
28772@option{-mrelocatable} code aligns the stack to an 8-byte boundary.
28773
28774@item -mrelocatable-lib
28775@itemx -mno-relocatable-lib
28776@opindex mrelocatable-lib
28777@opindex mno-relocatable-lib
28778Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
28779@code{.fixup} section to allow static executables to be relocated at
28780run time, but @option{-mrelocatable-lib} does not use the smaller stack
28781alignment of @option{-mrelocatable}.  Objects compiled with
28782@option{-mrelocatable-lib} may be linked with objects compiled with
28783any combination of the @option{-mrelocatable} options.
28784
28785@item -mno-toc
28786@itemx -mtoc
28787@opindex mno-toc
28788@opindex mtoc
28789On System V.4 and embedded PowerPC systems do not (do) assume that
28790register 2 contains a pointer to a global area pointing to the addresses
28791used in the program.
28792
28793@item -mlittle
28794@itemx -mlittle-endian
28795@opindex mlittle
28796@opindex mlittle-endian
28797On System V.4 and embedded PowerPC systems compile code for the
28798processor in little-endian mode.  The @option{-mlittle-endian} option is
28799the same as @option{-mlittle}.
28800
28801@item -mbig
28802@itemx -mbig-endian
28803@opindex mbig
28804@opindex mbig-endian
28805On System V.4 and embedded PowerPC systems compile code for the
28806processor in big-endian mode.  The @option{-mbig-endian} option is
28807the same as @option{-mbig}.
28808
28809@item -mdynamic-no-pic
28810@opindex mdynamic-no-pic
28811On Darwin and Mac OS X systems, compile code so that it is not
28812relocatable, but that its external references are relocatable.  The
28813resulting code is suitable for applications, but not shared
28814libraries.
28815
28816@item -msingle-pic-base
28817@opindex msingle-pic-base
28818Treat the register used for PIC addressing as read-only, rather than
28819loading it in the prologue for each function.  The runtime system is
28820responsible for initializing this register with an appropriate value
28821before execution begins.
28822
28823@item -mprioritize-restricted-insns=@var{priority}
28824@opindex mprioritize-restricted-insns
28825This option controls the priority that is assigned to
28826dispatch-slot restricted instructions during the second scheduling
28827pass.  The argument @var{priority} takes the value @samp{0}, @samp{1},
28828or @samp{2} to assign no, highest, or second-highest (respectively) 
28829priority to dispatch-slot restricted
28830instructions.
28831
28832@item -msched-costly-dep=@var{dependence_type}
28833@opindex msched-costly-dep
28834This option controls which dependences are considered costly
28835by the target during instruction scheduling.  The argument
28836@var{dependence_type} takes one of the following values:
28837
28838@table @asis
28839@item @samp{no}
28840No dependence is costly.
28841
28842@item @samp{all}
28843All dependences are costly.
28844
28845@item @samp{true_store_to_load}
28846A true dependence from store to load is costly.
28847
28848@item @samp{store_to_load}
28849Any dependence from store to load is costly.
28850
28851@item @var{number}
28852Any dependence for which the latency is greater than or equal to 
28853@var{number} is costly.
28854@end table
28855
28856@item -minsert-sched-nops=@var{scheme}
28857@opindex minsert-sched-nops
28858This option controls which NOP insertion scheme is used during
28859the second scheduling pass.  The argument @var{scheme} takes one of the
28860following values:
28861
28862@table @asis
28863@item @samp{no}
28864Don't insert NOPs.
28865
28866@item @samp{pad}
28867Pad with NOPs any dispatch group that has vacant issue slots,
28868according to the scheduler's grouping.
28869
28870@item @samp{regroup_exact}
28871Insert NOPs to force costly dependent insns into
28872separate groups.  Insert exactly as many NOPs as needed to force an insn
28873to a new group, according to the estimated processor grouping.
28874
28875@item @var{number}
28876Insert NOPs to force costly dependent insns into
28877separate groups.  Insert @var{number} NOPs to force an insn to a new group.
28878@end table
28879
28880@item -mcall-sysv
28881@opindex mcall-sysv
28882On System V.4 and embedded PowerPC systems compile code using calling
28883conventions that adhere to the March 1995 draft of the System V
28884Application Binary Interface, PowerPC processor supplement.  This is the
28885default unless you configured GCC using @samp{powerpc-*-eabiaix}.
28886
28887@item -mcall-sysv-eabi
28888@itemx -mcall-eabi
28889@opindex mcall-sysv-eabi
28890@opindex mcall-eabi
28891Specify both @option{-mcall-sysv} and @option{-meabi} options.
28892
28893@item -mcall-sysv-noeabi
28894@opindex mcall-sysv-noeabi
28895Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
28896
28897@item -mcall-aixdesc
28898@opindex m
28899On System V.4 and embedded PowerPC systems compile code for the AIX
28900operating system.
28901
28902@item -mcall-linux
28903@opindex mcall-linux
28904On System V.4 and embedded PowerPC systems compile code for the
28905Linux-based GNU system.
28906
28907@item -mcall-freebsd
28908@opindex mcall-freebsd
28909On System V.4 and embedded PowerPC systems compile code for the
28910FreeBSD operating system.
28911
28912@item -mcall-netbsd
28913@opindex mcall-netbsd
28914On System V.4 and embedded PowerPC systems compile code for the
28915NetBSD operating system.
28916
28917@item -mcall-openbsd
28918@opindex mcall-netbsd
28919On System V.4 and embedded PowerPC systems compile code for the
28920OpenBSD operating system.
28921
28922@item -mtraceback=@var{traceback_type}
28923@opindex mtraceback
28924Select the type of traceback table. Valid values for @var{traceback_type}
28925are @samp{full}, @samp{part}, and @samp{no}.
28926
28927@item -maix-struct-return
28928@opindex maix-struct-return
28929Return all structures in memory (as specified by the AIX ABI)@.
28930
28931@item -msvr4-struct-return
28932@opindex msvr4-struct-return
28933Return structures smaller than 8 bytes in registers (as specified by the
28934SVR4 ABI)@.
28935
28936@item -mabi=@var{abi-type}
28937@opindex mabi
28938Extend the current ABI with a particular extension, or remove such extension.
28939Valid values are: @samp{altivec}, @samp{no-altivec},
28940@samp{ibmlongdouble}, @samp{ieeelongdouble},
28941@samp{elfv1}, @samp{elfv2},
28942and for AIX: @samp{vec-extabi}, @samp{vec-default}@.
28943
28944@item -mabi=ibmlongdouble
28945@opindex mabi=ibmlongdouble
28946Change the current ABI to use IBM extended-precision long double.
28947This is not likely to work if your system defaults to using IEEE
28948extended-precision long double.  If you change the long double type
28949from IEEE extended-precision, the compiler will issue a warning unless
28950you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
28951to be enabled.
28952
28953@item -mabi=ieeelongdouble
28954@opindex mabi=ieeelongdouble
28955Change the current ABI to use IEEE extended-precision long double.
28956This is not likely to work if your system defaults to using IBM
28957extended-precision long double.  If you change the long double type
28958from IBM extended-precision, the compiler will issue a warning unless
28959you use the @option{-Wno-psabi} option.  Requires @option{-mlong-double-128}
28960to be enabled.
28961
28962@item -mabi=elfv1
28963@opindex mabi=elfv1
28964Change the current ABI to use the ELFv1 ABI.
28965This is the default ABI for big-endian PowerPC 64-bit Linux.
28966Overriding the default ABI requires special system support and is
28967likely to fail in spectacular ways.
28968
28969@item -mabi=elfv2
28970@opindex mabi=elfv2
28971Change the current ABI to use the ELFv2 ABI.
28972This is the default ABI for little-endian PowerPC 64-bit Linux.
28973Overriding the default ABI requires special system support and is
28974likely to fail in spectacular ways.
28975
28976@item -mgnu-attribute
28977@itemx -mno-gnu-attribute
28978@opindex mgnu-attribute
28979@opindex mno-gnu-attribute
28980Emit .gnu_attribute assembly directives to set tag/value pairs in a
28981.gnu.attributes section that specify ABI variations in function
28982parameters or return values.
28983
28984@item -mprototype
28985@itemx -mno-prototype
28986@opindex mprototype
28987@opindex mno-prototype
28988On System V.4 and embedded PowerPC systems assume that all calls to
28989variable argument functions are properly prototyped.  Otherwise, the
28990compiler must insert an instruction before every non-prototyped call to
28991set or clear bit 6 of the condition code register (@code{CR}) to
28992indicate whether floating-point values are passed in the floating-point
28993registers in case the function takes variable arguments.  With
28994@option{-mprototype}, only calls to prototyped variable argument functions
28995set or clear the bit.
28996
28997@item -msim
28998@opindex msim
28999On embedded PowerPC systems, assume that the startup module is called
29000@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
29001@file{libc.a}.  This is the default for @samp{powerpc-*-eabisim}
29002configurations.
29003
29004@item -mmvme
29005@opindex mmvme
29006On embedded PowerPC systems, assume that the startup module is called
29007@file{crt0.o} and the standard C libraries are @file{libmvme.a} and
29008@file{libc.a}.
29009
29010@item -mads
29011@opindex mads
29012On embedded PowerPC systems, assume that the startup module is called
29013@file{crt0.o} and the standard C libraries are @file{libads.a} and
29014@file{libc.a}.
29015
29016@item -myellowknife
29017@opindex myellowknife
29018On embedded PowerPC systems, assume that the startup module is called
29019@file{crt0.o} and the standard C libraries are @file{libyk.a} and
29020@file{libc.a}.
29021
29022@item -mvxworks
29023@opindex mvxworks
29024On System V.4 and embedded PowerPC systems, specify that you are
29025compiling for a VxWorks system.
29026
29027@item -memb
29028@opindex memb
29029On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
29030header to indicate that @samp{eabi} extended relocations are used.
29031
29032@item -meabi
29033@itemx -mno-eabi
29034@opindex meabi
29035@opindex mno-eabi
29036On System V.4 and embedded PowerPC systems do (do not) adhere to the
29037Embedded Applications Binary Interface (EABI), which is a set of
29038modifications to the System V.4 specifications.  Selecting @option{-meabi}
29039means that the stack is aligned to an 8-byte boundary, a function
29040@code{__eabi} is called from @code{main} to set up the EABI
29041environment, and the @option{-msdata} option can use both @code{r2} and
29042@code{r13} to point to two separate small data areas.  Selecting
29043@option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
29044no EABI initialization function is called from @code{main}, and the
29045@option{-msdata} option only uses @code{r13} to point to a single
29046small data area.  The @option{-meabi} option is on by default if you
29047configured GCC using one of the @samp{powerpc*-*-eabi*} options.
29048
29049@item -msdata=eabi
29050@opindex msdata=eabi
29051On System V.4 and embedded PowerPC systems, put small initialized
29052@code{const} global and static data in the @code{.sdata2} section, which
29053is pointed to by register @code{r2}.  Put small initialized
29054non-@code{const} global and static data in the @code{.sdata} section,
29055which is pointed to by register @code{r13}.  Put small uninitialized
29056global and static data in the @code{.sbss} section, which is adjacent to
29057the @code{.sdata} section.  The @option{-msdata=eabi} option is
29058incompatible with the @option{-mrelocatable} option.  The
29059@option{-msdata=eabi} option also sets the @option{-memb} option.
29060
29061@item -msdata=sysv
29062@opindex msdata=sysv
29063On System V.4 and embedded PowerPC systems, put small global and static
29064data in the @code{.sdata} section, which is pointed to by register
29065@code{r13}.  Put small uninitialized global and static data in the
29066@code{.sbss} section, which is adjacent to the @code{.sdata} section.
29067The @option{-msdata=sysv} option is incompatible with the
29068@option{-mrelocatable} option.
29069
29070@item -msdata=default
29071@itemx -msdata
29072@opindex msdata=default
29073@opindex msdata
29074On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
29075compile code the same as @option{-msdata=eabi}, otherwise compile code the
29076same as @option{-msdata=sysv}.
29077
29078@item -msdata=data
29079@opindex msdata=data
29080On System V.4 and embedded PowerPC systems, put small global
29081data in the @code{.sdata} section.  Put small uninitialized global
29082data in the @code{.sbss} section.  Do not use register @code{r13}
29083to address small data however.  This is the default behavior unless
29084other @option{-msdata} options are used.
29085
29086@item -msdata=none
29087@itemx -mno-sdata
29088@opindex msdata=none
29089@opindex mno-sdata
29090On embedded PowerPC systems, put all initialized global and static data
29091in the @code{.data} section, and all uninitialized data in the
29092@code{.bss} section.
29093
29094@item -mreadonly-in-sdata
29095@opindex mreadonly-in-sdata
29096@opindex mno-readonly-in-sdata
29097Put read-only objects in the @code{.sdata} section as well.  This is the
29098default.
29099
29100@item -mblock-move-inline-limit=@var{num}
29101@opindex mblock-move-inline-limit
29102Inline all block moves (such as calls to @code{memcpy} or structure
29103copies) less than or equal to @var{num} bytes.  The minimum value for
29104@var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
29105targets.  The default value is target-specific.
29106
29107@item -mblock-compare-inline-limit=@var{num}
29108@opindex mblock-compare-inline-limit
29109Generate non-looping inline code for all block compares (such as calls
29110to @code{memcmp} or structure compares) less than or equal to @var{num}
29111bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
29112block compare is disabled. The default value is target-specific.
29113
29114@item -mblock-compare-inline-loop-limit=@var{num}
29115@opindex mblock-compare-inline-loop-limit
29116Generate an inline expansion using loop code for all block compares that
29117are less than or equal to @var{num} bytes, but greater than the limit
29118for non-loop inline block compare expansion. If the block length is not
29119constant, at most @var{num} bytes will be compared before @code{memcmp}
29120is called to compare the remainder of the block. The default value is
29121target-specific.
29122
29123@item -mstring-compare-inline-limit=@var{num}
29124@opindex mstring-compare-inline-limit
29125Compare at most @var{num} string bytes with inline code.
29126If the difference or end of string is not found at the
29127end of the inline compare a call to @code{strcmp} or @code{strncmp} will
29128take care of the rest of the comparison. The default is 64 bytes.
29129
29130@item -G @var{num}
29131@opindex G
29132@cindex smaller data references (PowerPC)
29133@cindex .sdata/.sdata2 references (PowerPC)
29134On embedded PowerPC systems, put global and static items less than or
29135equal to @var{num} bytes into the small data or BSS sections instead of
29136the normal data or BSS section.  By default, @var{num} is 8.  The
29137@option{-G @var{num}} switch is also passed to the linker.
29138All modules should be compiled with the same @option{-G @var{num}} value.
29139
29140@item -mregnames
29141@itemx -mno-regnames
29142@opindex mregnames
29143@opindex mno-regnames
29144On System V.4 and embedded PowerPC systems do (do not) emit register
29145names in the assembly language output using symbolic forms.
29146
29147@item -mlongcall
29148@itemx -mno-longcall
29149@opindex mlongcall
29150@opindex mno-longcall
29151By default assume that all calls are far away so that a longer and more
29152expensive calling sequence is required.  This is required for calls
29153farther than 32 megabytes (33,554,432 bytes) from the current location.
29154A short call is generated if the compiler knows
29155the call cannot be that far away.  This setting can be overridden by
29156the @code{shortcall} function attribute, or by @code{#pragma
29157longcall(0)}.
29158
29159Some linkers are capable of detecting out-of-range calls and generating
29160glue code on the fly.  On these systems, long calls are unnecessary and
29161generate slower code.  As of this writing, the AIX linker can do this,
29162as can the GNU linker for PowerPC/64.  It is planned to add this feature
29163to the GNU linker for 32-bit PowerPC systems as well.
29164
29165On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
29166GCC can generate long calls using an inline PLT call sequence (see
29167@option{-mpltseq}).  PowerPC with @option{-mbss-plt} and PowerPC64
29168ELFv1 (big-endian) do not support inline PLT calls.
29169
29170On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
29171callee, L42}, plus a @dfn{branch island} (glue code).  The two target
29172addresses represent the callee and the branch island.  The
29173Darwin/PPC linker prefers the first address and generates a @code{bl
29174callee} if the PPC @code{bl} instruction reaches the callee directly;
29175otherwise, the linker generates @code{bl L42} to call the branch
29176island.  The branch island is appended to the body of the
29177calling function; it computes the full 32-bit address of the callee
29178and jumps to it.
29179
29180On Mach-O (Darwin) systems, this option directs the compiler emit to
29181the glue for every direct call, and the Darwin linker decides whether
29182to use or discard it.
29183
29184In the future, GCC may ignore all longcall specifications
29185when the linker is known to generate glue.
29186
29187@item -mpltseq
29188@itemx -mno-pltseq
29189@opindex mpltseq
29190@opindex mno-pltseq
29191Implement (do not implement) -fno-plt and long calls using an inline
29192PLT call sequence that supports lazy linking and long calls to
29193functions in dlopen'd shared libraries.  Inline PLT calls are only
29194supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
29195linkers, and are enabled by default if the support is detected when
29196configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
29197configured with @option{--enable-secureplt}.  @option{-mpltseq} code
29198and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
29199linked together.
29200
29201@item -mtls-markers
29202@itemx -mno-tls-markers
29203@opindex mtls-markers
29204@opindex mno-tls-markers
29205Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
29206specifying the function argument.  The relocation allows the linker to
29207reliably associate function call with argument setup instructions for
29208TLS optimization, which in turn allows GCC to better schedule the
29209sequence.
29210
29211@item -mrecip
29212@itemx -mno-recip
29213@opindex mrecip
29214This option enables use of the reciprocal estimate and
29215reciprocal square root estimate instructions with additional
29216Newton-Raphson steps to increase precision instead of doing a divide or
29217square root and divide for floating-point arguments.  You should use
29218the @option{-ffast-math} option when using @option{-mrecip} (or at
29219least @option{-funsafe-math-optimizations},
29220@option{-ffinite-math-only}, @option{-freciprocal-math} and
29221@option{-fno-trapping-math}).  Note that while the throughput of the
29222sequence is generally higher than the throughput of the non-reciprocal
29223instruction, the precision of the sequence can be decreased by up to 2
29224ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
29225roots.
29226
29227@item -mrecip=@var{opt}
29228@opindex mrecip=opt
29229This option controls which reciprocal estimate instructions
29230may be used.  @var{opt} is a comma-separated list of options, which may
29231be preceded by a @code{!} to invert the option:
29232
29233@table @samp
29234
29235@item all
29236Enable all estimate instructions.
29237
29238@item default 
29239Enable the default instructions, equivalent to @option{-mrecip}.
29240
29241@item none 
29242Disable all estimate instructions, equivalent to @option{-mno-recip}.
29243
29244@item div 
29245Enable the reciprocal approximation instructions for both 
29246single and double precision.
29247
29248@item divf 
29249Enable the single-precision reciprocal approximation instructions.
29250
29251@item divd 
29252Enable the double-precision reciprocal approximation instructions.
29253
29254@item rsqrt 
29255Enable the reciprocal square root approximation instructions for both
29256single and double precision.
29257
29258@item rsqrtf 
29259Enable the single-precision reciprocal square root approximation instructions.
29260
29261@item rsqrtd 
29262Enable the double-precision reciprocal square root approximation instructions.
29263
29264@end table
29265
29266So, for example, @option{-mrecip=all,!rsqrtd} enables
29267all of the reciprocal estimate instructions, except for the
29268@code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
29269which handle the double-precision reciprocal square root calculations.
29270
29271@item -mrecip-precision
29272@itemx -mno-recip-precision
29273@opindex mrecip-precision
29274Assume (do not assume) that the reciprocal estimate instructions
29275provide higher-precision estimates than is mandated by the PowerPC
29276ABI.  Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
29277@option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
29278The double-precision square root estimate instructions are not generated by
29279default on low-precision machines, since they do not provide an
29280estimate that converges after three steps.
29281
29282@item -mveclibabi=@var{type}
29283@opindex mveclibabi
29284Specifies the ABI type to use for vectorizing intrinsics using an
29285external library.  The only type supported at present is @samp{mass},
29286which specifies to use IBM's Mathematical Acceleration Subsystem
29287(MASS) libraries for vectorizing intrinsics using external libraries.
29288GCC currently emits calls to @code{acosd2}, @code{acosf4},
29289@code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
29290@code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
29291@code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
29292@code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
29293@code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
29294@code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
29295@code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
29296@code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
29297@code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
29298@code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
29299@code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
29300@code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
29301@code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
29302for power7.  Both @option{-ftree-vectorize} and
29303@option{-funsafe-math-optimizations} must also be enabled.  The MASS
29304libraries must be specified at link time.
29305
29306@item -mfriz
29307@itemx -mno-friz
29308@opindex mfriz
29309Generate (do not generate) the @code{friz} instruction when the
29310@option{-funsafe-math-optimizations} option is used to optimize
29311rounding of floating-point values to 64-bit integer and back to floating
29312point.  The @code{friz} instruction does not return the same value if
29313the floating-point number is too large to fit in an integer.
29314
29315@item -mpointers-to-nested-functions
29316@itemx -mno-pointers-to-nested-functions
29317@opindex mpointers-to-nested-functions
29318Generate (do not generate) code to load up the static chain register
29319(@code{r11}) when calling through a pointer on AIX and 64-bit Linux
29320systems where a function pointer points to a 3-word descriptor giving
29321the function address, TOC value to be loaded in register @code{r2}, and
29322static chain value to be loaded in register @code{r11}.  The
29323@option{-mpointers-to-nested-functions} is on by default.  You cannot
29324call through pointers to nested functions or pointers
29325to functions compiled in other languages that use the static chain if
29326you use @option{-mno-pointers-to-nested-functions}.
29327
29328@item -msave-toc-indirect
29329@itemx -mno-save-toc-indirect
29330@opindex msave-toc-indirect
29331Generate (do not generate) code to save the TOC value in the reserved
29332stack location in the function prologue if the function calls through
29333a pointer on AIX and 64-bit Linux systems.  If the TOC value is not
29334saved in the prologue, it is saved just before the call through the
29335pointer.  The @option{-mno-save-toc-indirect} option is the default.
29336
29337@item -mcompat-align-parm
29338@itemx -mno-compat-align-parm
29339@opindex mcompat-align-parm
29340Generate (do not generate) code to pass structure parameters with a
29341maximum alignment of 64 bits, for compatibility with older versions
29342of GCC.
29343
29344Older versions of GCC (prior to 4.9.0) incorrectly did not align a
29345structure parameter on a 128-bit boundary when that structure contained
29346a member requiring 128-bit alignment.  This is corrected in more
29347recent versions of GCC.  This option may be used to generate code
29348that is compatible with functions compiled with older versions of
29349GCC.
29350
29351The @option{-mno-compat-align-parm} option is the default.
29352
29353@item -mstack-protector-guard=@var{guard}
29354@itemx -mstack-protector-guard-reg=@var{reg}
29355@itemx -mstack-protector-guard-offset=@var{offset}
29356@itemx -mstack-protector-guard-symbol=@var{symbol}
29357@opindex mstack-protector-guard
29358@opindex mstack-protector-guard-reg
29359@opindex mstack-protector-guard-offset
29360@opindex mstack-protector-guard-symbol
29361Generate stack protection code using canary at @var{guard}.  Supported
29362locations are @samp{global} for global canary or @samp{tls} for per-thread
29363canary in the TLS block (the default with GNU libc version 2.4 or later).
29364
29365With the latter choice the options
29366@option{-mstack-protector-guard-reg=@var{reg}} and
29367@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
29368which register to use as base register for reading the canary, and from what
29369offset from that base register. The default for those is as specified in the
29370relevant ABI.  @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
29371the offset with a symbol reference to a canary in the TLS block.
29372
29373@item -mpcrel
29374@itemx -mno-pcrel
29375@opindex mpcrel
29376@opindex mno-pcrel
29377Generate (do not generate) pc-relative addressing.  The @option{-mpcrel}
29378option requires that the medium code model (@option{-mcmodel=medium})
29379and prefixed addressing (@option{-mprefixed}) options are enabled.
29380
29381@item -mprefixed
29382@itemx -mno-prefixed
29383@opindex mprefixed
29384@opindex mno-prefixed
29385Generate (do not generate) addressing modes using prefixed load and
29386store instructions.  The @option{-mprefixed} option requires that
29387the option @option{-mcpu=power10} (or later) is enabled.
29388
29389@item -mmma
29390@itemx -mno-mma
29391@opindex mmma
29392@opindex mno-mma
29393Generate (do not generate) the MMA instructions.  The @option{-mma}
29394option requires that the option @option{-mcpu=power10} (or later)
29395is enabled.
29396
29397@item -mrop-protect
29398@itemx -mno-rop-protect
29399@opindex mrop-protect
29400@opindex mno-rop-protect
29401Generate (do not generate) ROP protection instructions when the target
29402processor supports them.  Currently this option disables the shrink-wrap
29403optimization (@option{-fshrink-wrap}).
29404
29405@item -mprivileged
29406@itemx -mno-privileged
29407@opindex mprivileged
29408@opindex mno-privileged
29409Generate (do not generate) code that will run in privileged state.
29410
29411@item -mblock-ops-unaligned-vsx
29412@itemx -mno-block-ops-unaligned-vsx
29413@opindex block-ops-unaligned-vsx
29414@opindex no-block-ops-unaligned-vsx
29415Generate (do not generate) unaligned vsx loads and stores for
29416inline expansion of @code{memcpy} and @code{memmove}.
29417@end table
29418
29419@node RX Options
29420@subsection RX Options
29421@cindex RX Options
29422
29423These command-line options are defined for RX targets:
29424
29425@table @gcctabopt
29426@item -m64bit-doubles
29427@itemx -m32bit-doubles
29428@opindex m64bit-doubles
29429@opindex m32bit-doubles
29430Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
29431or 32 bits (@option{-m32bit-doubles}) in size.  The default is
29432@option{-m32bit-doubles}.  @emph{Note} RX floating-point hardware only
29433works on 32-bit values, which is why the default is
29434@option{-m32bit-doubles}.
29435
29436@item -fpu
29437@itemx -nofpu
29438@opindex fpu
29439@opindex nofpu
29440Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
29441floating-point hardware.  The default is enabled for the RX600
29442series and disabled for the RX200 series.
29443
29444Floating-point instructions are only generated for 32-bit floating-point 
29445values, however, so the FPU hardware is not used for doubles if the
29446@option{-m64bit-doubles} option is used.
29447
29448@emph{Note} If the @option{-fpu} option is enabled then
29449@option{-funsafe-math-optimizations} is also enabled automatically.
29450This is because the RX FPU instructions are themselves unsafe.
29451
29452@item -mcpu=@var{name}
29453@opindex mcpu
29454Selects the type of RX CPU to be targeted.  Currently three types are
29455supported, the generic @samp{RX600} and @samp{RX200} series hardware and
29456the specific @samp{RX610} CPU.  The default is @samp{RX600}.
29457
29458The only difference between @samp{RX600} and @samp{RX610} is that the
29459@samp{RX610} does not support the @code{MVTIPL} instruction.
29460
29461The @samp{RX200} series does not have a hardware floating-point unit
29462and so @option{-nofpu} is enabled by default when this type is
29463selected.
29464
29465@item -mbig-endian-data
29466@itemx -mlittle-endian-data
29467@opindex mbig-endian-data
29468@opindex mlittle-endian-data
29469Store data (but not code) in the big-endian format.  The default is
29470@option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
29471format.
29472
29473@item -msmall-data-limit=@var{N}
29474@opindex msmall-data-limit
29475Specifies the maximum size in bytes of global and static variables
29476which can be placed into the small data area.  Using the small data
29477area can lead to smaller and faster code, but the size of area is
29478limited and it is up to the programmer to ensure that the area does
29479not overflow.  Also when the small data area is used one of the RX's
29480registers (usually @code{r13}) is reserved for use pointing to this
29481area, so it is no longer available for use by the compiler.  This
29482could result in slower and/or larger code if variables are pushed onto
29483the stack instead of being held in this register.
29484
29485Note, common variables (variables that have not been initialized) and
29486constants are not placed into the small data area as they are assigned
29487to other sections in the output executable.
29488
29489The default value is zero, which disables this feature.  Note, this
29490feature is not enabled by default with higher optimization levels
29491(@option{-O2} etc) because of the potentially detrimental effects of
29492reserving a register.  It is up to the programmer to experiment and
29493discover whether this feature is of benefit to their program.  See the
29494description of the @option{-mpid} option for a description of how the
29495actual register to hold the small data area pointer is chosen.
29496
29497@item -msim
29498@itemx -mno-sim
29499@opindex msim
29500@opindex mno-sim
29501Use the simulator runtime.  The default is to use the libgloss
29502board-specific runtime.
29503
29504@item -mas100-syntax
29505@itemx -mno-as100-syntax
29506@opindex mas100-syntax
29507@opindex mno-as100-syntax
29508When generating assembler output use a syntax that is compatible with
29509Renesas's AS100 assembler.  This syntax can also be handled by the GAS
29510assembler, but it has some restrictions so it is not generated by default.
29511
29512@item -mmax-constant-size=@var{N}
29513@opindex mmax-constant-size
29514Specifies the maximum size, in bytes, of a constant that can be used as
29515an operand in a RX instruction.  Although the RX instruction set does
29516allow constants of up to 4 bytes in length to be used in instructions,
29517a longer value equates to a longer instruction.  Thus in some
29518circumstances it can be beneficial to restrict the size of constants
29519that are used in instructions.  Constants that are too big are instead
29520placed into a constant pool and referenced via register indirection.
29521
29522The value @var{N} can be between 0 and 4.  A value of 0 (the default)
29523or 4 means that constants of any size are allowed.
29524
29525@item -mrelax
29526@opindex mrelax
29527Enable linker relaxation.  Linker relaxation is a process whereby the
29528linker attempts to reduce the size of a program by finding shorter
29529versions of various instructions.  Disabled by default.
29530
29531@item -mint-register=@var{N}
29532@opindex mint-register
29533Specify the number of registers to reserve for fast interrupt handler
29534functions.  The value @var{N} can be between 0 and 4.  A value of 1
29535means that register @code{r13} is reserved for the exclusive use
29536of fast interrupt handlers.  A value of 2 reserves @code{r13} and
29537@code{r12}.  A value of 3 reserves @code{r13}, @code{r12} and
29538@code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
29539A value of 0, the default, does not reserve any registers.
29540
29541@item -msave-acc-in-interrupts
29542@opindex msave-acc-in-interrupts
29543Specifies that interrupt handler functions should preserve the
29544accumulator register.  This is only necessary if normal code might use
29545the accumulator register, for example because it performs 64-bit
29546multiplications.  The default is to ignore the accumulator as this
29547makes the interrupt handlers faster.
29548
29549@item -mpid
29550@itemx -mno-pid
29551@opindex mpid
29552@opindex mno-pid
29553Enables the generation of position independent data.  When enabled any
29554access to constant data is done via an offset from a base address
29555held in a register.  This allows the location of constant data to be
29556determined at run time without requiring the executable to be
29557relocated, which is a benefit to embedded applications with tight
29558memory constraints.  Data that can be modified is not affected by this
29559option.
29560
29561Note, using this feature reserves a register, usually @code{r13}, for
29562the constant data base address.  This can result in slower and/or
29563larger code, especially in complicated functions.
29564
29565The actual register chosen to hold the constant data base address
29566depends upon whether the @option{-msmall-data-limit} and/or the
29567@option{-mint-register} command-line options are enabled.  Starting
29568with register @code{r13} and proceeding downwards, registers are
29569allocated first to satisfy the requirements of @option{-mint-register},
29570then @option{-mpid} and finally @option{-msmall-data-limit}.  Thus it
29571is possible for the small data area register to be @code{r8} if both
29572@option{-mint-register=4} and @option{-mpid} are specified on the
29573command line.
29574
29575By default this feature is not enabled.  The default can be restored
29576via the @option{-mno-pid} command-line option.
29577
29578@item -mno-warn-multiple-fast-interrupts
29579@itemx -mwarn-multiple-fast-interrupts
29580@opindex mno-warn-multiple-fast-interrupts
29581@opindex mwarn-multiple-fast-interrupts
29582Prevents GCC from issuing a warning message if it finds more than one
29583fast interrupt handler when it is compiling a file.  The default is to
29584issue a warning for each extra fast interrupt handler found, as the RX
29585only supports one such interrupt.
29586
29587@item -mallow-string-insns
29588@itemx -mno-allow-string-insns
29589@opindex mallow-string-insns
29590@opindex mno-allow-string-insns
29591Enables or disables the use of the string manipulation instructions
29592@code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
29593@code{SWHILE} and also the @code{RMPA} instruction.  These
29594instructions may prefetch data, which is not safe to do if accessing
29595an I/O register.  (See section 12.2.7 of the RX62N Group User's Manual
29596for more information).
29597
29598The default is to allow these instructions, but it is not possible for
29599GCC to reliably detect all circumstances where a string instruction
29600might be used to access an I/O register, so their use cannot be
29601disabled automatically.  Instead it is reliant upon the programmer to
29602use the @option{-mno-allow-string-insns} option if their program
29603accesses I/O space.
29604
29605When the instructions are enabled GCC defines the C preprocessor
29606symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
29607symbol @code{__RX_DISALLOW_STRING_INSNS__}.
29608
29609@item -mjsr
29610@itemx -mno-jsr
29611@opindex mjsr
29612@opindex mno-jsr
29613Use only (or not only) @code{JSR} instructions to access functions.
29614This option can be used when code size exceeds the range of @code{BSR}
29615instructions.  Note that @option{-mno-jsr} does not mean to not use
29616@code{JSR} but instead means that any type of branch may be used.
29617@end table
29618
29619@emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
29620has special significance to the RX port when used with the
29621@code{interrupt} function attribute.  This attribute indicates a
29622function intended to process fast interrupts.  GCC ensures
29623that it only uses the registers @code{r10}, @code{r11}, @code{r12}
29624and/or @code{r13} and only provided that the normal use of the
29625corresponding registers have been restricted via the
29626@option{-ffixed-@var{reg}} or @option{-mint-register} command-line
29627options.
29628
29629@node S/390 and zSeries Options
29630@subsection S/390 and zSeries Options
29631@cindex S/390 and zSeries Options
29632
29633These are the @samp{-m} options defined for the S/390 and zSeries architecture.
29634
29635@table @gcctabopt
29636@item -mhard-float
29637@itemx -msoft-float
29638@opindex mhard-float
29639@opindex msoft-float
29640Use (do not use) the hardware floating-point instructions and registers
29641for floating-point operations.  When @option{-msoft-float} is specified,
29642functions in @file{libgcc.a} are used to perform floating-point
29643operations.  When @option{-mhard-float} is specified, the compiler
29644generates IEEE floating-point instructions.  This is the default.
29645
29646@item -mhard-dfp
29647@itemx -mno-hard-dfp
29648@opindex mhard-dfp
29649@opindex mno-hard-dfp
29650Use (do not use) the hardware decimal-floating-point instructions for
29651decimal-floating-point operations.  When @option{-mno-hard-dfp} is
29652specified, functions in @file{libgcc.a} are used to perform
29653decimal-floating-point operations.  When @option{-mhard-dfp} is
29654specified, the compiler generates decimal-floating-point hardware
29655instructions.  This is the default for @option{-march=z9-ec} or higher.
29656
29657@item -mlong-double-64
29658@itemx -mlong-double-128
29659@opindex mlong-double-64
29660@opindex mlong-double-128
29661These switches control the size of @code{long double} type. A size
29662of 64 bits makes the @code{long double} type equivalent to the @code{double}
29663type. This is the default.
29664
29665@item -mbackchain
29666@itemx -mno-backchain
29667@opindex mbackchain
29668@opindex mno-backchain
29669Store (do not store) the address of the caller's frame as backchain pointer
29670into the callee's stack frame.
29671A backchain may be needed to allow debugging using tools that do not understand
29672DWARF call frame information.
29673When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
29674at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
29675the backchain is placed into the topmost word of the 96/160 byte register
29676save area.
29677
29678In general, code compiled with @option{-mbackchain} is call-compatible with
29679code compiled with @option{-mno-backchain}; however, use of the backchain
29680for debugging purposes usually requires that the whole binary is built with
29681@option{-mbackchain}.  Note that the combination of @option{-mbackchain},
29682@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
29683to build a linux kernel use @option{-msoft-float}.
29684
29685The default is to not maintain the backchain.
29686
29687@item -mpacked-stack
29688@itemx -mno-packed-stack
29689@opindex mpacked-stack
29690@opindex mno-packed-stack
29691Use (do not use) the packed stack layout.  When @option{-mno-packed-stack} is
29692specified, the compiler uses the all fields of the 96/160 byte register save
29693area only for their default purpose; unused fields still take up stack space.
29694When @option{-mpacked-stack} is specified, register save slots are densely
29695packed at the top of the register save area; unused space is reused for other
29696purposes, allowing for more efficient use of the available stack space.
29697However, when @option{-mbackchain} is also in effect, the topmost word of
29698the save area is always used to store the backchain, and the return address
29699register is always saved two words below the backchain.
29700
29701As long as the stack frame backchain is not used, code generated with
29702@option{-mpacked-stack} is call-compatible with code generated with
29703@option{-mno-packed-stack}.  Note that some non-FSF releases of GCC 2.95 for
29704S/390 or zSeries generated code that uses the stack frame backchain at run
29705time, not just for debugging purposes.  Such code is not call-compatible
29706with code compiled with @option{-mpacked-stack}.  Also, note that the
29707combination of @option{-mbackchain},
29708@option{-mpacked-stack} and @option{-mhard-float} is not supported.  In order
29709to build a linux kernel use @option{-msoft-float}.
29710
29711The default is to not use the packed stack layout.
29712
29713@item -msmall-exec
29714@itemx -mno-small-exec
29715@opindex msmall-exec
29716@opindex mno-small-exec
29717Generate (or do not generate) code using the @code{bras} instruction
29718to do subroutine calls.
29719This only works reliably if the total executable size does not
29720exceed 64k.  The default is to use the @code{basr} instruction instead,
29721which does not have this limitation.
29722
29723@item -m64
29724@itemx -m31
29725@opindex m64
29726@opindex m31
29727When @option{-m31} is specified, generate code compliant to the
29728GNU/Linux for S/390 ABI@.  When @option{-m64} is specified, generate
29729code compliant to the GNU/Linux for zSeries ABI@.  This allows GCC in
29730particular to generate 64-bit instructions.  For the @samp{s390}
29731targets, the default is @option{-m31}, while the @samp{s390x}
29732targets default to @option{-m64}.
29733
29734@item -mzarch
29735@itemx -mesa
29736@opindex mzarch
29737@opindex mesa
29738When @option{-mzarch} is specified, generate code using the
29739instructions available on z/Architecture.
29740When @option{-mesa} is specified, generate code using the
29741instructions available on ESA/390.  Note that @option{-mesa} is
29742not possible with @option{-m64}.
29743When generating code compliant to the GNU/Linux for S/390 ABI,
29744the default is @option{-mesa}.  When generating code compliant
29745to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
29746
29747@item -mhtm
29748@itemx -mno-htm
29749@opindex mhtm
29750@opindex mno-htm
29751The @option{-mhtm} option enables a set of builtins making use of
29752instructions available with the transactional execution facility
29753introduced with the IBM zEnterprise EC12 machine generation
29754@ref{S/390 System z Built-in Functions}.
29755@option{-mhtm} is enabled by default when using @option{-march=zEC12}.
29756
29757@item -mvx
29758@itemx -mno-vx
29759@opindex mvx
29760@opindex mno-vx
29761When @option{-mvx} is specified, generate code using the instructions
29762available with the vector extension facility introduced with the IBM
29763z13 machine generation.
29764This option changes the ABI for some vector type values with regard to
29765alignment and calling conventions.  In case vector type values are
29766being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
29767command will be added to mark the resulting binary with the ABI used.
29768@option{-mvx} is enabled by default when using @option{-march=z13}.
29769
29770@item -mzvector
29771@itemx -mno-zvector
29772@opindex mzvector
29773@opindex mno-zvector
29774The @option{-mzvector} option enables vector language extensions and
29775builtins using instructions available with the vector extension
29776facility introduced with the IBM z13 machine generation.
29777This option adds support for @samp{vector} to be used as a keyword to
29778define vector type variables and arguments.  @samp{vector} is only
29779available when GNU extensions are enabled.  It will not be expanded
29780when requesting strict standard compliance e.g.@: with @option{-std=c99}.
29781In addition to the GCC low-level builtins @option{-mzvector} enables
29782a set of builtins added for compatibility with AltiVec-style
29783implementations like Power and Cell.  In order to make use of these
29784builtins the header file @file{vecintrin.h} needs to be included.
29785@option{-mzvector} is disabled by default.
29786
29787@item -mmvcle
29788@itemx -mno-mvcle
29789@opindex mmvcle
29790@opindex mno-mvcle
29791Generate (or do not generate) code using the @code{mvcle} instruction
29792to perform block moves.  When @option{-mno-mvcle} is specified,
29793use a @code{mvc} loop instead.  This is the default unless optimizing for
29794size.
29795
29796@item -mdebug
29797@itemx -mno-debug
29798@opindex mdebug
29799@opindex mno-debug
29800Print (or do not print) additional debug information when compiling.
29801The default is to not print debug information.
29802
29803@item -march=@var{cpu-type}
29804@opindex march
29805Generate code that runs on @var{cpu-type}, which is the name of a
29806system representing a certain processor type.  Possible values for
29807@var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
29808@samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
29809@samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
29810@samp{z14}/@samp{arch12}, @samp{z15}/@samp{arch13},
29811@samp{z16}/@samp{arch14}, and @samp{native}.
29812
29813The default is @option{-march=z900}.
29814
29815Specifying @samp{native} as cpu type can be used to select the best
29816architecture option for the host processor.
29817@option{-march=native} has no effect if GCC does not recognize the
29818processor.
29819
29820@item -mtune=@var{cpu-type}
29821@opindex mtune
29822Tune to @var{cpu-type} everything applicable about the generated code,
29823except for the ABI and the set of available instructions.
29824The list of @var{cpu-type} values is the same as for @option{-march}.
29825The default is the value used for @option{-march}.
29826
29827@item -mtpf-trace
29828@itemx -mno-tpf-trace
29829@opindex mtpf-trace
29830@opindex mno-tpf-trace
29831Generate code that adds (does not add) in TPF OS specific branches to trace
29832routines in the operating system.  This option is off by default, even
29833when compiling for the TPF OS@.
29834
29835@item -mtpf-trace-skip
29836@itemx -mno-tpf-trace-skip
29837@opindex mtpf-trace-skip
29838@opindex mno-tpf-trace-skip
29839Generate code that changes (does not change) the default branch
29840targets enabled by @option{-mtpf-trace} to point to specialized trace
29841routines providing the ability of selectively skipping function trace
29842entries for the TPF OS.  This option is off by default, even when
29843compiling for the TPF OS and specifying @option{-mtpf-trace}.
29844
29845@item -mfused-madd
29846@itemx -mno-fused-madd
29847@opindex mfused-madd
29848@opindex mno-fused-madd
29849Generate code that uses (does not use) the floating-point multiply and
29850accumulate instructions.  These instructions are generated by default if
29851hardware floating point is used.
29852
29853@item -mwarn-framesize=@var{framesize}
29854@opindex mwarn-framesize
29855Emit a warning if the current function exceeds the given frame size.  Because
29856this is a compile-time check it doesn't need to be a real problem when the program
29857runs.  It is intended to identify functions that most probably cause
29858a stack overflow.  It is useful to be used in an environment with limited stack
29859size e.g.@: the linux kernel.
29860
29861@item -mwarn-dynamicstack
29862@opindex mwarn-dynamicstack
29863Emit a warning if the function calls @code{alloca} or uses dynamically-sized
29864arrays.  This is generally a bad idea with a limited stack size.
29865
29866@item -mstack-guard=@var{stack-guard}
29867@itemx -mstack-size=@var{stack-size}
29868@opindex mstack-guard
29869@opindex mstack-size
29870If these options are provided the S/390 back end emits additional instructions in
29871the function prologue that trigger a trap if the stack size is @var{stack-guard}
29872bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
29873If the @var{stack-guard} option is omitted the smallest power of 2 larger than
29874the frame size of the compiled function is chosen.
29875These options are intended to be used to help debugging stack overflow problems.
29876The additionally emitted code causes only little overhead and hence can also be
29877used in production-like systems without greater performance degradation.  The given
29878values have to be exact powers of 2 and @var{stack-size} has to be greater than
29879@var{stack-guard} without exceeding 64k.
29880In order to be efficient the extra code makes the assumption that the stack starts
29881at an address aligned to the value given by @var{stack-size}.
29882The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
29883
29884@item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
29885@opindex mhotpatch
29886If the hotpatch option is enabled, a ``hot-patching'' function
29887prologue is generated for all functions in the compilation unit.
29888The funtion label is prepended with the given number of two-byte
29889NOP instructions (@var{pre-halfwords}, maximum 1000000).  After
29890the label, 2 * @var{post-halfwords} bytes are appended, using the
29891largest NOP like instructions the architecture allows (maximum
298921000000).
29893
29894If both arguments are zero, hotpatching is disabled.
29895
29896This option can be overridden for individual functions with the
29897@code{hotpatch} attribute.
29898@end table
29899
29900@node Score Options
29901@subsection Score Options
29902@cindex Score Options
29903
29904These options are defined for Score implementations:
29905
29906@table @gcctabopt
29907@item -meb
29908@opindex meb
29909Compile code for big-endian mode.  This is the default.
29910
29911@item -mel
29912@opindex mel
29913Compile code for little-endian mode.
29914
29915@item -mnhwloop
29916@opindex mnhwloop
29917Disable generation of @code{bcnz} instructions.
29918
29919@item -muls
29920@opindex muls
29921Enable generation of unaligned load and store instructions.
29922
29923@item -mmac
29924@opindex mmac
29925Enable the use of multiply-accumulate instructions. Disabled by default.
29926
29927@item -mscore5
29928@opindex mscore5
29929Specify the SCORE5 as the target architecture.
29930
29931@item -mscore5u
29932@opindex mscore5u
29933Specify the SCORE5U of the target architecture.
29934
29935@item -mscore7
29936@opindex mscore7
29937Specify the SCORE7 as the target architecture. This is the default.
29938
29939@item -mscore7d
29940@opindex mscore7d
29941Specify the SCORE7D as the target architecture.
29942@end table
29943
29944@node SH Options
29945@subsection SH Options
29946
29947These @samp{-m} options are defined for the SH implementations:
29948
29949@table @gcctabopt
29950@item -m1
29951@opindex m1
29952Generate code for the SH1.
29953
29954@item -m2
29955@opindex m2
29956Generate code for the SH2.
29957
29958@item -m2e
29959Generate code for the SH2e.
29960
29961@item -m2a-nofpu
29962@opindex m2a-nofpu
29963Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
29964that the floating-point unit is not used.
29965
29966@item -m2a-single-only
29967@opindex m2a-single-only
29968Generate code for the SH2a-FPU, in such a way that no double-precision
29969floating-point operations are used.
29970
29971@item -m2a-single
29972@opindex m2a-single
29973Generate code for the SH2a-FPU assuming the floating-point unit is in
29974single-precision mode by default.
29975
29976@item -m2a
29977@opindex m2a
29978Generate code for the SH2a-FPU assuming the floating-point unit is in
29979double-precision mode by default.
29980
29981@item -m3
29982@opindex m3
29983Generate code for the SH3.
29984
29985@item -m3e
29986@opindex m3e
29987Generate code for the SH3e.
29988
29989@item -m4-nofpu
29990@opindex m4-nofpu
29991Generate code for the SH4 without a floating-point unit.
29992
29993@item -m4-single-only
29994@opindex m4-single-only
29995Generate code for the SH4 with a floating-point unit that only
29996supports single-precision arithmetic.
29997
29998@item -m4-single
29999@opindex m4-single
30000Generate code for the SH4 assuming the floating-point unit is in
30001single-precision mode by default.
30002
30003@item -m4
30004@opindex m4
30005Generate code for the SH4.
30006
30007@item -m4-100
30008@opindex m4-100
30009Generate code for SH4-100.
30010
30011@item -m4-100-nofpu
30012@opindex m4-100-nofpu
30013Generate code for SH4-100 in such a way that the
30014floating-point unit is not used.
30015
30016@item -m4-100-single
30017@opindex m4-100-single
30018Generate code for SH4-100 assuming the floating-point unit is in
30019single-precision mode by default.
30020
30021@item -m4-100-single-only
30022@opindex m4-100-single-only
30023Generate code for SH4-100 in such a way that no double-precision
30024floating-point operations are used.
30025
30026@item -m4-200
30027@opindex m4-200
30028Generate code for SH4-200.
30029
30030@item -m4-200-nofpu
30031@opindex m4-200-nofpu
30032Generate code for SH4-200 without in such a way that the
30033floating-point unit is not used.
30034
30035@item -m4-200-single
30036@opindex m4-200-single
30037Generate code for SH4-200 assuming the floating-point unit is in
30038single-precision mode by default.
30039
30040@item -m4-200-single-only
30041@opindex m4-200-single-only
30042Generate code for SH4-200 in such a way that no double-precision
30043floating-point operations are used.
30044
30045@item -m4-300
30046@opindex m4-300
30047Generate code for SH4-300.
30048
30049@item -m4-300-nofpu
30050@opindex m4-300-nofpu
30051Generate code for SH4-300 without in such a way that the
30052floating-point unit is not used.
30053
30054@item -m4-300-single
30055@opindex m4-300-single
30056Generate code for SH4-300 in such a way that no double-precision
30057floating-point operations are used.
30058
30059@item -m4-300-single-only
30060@opindex m4-300-single-only
30061Generate code for SH4-300 in such a way that no double-precision
30062floating-point operations are used.
30063
30064@item -m4-340
30065@opindex m4-340
30066Generate code for SH4-340 (no MMU, no FPU).
30067
30068@item -m4-500
30069@opindex m4-500
30070Generate code for SH4-500 (no FPU).  Passes @option{-isa=sh4-nofpu} to the
30071assembler.
30072
30073@item -m4a-nofpu
30074@opindex m4a-nofpu
30075Generate code for the SH4al-dsp, or for a SH4a in such a way that the
30076floating-point unit is not used.
30077
30078@item -m4a-single-only
30079@opindex m4a-single-only
30080Generate code for the SH4a, in such a way that no double-precision
30081floating-point operations are used.
30082
30083@item -m4a-single
30084@opindex m4a-single
30085Generate code for the SH4a assuming the floating-point unit is in
30086single-precision mode by default.
30087
30088@item -m4a
30089@opindex m4a
30090Generate code for the SH4a.
30091
30092@item -m4al
30093@opindex m4al
30094Same as @option{-m4a-nofpu}, except that it implicitly passes
30095@option{-dsp} to the assembler.  GCC doesn't generate any DSP
30096instructions at the moment.
30097
30098@item -mb
30099@opindex mb
30100Compile code for the processor in big-endian mode.
30101
30102@item -ml
30103@opindex ml
30104Compile code for the processor in little-endian mode.
30105
30106@item -mdalign
30107@opindex mdalign
30108Align doubles at 64-bit boundaries.  Note that this changes the calling
30109conventions, and thus some functions from the standard C library do
30110not work unless you recompile it first with @option{-mdalign}.
30111
30112@item -mrelax
30113@opindex mrelax
30114Shorten some address references at link time, when possible; uses the
30115linker option @option{-relax}.
30116
30117@item -mbigtable
30118@opindex mbigtable
30119Use 32-bit offsets in @code{switch} tables.  The default is to use
3012016-bit offsets.
30121
30122@item -mbitops
30123@opindex mbitops
30124Enable the use of bit manipulation instructions on SH2A.
30125
30126@item -mfmovd
30127@opindex mfmovd
30128Enable the use of the instruction @code{fmovd}.  Check @option{-mdalign} for
30129alignment constraints.
30130
30131@item -mrenesas
30132@opindex mrenesas
30133Comply with the calling conventions defined by Renesas.
30134
30135@item -mno-renesas
30136@opindex mno-renesas
30137Comply with the calling conventions defined for GCC before the Renesas
30138conventions were available.  This option is the default for all
30139targets of the SH toolchain.
30140
30141@item -mnomacsave
30142@opindex mnomacsave
30143Mark the @code{MAC} register as call-clobbered, even if
30144@option{-mrenesas} is given.
30145
30146@item -mieee
30147@itemx -mno-ieee
30148@opindex mieee
30149@opindex mno-ieee
30150Control the IEEE compliance of floating-point comparisons, which affects the
30151handling of cases where the result of a comparison is unordered.  By default
30152@option{-mieee} is implicitly enabled.  If @option{-ffinite-math-only} is
30153enabled @option{-mno-ieee} is implicitly set, which results in faster
30154floating-point greater-equal and less-equal comparisons.  The implicit settings
30155can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
30156
30157@item -minline-ic_invalidate
30158@opindex minline-ic_invalidate
30159Inline code to invalidate instruction cache entries after setting up
30160nested function trampolines.
30161This option has no effect if @option{-musermode} is in effect and the selected
30162code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
30163instruction.
30164If the selected code generation option does not allow the use of the @code{icbi}
30165instruction, and @option{-musermode} is not in effect, the inlined code
30166manipulates the instruction cache address array directly with an associative
30167write.  This not only requires privileged mode at run time, but it also
30168fails if the cache line had been mapped via the TLB and has become unmapped.
30169
30170@item -misize
30171@opindex misize
30172Dump instruction size and location in the assembly code.
30173
30174@item -mpadstruct
30175@opindex mpadstruct
30176This option is deprecated.  It pads structures to multiple of 4 bytes,
30177which is incompatible with the SH ABI@.
30178
30179@item -matomic-model=@var{model}
30180@opindex matomic-model=@var{model}
30181Sets the model of atomic operations and additional parameters as a comma
30182separated list.  For details on the atomic built-in functions see
30183@ref{__atomic Builtins}.  The following models and parameters are supported:
30184
30185@table @samp
30186
30187@item none
30188Disable compiler generated atomic sequences and emit library calls for atomic
30189operations.  This is the default if the target is not @code{sh*-*-linux*}.
30190
30191@item soft-gusa
30192Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
30193built-in functions.  The generated atomic sequences require additional support
30194from the interrupt/exception handling code of the system and are only suitable
30195for SH3* and SH4* single-core systems.  This option is enabled by default when
30196the target is @code{sh*-*-linux*} and SH3* or SH4*.  When the target is SH4A,
30197this option also partially utilizes the hardware atomic instructions
30198@code{movli.l} and @code{movco.l} to create more efficient code, unless
30199@samp{strict} is specified.  
30200
30201@item soft-tcb
30202Generate software atomic sequences that use a variable in the thread control
30203block.  This is a variation of the gUSA sequences which can also be used on
30204SH1* and SH2* targets.  The generated atomic sequences require additional
30205support from the interrupt/exception handling code of the system and are only
30206suitable for single-core systems.  When using this model, the @samp{gbr-offset=}
30207parameter has to be specified as well.
30208
30209@item soft-imask
30210Generate software atomic sequences that temporarily disable interrupts by
30211setting @code{SR.IMASK = 1111}.  This model works only when the program runs
30212in privileged mode and is only suitable for single-core systems.  Additional
30213support from the interrupt/exception handling code of the system is not
30214required.  This model is enabled by default when the target is
30215@code{sh*-*-linux*} and SH1* or SH2*.
30216
30217@item hard-llcs
30218Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
30219instructions only.  This is only available on SH4A and is suitable for
30220multi-core systems.  Since the hardware instructions support only 32 bit atomic
30221variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
30222Code compiled with this option is also compatible with other software
30223atomic model interrupt/exception handling systems if executed on an SH4A
30224system.  Additional support from the interrupt/exception handling code of the
30225system is not required for this model.
30226
30227@item gbr-offset=
30228This parameter specifies the offset in bytes of the variable in the thread
30229control block structure that should be used by the generated atomic sequences
30230when the @samp{soft-tcb} model has been selected.  For other models this
30231parameter is ignored.  The specified value must be an integer multiple of four
30232and in the range 0-1020.
30233
30234@item strict
30235This parameter prevents mixed usage of multiple atomic models, even if they
30236are compatible, and makes the compiler generate atomic sequences of the
30237specified model only.
30238
30239@end table
30240
30241@item -mtas
30242@opindex mtas
30243Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
30244Notice that depending on the particular hardware and software configuration
30245this can degrade overall performance due to the operand cache line flushes
30246that are implied by the @code{tas.b} instruction.  On multi-core SH4A
30247processors the @code{tas.b} instruction must be used with caution since it
30248can result in data corruption for certain cache configurations.
30249
30250@item -mprefergot
30251@opindex mprefergot
30252When generating position-independent code, emit function calls using
30253the Global Offset Table instead of the Procedure Linkage Table.
30254
30255@item -musermode
30256@itemx -mno-usermode
30257@opindex musermode
30258@opindex mno-usermode
30259Don't allow (allow) the compiler generating privileged mode code.  Specifying
30260@option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
30261inlined code would not work in user mode.  @option{-musermode} is the default
30262when the target is @code{sh*-*-linux*}.  If the target is SH1* or SH2*
30263@option{-musermode} has no effect, since there is no user mode.
30264
30265@item -multcost=@var{number}
30266@opindex multcost=@var{number}
30267Set the cost to assume for a multiply insn.
30268
30269@item -mdiv=@var{strategy}
30270@opindex mdiv=@var{strategy}
30271Set the division strategy to be used for integer division operations.
30272@var{strategy} can be one of: 
30273
30274@table @samp
30275
30276@item call-div1
30277Calls a library function that uses the single-step division instruction
30278@code{div1} to perform the operation.  Division by zero calculates an
30279unspecified result and does not trap.  This is the default except for SH4,
30280SH2A and SHcompact.
30281
30282@item call-fp
30283Calls a library function that performs the operation in double precision
30284floating point.  Division by zero causes a floating-point exception.  This is
30285the default for SHcompact with FPU.  Specifying this for targets that do not
30286have a double precision FPU defaults to @code{call-div1}.
30287
30288@item call-table
30289Calls a library function that uses a lookup table for small divisors and
30290the @code{div1} instruction with case distinction for larger divisors.  Division
30291by zero calculates an unspecified result and does not trap.  This is the default
30292for SH4.  Specifying this for targets that do not have dynamic shift
30293instructions defaults to @code{call-div1}.
30294
30295@end table
30296
30297When a division strategy has not been specified the default strategy is
30298selected based on the current target.  For SH2A the default strategy is to
30299use the @code{divs} and @code{divu} instructions instead of library function
30300calls.
30301
30302@item -maccumulate-outgoing-args
30303@opindex maccumulate-outgoing-args
30304Reserve space once for outgoing arguments in the function prologue rather
30305than around each call.  Generally beneficial for performance and size.  Also
30306needed for unwinding to avoid changing the stack frame around conditional code.
30307
30308@item -mdivsi3_libfunc=@var{name}
30309@opindex mdivsi3_libfunc=@var{name}
30310Set the name of the library function used for 32-bit signed division to
30311@var{name}.
30312This only affects the name used in the @samp{call} division strategies, and
30313the compiler still expects the same sets of input/output/clobbered registers as
30314if this option were not present.
30315
30316@item -mfixed-range=@var{register-range}
30317@opindex mfixed-range
30318Generate code treating the given register range as fixed registers.
30319A fixed register is one that the register allocator cannot use.  This is
30320useful when compiling kernel code.  A register range is specified as
30321two registers separated by a dash.  Multiple register ranges can be
30322specified separated by a comma.
30323
30324@item -mbranch-cost=@var{num}
30325@opindex mbranch-cost=@var{num}
30326Assume @var{num} to be the cost for a branch instruction.  Higher numbers
30327make the compiler try to generate more branch-free code if possible.  
30328If not specified the value is selected depending on the processor type that
30329is being compiled for.
30330
30331@item -mzdcbranch
30332@itemx -mno-zdcbranch
30333@opindex mzdcbranch
30334@opindex mno-zdcbranch
30335Assume (do not assume) that zero displacement conditional branch instructions
30336@code{bt} and @code{bf} are fast.  If @option{-mzdcbranch} is specified, the
30337compiler prefers zero displacement branch code sequences.  This is
30338enabled by default when generating code for SH4 and SH4A.  It can be explicitly
30339disabled by specifying @option{-mno-zdcbranch}.
30340
30341@item -mcbranch-force-delay-slot
30342@opindex mcbranch-force-delay-slot
30343Force the usage of delay slots for conditional branches, which stuffs the delay
30344slot with a @code{nop} if a suitable instruction cannot be found.  By default
30345this option is disabled.  It can be enabled to work around hardware bugs as
30346found in the original SH7055.
30347
30348@item -mfused-madd
30349@itemx -mno-fused-madd
30350@opindex mfused-madd
30351@opindex mno-fused-madd
30352Generate code that uses (does not use) the floating-point multiply and
30353accumulate instructions.  These instructions are generated by default
30354if hardware floating point is used.  The machine-dependent
30355@option{-mfused-madd} option is now mapped to the machine-independent
30356@option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
30357mapped to @option{-ffp-contract=off}.
30358
30359@item -mfsca
30360@itemx -mno-fsca
30361@opindex mfsca
30362@opindex mno-fsca
30363Allow or disallow the compiler to emit the @code{fsca} instruction for sine
30364and cosine approximations.  The option @option{-mfsca} must be used in
30365combination with @option{-funsafe-math-optimizations}.  It is enabled by default
30366when generating code for SH4A.  Using @option{-mno-fsca} disables sine and cosine
30367approximations even if @option{-funsafe-math-optimizations} is in effect.
30368
30369@item -mfsrra
30370@itemx -mno-fsrra
30371@opindex mfsrra
30372@opindex mno-fsrra
30373Allow or disallow the compiler to emit the @code{fsrra} instruction for
30374reciprocal square root approximations.  The option @option{-mfsrra} must be used
30375in combination with @option{-funsafe-math-optimizations} and
30376@option{-ffinite-math-only}.  It is enabled by default when generating code for
30377SH4A.  Using @option{-mno-fsrra} disables reciprocal square root approximations
30378even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
30379in effect.
30380
30381@item -mpretend-cmove
30382@opindex mpretend-cmove
30383Prefer zero-displacement conditional branches for conditional move instruction
30384patterns.  This can result in faster code on the SH4 processor.
30385
30386@item -mfdpic
30387@opindex fdpic
30388Generate code using the FDPIC ABI.
30389
30390@end table
30391
30392@node Solaris 2 Options
30393@subsection Solaris 2 Options
30394@cindex Solaris 2 options
30395
30396These @samp{-m} options are supported on Solaris 2:
30397
30398@table @gcctabopt
30399@item -mclear-hwcap
30400@opindex mclear-hwcap
30401@option{-mclear-hwcap} tells the compiler to remove the hardware
30402capabilities generated by the Solaris assembler.  This is only necessary
30403when object files use ISA extensions not supported by the current
30404machine, but check at runtime whether or not to use them.
30405
30406@item -mimpure-text
30407@opindex mimpure-text
30408@option{-mimpure-text}, used in addition to @option{-shared}, tells
30409the compiler to not pass @option{-z text} to the linker when linking a
30410shared object.  Using this option, you can link position-dependent
30411code into a shared object.
30412
30413@option{-mimpure-text} suppresses the ``relocations remain against
30414allocatable but non-writable sections'' linker error message.
30415However, the necessary relocations trigger copy-on-write, and the
30416shared object is not actually shared across processes.  Instead of
30417using @option{-mimpure-text}, you should compile all source code with
30418@option{-fpic} or @option{-fPIC}.
30419
30420@end table
30421
30422These switches are supported in addition to the above on Solaris 2:
30423
30424@table @gcctabopt
30425@item -pthreads
30426@opindex pthreads
30427This is a synonym for @option{-pthread}.
30428@end table
30429
30430@node SPARC Options
30431@subsection SPARC Options
30432@cindex SPARC options
30433
30434These @samp{-m} options are supported on the SPARC:
30435
30436@table @gcctabopt
30437@item -mno-app-regs
30438@itemx -mapp-regs
30439@opindex mno-app-regs
30440@opindex mapp-regs
30441Specify @option{-mapp-regs} to generate output using the global registers
304422 through 4, which the SPARC SVR4 ABI reserves for applications.  Like the
30443global register 1, each global register 2 through 4 is then treated as an
30444allocable register that is clobbered by function calls.  This is the default.
30445
30446To be fully SVR4 ABI-compliant at the cost of some performance loss,
30447specify @option{-mno-app-regs}.  You should compile libraries and system
30448software with this option.
30449
30450@item -mflat
30451@itemx -mno-flat
30452@opindex mflat
30453@opindex mno-flat
30454With @option{-mflat}, the compiler does not generate save/restore instructions
30455and uses a ``flat'' or single register window model.  This model is compatible
30456with the regular register window model.  The local registers and the input
30457registers (0--5) are still treated as ``call-saved'' registers and are
30458saved on the stack as needed.
30459
30460With @option{-mno-flat} (the default), the compiler generates save/restore
30461instructions (except for leaf functions).  This is the normal operating mode.
30462
30463@item -mfpu
30464@itemx -mhard-float
30465@opindex mfpu
30466@opindex mhard-float
30467Generate output containing floating-point instructions.  This is the
30468default.
30469
30470@item -mno-fpu
30471@itemx -msoft-float
30472@opindex mno-fpu
30473@opindex msoft-float
30474Generate output containing library calls for floating point.
30475@strong{Warning:} the requisite libraries are not available for all SPARC
30476targets.  Normally the facilities of the machine's usual C compiler are
30477used, but this cannot be done directly in cross-compilation.  You must make
30478your own arrangements to provide suitable library functions for
30479cross-compilation.  The embedded targets @samp{sparc-*-aout} and
30480@samp{sparclite-*-*} do provide software floating-point support.
30481
30482@option{-msoft-float} changes the calling convention in the output file;
30483therefore, it is only useful if you compile @emph{all} of a program with
30484this option.  In particular, you need to compile @file{libgcc.a}, the
30485library that comes with GCC, with @option{-msoft-float} in order for
30486this to work.
30487
30488@item -mhard-quad-float
30489@opindex mhard-quad-float
30490Generate output containing quad-word (long double) floating-point
30491instructions.
30492
30493@item -msoft-quad-float
30494@opindex msoft-quad-float
30495Generate output containing library calls for quad-word (long double)
30496floating-point instructions.  The functions called are those specified
30497in the SPARC ABI@.  This is the default.
30498
30499As of this writing, there are no SPARC implementations that have hardware
30500support for the quad-word floating-point instructions.  They all invoke
30501a trap handler for one of these instructions, and then the trap handler
30502emulates the effect of the instruction.  Because of the trap handler overhead,
30503this is much slower than calling the ABI library routines.  Thus the
30504@option{-msoft-quad-float} option is the default.
30505
30506@item -mno-unaligned-doubles
30507@itemx -munaligned-doubles
30508@opindex mno-unaligned-doubles
30509@opindex munaligned-doubles
30510Assume that doubles have 8-byte alignment.  This is the default.
30511
30512With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
30513alignment only if they are contained in another type, or if they have an
30514absolute address.  Otherwise, it assumes they have 4-byte alignment.
30515Specifying this option avoids some rare compatibility problems with code
30516generated by other compilers.  It is not the default because it results
30517in a performance loss, especially for floating-point code.
30518
30519@item -muser-mode
30520@itemx -mno-user-mode
30521@opindex muser-mode
30522@opindex mno-user-mode
30523Do not generate code that can only run in supervisor mode.  This is relevant
30524only for the @code{casa} instruction emitted for the LEON3 processor.  This
30525is the default.
30526
30527@item -mfaster-structs
30528@itemx -mno-faster-structs
30529@opindex mfaster-structs
30530@opindex mno-faster-structs
30531With @option{-mfaster-structs}, the compiler assumes that structures
30532should have 8-byte alignment.  This enables the use of pairs of
30533@code{ldd} and @code{std} instructions for copies in structure
30534assignment, in place of twice as many @code{ld} and @code{st} pairs.
30535However, the use of this changed alignment directly violates the SPARC
30536ABI@.  Thus, it's intended only for use on targets where the developer
30537acknowledges that their resulting code is not directly in line with
30538the rules of the ABI@.
30539
30540@item -mstd-struct-return
30541@itemx -mno-std-struct-return
30542@opindex mstd-struct-return
30543@opindex mno-std-struct-return
30544With @option{-mstd-struct-return}, the compiler generates checking code
30545in functions returning structures or unions to detect size mismatches
30546between the two sides of function calls, as per the 32-bit ABI@.
30547
30548The default is @option{-mno-std-struct-return}.  This option has no effect
30549in 64-bit mode.
30550
30551@item -mlra
30552@itemx -mno-lra
30553@opindex mlra
30554@opindex mno-lra
30555Enable Local Register Allocation.  This is the default for SPARC since GCC 7
30556so @option{-mno-lra} needs to be passed to get old Reload.
30557
30558@item -mcpu=@var{cpu_type}
30559@opindex mcpu
30560Set the instruction set, register set, and instruction scheduling parameters
30561for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
30562@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
30563@samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{leon5}, @samp{sparclite},
30564@samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701},
30565@samp{v9}, @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara},
30566@samp{niagara2}, @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and
30567@samp{m8}.
30568
30569Native Solaris and GNU/Linux toolchains also support the value @samp{native},
30570which selects the best architecture option for the host processor.
30571@option{-mcpu=native} has no effect if GCC does not recognize
30572the processor.
30573
30574Default instruction scheduling parameters are used for values that select
30575an architecture and not an implementation.  These are @samp{v7}, @samp{v8},
30576@samp{sparclite}, @samp{sparclet}, @samp{v9}.
30577
30578Here is a list of each supported architecture and their supported
30579implementations.
30580
30581@table @asis
30582@item v7
30583cypress, leon3v7
30584
30585@item v8
30586supersparc, hypersparc, leon, leon3, leon5
30587
30588@item sparclite
30589f930, f934, sparclite86x
30590
30591@item sparclet
30592tsc701
30593
30594@item v9
30595ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
30596niagara7, m8
30597@end table
30598
30599By default (unless configured otherwise), GCC generates code for the V7
30600variant of the SPARC architecture.  With @option{-mcpu=cypress}, the compiler
30601additionally optimizes it for the Cypress CY7C602 chip, as used in the
30602SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
30603SPARCStation 1, 2, IPX etc.
30604
30605With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
30606architecture.  The only difference from V7 code is that the compiler emits
30607the integer multiply and integer divide instructions which exist in SPARC-V8
30608but not in SPARC-V7.  With @option{-mcpu=supersparc}, the compiler additionally
30609optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
306102000 series.
30611
30612With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
30613the SPARC architecture.  This adds the integer multiply, integer divide step
30614and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
30615With @option{-mcpu=f930}, the compiler additionally optimizes it for the
30616Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@.  With
30617@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
30618MB86934 chip, which is the more recent SPARClite with FPU@.
30619
30620With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
30621the SPARC architecture.  This adds the integer multiply, multiply/accumulate,
30622integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
30623but not in SPARC-V7.  With @option{-mcpu=tsc701}, the compiler additionally
30624optimizes it for the TEMIC SPARClet chip.
30625
30626With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
30627architecture.  This adds 64-bit integer and floating-point move instructions,
306283 additional floating-point condition code registers and conditional move
30629instructions.  With @option{-mcpu=ultrasparc}, the compiler additionally
30630optimizes it for the Sun UltraSPARC I/II/IIi chips.  With
30631@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
30632Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips.  With
30633@option{-mcpu=niagara}, the compiler additionally optimizes it for
30634Sun UltraSPARC T1 chips.  With @option{-mcpu=niagara2}, the compiler
30635additionally optimizes it for Sun UltraSPARC T2 chips. With
30636@option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
30637UltraSPARC T3 chips.  With @option{-mcpu=niagara4}, the compiler
30638additionally optimizes it for Sun UltraSPARC T4 chips.  With
30639@option{-mcpu=niagara7}, the compiler additionally optimizes it for
30640Oracle SPARC M7 chips.  With @option{-mcpu=m8}, the compiler
30641additionally optimizes it for Oracle M8 chips.
30642
30643@item -mtune=@var{cpu_type}
30644@opindex mtune
30645Set the instruction scheduling parameters for machine type
30646@var{cpu_type}, but do not set the instruction set or register set that the
30647option @option{-mcpu=@var{cpu_type}} does.
30648
30649The same values for @option{-mcpu=@var{cpu_type}} can be used for
30650@option{-mtune=@var{cpu_type}}, but the only useful values are those
30651that select a particular CPU implementation.  Those are
30652@samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
30653@samp{leon3}, @samp{leon3v7}, @samp{leon5}, @samp{f930}, @samp{f934},
30654@samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
30655@samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
30656@samp{niagara4}, @samp{niagara7} and @samp{m8}.  With native Solaris
30657and GNU/Linux toolchains, @samp{native} can also be used.
30658
30659@item -mv8plus
30660@itemx -mno-v8plus
30661@opindex mv8plus
30662@opindex mno-v8plus
30663With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@.  The
30664difference from the V8 ABI is that the global and out registers are
30665considered 64 bits wide.  This is enabled by default on Solaris in 32-bit
30666mode for all SPARC-V9 processors.
30667
30668@item -mvis
30669@itemx -mno-vis
30670@opindex mvis
30671@opindex mno-vis
30672With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
30673Visual Instruction Set extensions.  The default is @option{-mno-vis}.
30674
30675@item -mvis2
30676@itemx -mno-vis2
30677@opindex mvis2
30678@opindex mno-vis2
30679With @option{-mvis2}, GCC generates code that takes advantage of
30680version 2.0 of the UltraSPARC Visual Instruction Set extensions.  The
30681default is @option{-mvis2} when targeting a cpu that supports such
30682instructions, such as UltraSPARC-III and later.  Setting @option{-mvis2}
30683also sets @option{-mvis}.
30684
30685@item -mvis3
30686@itemx -mno-vis3
30687@opindex mvis3
30688@opindex mno-vis3
30689With @option{-mvis3}, GCC generates code that takes advantage of
30690version 3.0 of the UltraSPARC Visual Instruction Set extensions.  The
30691default is @option{-mvis3} when targeting a cpu that supports such
30692instructions, such as niagara-3 and later.  Setting @option{-mvis3}
30693also sets @option{-mvis2} and @option{-mvis}.
30694
30695@item -mvis4
30696@itemx -mno-vis4
30697@opindex mvis4
30698@opindex mno-vis4
30699With @option{-mvis4}, GCC generates code that takes advantage of
30700version 4.0 of the UltraSPARC Visual Instruction Set extensions.  The
30701default is @option{-mvis4} when targeting a cpu that supports such
30702instructions, such as niagara-7 and later.  Setting @option{-mvis4}
30703also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
30704
30705@item -mvis4b
30706@itemx -mno-vis4b
30707@opindex mvis4b
30708@opindex mno-vis4b
30709With @option{-mvis4b}, GCC generates code that takes advantage of
30710version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
30711the additional VIS instructions introduced in the Oracle SPARC
30712Architecture 2017.  The default is @option{-mvis4b} when targeting a
30713cpu that supports such instructions, such as m8 and later.  Setting
30714@option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
30715@option{-mvis2} and @option{-mvis}.
30716
30717@item -mcbcond
30718@itemx -mno-cbcond
30719@opindex mcbcond
30720@opindex mno-cbcond
30721With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
30722Compare-and-Branch-on-Condition instructions.  The default is @option{-mcbcond}
30723when targeting a CPU that supports such instructions, such as Niagara-4 and
30724later.
30725
30726@item -mfmaf
30727@itemx -mno-fmaf
30728@opindex mfmaf
30729@opindex mno-fmaf
30730With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
30731Fused Multiply-Add Floating-point instructions.  The default is @option{-mfmaf}
30732when targeting a CPU that supports such instructions, such as Niagara-3 and
30733later.
30734
30735@item -mfsmuld
30736@itemx -mno-fsmuld
30737@opindex mfsmuld
30738@opindex mno-fsmuld
30739With @option{-mfsmuld}, GCC generates code that takes advantage of the
30740Floating-point Multiply Single to Double (FsMULd) instruction.  The default is
30741@option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
30742or V9 with FPU except @option{-mcpu=leon}.
30743
30744@item -mpopc
30745@itemx -mno-popc
30746@opindex mpopc
30747@opindex mno-popc
30748With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
30749Population Count instruction.  The default is @option{-mpopc}
30750when targeting a CPU that supports such an instruction, such as Niagara-2 and
30751later.
30752
30753@item -msubxc
30754@itemx -mno-subxc
30755@opindex msubxc
30756@opindex mno-subxc
30757With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
30758Subtract-Extended-with-Carry instruction.  The default is @option{-msubxc}
30759when targeting a CPU that supports such an instruction, such as Niagara-7 and
30760later.
30761
30762@item -mfix-at697f
30763@opindex mfix-at697f
30764Enable the documented workaround for the single erratum of the Atmel AT697F
30765processor (which corresponds to erratum #13 of the AT697E processor).
30766
30767@item -mfix-ut699
30768@opindex mfix-ut699
30769Enable the documented workarounds for the floating-point errata and the data
30770cache nullify errata of the UT699 processor.
30771
30772@item -mfix-ut700
30773@opindex mfix-ut700
30774Enable the documented workaround for the back-to-back store errata of
30775the UT699E/UT700 processor.
30776
30777@item -mfix-gr712rc
30778@opindex mfix-gr712rc
30779Enable the documented workaround for the back-to-back store errata of
30780the GR712RC processor.
30781@end table
30782
30783These @samp{-m} options are supported in addition to the above
30784on SPARC-V9 processors in 64-bit environments:
30785
30786@table @gcctabopt
30787@item -m32
30788@itemx -m64
30789@opindex m32
30790@opindex m64
30791Generate code for a 32-bit or 64-bit environment.
30792The 32-bit environment sets int, long and pointer to 32 bits.
30793The 64-bit environment sets int to 32 bits and long and pointer
30794to 64 bits.
30795
30796@item -mcmodel=@var{which}
30797@opindex mcmodel
30798Set the code model to one of
30799
30800@table @samp
30801@item medlow
30802The Medium/Low code model: 64-bit addresses, programs
30803must be linked in the low 32 bits of memory.  Programs can be statically
30804or dynamically linked.
30805
30806@item medmid
30807The Medium/Middle code model: 64-bit addresses, programs
30808must be linked in the low 44 bits of memory, the text and data segments must
30809be less than 2GB in size and the data segment must be located within 2GB of
30810the text segment.
30811
30812@item medany
30813The Medium/Anywhere code model: 64-bit addresses, programs
30814may be linked anywhere in memory, the text and data segments must be less
30815than 2GB in size and the data segment must be located within 2GB of the
30816text segment.
30817
30818@item embmedany
30819The Medium/Anywhere code model for embedded systems:
3082064-bit addresses, the text and data segments must be less than 2GB in
30821size, both starting anywhere in memory (determined at link time).  The
30822global register %g4 points to the base of the data segment.  Programs
30823are statically linked and PIC is not supported.
30824@end table
30825
30826@item -mmemory-model=@var{mem-model}
30827@opindex mmemory-model
30828Set the memory model in force on the processor to one of
30829
30830@table @samp
30831@item default
30832The default memory model for the processor and operating system.
30833
30834@item rmo
30835Relaxed Memory Order
30836
30837@item pso
30838Partial Store Order
30839
30840@item tso
30841Total Store Order
30842
30843@item sc
30844Sequential Consistency
30845@end table
30846
30847These memory models are formally defined in Appendix D of the SPARC-V9
30848architecture manual, as set in the processor's @code{PSTATE.MM} field.
30849
30850@item -mstack-bias
30851@itemx -mno-stack-bias
30852@opindex mstack-bias
30853@opindex mno-stack-bias
30854With @option{-mstack-bias}, GCC assumes that the stack pointer, and
30855frame pointer if present, are offset by @minus{}2047 which must be added back
30856when making stack frame references.  This is the default in 64-bit mode.
30857Otherwise, assume no such offset is present.
30858@end table
30859
30860@node System V Options
30861@subsection Options for System V
30862
30863These additional options are available on System V Release 4 for
30864compatibility with other compilers on those systems:
30865
30866@table @gcctabopt
30867@item -G
30868@opindex G
30869Create a shared object.
30870It is recommended that @option{-symbolic} or @option{-shared} be used instead.
30871
30872@item -Qy
30873@opindex Qy
30874Identify the versions of each tool used by the compiler, in a
30875@code{.ident} assembler directive in the output.
30876
30877@item -Qn
30878@opindex Qn
30879Refrain from adding @code{.ident} directives to the output file (this is
30880the default).
30881
30882@item -YP,@var{dirs}
30883@opindex YP
30884Search the directories @var{dirs}, and no others, for libraries
30885specified with @option{-l}.
30886
30887@item -Ym,@var{dir}
30888@opindex Ym
30889Look in the directory @var{dir} to find the M4 preprocessor.
30890The assembler uses this option.
30891@c This is supposed to go with a -Yd for predefined M4 macro files, but
30892@c the generic assembler that comes with Solaris takes just -Ym.
30893@end table
30894
30895@node TILE-Gx Options
30896@subsection TILE-Gx Options
30897@cindex TILE-Gx options
30898
30899These @samp{-m} options are supported on the TILE-Gx:
30900
30901@table @gcctabopt
30902@item -mcmodel=small
30903@opindex mcmodel=small
30904Generate code for the small model.  The distance for direct calls is
30905limited to 500M in either direction.  PC-relative addresses are 32
30906bits.  Absolute addresses support the full address range.
30907
30908@item -mcmodel=large
30909@opindex mcmodel=large
30910Generate code for the large model.  There is no limitation on call
30911distance, pc-relative addresses, or absolute addresses.
30912
30913@item -mcpu=@var{name}
30914@opindex mcpu
30915Selects the type of CPU to be targeted.  Currently the only supported
30916type is @samp{tilegx}.
30917
30918@item -m32
30919@itemx -m64
30920@opindex m32
30921@opindex m64
30922Generate code for a 32-bit or 64-bit environment.  The 32-bit
30923environment sets int, long, and pointer to 32 bits.  The 64-bit
30924environment sets int to 32 bits and long and pointer to 64 bits.
30925
30926@item -mbig-endian
30927@itemx -mlittle-endian
30928@opindex mbig-endian
30929@opindex mlittle-endian
30930Generate code in big/little endian mode, respectively.
30931@end table
30932
30933@node TILEPro Options
30934@subsection TILEPro Options
30935@cindex TILEPro options
30936
30937These @samp{-m} options are supported on the TILEPro:
30938
30939@table @gcctabopt
30940@item -mcpu=@var{name}
30941@opindex mcpu
30942Selects the type of CPU to be targeted.  Currently the only supported
30943type is @samp{tilepro}.
30944
30945@item -m32
30946@opindex m32
30947Generate code for a 32-bit environment, which sets int, long, and
30948pointer to 32 bits.  This is the only supported behavior so the flag
30949is essentially ignored.
30950@end table
30951
30952@node V850 Options
30953@subsection V850 Options
30954@cindex V850 Options
30955
30956These @samp{-m} options are defined for V850 implementations:
30957
30958@table @gcctabopt
30959@item -mlong-calls
30960@itemx -mno-long-calls
30961@opindex mlong-calls
30962@opindex mno-long-calls
30963Treat all calls as being far away (near).  If calls are assumed to be
30964far away, the compiler always loads the function's address into a
30965register, and calls indirect through the pointer.
30966
30967@item -mno-ep
30968@itemx -mep
30969@opindex mno-ep
30970@opindex mep
30971Do not optimize (do optimize) basic blocks that use the same index
30972pointer 4 or more times to copy pointer into the @code{ep} register, and
30973use the shorter @code{sld} and @code{sst} instructions.  The @option{-mep}
30974option is on by default if you optimize.
30975
30976@item -mno-prolog-function
30977@itemx -mprolog-function
30978@opindex mno-prolog-function
30979@opindex mprolog-function
30980Do not use (do use) external functions to save and restore registers
30981at the prologue and epilogue of a function.  The external functions
30982are slower, but use less code space if more than one function saves
30983the same number of registers.  The @option{-mprolog-function} option
30984is on by default if you optimize.
30985
30986@item -mspace
30987@opindex mspace
30988Try to make the code as small as possible.  At present, this just turns
30989on the @option{-mep} and @option{-mprolog-function} options.
30990
30991@item -mtda=@var{n}
30992@opindex mtda
30993Put static or global variables whose size is @var{n} bytes or less into
30994the tiny data area that register @code{ep} points to.  The tiny data
30995area can hold up to 256 bytes in total (128 bytes for byte references).
30996
30997@item -msda=@var{n}
30998@opindex msda
30999Put static or global variables whose size is @var{n} bytes or less into
31000the small data area that register @code{gp} points to.  The small data
31001area can hold up to 64 kilobytes.
31002
31003@item -mzda=@var{n}
31004@opindex mzda
31005Put static or global variables whose size is @var{n} bytes or less into
31006the first 32 kilobytes of memory.
31007
31008@item -mv850
31009@opindex mv850
31010Specify that the target processor is the V850.
31011
31012@item -mv850e3v5
31013@opindex mv850e3v5
31014Specify that the target processor is the V850E3V5.  The preprocessor
31015constant @code{__v850e3v5__} is defined if this option is used.
31016
31017@item -mv850e2v4
31018@opindex mv850e2v4
31019Specify that the target processor is the V850E3V5.  This is an alias for
31020the @option{-mv850e3v5} option.
31021
31022@item -mv850e2v3
31023@opindex mv850e2v3
31024Specify that the target processor is the V850E2V3.  The preprocessor
31025constant @code{__v850e2v3__} is defined if this option is used.
31026
31027@item -mv850e2
31028@opindex mv850e2
31029Specify that the target processor is the V850E2.  The preprocessor
31030constant @code{__v850e2__} is defined if this option is used.
31031
31032@item -mv850e1
31033@opindex mv850e1
31034Specify that the target processor is the V850E1.  The preprocessor
31035constants @code{__v850e1__} and @code{__v850e__} are defined if
31036this option is used.
31037
31038@item -mv850es
31039@opindex mv850es
31040Specify that the target processor is the V850ES.  This is an alias for
31041the @option{-mv850e1} option.
31042
31043@item -mv850e
31044@opindex mv850e
31045Specify that the target processor is the V850E@.  The preprocessor
31046constant @code{__v850e__} is defined if this option is used.
31047
31048If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
31049nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
31050are defined then a default target processor is chosen and the
31051relevant @samp{__v850*__} preprocessor constant is defined.
31052
31053The preprocessor constants @code{__v850} and @code{__v851__} are always
31054defined, regardless of which processor variant is the target.
31055
31056@item -mdisable-callt
31057@itemx -mno-disable-callt
31058@opindex mdisable-callt
31059@opindex mno-disable-callt
31060This option suppresses generation of the @code{CALLT} instruction for the
31061v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
31062architecture.
31063
31064This option is enabled by default when the RH850 ABI is
31065in use (see @option{-mrh850-abi}), and disabled by default when the
31066GCC ABI is in use.  If @code{CALLT} instructions are being generated
31067then the C preprocessor symbol @code{__V850_CALLT__} is defined.
31068
31069@item -mrelax
31070@itemx -mno-relax
31071@opindex mrelax
31072@opindex mno-relax
31073Pass on (or do not pass on) the @option{-mrelax} command-line option
31074to the assembler.
31075
31076@item -mlong-jumps
31077@itemx -mno-long-jumps
31078@opindex mlong-jumps
31079@opindex mno-long-jumps
31080Disable (or re-enable) the generation of PC-relative jump instructions.
31081
31082@item -msoft-float
31083@itemx -mhard-float
31084@opindex msoft-float
31085@opindex mhard-float
31086Disable (or re-enable) the generation of hardware floating point
31087instructions.  This option is only significant when the target
31088architecture is @samp{V850E2V3} or higher.  If hardware floating point
31089instructions are being generated then the C preprocessor symbol
31090@code{__FPU_OK__} is defined, otherwise the symbol
31091@code{__NO_FPU__} is defined.
31092
31093@item -mloop
31094@opindex mloop
31095Enables the use of the e3v5 LOOP instruction.  The use of this
31096instruction is not enabled by default when the e3v5 architecture is
31097selected because its use is still experimental.
31098
31099@item -mrh850-abi
31100@itemx -mghs
31101@opindex mrh850-abi
31102@opindex mghs
31103Enables support for the RH850 version of the V850 ABI.  This is the
31104default.  With this version of the ABI the following rules apply:
31105
31106@itemize
31107@item
31108Integer sized structures and unions are returned via a memory pointer
31109rather than a register.
31110
31111@item
31112Large structures and unions (more than 8 bytes in size) are passed by
31113value.
31114
31115@item
31116Functions are aligned to 16-bit boundaries.
31117
31118@item
31119The @option{-m8byte-align} command-line option is supported.
31120
31121@item
31122The @option{-mdisable-callt} command-line option is enabled by
31123default.  The @option{-mno-disable-callt} command-line option is not
31124supported.
31125@end itemize
31126
31127When this version of the ABI is enabled the C preprocessor symbol
31128@code{__V850_RH850_ABI__} is defined.
31129
31130@item -mgcc-abi
31131@opindex mgcc-abi
31132Enables support for the old GCC version of the V850 ABI.  With this
31133version of the ABI the following rules apply:
31134
31135@itemize
31136@item
31137Integer sized structures and unions are returned in register @code{r10}.
31138
31139@item
31140Large structures and unions (more than 8 bytes in size) are passed by
31141reference.
31142
31143@item
31144Functions are aligned to 32-bit boundaries, unless optimizing for
31145size.
31146
31147@item
31148The @option{-m8byte-align} command-line option is not supported.
31149
31150@item
31151The @option{-mdisable-callt} command-line option is supported but not
31152enabled by default.
31153@end itemize
31154
31155When this version of the ABI is enabled the C preprocessor symbol
31156@code{__V850_GCC_ABI__} is defined.
31157
31158@item -m8byte-align
31159@itemx -mno-8byte-align
31160@opindex m8byte-align
31161@opindex mno-8byte-align
31162Enables support for @code{double} and @code{long long} types to be
31163aligned on 8-byte boundaries.  The default is to restrict the
31164alignment of all objects to at most 4-bytes.  When
31165@option{-m8byte-align} is in effect the C preprocessor symbol
31166@code{__V850_8BYTE_ALIGN__} is defined.
31167
31168@item -mbig-switch
31169@opindex mbig-switch
31170Generate code suitable for big switch tables.  Use this option only if
31171the assembler/linker complain about out of range branches within a switch
31172table.
31173
31174@item -mapp-regs
31175@opindex mapp-regs
31176This option causes r2 and r5 to be used in the code generated by
31177the compiler.  This setting is the default.
31178
31179@item -mno-app-regs
31180@opindex mno-app-regs
31181This option causes r2 and r5 to be treated as fixed registers.
31182
31183@end table
31184
31185@node VAX Options
31186@subsection VAX Options
31187@cindex VAX options
31188
31189These @samp{-m} options are defined for the VAX:
31190
31191@table @gcctabopt
31192@item -munix
31193@opindex munix
31194Do not output certain jump instructions (@code{aobleq} and so on)
31195that the Unix assembler for the VAX cannot handle across long
31196ranges.
31197
31198@item -mgnu
31199@opindex mgnu
31200Do output those jump instructions, on the assumption that the
31201GNU assembler is being used.
31202
31203@item -mg
31204@opindex mg
31205Output code for G-format floating-point numbers instead of D-format.
31206
31207@item -mlra
31208@itemx -mno-lra
31209@opindex mlra
31210@opindex mno-lra
31211Enable Local Register Allocation.  This is still experimental for the VAX,
31212so by default the compiler uses standard reload.
31213@end table
31214
31215@node Visium Options
31216@subsection Visium Options
31217@cindex Visium options
31218
31219@table @gcctabopt
31220
31221@item -mdebug
31222@opindex mdebug
31223A program which performs file I/O and is destined to run on an MCM target
31224should be linked with this option.  It causes the libraries libc.a and
31225libdebug.a to be linked.  The program should be run on the target under
31226the control of the GDB remote debugging stub.
31227
31228@item -msim
31229@opindex msim
31230A program which performs file I/O and is destined to run on the simulator
31231should be linked with option.  This causes libraries libc.a and libsim.a to
31232be linked.
31233
31234@item -mfpu
31235@itemx -mhard-float
31236@opindex mfpu
31237@opindex mhard-float
31238Generate code containing floating-point instructions.  This is the
31239default.
31240
31241@item -mno-fpu
31242@itemx -msoft-float
31243@opindex mno-fpu
31244@opindex msoft-float
31245Generate code containing library calls for floating-point.
31246
31247@option{-msoft-float} changes the calling convention in the output file;
31248therefore, it is only useful if you compile @emph{all} of a program with
31249this option.  In particular, you need to compile @file{libgcc.a}, the
31250library that comes with GCC, with @option{-msoft-float} in order for
31251this to work.
31252
31253@item -mcpu=@var{cpu_type}
31254@opindex mcpu
31255Set the instruction set, register set, and instruction scheduling parameters
31256for machine type @var{cpu_type}.  Supported values for @var{cpu_type} are
31257@samp{mcm}, @samp{gr5} and @samp{gr6}.
31258
31259@samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
31260
31261By default (unless configured otherwise), GCC generates code for the GR5
31262variant of the Visium architecture.  
31263
31264With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
31265architecture.  The only difference from GR5 code is that the compiler will
31266generate block move instructions.
31267
31268@item -mtune=@var{cpu_type}
31269@opindex mtune
31270Set the instruction scheduling parameters for machine type @var{cpu_type},
31271but do not set the instruction set or register set that the option
31272@option{-mcpu=@var{cpu_type}} would.
31273
31274@item -msv-mode
31275@opindex msv-mode
31276Generate code for the supervisor mode, where there are no restrictions on
31277the access to general registers.  This is the default.
31278
31279@item -muser-mode
31280@opindex muser-mode
31281Generate code for the user mode, where the access to some general registers
31282is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
31283mode; on the GR6, only registers r29 to r31 are affected.
31284@end table
31285
31286@node VMS Options
31287@subsection VMS Options
31288
31289These @samp{-m} options are defined for the VMS implementations:
31290
31291@table @gcctabopt
31292@item -mvms-return-codes
31293@opindex mvms-return-codes
31294Return VMS condition codes from @code{main}. The default is to return POSIX-style
31295condition (e.g.@: error) codes.
31296
31297@item -mdebug-main=@var{prefix}
31298@opindex mdebug-main=@var{prefix}
31299Flag the first routine whose name starts with @var{prefix} as the main
31300routine for the debugger.
31301
31302@item -mmalloc64
31303@opindex mmalloc64
31304Default to 64-bit memory allocation routines.
31305
31306@item -mpointer-size=@var{size}
31307@opindex mpointer-size=@var{size}
31308Set the default size of pointers. Possible options for @var{size} are
31309@samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
31310for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
31311The later option disables @code{pragma pointer_size}.
31312@end table
31313
31314@node VxWorks Options
31315@subsection VxWorks Options
31316@cindex VxWorks Options
31317
31318The options in this section are defined for all VxWorks targets.
31319Options specific to the target hardware are listed with the other
31320options for that target.
31321
31322@table @gcctabopt
31323@item -mrtp
31324@opindex mrtp
31325GCC can generate code for both VxWorks kernels and real time processes
31326(RTPs).  This option switches from the former to the latter.  It also
31327defines the preprocessor macro @code{__RTP__}.
31328
31329@item -non-static
31330@opindex non-static
31331Link an RTP executable against shared libraries rather than static
31332libraries.  The options @option{-static} and @option{-shared} can
31333also be used for RTPs (@pxref{Link Options}); @option{-static}
31334is the default.
31335
31336@item -Bstatic
31337@itemx -Bdynamic
31338@opindex Bstatic
31339@opindex Bdynamic
31340These options are passed down to the linker.  They are defined for
31341compatibility with Diab.
31342
31343@item -Xbind-lazy
31344@opindex Xbind-lazy
31345Enable lazy binding of function calls.  This option is equivalent to
31346@option{-Wl,-z,now} and is defined for compatibility with Diab.
31347
31348@item -Xbind-now
31349@opindex Xbind-now
31350Disable lazy binding of function calls.  This option is the default and
31351is defined for compatibility with Diab.
31352@end table
31353
31354@node x86 Options
31355@subsection x86 Options
31356@cindex x86 Options
31357
31358These @samp{-m} options are defined for the x86 family of computers.
31359
31360@table @gcctabopt
31361
31362@item -march=@var{cpu-type}
31363@opindex march
31364Generate instructions for the machine type @var{cpu-type}.  In contrast to
31365@option{-mtune=@var{cpu-type}}, which merely tunes the generated code 
31366for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
31367to generate code that may not run at all on processors other than the one
31368indicated.  Specifying @option{-march=@var{cpu-type}} implies 
31369@option{-mtune=@var{cpu-type}}, except where noted otherwise.
31370
31371The choices for @var{cpu-type} are:
31372
31373@table @samp
31374@item native
31375This selects the CPU to generate code for at compilation time by determining
31376the processor type of the compiling machine.  Using @option{-march=native}
31377enables all instruction subsets supported by the local machine (hence
31378the result might not run on different machines).  Using @option{-mtune=native}
31379produces code optimized for the local machine under the constraints
31380of the selected instruction set.  
31381
31382@item x86-64
31383A generic CPU with 64-bit extensions.
31384
31385@item x86-64-v2
31386@itemx x86-64-v3
31387@itemx x86-64-v4
31388These choices for @var{cpu-type} select the corresponding
31389micro-architecture level from the x86-64 psABI.  On ABIs other than
31390the x86-64 psABI they select the same CPU features as the x86-64 psABI
31391documents for the particular micro-architecture level.
31392
31393Since these @var{cpu-type} values do not have a corresponding
31394@option{-mtune} setting, using @option{-march} with these values enables
31395generic tuning.  Specific tuning can be enabled using the
31396@option{-mtune=@var{other-cpu-type}} option with an appropriate
31397@var{other-cpu-type} value.
31398
31399@item i386
31400Original Intel i386 CPU@.
31401
31402@item i486
31403Intel i486 CPU@.  (No scheduling is implemented for this chip.)
31404
31405@item i586
31406@itemx pentium
31407Intel Pentium CPU with no MMX support.
31408
31409@item lakemont
31410Intel Lakemont MCU, based on Intel Pentium CPU.
31411
31412@item pentium-mmx
31413Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
31414
31415@item pentiumpro
31416Intel Pentium Pro CPU@.
31417
31418@item i686
31419When used with @option{-march}, the Pentium Pro
31420instruction set is used, so the code runs on all i686 family chips.
31421When used with @option{-mtune}, it has the same meaning as @samp{generic}.
31422
31423@item pentium2
31424Intel Pentium II CPU, based on Pentium Pro core with MMX and FXSR instruction
31425set support.
31426
31427@item pentium3
31428@itemx pentium3m
31429Intel Pentium III CPU, based on Pentium Pro core with MMX, FXSR and SSE
31430instruction set support.
31431
31432@item pentium-m
31433Intel Pentium M; low-power version of Intel Pentium III CPU
31434with MMX, SSE, SSE2 and FXSR instruction set support.  Used by Centrino
31435notebooks.
31436
31437@item pentium4
31438@itemx pentium4m
31439Intel Pentium 4 CPU with MMX, SSE, SSE2 and FXSR instruction set support.
31440
31441@item prescott
31442Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2, SSE3 and FXSR
31443instruction set support.
31444
31445@item nocona
31446Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
31447SSE2, SSE3 and FXSR instruction set support.
31448
31449@item core2
31450Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, CX16,
31451SAHF and FXSR instruction set support.
31452
31453@item nehalem
31454Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
31455SSE4.1, SSE4.2, POPCNT, CX16, SAHF and FXSR instruction set support.
31456
31457@item westmere
31458Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
31459SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR and PCLMUL instruction set support.
31460
31461@item sandybridge
31462Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
31463SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE and PCLMUL instruction set
31464support.
31465
31466@item ivybridge
31467Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
31468SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND
31469and F16C instruction set support.
31470
31471@item haswell
31472Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31473SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31474F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE and HLE instruction set support.
31475
31476@item broadwell
31477Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31478SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31479F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX and PREFETCHW
31480instruction set support.
31481
31482@item skylake
31483Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31484SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31485F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
31486CLFLUSHOPT, XSAVEC, XSAVES and SGX instruction set support.
31487
31488@item bonnell
31489Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
31490instruction set support.
31491
31492@item silvermont
31493Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31494SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW and RDRND
31495instruction set support.
31496
31497@item goldmont
31498Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31499SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES, SHA,
31500RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT and FSGSBASE instruction
31501set support.
31502
31503@item goldmont-plus
31504Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31505SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES,
31506SHA, RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT, FSGSBASE, PTWRITE,
31507RDPID and SGX instruction set support.
31508
31509@item tremont
31510Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31511SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, PCLMUL, PREFETCHW, RDRND, AES, SHA,
31512RDSEED, XSAVE, XSAVEC, XSAVES, XSAVEOPT, CLFLUSHOPT, FSGSBASE, PTWRITE, RDPID,
31513SGX, CLWB, GFNI-SSE, MOVDIRI, MOVDIR64B, CLDEMOTE and WAITPKG instruction set
31514support.
31515
31516@item knl
31517Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31518SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31519RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31520AVX512PF, AVX512ER, AVX512F, AVX512CD and PREFETCHWT1 instruction set support.
31521
31522@item knm
31523Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31524SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31525RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31526AVX512PF, AVX512ER, AVX512F, AVX512CD and PREFETCHWT1, AVX5124VNNIW,
31527AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
31528
31529@item skylake-avx512
31530Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31531SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31532RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31533AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW,
31534AVX512DQ and AVX512CD instruction set support.
31535
31536@item cannonlake
31537Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
31538SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL,
31539FSGSBASE, RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX,
31540PREFETCHW, AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW,
31541AVX512DQ, AVX512CD, PKU, AVX512VBMI, AVX512IFMA and SHA instruction set
31542support.
31543
31544@item icelake-client
31545Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31546SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31547RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31548AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
31549AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2
31550, VPCLMULQDQ, AVX512BITALG, RDPID and AVX512VPOPCNTDQ instruction set support.
31551
31552@item icelake-server
31553Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31554SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31555RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31556AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
31557AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2
31558, VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD and CLWB
31559instruction set support.
31560
31561@item cascadelake
31562Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31563SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31564F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
31565CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ,
31566AVX512CD and AVX512VNNI instruction set support.
31567
31568@item cooperlake
31569Intel cooperlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31570SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31571F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
31572CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, CLWB, AVX512VL, AVX512BW, AVX512DQ,
31573AVX512CD, AVX512VNNI and AVX512BF16 instruction set support.
31574
31575@item tigerlake
31576Intel Tigerlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31577SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31578F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
31579CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD
31580PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
31581VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, MOVDIRI, MOVDIR64B, CLWB,
31582AVX512VP2INTERSECT and KEYLOCKER instruction set support.
31583
31584@item sapphirerapids
31585Intel sapphirerapids CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
31586SSSE3, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE,
31587RDRND, F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW,
31588AES, CLFLUSHOPT, XSAVEC, XSAVES, SGX, AVX512F, AVX512VL, AVX512BW, AVX512DQ,
31589AVX512CD, PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
31590VPCLMULQDQ, AVX512BITALG, RDPID, AVX512VPOPCNTDQ, PCONFIG, WBNOINVD, CLWB,
31591MOVDIRI, MOVDIR64B, ENQCMD, CLDEMOTE, PTWRITE, WAITPKG, SERIALIZE, TSXLDTRK,
31592UINTR, AMX-BF16, AMX-TILE, AMX-INT8, AVX-VNNI, AVX512-FP16 and AVX512BF16
31593instruction set support.
31594
31595@item alderlake
31596Intel Alderlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
31597SSE4.1, SSE4.2, POPCNT, AES, PREFETCHW, PCLMUL, RDRND, XSAVE, XSAVEC, XSAVES,
31598XSAVEOPT, FSGSBASE, PTWRITE, RDPID, SGX, GFNI-SSE, CLWB, MOVDIRI, MOVDIR64B,
31599CLDEMOTE, WAITPKG, ADCX, AVX, AVX2, BMI, BMI2, F16C, FMA, LZCNT, PCONFIG, PKU,
31600VAES, VPCLMULQDQ, SERIALIZE, HRESET, KL, WIDEKL and AVX-VNNI instruction set
31601support.
31602
31603@item rocketlake
31604Intel Rocketlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3
31605, SSE4.1, SSE4.2, POPCNT, CX16, SAHF, FXSR, AVX, XSAVE, PCLMUL, FSGSBASE, RDRND,
31606F16C, AVX2, BMI, BMI2, LZCNT, FMA, MOVBE, HLE, RDSEED, ADCX, PREFETCHW, AES,
31607CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD
31608PKU, AVX512VBMI, AVX512IFMA, SHA, AVX512VNNI, GFNI, VAES, AVX512VBMI2,
31609VPCLMULQDQ, AVX512BITALG, RDPID and AVX512VPOPCNTDQ instruction set support.
31610
31611@item k6
31612AMD K6 CPU with MMX instruction set support.
31613
31614@item k6-2
31615@itemx k6-3
31616Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
31617
31618@item athlon
31619@itemx athlon-tbird
31620AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
31621support.
31622
31623@item athlon-4
31624@itemx athlon-xp
31625@itemx athlon-mp
31626Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
31627instruction set support.
31628
31629@item k8
31630@itemx opteron
31631@itemx athlon64
31632@itemx athlon-fx
31633Processors based on the AMD K8 core with x86-64 instruction set support,
31634including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
31635(This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
31636instruction set extensions.)
31637
31638@item k8-sse3
31639@itemx opteron-sse3
31640@itemx athlon64-sse3
31641Improved versions of AMD K8 cores with SSE3 instruction set support.
31642
31643@item amdfam10
31644@itemx barcelona
31645CPUs based on AMD Family 10h cores with x86-64 instruction set support.  (This
31646supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
31647instruction set extensions.)
31648
31649@item bdver1
31650CPUs based on AMD Family 15h cores with x86-64 instruction set support.  (This
31651supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
31652SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
31653
31654@item bdver2
31655AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
31656supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
31657SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set 
31658extensions.)
31659
31660@item bdver3
31661AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
31662supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, 
31663PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
3166464-bit instruction set extensions.)
31665
31666@item bdver4
31667AMD Family 15h core based CPUs with x86-64 instruction set support.  (This
31668supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, 
31669AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
31670SSE4.2, ABM and 64-bit instruction set extensions.)
31671
31672@item znver1
31673AMD Family 17h core based CPUs with x86-64 instruction set support.  (This
31674supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
31675SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
31676SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
31677instruction set extensions.)
31678
31679@item znver2
31680AMD Family 17h core based CPUs with x86-64 instruction set support. (This
31681supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
31682MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
31683SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
31684WBNOINVD, and 64-bit instruction set extensions.)
31685
31686@item znver3
31687AMD Family 19h core based CPUs with x86-64 instruction set support. (This
31688supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
31689MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
31690SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
31691WBNOINVD, PKU, VPCLMULQDQ, VAES, and 64-bit instruction set extensions.)
31692
31693@item znver4
31694AMD Family 19h core based CPUs with x86-64 instruction set support. (This
31695supersets BMI, BMI2, CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
31696MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
31697SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, RDPID,
31698WBNOINVD, PKU, VPCLMULQDQ, VAES, AVX512F, AVX512DQ, AVX512IFMA, AVX512CD,
31699AVX512BW, AVX512VL, AVX512BF16, AVX512VBMI, AVX512VBMI2, AVX512VNNI,
31700AVX512BITALG, AVX512VPOPCNTDQ, GFNI and 64-bit instruction set extensions.)
31701
31702@item btver1
31703CPUs based on AMD Family 14h cores with x86-64 instruction set support.  (This
31704supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
31705instruction set extensions.)
31706
31707@item btver2
31708CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
31709includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
31710SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
31711
31712@item winchip-c6
31713IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
31714set support.
31715
31716@item winchip2
31717IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
31718instruction set support.
31719
31720@item c3
31721VIA C3 CPU with MMX and 3DNow!@: instruction set support.
31722(No scheduling is implemented for this chip.)
31723
31724@item c3-2
31725VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
31726(No scheduling is implemented for this chip.)
31727
31728@item c7
31729VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
31730(No scheduling is implemented for this chip.)
31731
31732@item samuel-2
31733VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
31734(No scheduling is implemented for this chip.)
31735
31736@item nehemiah
31737VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
31738(No scheduling is implemented for this chip.)
31739
31740@item esther
31741VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
31742(No scheduling is implemented for this chip.)
31743
31744@item eden-x2
31745VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
31746(No scheduling is implemented for this chip.)
31747
31748@item eden-x4
31749VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
31750AVX and AVX2 instruction set support.
31751(No scheduling is implemented for this chip.)
31752
31753@item nano
31754Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
31755instruction set support.
31756(No scheduling is implemented for this chip.)
31757
31758@item nano-1000
31759VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
31760instruction set support.
31761(No scheduling is implemented for this chip.)
31762
31763@item nano-2000
31764VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
31765instruction set support.
31766(No scheduling is implemented for this chip.)
31767
31768@item nano-3000
31769VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
31770instruction set support.
31771(No scheduling is implemented for this chip.)
31772
31773@item nano-x2
31774VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
31775instruction set support.
31776(No scheduling is implemented for this chip.)
31777
31778@item nano-x4
31779VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
31780instruction set support.
31781(No scheduling is implemented for this chip.)
31782
31783@item geode
31784AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
31785@end table
31786
31787@item -mtune=@var{cpu-type}
31788@opindex mtune
31789Tune to @var{cpu-type} everything applicable about the generated code, except
31790for the ABI and the set of available instructions.  
31791While picking a specific @var{cpu-type} schedules things appropriately
31792for that particular chip, the compiler does not generate any code that
31793cannot run on the default machine type unless you use a
31794@option{-march=@var{cpu-type}} option.
31795For example, if GCC is configured for i686-pc-linux-gnu
31796then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
31797but still runs on i686 machines.
31798
31799The choices for @var{cpu-type} are the same as for @option{-march}.
31800In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
31801
31802@table @samp
31803@item generic
31804Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
31805If you know the CPU on which your code will run, then you should use
31806the corresponding @option{-mtune} or @option{-march} option instead of
31807@option{-mtune=generic}.  But, if you do not know exactly what CPU users
31808of your application will have, then you should use this option.
31809
31810As new processors are deployed in the marketplace, the behavior of this
31811option will change.  Therefore, if you upgrade to a newer version of
31812GCC, code generation controlled by this option will change to reflect
31813the processors
31814that are most common at the time that version of GCC is released.
31815
31816There is no @option{-march=generic} option because @option{-march}
31817indicates the instruction set the compiler can use, and there is no
31818generic instruction set applicable to all processors.  In contrast,
31819@option{-mtune} indicates the processor (or, in this case, collection of
31820processors) for which the code is optimized.
31821
31822@item intel
31823Produce code optimized for the most current Intel processors, which are
31824Haswell and Silvermont for this version of GCC.  If you know the CPU
31825on which your code will run, then you should use the corresponding
31826@option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
31827But, if you want your application performs better on both Haswell and
31828Silvermont, then you should use this option.
31829
31830As new Intel processors are deployed in the marketplace, the behavior of
31831this option will change.  Therefore, if you upgrade to a newer version of
31832GCC, code generation controlled by this option will change to reflect
31833the most current Intel processors at the time that version of GCC is
31834released.
31835
31836There is no @option{-march=intel} option because @option{-march} indicates
31837the instruction set the compiler can use, and there is no common
31838instruction set applicable to all processors.  In contrast,
31839@option{-mtune} indicates the processor (or, in this case, collection of
31840processors) for which the code is optimized.
31841@end table
31842
31843@item -mcpu=@var{cpu-type}
31844@opindex mcpu
31845A deprecated synonym for @option{-mtune}.
31846
31847@item -mfpmath=@var{unit}
31848@opindex mfpmath
31849Generate floating-point arithmetic for selected unit @var{unit}.  The choices
31850for @var{unit} are:
31851
31852@table @samp
31853@item 387
31854Use the standard 387 floating-point coprocessor present on the majority of chips and
31855emulated otherwise.  Code compiled with this option runs almost everywhere.
31856The temporary results are computed in 80-bit precision instead of the precision
31857specified by the type, resulting in slightly different results compared to most
31858of other chips.  See @option{-ffloat-store} for more detailed description.
31859
31860This is the default choice for non-Darwin x86-32 targets.
31861
31862@item sse
31863Use scalar floating-point instructions present in the SSE instruction set.
31864This instruction set is supported by Pentium III and newer chips,
31865and in the AMD line
31866by Athlon-4, Athlon XP and Athlon MP chips.  The earlier version of the SSE
31867instruction set supports only single-precision arithmetic, thus the double and
31868extended-precision arithmetic are still done using 387.  A later version, present
31869only in Pentium 4 and AMD x86-64 chips, supports double-precision
31870arithmetic too.
31871
31872For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
31873or @option{-msse2} switches to enable SSE extensions and make this option
31874effective.  For the x86-64 compiler, these extensions are enabled by default.
31875
31876The resulting code should be considerably faster in the majority of cases and avoid
31877the numerical instability problems of 387 code, but may break some existing
31878code that expects temporaries to be 80 bits.
31879
31880This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
31881and the default choice for x86-32 targets with the SSE2 instruction set
31882when @option{-ffast-math} is enabled.
31883
31884@item sse,387
31885@itemx sse+387
31886@itemx both
31887Attempt to utilize both instruction sets at once.  This effectively doubles the
31888amount of available registers, and on chips with separate execution units for
31889387 and SSE the execution resources too.  Use this option with care, as it is
31890still experimental, because the GCC register allocator does not model separate
31891functional units well, resulting in unstable performance.
31892@end table
31893
31894@item -masm=@var{dialect}
31895@opindex masm=@var{dialect}
31896Output assembly instructions using selected @var{dialect}.  Also affects
31897which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
31898extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
31899order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
31900not support @samp{intel}.
31901
31902@item -mieee-fp
31903@itemx -mno-ieee-fp
31904@opindex mieee-fp
31905@opindex mno-ieee-fp
31906Control whether or not the compiler uses IEEE floating-point
31907comparisons.  These correctly handle the case where the result of a
31908comparison is unordered.
31909
31910@item -m80387
31911@itemx -mhard-float
31912@opindex 80387
31913@opindex mhard-float
31914Generate output containing 80387 instructions for floating point.
31915
31916@item -mno-80387
31917@itemx -msoft-float
31918@opindex no-80387
31919@opindex msoft-float
31920Generate output containing library calls for floating point.
31921
31922@strong{Warning:} the requisite libraries are not part of GCC@.
31923Normally the facilities of the machine's usual C compiler are used, but
31924this cannot be done directly in cross-compilation.  You must make your
31925own arrangements to provide suitable library functions for
31926cross-compilation.
31927
31928On machines where a function returns floating-point results in the 80387
31929register stack, some floating-point opcodes may be emitted even if
31930@option{-msoft-float} is used.
31931
31932@item -mno-fp-ret-in-387
31933@opindex mno-fp-ret-in-387
31934@opindex mfp-ret-in-387
31935Do not use the FPU registers for return values of functions.
31936
31937The usual calling convention has functions return values of types
31938@code{float} and @code{double} in an FPU register, even if there
31939is no FPU@.  The idea is that the operating system should emulate
31940an FPU@.
31941
31942The option @option{-mno-fp-ret-in-387} causes such values to be returned
31943in ordinary CPU registers instead.
31944
31945@item -mno-fancy-math-387
31946@opindex mno-fancy-math-387
31947@opindex mfancy-math-387
31948Some 387 emulators do not support the @code{sin}, @code{cos} and
31949@code{sqrt} instructions for the 387.  Specify this option to avoid
31950generating those instructions.
31951This option is overridden when @option{-march}
31952indicates that the target CPU always has an FPU and so the
31953instruction does not need emulation.  These
31954instructions are not generated unless you also use the
31955@option{-funsafe-math-optimizations} switch.
31956
31957@item -malign-double
31958@itemx -mno-align-double
31959@opindex malign-double
31960@opindex mno-align-double
31961Control whether GCC aligns @code{double}, @code{long double}, and
31962@code{long long} variables on a two-word boundary or a one-word
31963boundary.  Aligning @code{double} variables on a two-word boundary
31964produces code that runs somewhat faster on a Pentium at the
31965expense of more memory.
31966
31967On x86-64, @option{-malign-double} is enabled by default.
31968
31969@strong{Warning:} if you use the @option{-malign-double} switch,
31970structures containing the above types are aligned differently than
31971the published application binary interface specifications for the x86-32
31972and are not binary compatible with structures in code compiled
31973without that switch.
31974
31975@item -m96bit-long-double
31976@itemx -m128bit-long-double
31977@opindex m96bit-long-double
31978@opindex m128bit-long-double
31979These switches control the size of @code{long double} type.  The x86-32
31980application binary interface specifies the size to be 96 bits,
31981so @option{-m96bit-long-double} is the default in 32-bit mode.
31982
31983Modern architectures (Pentium and newer) prefer @code{long double}
31984to be aligned to an 8- or 16-byte boundary.  In arrays or structures
31985conforming to the ABI, this is not possible.  So specifying
31986@option{-m128bit-long-double} aligns @code{long double}
31987to a 16-byte boundary by padding the @code{long double} with an additional
3198832-bit zero.
31989
31990In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
31991its ABI specifies that @code{long double} is aligned on 16-byte boundary.
31992
31993Notice that neither of these options enable any extra precision over the x87
31994standard of 80 bits for a @code{long double}.
31995
31996@strong{Warning:} if you override the default value for your target ABI, this
31997changes the size of 
31998structures and arrays containing @code{long double} variables,
31999as well as modifying the function calling convention for functions taking
32000@code{long double}.  Hence they are not binary-compatible
32001with code compiled without that switch.
32002
32003@item -mlong-double-64
32004@itemx -mlong-double-80
32005@itemx -mlong-double-128
32006@opindex mlong-double-64
32007@opindex mlong-double-80
32008@opindex mlong-double-128
32009These switches control the size of @code{long double} type. A size
32010of 64 bits makes the @code{long double} type equivalent to the @code{double}
32011type. This is the default for 32-bit Bionic C library.  A size
32012of 128 bits makes the @code{long double} type equivalent to the
32013@code{__float128} type. This is the default for 64-bit Bionic C library.
32014
32015@strong{Warning:} if you override the default value for your target ABI, this
32016changes the size of
32017structures and arrays containing @code{long double} variables,
32018as well as modifying the function calling convention for functions taking
32019@code{long double}.  Hence they are not binary-compatible
32020with code compiled without that switch.
32021
32022@item -malign-data=@var{type}
32023@opindex malign-data
32024Control how GCC aligns variables.  Supported values for @var{type} are
32025@samp{compat} uses increased alignment value compatible uses GCC 4.8
32026and earlier, @samp{abi} uses alignment value as specified by the
32027psABI, and @samp{cacheline} uses increased alignment value to match
32028the cache line size.  @samp{compat} is the default.
32029
32030@item -mlarge-data-threshold=@var{threshold}
32031@opindex mlarge-data-threshold
32032When @option{-mcmodel=medium} is specified, data objects larger than
32033@var{threshold} are placed in the large data section.  This value must be the
32034same across all objects linked into the binary, and defaults to 65535.
32035
32036@item -mrtd
32037@opindex mrtd
32038Use a different function-calling convention, in which functions that
32039take a fixed number of arguments return with the @code{ret @var{num}}
32040instruction, which pops their arguments while returning.  This saves one
32041instruction in the caller since there is no need to pop the arguments
32042there.
32043
32044You can specify that an individual function is called with this calling
32045sequence with the function attribute @code{stdcall}.  You can also
32046override the @option{-mrtd} option by using the function attribute
32047@code{cdecl}.  @xref{Function Attributes}.
32048
32049@strong{Warning:} this calling convention is incompatible with the one
32050normally used on Unix, so you cannot use it if you need to call
32051libraries compiled with the Unix compiler.
32052
32053Also, you must provide function prototypes for all functions that
32054take variable numbers of arguments (including @code{printf});
32055otherwise incorrect code is generated for calls to those
32056functions.
32057
32058In addition, seriously incorrect code results if you call a
32059function with too many arguments.  (Normally, extra arguments are
32060harmlessly ignored.)
32061
32062@item -mregparm=@var{num}
32063@opindex mregparm
32064Control how many registers are used to pass integer arguments.  By
32065default, no registers are used to pass arguments, and at most 3
32066registers can be used.  You can control this behavior for a specific
32067function by using the function attribute @code{regparm}.
32068@xref{Function Attributes}.
32069
32070@strong{Warning:} if you use this switch, and
32071@var{num} is nonzero, then you must build all modules with the same
32072value, including any libraries.  This includes the system libraries and
32073startup modules.
32074
32075@item -msseregparm
32076@opindex msseregparm
32077Use SSE register passing conventions for float and double arguments
32078and return values.  You can control this behavior for a specific
32079function by using the function attribute @code{sseregparm}.
32080@xref{Function Attributes}.
32081
32082@strong{Warning:} if you use this switch then you must build all
32083modules with the same value, including any libraries.  This includes
32084the system libraries and startup modules.
32085
32086@item -mvect8-ret-in-mem
32087@opindex mvect8-ret-in-mem
32088Return 8-byte vectors in memory instead of MMX registers.  This is the
32089default on VxWorks to match the ABI of the Sun Studio compilers until
32090version 12.  @emph{Only} use this option if you need to remain
32091compatible with existing code produced by those previous compiler
32092versions or older versions of GCC@.
32093
32094@item -mpc32
32095@itemx -mpc64
32096@itemx -mpc80
32097@opindex mpc32
32098@opindex mpc64
32099@opindex mpc80
32100
32101Set 80387 floating-point precision to 32, 64 or 80 bits.  When @option{-mpc32}
32102is specified, the significands of results of floating-point operations are
32103rounded to 24 bits (single precision); @option{-mpc64} rounds the
32104significands of results of floating-point operations to 53 bits (double
32105precision) and @option{-mpc80} rounds the significands of results of
32106floating-point operations to 64 bits (extended double precision), which is
32107the default.  When this option is used, floating-point operations in higher
32108precisions are not available to the programmer without setting the FPU
32109control word explicitly.
32110
32111Setting the rounding of floating-point operations to less than the default
3211280 bits can speed some programs by 2% or more.  Note that some mathematical
32113libraries assume that extended-precision (80-bit) floating-point operations
32114are enabled by default; routines in such libraries could suffer significant
32115loss of accuracy, typically through so-called ``catastrophic cancellation'',
32116when this option is used to set the precision to less than extended precision.
32117
32118@item -mdaz-ftz
32119@opindex mdaz-ftz
32120
32121The flush-to-zero (FTZ) and denormals-are-zero (DAZ) flags in the MXCSR register
32122are used to control floating-point calculations.SSE and AVX instructions
32123including scalar and vector instructions could benefit from enabling the FTZ
32124and DAZ flags when @option{-mdaz-ftz} is specified. Don't set FTZ/DAZ flags
32125when @option{-mno-daz-ftz} is specified.
32126
32127@item -mstackrealign
32128@opindex mstackrealign
32129Realign the stack at entry.  On the x86, the @option{-mstackrealign}
32130option generates an alternate prologue and epilogue that realigns the
32131run-time stack if necessary.  This supports mixing legacy codes that keep
321324-byte stack alignment with modern codes that keep 16-byte stack alignment for
32133SSE compatibility.  See also the attribute @code{force_align_arg_pointer},
32134applicable to individual functions.
32135
32136@item -mpreferred-stack-boundary=@var{num}
32137@opindex mpreferred-stack-boundary
32138Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
32139byte boundary.  If @option{-mpreferred-stack-boundary} is not specified,
32140the default is 4 (16 bytes or 128 bits).
32141
32142@strong{Warning:} When generating code for the x86-64 architecture with
32143SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
32144used to keep the stack boundary aligned to 8 byte boundary.  Since
32145x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
32146intended to be used in controlled environment where stack space is
32147important limitation.  This option leads to wrong code when functions
32148compiled with 16 byte stack alignment (such as functions from a standard
32149library) are called with misaligned stack.  In this case, SSE
32150instructions may lead to misaligned memory access traps.  In addition,
32151variable arguments are handled incorrectly for 16 byte aligned
32152objects (including x87 long double and __int128), leading to wrong
32153results.  You must build all modules with
32154@option{-mpreferred-stack-boundary=3}, including any libraries.  This
32155includes the system libraries and startup modules.
32156
32157@item -mincoming-stack-boundary=@var{num}
32158@opindex mincoming-stack-boundary
32159Assume the incoming stack is aligned to a 2 raised to @var{num} byte
32160boundary.  If @option{-mincoming-stack-boundary} is not specified,
32161the one specified by @option{-mpreferred-stack-boundary} is used.
32162
32163On Pentium and Pentium Pro, @code{double} and @code{long double} values
32164should be aligned to an 8-byte boundary (see @option{-malign-double}) or
32165suffer significant run time performance penalties.  On Pentium III, the
32166Streaming SIMD Extension (SSE) data type @code{__m128} may not work
32167properly if it is not 16-byte aligned.
32168
32169To ensure proper alignment of this values on the stack, the stack boundary
32170must be as aligned as that required by any value stored on the stack.
32171Further, every function must be generated such that it keeps the stack
32172aligned.  Thus calling a function compiled with a higher preferred
32173stack boundary from a function compiled with a lower preferred stack
32174boundary most likely misaligns the stack.  It is recommended that
32175libraries that use callbacks always use the default setting.
32176
32177This extra alignment does consume extra stack space, and generally
32178increases code size.  Code that is sensitive to stack space usage, such
32179as embedded systems and operating system kernels, may want to reduce the
32180preferred alignment to @option{-mpreferred-stack-boundary=2}.
32181
32182@need 200
32183@item -mmmx
32184@opindex mmmx
32185@need 200
32186@itemx -msse
32187@opindex msse
32188@need 200
32189@itemx -msse2
32190@opindex msse2
32191@need 200
32192@itemx -msse3
32193@opindex msse3
32194@need 200
32195@itemx -mssse3
32196@opindex mssse3
32197@need 200
32198@itemx -msse4
32199@opindex msse4
32200@need 200
32201@itemx -msse4a
32202@opindex msse4a
32203@need 200
32204@itemx -msse4.1
32205@opindex msse4.1
32206@need 200
32207@itemx -msse4.2
32208@opindex msse4.2
32209@need 200
32210@itemx -mavx
32211@opindex mavx
32212@need 200
32213@itemx -mavx2
32214@opindex mavx2
32215@need 200
32216@itemx -mavx512f
32217@opindex mavx512f
32218@need 200
32219@itemx -mavx512pf
32220@opindex mavx512pf
32221@need 200
32222@itemx -mavx512er
32223@opindex mavx512er
32224@need 200
32225@itemx -mavx512cd
32226@opindex mavx512cd
32227@need 200
32228@itemx -mavx512vl
32229@opindex mavx512vl
32230@need 200
32231@itemx -mavx512bw
32232@opindex mavx512bw
32233@need 200
32234@itemx -mavx512dq
32235@opindex mavx512dq
32236@need 200
32237@itemx -mavx512ifma
32238@opindex mavx512ifma
32239@need 200
32240@itemx -mavx512vbmi
32241@opindex mavx512vbmi
32242@need 200
32243@itemx -msha
32244@opindex msha
32245@need 200
32246@itemx -maes
32247@opindex maes
32248@need 200
32249@itemx -mpclmul
32250@opindex mpclmul
32251@need 200
32252@itemx -mclflushopt
32253@opindex mclflushopt
32254@need 200
32255@itemx -mclwb
32256@opindex mclwb
32257@need 200
32258@itemx -mfsgsbase
32259@opindex mfsgsbase
32260@need 200
32261@itemx -mptwrite
32262@opindex mptwrite
32263@need 200
32264@itemx -mrdrnd
32265@opindex mrdrnd
32266@need 200
32267@itemx -mf16c
32268@opindex mf16c
32269@need 200
32270@itemx -mfma
32271@opindex mfma
32272@need 200
32273@itemx -mpconfig
32274@opindex mpconfig
32275@need 200
32276@itemx -mwbnoinvd
32277@opindex mwbnoinvd
32278@need 200
32279@itemx -mfma4
32280@opindex mfma4
32281@need 200
32282@itemx -mprfchw
32283@opindex mprfchw
32284@need 200
32285@itemx -mrdpid
32286@opindex mrdpid
32287@need 200
32288@itemx -mprefetchwt1
32289@opindex mprefetchwt1
32290@need 200
32291@itemx -mrdseed
32292@opindex mrdseed
32293@need 200
32294@itemx -msgx
32295@opindex msgx
32296@need 200
32297@itemx -mxop
32298@opindex mxop
32299@need 200
32300@itemx -mlwp
32301@opindex mlwp
32302@need 200
32303@itemx -m3dnow
32304@opindex m3dnow
32305@need 200
32306@itemx -m3dnowa
32307@opindex m3dnowa
32308@need 200
32309@itemx -mpopcnt
32310@opindex mpopcnt
32311@need 200
32312@itemx -mabm
32313@opindex mabm
32314@need 200
32315@itemx -madx
32316@opindex madx
32317@need 200
32318@itemx -mbmi
32319@opindex mbmi
32320@need 200
32321@itemx -mbmi2
32322@opindex mbmi2
32323@need 200
32324@itemx -mlzcnt
32325@opindex mlzcnt
32326@need 200
32327@itemx -mfxsr
32328@opindex mfxsr
32329@need 200
32330@itemx -mxsave
32331@opindex mxsave
32332@need 200
32333@itemx -mxsaveopt
32334@opindex mxsaveopt
32335@need 200
32336@itemx -mxsavec
32337@opindex mxsavec
32338@need 200
32339@itemx -mxsaves
32340@opindex mxsaves
32341@need 200
32342@itemx -mrtm
32343@opindex mrtm
32344@need 200
32345@itemx -mhle
32346@opindex mhle
32347@need 200
32348@itemx -mtbm
32349@opindex mtbm
32350@need 200
32351@itemx -mmwaitx
32352@opindex mmwaitx
32353@need 200
32354@itemx -mclzero
32355@opindex mclzero
32356@need 200
32357@itemx -mpku
32358@opindex mpku
32359@need 200
32360@itemx -mavx512vbmi2
32361@opindex mavx512vbmi2
32362@need 200
32363@itemx -mavx512bf16
32364@opindex mavx512bf16
32365@need 200
32366@itemx -mavx512fp16
32367@opindex mavx512fp16
32368@need 200
32369@itemx -mgfni
32370@opindex mgfni
32371@need 200
32372@itemx -mvaes
32373@opindex mvaes
32374@need 200
32375@itemx -mwaitpkg
32376@opindex mwaitpkg
32377@need 200
32378@itemx -mvpclmulqdq
32379@opindex mvpclmulqdq
32380@need 200
32381@itemx -mavx512bitalg
32382@opindex mavx512bitalg
32383@need 200
32384@itemx -mmovdiri
32385@opindex mmovdiri
32386@need 200
32387@itemx -mmovdir64b
32388@opindex mmovdir64b
32389@need 200
32390@itemx -menqcmd
32391@opindex menqcmd
32392@itemx -muintr
32393@opindex muintr
32394@need 200
32395@itemx -mtsxldtrk
32396@opindex mtsxldtrk
32397@need 200
32398@itemx -mavx512vpopcntdq
32399@opindex mavx512vpopcntdq
32400@need 200
32401@itemx -mavx512vp2intersect
32402@opindex mavx512vp2intersect
32403@need 200
32404@itemx -mavx5124fmaps
32405@opindex mavx5124fmaps
32406@need 200
32407@itemx -mavx512vnni
32408@opindex mavx512vnni
32409@need 200
32410@itemx -mavxvnni
32411@opindex mavxvnni
32412@need 200
32413@itemx -mavx5124vnniw
32414@opindex mavx5124vnniw
32415@need 200
32416@itemx -mcldemote
32417@opindex mcldemote
32418@need 200
32419@itemx -mserialize
32420@opindex mserialize
32421@need 200
32422@itemx -mamx-tile
32423@opindex mamx-tile
32424@need 200
32425@itemx -mamx-int8
32426@opindex mamx-int8
32427@need 200
32428@itemx -mamx-bf16
32429@opindex mamx-bf16
32430@need 200
32431@itemx -mhreset
32432@opindex mhreset
32433@itemx -mkl
32434@opindex mkl
32435@need 200
32436@itemx -mwidekl
32437@opindex mwidekl
32438These switches enable the use of instructions in the MMX, SSE,
32439SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
32440AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
32441AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
32442WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
324433DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
32444XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
32445GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
32446ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, SERIALIZE,
32447UINTR, HRESET, AMXTILE, AMXINT8, AMXBF16, KL, WIDEKL, AVXVNNI, AVX512-FP16
32448or CLDEMOTE extended instruction sets. Each has a corresponding
32449@option{-mno-} option to disable use of these instructions.
32450
32451These extensions are also available as built-in functions: see
32452@ref{x86 Built-in Functions}, for details of the functions enabled and
32453disabled by these switches.
32454
32455To generate SSE/SSE2 instructions automatically from floating-point
32456code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
32457
32458GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
32459generates new AVX instructions or AVX equivalence for all SSEx instructions
32460when needed.
32461
32462These options enable GCC to use these extended instructions in
32463generated code, even without @option{-mfpmath=sse}.  Applications that
32464perform run-time CPU detection must compile separate files for each
32465supported architecture, using the appropriate flags.  In particular,
32466the file containing the CPU detection code should be compiled without
32467these options.
32468
32469@item -mdump-tune-features
32470@opindex mdump-tune-features
32471This option instructs GCC to dump the names of the x86 performance 
32472tuning features and default settings. The names can be used in 
32473@option{-mtune-ctrl=@var{feature-list}}.
32474
32475@item -mtune-ctrl=@var{feature-list}
32476@opindex mtune-ctrl=@var{feature-list}
32477This option is used to do fine grain control of x86 code generation features.
32478@var{feature-list} is a comma separated list of @var{feature} names. See also
32479@option{-mdump-tune-features}. When specified, the @var{feature} is turned
32480on if it is not preceded with @samp{^}, otherwise, it is turned off. 
32481@option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
32482developers. Using it may lead to code paths not covered by testing and can
32483potentially result in compiler ICEs or runtime errors.
32484
32485@item -mno-default
32486@opindex mno-default
32487This option instructs GCC to turn off all tunable features. See also 
32488@option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
32489
32490@item -mcld
32491@opindex mcld
32492This option instructs GCC to emit a @code{cld} instruction in the prologue
32493of functions that use string instructions.  String instructions depend on
32494the DF flag to select between autoincrement or autodecrement mode.  While the
32495ABI specifies the DF flag to be cleared on function entry, some operating
32496systems violate this specification by not clearing the DF flag in their
32497exception dispatchers.  The exception handler can be invoked with the DF flag
32498set, which leads to wrong direction mode when string instructions are used.
32499This option can be enabled by default on 32-bit x86 targets by configuring
32500GCC with the @option{--enable-cld} configure option.  Generation of @code{cld}
32501instructions can be suppressed with the @option{-mno-cld} compiler option
32502in this case.
32503
32504@item -mvzeroupper
32505@opindex mvzeroupper
32506This option instructs GCC to emit a @code{vzeroupper} instruction
32507before a transfer of control flow out of the function to minimize
32508the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
32509intrinsics.
32510
32511@item -mprefer-avx128
32512@opindex mprefer-avx128
32513This option instructs GCC to use 128-bit AVX instructions instead of
32514256-bit AVX instructions in the auto-vectorizer.
32515
32516@item -mprefer-vector-width=@var{opt}
32517@opindex mprefer-vector-width
32518This option instructs GCC to use @var{opt}-bit vector width in instructions
32519instead of default on the selected platform.
32520
32521@item -mmove-max=@var{bits}
32522@opindex mmove-max
32523This option instructs GCC to set the maximum number of bits can be
32524moved from memory to memory efficiently to @var{bits}.  The valid
32525@var{bits} are 128, 256 and 512.
32526
32527@item -mstore-max=@var{bits}
32528@opindex mstore-max
32529This option instructs GCC to set the maximum number of bits can be
32530stored to memory efficiently to @var{bits}.  The valid @var{bits} are
32531128, 256 and 512.
32532
32533@table @samp
32534@item none
32535No extra limitations applied to GCC other than defined by the selected platform.
32536
32537@item 128
32538Prefer 128-bit vector width for instructions.
32539
32540@item 256
32541Prefer 256-bit vector width for instructions.
32542
32543@item 512
32544Prefer 512-bit vector width for instructions.
32545@end table
32546
32547@item -mcx16
32548@opindex mcx16
32549This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
32550code to implement compare-and-exchange operations on 16-byte aligned 128-bit
32551objects.  This is useful for atomic updates of data structures exceeding one
32552machine word in size.  The compiler uses this instruction to implement
32553@ref{__sync Builtins}.  However, for @ref{__atomic Builtins} operating on
32554128-bit integers, a library call is always used.
32555
32556@item -msahf
32557@opindex msahf
32558This option enables generation of @code{SAHF} instructions in 64-bit code.
32559Early Intel Pentium 4 CPUs with Intel 64 support,
32560prior to the introduction of Pentium 4 G1 step in December 2005,
32561lacked the @code{LAHF} and @code{SAHF} instructions
32562which are supported by AMD64.
32563These are load and store instructions, respectively, for certain status flags.
32564In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
32565@code{drem}, and @code{remainder} built-in functions;
32566see @ref{Other Builtins} for details.
32567
32568@item -mmovbe
32569@opindex mmovbe
32570This option enables use of the @code{movbe} instruction to implement
32571@code{__builtin_bswap32} and @code{__builtin_bswap64}.
32572
32573@item -mshstk
32574@opindex mshstk
32575The @option{-mshstk} option enables shadow stack built-in functions
32576from x86 Control-flow Enforcement Technology (CET).
32577
32578@item -mcrc32
32579@opindex mcrc32
32580This option enables built-in functions @code{__builtin_ia32_crc32qi},
32581@code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
32582@code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
32583
32584@item -mmwait
32585@opindex mmwait
32586This option enables built-in functions @code{__builtin_ia32_monitor},
32587and @code{__builtin_ia32_mwait} to generate the @code{monitor} and
32588@code{mwait} machine instructions.
32589
32590@item -mrecip
32591@opindex mrecip
32592This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
32593(and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
32594with an additional Newton-Raphson step
32595to increase precision instead of @code{DIVSS} and @code{SQRTSS}
32596(and their vectorized
32597variants) for single-precision floating-point arguments.  These instructions
32598are generated only when @option{-funsafe-math-optimizations} is enabled
32599together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
32600Note that while the throughput of the sequence is higher than the throughput
32601of the non-reciprocal instruction, the precision of the sequence can be
32602decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
32603
32604Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
32605(or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
32606combination), and doesn't need @option{-mrecip}.
32607
32608Also note that GCC emits the above sequence with additional Newton-Raphson step
32609for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
32610already with @option{-ffast-math} (or the above option combination), and
32611doesn't need @option{-mrecip}.
32612
32613@item -mrecip=@var{opt}
32614@opindex mrecip=opt
32615This option controls which reciprocal estimate instructions
32616may be used.  @var{opt} is a comma-separated list of options, which may
32617be preceded by a @samp{!} to invert the option:
32618
32619@table @samp
32620@item all
32621Enable all estimate instructions.
32622
32623@item default
32624Enable the default instructions, equivalent to @option{-mrecip}.
32625
32626@item none
32627Disable all estimate instructions, equivalent to @option{-mno-recip}.
32628
32629@item div
32630Enable the approximation for scalar division.
32631
32632@item vec-div
32633Enable the approximation for vectorized division.
32634
32635@item sqrt
32636Enable the approximation for scalar square root.
32637
32638@item vec-sqrt
32639Enable the approximation for vectorized square root.
32640@end table
32641
32642So, for example, @option{-mrecip=all,!sqrt} enables
32643all of the reciprocal approximations, except for square root.
32644
32645@item -mveclibabi=@var{type}
32646@opindex mveclibabi
32647Specifies the ABI type to use for vectorizing intrinsics using an
32648external library.  Supported values for @var{type} are @samp{svml} 
32649for the Intel short
32650vector math library and @samp{acml} for the AMD math core library.
32651To use this option, both @option{-ftree-vectorize} and
32652@option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML 
32653ABI-compatible library must be specified at link time.
32654
32655GCC currently emits calls to @code{vmldExp2},
32656@code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
32657@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
32658@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
32659@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
32660@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
32661@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
32662@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
32663@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
32664@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
32665function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
32666@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
32667@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
32668@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
32669@code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
32670when @option{-mveclibabi=acml} is used.  
32671
32672@item -mabi=@var{name}
32673@opindex mabi
32674Generate code for the specified calling convention.  Permissible values
32675are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
32676@samp{ms} for the Microsoft ABI.  The default is to use the Microsoft
32677ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
32678You can control this behavior for specific functions by
32679using the function attributes @code{ms_abi} and @code{sysv_abi}.
32680@xref{Function Attributes}.
32681
32682@item -mforce-indirect-call
32683@opindex mforce-indirect-call
32684Force all calls to functions to be indirect. This is useful
32685when using Intel Processor Trace where it generates more precise timing
32686information for function calls.
32687
32688@item -mmanual-endbr
32689@opindex mmanual-endbr
32690Insert ENDBR instruction at function entry only via the @code{cf_check}
32691function attribute. This is useful when used with the option
32692@option{-fcf-protection=branch} to control ENDBR insertion at the
32693function entry.
32694
32695@item -mcall-ms2sysv-xlogues
32696@opindex mcall-ms2sysv-xlogues
32697@opindex mno-call-ms2sysv-xlogues
32698Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
32699System V ABI function must consider RSI, RDI and XMM6-15 as clobbered.  By
32700default, the code for saving and restoring these registers is emitted inline,
32701resulting in fairly lengthy prologues and epilogues.  Using
32702@option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
32703use stubs in the static portion of libgcc to perform these saves and restores,
32704thus reducing function size at the cost of a few extra instructions.
32705
32706@item -mtls-dialect=@var{type}
32707@opindex mtls-dialect
32708Generate code to access thread-local storage using the @samp{gnu} or
32709@samp{gnu2} conventions.  @samp{gnu} is the conservative default;
32710@samp{gnu2} is more efficient, but it may add compile- and run-time
32711requirements that cannot be satisfied on all systems.
32712
32713@item -mpush-args
32714@itemx -mno-push-args
32715@opindex mpush-args
32716@opindex mno-push-args
32717Use PUSH operations to store outgoing parameters.  This method is shorter
32718and usually equally fast as method using SUB/MOV operations and is enabled
32719by default.  In some cases disabling it may improve performance because of
32720improved scheduling and reduced dependencies.
32721
32722@item -maccumulate-outgoing-args
32723@opindex maccumulate-outgoing-args
32724If enabled, the maximum amount of space required for outgoing arguments is
32725computed in the function prologue.  This is faster on most modern CPUs
32726because of reduced dependencies, improved scheduling and reduced stack usage
32727when the preferred stack boundary is not equal to 2.  The drawback is a notable
32728increase in code size.  This switch implies @option{-mno-push-args}.
32729
32730@item -mthreads
32731@opindex mthreads
32732Support thread-safe exception handling on MinGW.  Programs that rely
32733on thread-safe exception handling must compile and link all code with the
32734@option{-mthreads} option.  When compiling, @option{-mthreads} defines
32735@option{-D_MT}; when linking, it links in a special thread helper library
32736@option{-lmingwthrd} which cleans up per-thread exception-handling data.
32737
32738@item -mms-bitfields
32739@itemx -mno-ms-bitfields
32740@opindex mms-bitfields
32741@opindex mno-ms-bitfields
32742
32743Enable/disable bit-field layout compatible with the native Microsoft
32744Windows compiler.  
32745
32746If @code{packed} is used on a structure, or if bit-fields are used,
32747it may be that the Microsoft ABI lays out the structure differently
32748than the way GCC normally does.  Particularly when moving packed
32749data between functions compiled with GCC and the native Microsoft compiler
32750(either via function call or as data in a file), it may be necessary to access
32751either format.
32752
32753This option is enabled by default for Microsoft Windows
32754targets.  This behavior can also be controlled locally by use of variable
32755or type attributes.  For more information, see @ref{x86 Variable Attributes}
32756and @ref{x86 Type Attributes}.
32757
32758The Microsoft structure layout algorithm is fairly simple with the exception
32759of the bit-field packing.  
32760The padding and alignment of members of structures and whether a bit-field 
32761can straddle a storage-unit boundary are determine by these rules:
32762
32763@enumerate
32764@item Structure members are stored sequentially in the order in which they are
32765declared: the first member has the lowest memory address and the last member
32766the highest.
32767
32768@item Every data object has an alignment requirement.  The alignment requirement
32769for all data except structures, unions, and arrays is either the size of the
32770object or the current packing size (specified with either the
32771@code{aligned} attribute or the @code{pack} pragma),
32772whichever is less.  For structures, unions, and arrays,
32773the alignment requirement is the largest alignment requirement of its members.
32774Every object is allocated an offset so that:
32775
32776@smallexample
32777offset % alignment_requirement == 0
32778@end smallexample
32779
32780@item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
32781unit if the integral types are the same size and if the next bit-field fits
32782into the current allocation unit without crossing the boundary imposed by the
32783common alignment requirements of the bit-fields.
32784@end enumerate
32785
32786MSVC interprets zero-length bit-fields in the following ways:
32787
32788@enumerate
32789@item If a zero-length bit-field is inserted between two bit-fields that
32790are normally coalesced, the bit-fields are not coalesced.
32791
32792For example:
32793
32794@smallexample
32795struct
32796 @{
32797   unsigned long bf_1 : 12;
32798   unsigned long : 0;
32799   unsigned long bf_2 : 12;
32800 @} t1;
32801@end smallexample
32802
32803@noindent
32804The size of @code{t1} is 8 bytes with the zero-length bit-field.  If the
32805zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
32806
32807@item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
32808alignment of the zero-length bit-field is greater than the member that follows it,
32809@code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
32810
32811For example:
32812
32813@smallexample
32814struct
32815 @{
32816   char foo : 4;
32817   short : 0;
32818   char bar;
32819 @} t2;
32820
32821struct
32822 @{
32823   char foo : 4;
32824   short : 0;
32825   double bar;
32826 @} t3;
32827@end smallexample
32828
32829@noindent
32830For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
32831Accordingly, the size of @code{t2} is 4.  For @code{t3}, the zero-length
32832bit-field does not affect the alignment of @code{bar} or, as a result, the size
32833of the structure.
32834
32835Taking this into account, it is important to note the following:
32836
32837@enumerate
32838@item If a zero-length bit-field follows a normal bit-field, the type of the
32839zero-length bit-field may affect the alignment of the structure as whole. For
32840example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
32841normal bit-field, and is of type short.
32842
32843@item Even if a zero-length bit-field is not followed by a normal bit-field, it may
32844still affect the alignment of the structure:
32845
32846@smallexample
32847struct
32848 @{
32849   char foo : 6;
32850   long : 0;
32851 @} t4;
32852@end smallexample
32853
32854@noindent
32855Here, @code{t4} takes up 4 bytes.
32856@end enumerate
32857
32858@item Zero-length bit-fields following non-bit-field members are ignored:
32859
32860@smallexample
32861struct
32862 @{
32863   char foo;
32864   long : 0;
32865   char bar;
32866 @} t5;
32867@end smallexample
32868
32869@noindent
32870Here, @code{t5} takes up 2 bytes.
32871@end enumerate
32872
32873
32874@item -mno-align-stringops
32875@opindex mno-align-stringops
32876@opindex malign-stringops
32877Do not align the destination of inlined string operations.  This switch reduces
32878code size and improves performance in case the destination is already aligned,
32879but GCC doesn't know about it.
32880
32881@item -minline-all-stringops
32882@opindex minline-all-stringops
32883By default GCC inlines string operations only when the destination is 
32884known to be aligned to least a 4-byte boundary.  
32885This enables more inlining and increases code
32886size, but may improve performance of code that depends on fast
32887@code{memcpy} and @code{memset} for short lengths.
32888The option enables inline expansion of @code{strlen} for all
32889pointer alignments.
32890
32891@item -minline-stringops-dynamically
32892@opindex minline-stringops-dynamically
32893For string operations of unknown size, use run-time checks with
32894inline code for small blocks and a library call for large blocks.
32895
32896@item -mstringop-strategy=@var{alg}
32897@opindex mstringop-strategy=@var{alg}
32898Override the internal decision heuristic for the particular algorithm to use
32899for inlining string operations.  The allowed values for @var{alg} are:
32900
32901@table @samp
32902@item rep_byte
32903@itemx rep_4byte
32904@itemx rep_8byte
32905Expand using i386 @code{rep} prefix of the specified size.
32906
32907@item byte_loop
32908@itemx loop
32909@itemx unrolled_loop
32910Expand into an inline loop.
32911
32912@item libcall
32913Always use a library call.
32914@end table
32915
32916@item -mmemcpy-strategy=@var{strategy}
32917@opindex mmemcpy-strategy=@var{strategy}
32918Override the internal decision heuristic to decide if @code{__builtin_memcpy}
32919should be inlined and what inline algorithm to use when the expected size
32920of the copy operation is known. @var{strategy} 
32921is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets. 
32922@var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
32923the max byte size with which inline algorithm @var{alg} is allowed.  For the last
32924triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
32925in the list must be specified in increasing order.  The minimal byte size for 
32926@var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the 
32927preceding range.
32928
32929@item -mmemset-strategy=@var{strategy}
32930@opindex mmemset-strategy=@var{strategy}
32931The option is similar to @option{-mmemcpy-strategy=} except that it is to control
32932@code{__builtin_memset} expansion.
32933
32934@item -momit-leaf-frame-pointer
32935@opindex momit-leaf-frame-pointer
32936Don't keep the frame pointer in a register for leaf functions.  This
32937avoids the instructions to save, set up, and restore frame pointers and
32938makes an extra register available in leaf functions.  The option
32939@option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
32940which might make debugging harder.
32941
32942@item -mtls-direct-seg-refs
32943@itemx -mno-tls-direct-seg-refs
32944@opindex mtls-direct-seg-refs
32945Controls whether TLS variables may be accessed with offsets from the
32946TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
32947or whether the thread base pointer must be added.  Whether or not this
32948is valid depends on the operating system, and whether it maps the
32949segment to cover the entire TLS area.
32950
32951For systems that use the GNU C Library, the default is on.
32952
32953@item -msse2avx
32954@itemx -mno-sse2avx
32955@opindex msse2avx
32956Specify that the assembler should encode SSE instructions with VEX
32957prefix.  The option @option{-mavx} turns this on by default.
32958
32959@item -mfentry
32960@itemx -mno-fentry
32961@opindex mfentry
32962If profiling is active (@option{-pg}), put the profiling
32963counter call before the prologue.
32964Note: On x86 architectures the attribute @code{ms_hook_prologue}
32965isn't possible at the moment for @option{-mfentry} and @option{-pg}.
32966
32967@item -mrecord-mcount
32968@itemx -mno-record-mcount
32969@opindex mrecord-mcount
32970If profiling is active (@option{-pg}), generate a __mcount_loc section
32971that contains pointers to each profiling call. This is useful for
32972automatically patching and out calls.
32973
32974@item -mnop-mcount
32975@itemx -mno-nop-mcount
32976@opindex mnop-mcount
32977If profiling is active (@option{-pg}), generate the calls to
32978the profiling functions as NOPs. This is useful when they
32979should be patched in later dynamically. This is likely only
32980useful together with @option{-mrecord-mcount}.
32981
32982@item -minstrument-return=@var{type}
32983@opindex minstrument-return
32984Instrument function exit in -pg -mfentry instrumented functions with
32985call to specified function. This only instruments true returns ending
32986with ret, but not sibling calls ending with jump. Valid types
32987are @var{none} to not instrument, @var{call} to generate a call to __return__,
32988or @var{nop5} to generate a 5 byte nop.
32989
32990@item -mrecord-return
32991@itemx -mno-record-return
32992@opindex mrecord-return
32993Generate a __return_loc section pointing to all return instrumentation code.
32994
32995@item -mfentry-name=@var{name}
32996@opindex mfentry-name
32997Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
32998
32999@item -mfentry-section=@var{name}
33000@opindex mfentry-section
33001Set name of section to record -mrecord-mcount calls (default __mcount_loc).
33002
33003@item -mskip-rax-setup
33004@itemx -mno-skip-rax-setup
33005@opindex mskip-rax-setup
33006When generating code for the x86-64 architecture with SSE extensions
33007disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
33008register when there are no variable arguments passed in vector registers.
33009
33010@strong{Warning:} Since RAX register is used to avoid unnecessarily
33011saving vector registers on stack when passing variable arguments, the
33012impacts of this option are callees may waste some stack space,
33013misbehave or jump to a random location.  GCC 4.4 or newer don't have
33014those issues, regardless the RAX register value.
33015
33016@item -m8bit-idiv
33017@itemx -mno-8bit-idiv
33018@opindex m8bit-idiv
33019On some processors, like Intel Atom, 8-bit unsigned integer divide is
33020much faster than 32-bit/64-bit integer divide.  This option generates a
33021run-time check.  If both dividend and divisor are within range of 0
33022to 255, 8-bit unsigned integer divide is used instead of
3302332-bit/64-bit integer divide.
33024
33025@item -mavx256-split-unaligned-load
33026@itemx -mavx256-split-unaligned-store
33027@opindex mavx256-split-unaligned-load
33028@opindex mavx256-split-unaligned-store
33029Split 32-byte AVX unaligned load and store.
33030
33031@item -mstack-protector-guard=@var{guard}
33032@itemx -mstack-protector-guard-reg=@var{reg}
33033@itemx -mstack-protector-guard-offset=@var{offset}
33034@opindex mstack-protector-guard
33035@opindex mstack-protector-guard-reg
33036@opindex mstack-protector-guard-offset
33037Generate stack protection code using canary at @var{guard}.  Supported
33038locations are @samp{global} for global canary or @samp{tls} for per-thread
33039canary in the TLS block (the default).  This option has effect only when
33040@option{-fstack-protector} or @option{-fstack-protector-all} is specified.
33041
33042With the latter choice the options
33043@option{-mstack-protector-guard-reg=@var{reg}} and
33044@option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
33045which segment register (@code{%fs} or @code{%gs}) to use as base register
33046for reading the canary, and from what offset from that base register.
33047The default for those is as specified in the relevant ABI.
33048
33049@item -mgeneral-regs-only
33050@opindex mgeneral-regs-only
33051Generate code that uses only the general-purpose registers.  This
33052prevents the compiler from using floating-point, vector, mask and bound
33053registers.
33054
33055@item -mrelax-cmpxchg-loop
33056@opindex mrelax-cmpxchg-loop
33057Relax cmpxchg loop by emitting an early load and compare before cmpxchg,
33058execute pause if load value is not expected. This reduces excessive
33059cachline bouncing when and works for all atomic logic fetch builtins
33060that generates compare and swap loop.
33061
33062@item -mindirect-branch=@var{choice}
33063@opindex mindirect-branch
33064Convert indirect call and jump with @var{choice}.  The default is
33065@samp{keep}, which keeps indirect call and jump unmodified.
33066@samp{thunk} converts indirect call and jump to call and return thunk.
33067@samp{thunk-inline} converts indirect call and jump to inlined call
33068and return thunk.  @samp{thunk-extern} converts indirect call and jump
33069to external call and return thunk provided in a separate object file.
33070You can control this behavior for a specific function by using the
33071function attribute @code{indirect_branch}.  @xref{Function Attributes}.
33072
33073Note that @option{-mcmodel=large} is incompatible with
33074@option{-mindirect-branch=thunk} and
33075@option{-mindirect-branch=thunk-extern} since the thunk function may
33076not be reachable in the large code model.
33077
33078Note that @option{-mindirect-branch=thunk-extern} is compatible with
33079@option{-fcf-protection=branch} since the external thunk can be made
33080to enable control-flow check.
33081
33082@item -mfunction-return=@var{choice}
33083@opindex mfunction-return
33084Convert function return with @var{choice}.  The default is @samp{keep},
33085which keeps function return unmodified.  @samp{thunk} converts function
33086return to call and return thunk.  @samp{thunk-inline} converts function
33087return to inlined call and return thunk.  @samp{thunk-extern} converts
33088function return to external call and return thunk provided in a separate
33089object file.  You can control this behavior for a specific function by
33090using the function attribute @code{function_return}.
33091@xref{Function Attributes}.
33092
33093Note that @option{-mindirect-return=thunk-extern} is compatible with
33094@option{-fcf-protection=branch} since the external thunk can be made
33095to enable control-flow check.
33096
33097Note that @option{-mcmodel=large} is incompatible with
33098@option{-mfunction-return=thunk} and
33099@option{-mfunction-return=thunk-extern} since the thunk function may
33100not be reachable in the large code model.
33101
33102
33103@item -mindirect-branch-register
33104@opindex mindirect-branch-register
33105Force indirect call and jump via register.
33106
33107@item -mharden-sls=@var{choice}
33108@opindex mharden-sls
33109Generate code to mitigate against straight line speculation (SLS) with
33110@var{choice}.  The default is @samp{none} which disables all SLS
33111hardening.  @samp{return} enables SLS hardening for function returns.
33112@samp{indirect-jmp} enables SLS hardening for indirect jumps.
33113@samp{all} enables all SLS hardening.
33114
33115@item -mindirect-branch-cs-prefix
33116@opindex mindirect-branch-cs-prefix
33117Add CS prefix to call and jmp to indirect thunk with branch target in
33118r8-r15 registers so that the call and jmp instruction length is 6 bytes
33119to allow them to be replaced with @samp{lfence; call *%r8-r15} or
33120@samp{lfence; jmp *%r8-r15} at run-time.
33121
33122@end table
33123
33124These @samp{-m} switches are supported in addition to the above
33125on x86-64 processors in 64-bit environments.
33126
33127@table @gcctabopt
33128@item -m32
33129@itemx -m64
33130@itemx -mx32
33131@itemx -m16
33132@itemx -miamcu
33133@opindex m32
33134@opindex m64
33135@opindex mx32
33136@opindex m16
33137@opindex miamcu
33138Generate code for a 16-bit, 32-bit or 64-bit environment.
33139The @option{-m32} option sets @code{int}, @code{long}, and pointer types
33140to 32 bits, and
33141generates code that runs in 32-bit mode.
33142
33143The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
33144types to 64 bits, and generates code for the x86-64 architecture.
33145For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
33146and @option{-mdynamic-no-pic} options.
33147
33148The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
33149to 32 bits, and
33150generates code for the x86-64 architecture.
33151
33152The @option{-m16} option is the same as @option{-m32}, except for that
33153it outputs the @code{.code16gcc} assembly directive at the beginning of
33154the assembly output so that the binary can run in 16-bit mode.
33155
33156The @option{-miamcu} option generates code which conforms to Intel MCU
33157psABI.  It requires the @option{-m32} option to be turned on.
33158
33159@item -mno-red-zone
33160@opindex mno-red-zone
33161@opindex mred-zone
33162Do not use a so-called ``red zone'' for x86-64 code.  The red zone is mandated
33163by the x86-64 ABI; it is a 128-byte area beyond the location of the
33164stack pointer that is not modified by signal or interrupt handlers
33165and therefore can be used for temporary data without adjusting the stack
33166pointer.  The flag @option{-mno-red-zone} disables this red zone.
33167
33168@item -mcmodel=small
33169@opindex mcmodel=small
33170Generate code for the small code model: the program and its symbols must
33171be linked in the lower 2 GB of the address space.  Pointers are 64 bits.
33172Programs can be statically or dynamically linked.  This is the default
33173code model.
33174
33175@item -mcmodel=kernel
33176@opindex mcmodel=kernel
33177Generate code for the kernel code model.  The kernel runs in the
33178negative 2 GB of the address space.
33179This model has to be used for Linux kernel code.
33180
33181@item -mcmodel=medium
33182@opindex mcmodel=medium
33183Generate code for the medium model: the program is linked in the lower 2
33184GB of the address space.  Small symbols are also placed there.  Symbols
33185with sizes larger than @option{-mlarge-data-threshold} are put into
33186large data or BSS sections and can be located above 2GB.  Programs can
33187be statically or dynamically linked.
33188
33189@item -mcmodel=large
33190@opindex mcmodel=large
33191Generate code for the large model.  This model makes no assumptions
33192about addresses and sizes of sections.
33193
33194@item -maddress-mode=long
33195@opindex maddress-mode=long
33196Generate code for long address mode.  This is only supported for 64-bit
33197and x32 environments.  It is the default address mode for 64-bit
33198environments.
33199
33200@item -maddress-mode=short
33201@opindex maddress-mode=short
33202Generate code for short address mode.  This is only supported for 32-bit
33203and x32 environments.  It is the default address mode for 32-bit and
33204x32 environments.
33205
33206@item -mneeded
33207@itemx -mno-needed
33208@opindex mneeded
33209Emit GNU_PROPERTY_X86_ISA_1_NEEDED GNU property for Linux target to
33210indicate the micro-architecture ISA level required to execute the binary.
33211
33212@item -mno-direct-extern-access
33213@opindex mno-direct-extern-access
33214@opindex mdirect-extern-access
33215Without @option{-fpic} nor @option{-fPIC}, always use the GOT pointer
33216to access external symbols.  With @option{-fpic} or @option{-fPIC},
33217treat access to protected symbols as local symbols.  The default is
33218@option{-mdirect-extern-access}.
33219
33220@strong{Warning:} shared libraries compiled with
33221@option{-mno-direct-extern-access} and executable compiled with
33222@option{-mdirect-extern-access} may not be binary compatible if
33223protected symbols are used in shared libraries and executable.
33224@end table
33225
33226@node x86 Windows Options
33227@subsection x86 Windows Options
33228@cindex x86 Windows Options
33229@cindex Windows Options for x86
33230
33231These additional options are available for Microsoft Windows targets:
33232
33233@table @gcctabopt
33234@item -mconsole
33235@opindex mconsole
33236This option
33237specifies that a console application is to be generated, by
33238instructing the linker to set the PE header subsystem type
33239required for console applications.
33240This option is available for Cygwin and MinGW targets and is
33241enabled by default on those targets.
33242
33243@item -mdll
33244@opindex mdll
33245This option is available for Cygwin and MinGW targets.  It
33246specifies that a DLL---a dynamic link library---is to be
33247generated, enabling the selection of the required runtime
33248startup object and entry point.
33249
33250@item -mnop-fun-dllimport
33251@opindex mnop-fun-dllimport
33252This option is available for Cygwin and MinGW targets.  It
33253specifies that the @code{dllimport} attribute should be ignored.
33254
33255@item -mthreads
33256@opindex mthreads
33257This option is available for MinGW targets. It specifies
33258that MinGW-specific thread support is to be used.
33259
33260@item -municode
33261@opindex municode
33262This option is available for MinGW-w64 targets.  It causes
33263the @code{UNICODE} preprocessor macro to be predefined, and
33264chooses Unicode-capable runtime startup code.
33265
33266@item -mwin32
33267@opindex mwin32
33268This option is available for Cygwin and MinGW targets.  It
33269specifies that the typical Microsoft Windows predefined macros are to
33270be set in the pre-processor, but does not influence the choice
33271of runtime library/startup code.
33272
33273@item -mwindows
33274@opindex mwindows
33275This option is available for Cygwin and MinGW targets.  It
33276specifies that a GUI application is to be generated by
33277instructing the linker to set the PE header subsystem type
33278appropriately.
33279
33280@item -fno-set-stack-executable
33281@opindex fno-set-stack-executable
33282@opindex fset-stack-executable
33283This option is available for MinGW targets. It specifies that
33284the executable flag for the stack used by nested functions isn't
33285set. This is necessary for binaries running in kernel mode of
33286Microsoft Windows, as there the User32 API, which is used to set executable
33287privileges, isn't available.
33288
33289@item -fwritable-relocated-rdata
33290@opindex fno-writable-relocated-rdata
33291@opindex fwritable-relocated-rdata
33292This option is available for MinGW and Cygwin targets.  It specifies
33293that relocated-data in read-only section is put into the @code{.data}
33294section.  This is a necessary for older runtimes not supporting
33295modification of @code{.rdata} sections for pseudo-relocation.
33296
33297@item -mpe-aligned-commons
33298@opindex mpe-aligned-commons
33299This option is available for Cygwin and MinGW targets.  It
33300specifies that the GNU extension to the PE file format that
33301permits the correct alignment of COMMON variables should be
33302used when generating code.  It is enabled by default if
33303GCC detects that the target assembler found during configuration
33304supports the feature.
33305
33306@item -mindirect-branch=@var{choice}
33307@opindex -mindirect-branch
33308Convert indirect call and jump with @var{choice}.  The default is
33309@samp{keep}, which keeps indirect call and jump unmodified.
33310@samp{thunk} converts indirect call and jump to call and return thunk.
33311@samp{thunk-inline} converts indirect call and jump to inlined call
33312and return thunk.  @samp{thunk-extern} converts indirect call and jump
33313to external call and return thunk provided in a separate object file.
33314You can control this behavior for a specific function by using the
33315function attribute @code{indirect_branch}.  @xref{Function Attributes}.
33316
33317Note that @option{-mcmodel=large} is incompatible with
33318@option{-mindirect-branch=thunk} nor
33319@option{-mindirect-branch=thunk-extern} since the thunk function may
33320not be reachable in large code model.
33321
33322@item -mfunction-return=@var{choice}
33323@opindex -mfunction-return
33324Convert function return with @var{choice}.  The default is @samp{keep},
33325which keeps function return unmodified.  @samp{thunk} converts function
33326return to call and return thunk.  @samp{thunk-inline} converts function
33327return to inlined call and return thunk.  @samp{thunk-extern} converts
33328function return to external call and return thunk provided in a separate
33329object file.  You can control this behavior for a specific function by
33330using the function attribute @code{function_return}.
33331@xref{Function Attributes}.
33332
33333Note that @option{-mcmodel=large} is incompatible with
33334@option{-mfunction-return=thunk} nor
33335@option{-mfunction-return=thunk-extern} since the thunk function may
33336not be reachable in large code model.
33337
33338@item -mindirect-branch-register
33339@opindex -mindirect-branch-register
33340Force indirect call and jump via register.
33341@end table
33342
33343See also under @ref{x86 Options} for standard options.
33344
33345@node Xstormy16 Options
33346@subsection Xstormy16 Options
33347@cindex Xstormy16 Options
33348
33349These options are defined for Xstormy16:
33350
33351@table @gcctabopt
33352@item -msim
33353@opindex msim
33354Choose startup files and linker script suitable for the simulator.
33355@end table
33356
33357@node Xtensa Options
33358@subsection Xtensa Options
33359@cindex Xtensa Options
33360
33361These options are supported for Xtensa targets:
33362
33363@table @gcctabopt
33364@item -mconst16
33365@itemx -mno-const16
33366@opindex mconst16
33367@opindex mno-const16
33368Enable or disable use of @code{CONST16} instructions for loading
33369constant values.  The @code{CONST16} instruction is currently not a
33370standard option from Tensilica.  When enabled, @code{CONST16}
33371instructions are always used in place of the standard @code{L32R}
33372instructions.  The use of @code{CONST16} is enabled by default only if
33373the @code{L32R} instruction is not available.
33374
33375@item -mfused-madd
33376@itemx -mno-fused-madd
33377@opindex mfused-madd
33378@opindex mno-fused-madd
33379Enable or disable use of fused multiply/add and multiply/subtract
33380instructions in the floating-point option.  This has no effect if the
33381floating-point option is not also enabled.  Disabling fused multiply/add
33382and multiply/subtract instructions forces the compiler to use separate
33383instructions for the multiply and add/subtract operations.  This may be
33384desirable in some cases where strict IEEE 754-compliant results are
33385required: the fused multiply add/subtract instructions do not round the
33386intermediate result, thereby producing results with @emph{more} bits of
33387precision than specified by the IEEE standard.  Disabling fused multiply
33388add/subtract instructions also ensures that the program output is not
33389sensitive to the compiler's ability to combine multiply and add/subtract
33390operations.
33391
33392@item -mserialize-volatile
33393@itemx -mno-serialize-volatile
33394@opindex mserialize-volatile
33395@opindex mno-serialize-volatile
33396When this option is enabled, GCC inserts @code{MEMW} instructions before
33397@code{volatile} memory references to guarantee sequential consistency.
33398The default is @option{-mserialize-volatile}.  Use
33399@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
33400
33401@item -mforce-no-pic
33402@opindex mforce-no-pic
33403For targets, like GNU/Linux, where all user-mode Xtensa code must be
33404position-independent code (PIC), this option disables PIC for compiling
33405kernel code.
33406
33407@item -mtext-section-literals
33408@itemx -mno-text-section-literals
33409@opindex mtext-section-literals
33410@opindex mno-text-section-literals
33411These options control the treatment of literal pools.  The default is
33412@option{-mno-text-section-literals}, which places literals in a separate
33413section in the output file.  This allows the literal pool to be placed
33414in a data RAM/ROM, and it also allows the linker to combine literal
33415pools from separate object files to remove redundant literals and
33416improve code size.  With @option{-mtext-section-literals}, the literals
33417are interspersed in the text section in order to keep them as close as
33418possible to their references.  This may be necessary for large assembly
33419files.  Literals for each function are placed right before that function.
33420
33421@item -mauto-litpools
33422@itemx -mno-auto-litpools
33423@opindex mauto-litpools
33424@opindex mno-auto-litpools
33425These options control the treatment of literal pools.  The default is
33426@option{-mno-auto-litpools}, which places literals in a separate
33427section in the output file unless @option{-mtext-section-literals} is
33428used.  With @option{-mauto-litpools} the literals are interspersed in
33429the text section by the assembler.  Compiler does not produce explicit
33430@code{.literal} directives and loads literals into registers with
33431@code{MOVI} instructions instead of @code{L32R} to let the assembler
33432do relaxation and place literals as necessary.  This option allows
33433assembler to create several literal pools per function and assemble
33434very big functions, which may not be possible with
33435@option{-mtext-section-literals}.
33436
33437@item -mtarget-align
33438@itemx -mno-target-align
33439@opindex mtarget-align
33440@opindex mno-target-align
33441When this option is enabled, GCC instructs the assembler to
33442automatically align instructions to reduce branch penalties at the
33443expense of some code density.  The assembler attempts to widen density
33444instructions to align branch targets and the instructions following call
33445instructions.  If there are not enough preceding safe density
33446instructions to align a target, no widening is performed.  The
33447default is @option{-mtarget-align}.  These options do not affect the
33448treatment of auto-aligned instructions like @code{LOOP}, which the
33449assembler always aligns, either by widening density instructions or
33450by inserting NOP instructions.
33451
33452@item -mlongcalls
33453@itemx -mno-longcalls
33454@opindex mlongcalls
33455@opindex mno-longcalls
33456When this option is enabled, GCC instructs the assembler to translate
33457direct calls to indirect calls unless it can determine that the target
33458of a direct call is in the range allowed by the call instruction.  This
33459translation typically occurs for calls to functions in other source
33460files.  Specifically, the assembler translates a direct @code{CALL}
33461instruction into an @code{L32R} followed by a @code{CALLX} instruction.
33462The default is @option{-mno-longcalls}.  This option should be used in
33463programs where the call target can potentially be out of range.  This
33464option is implemented in the assembler, not the compiler, so the
33465assembly code generated by GCC still shows direct call
33466instructions---look at the disassembled object code to see the actual
33467instructions.  Note that the assembler uses an indirect call for
33468every cross-file call, not just those that really are out of range.
33469
33470@item -mabi=@var{name}
33471@opindex mabi
33472Generate code for the specified ABI@.  Permissible values are: @samp{call0},
33473@samp{windowed}.  Default ABI is chosen by the Xtensa core configuration.
33474
33475@item -mabi=call0
33476@opindex mabi=call0
33477When this option is enabled function parameters are passed in registers
33478@code{a2} through @code{a7}, registers @code{a12} through @code{a15} are
33479caller-saved, and register @code{a15} may be used as a frame pointer.
33480When this version of the ABI is enabled the C preprocessor symbol
33481@code{__XTENSA_CALL0_ABI__} is defined.
33482
33483@item -mabi=windowed
33484@opindex mabi=windowed
33485When this option is enabled function parameters are passed in registers
33486@code{a10} through @code{a15}, and called function rotates register window
33487by 8 registers on entry so that its arguments are found in registers
33488@code{a2} through @code{a7}.  Register @code{a7} may be used as a frame
33489pointer.  Register window is rotated 8 registers back upon return.
33490When this version of the ABI is enabled the C preprocessor symbol
33491@code{__XTENSA_WINDOWED_ABI__} is defined.
33492@end table
33493
33494@node zSeries Options
33495@subsection zSeries Options
33496@cindex zSeries options
33497
33498These are listed under @xref{S/390 and zSeries Options}.
33499
33500
33501@c man end
33502
33503@node Spec Files
33504@section Specifying Subprocesses and the Switches to Pass to Them
33505@cindex Spec Files
33506
33507@command{gcc} is a driver program.  It performs its job by invoking a
33508sequence of other programs to do the work of compiling, assembling and
33509linking.  GCC interprets its command-line parameters and uses these to
33510deduce which programs it should invoke, and which command-line options
33511it ought to place on their command lines.  This behavior is controlled
33512by @dfn{spec strings}.  In most cases there is one spec string for each
33513program that GCC can invoke, but a few programs have multiple spec
33514strings to control their behavior.  The spec strings built into GCC can
33515be overridden by using the @option{-specs=} command-line switch to specify
33516a spec file.
33517
33518@dfn{Spec files} are plain-text files that are used to construct spec
33519strings.  They consist of a sequence of directives separated by blank
33520lines.  The type of directive is determined by the first non-whitespace
33521character on the line, which can be one of the following:
33522
33523@table @code
33524@item %@var{command}
33525Issues a @var{command} to the spec file processor.  The commands that can
33526appear here are:
33527
33528@table @code
33529@item %include <@var{file}>
33530@cindex @code{%include}
33531Search for @var{file} and insert its text at the current point in the
33532specs file.
33533
33534@item %include_noerr <@var{file}>
33535@cindex @code{%include_noerr}
33536Just like @samp{%include}, but do not generate an error message if the include
33537file cannot be found.
33538
33539@item %rename @var{old_name} @var{new_name}
33540@cindex @code{%rename}
33541Rename the spec string @var{old_name} to @var{new_name}.
33542
33543@end table
33544
33545@item *[@var{spec_name}]:
33546This tells the compiler to create, override or delete the named spec
33547string.  All lines after this directive up to the next directive or
33548blank line are considered to be the text for the spec string.  If this
33549results in an empty string then the spec is deleted.  (Or, if the
33550spec did not exist, then nothing happens.)  Otherwise, if the spec
33551does not currently exist a new spec is created.  If the spec does
33552exist then its contents are overridden by the text of this
33553directive, unless the first character of that text is the @samp{+}
33554character, in which case the text is appended to the spec.
33555
33556@item [@var{suffix}]:
33557Creates a new @samp{[@var{suffix}] spec} pair.  All lines after this directive
33558and up to the next directive or blank line are considered to make up the
33559spec string for the indicated suffix.  When the compiler encounters an
33560input file with the named suffix, it processes the spec string in
33561order to work out how to compile that file.  For example:
33562
33563@smallexample
33564.ZZ:
33565z-compile -input %i
33566@end smallexample
33567
33568This says that any input file whose name ends in @samp{.ZZ} should be
33569passed to the program @samp{z-compile}, which should be invoked with the
33570command-line switch @option{-input} and with the result of performing the
33571@samp{%i} substitution.  (See below.)
33572
33573As an alternative to providing a spec string, the text following a
33574suffix directive can be one of the following:
33575
33576@table @code
33577@item @@@var{language}
33578This says that the suffix is an alias for a known @var{language}.  This is
33579similar to using the @option{-x} command-line switch to GCC to specify a
33580language explicitly.  For example:
33581
33582@smallexample
33583.ZZ:
33584@@c++
33585@end smallexample
33586
33587Says that .ZZ files are, in fact, C++ source files.
33588
33589@item #@var{name}
33590This causes an error messages saying:
33591
33592@smallexample
33593@var{name} compiler not installed on this system.
33594@end smallexample
33595@end table
33596
33597GCC already has an extensive list of suffixes built into it.
33598This directive adds an entry to the end of the list of suffixes, but
33599since the list is searched from the end backwards, it is effectively
33600possible to override earlier entries using this technique.
33601
33602@end table
33603
33604GCC has the following spec strings built into it.  Spec files can
33605override these strings or create their own.  Note that individual
33606targets can also add their own spec strings to this list.
33607
33608@smallexample
33609asm          Options to pass to the assembler
33610asm_final    Options to pass to the assembler post-processor
33611cpp          Options to pass to the C preprocessor
33612cc1          Options to pass to the C compiler
33613cc1plus      Options to pass to the C++ compiler
33614endfile      Object files to include at the end of the link
33615link         Options to pass to the linker
33616lib          Libraries to include on the command line to the linker
33617libgcc       Decides which GCC support library to pass to the linker
33618linker       Sets the name of the linker
33619predefines   Defines to be passed to the C preprocessor
33620signed_char  Defines to pass to CPP to say whether @code{char} is signed
33621             by default
33622startfile    Object files to include at the start of the link
33623@end smallexample
33624
33625Here is a small example of a spec file:
33626
33627@smallexample
33628%rename lib                 old_lib
33629
33630*lib:
33631--start-group -lgcc -lc -leval1 --end-group %(old_lib)
33632@end smallexample
33633
33634This example renames the spec called @samp{lib} to @samp{old_lib} and
33635then overrides the previous definition of @samp{lib} with a new one.
33636The new definition adds in some extra command-line options before
33637including the text of the old definition.
33638
33639@dfn{Spec strings} are a list of command-line options to be passed to their
33640corresponding program.  In addition, the spec strings can contain
33641@samp{%}-prefixed sequences to substitute variable text or to
33642conditionally insert text into the command line.  Using these constructs
33643it is possible to generate quite complex command lines.
33644
33645Here is a table of all defined @samp{%}-sequences for spec
33646strings.  Note that spaces are not generated automatically around the
33647results of expanding these sequences.  Therefore you can concatenate them
33648together or combine them with constant text in a single argument.
33649
33650@table @code
33651@item %%
33652Substitute one @samp{%} into the program name or argument.
33653
33654@item %"
33655Substitute an empty argument.
33656
33657@item %i
33658Substitute the name of the input file being processed.
33659
33660@item %b
33661Substitute the basename for outputs related with the input file being
33662processed.  This is often the substring up to (and not including) the
33663last period and not including the directory but, unless %w is active, it
33664expands to the basename for auxiliary outputs, which may be influenced
33665by an explicit output name, and by various other options that control
33666how auxiliary outputs are named.
33667
33668@item %B
33669This is the same as @samp{%b}, but include the file suffix (text after
33670the last period).  Without %w, it expands to the basename for dump
33671outputs.
33672
33673@item %d
33674Marks the argument containing or following the @samp{%d} as a
33675temporary file name, so that that file is deleted if GCC exits
33676successfully.  Unlike @samp{%g}, this contributes no text to the
33677argument.
33678
33679@item %g@var{suffix}
33680Substitute a file name that has suffix @var{suffix} and is chosen
33681once per compilation, and mark the argument in the same way as
33682@samp{%d}.  To reduce exposure to denial-of-service attacks, the file
33683name is now chosen in a way that is hard to predict even when previously
33684chosen file names are known.  For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
33685might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}.  @var{suffix} matches
33686the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
33687treated exactly as if @samp{%O} had been preprocessed.  Previously, @samp{%g}
33688was simply substituted with a file name chosen once per compilation,
33689without regard to any appended suffix (which was therefore treated
33690just like ordinary text), making such attacks more likely to succeed.
33691
33692@item %u@var{suffix}
33693Like @samp{%g}, but generates a new temporary file name
33694each time it appears instead of once per compilation.
33695
33696@item %U@var{suffix}
33697Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
33698new one if there is no such last file name.  In the absence of any
33699@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
33700the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
33701involves the generation of two distinct file names, one
33702for each @samp{%g.s} and another for each @samp{%U.s}.  Previously, @samp{%U} was
33703simply substituted with a file name chosen for the previous @samp{%u},
33704without regard to any appended suffix.
33705
33706@item %j@var{suffix}
33707Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
33708writable, and if @option{-save-temps} is not used; 
33709otherwise, substitute the name
33710of a temporary file, just like @samp{%u}.  This temporary file is not
33711meant for communication between processes, but rather as a junk
33712disposal mechanism.
33713
33714@item %|@var{suffix}
33715@itemx %m@var{suffix}
33716Like @samp{%g}, except if @option{-pipe} is in effect.  In that case
33717@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
33718all.  These are the two most common ways to instruct a program that it
33719should read from standard input or write to standard output.  If you
33720need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
33721construct: see for example @file{gcc/fortran/lang-specs.h}.
33722
33723@item %.@var{SUFFIX}
33724Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
33725when it is subsequently output with @samp{%*}.  @var{SUFFIX} is
33726terminated by the next space or %.
33727
33728@item %w
33729Marks the argument containing or following the @samp{%w} as the
33730designated output file of this compilation.  This puts the argument
33731into the sequence of arguments that @samp{%o} substitutes.
33732
33733@item %V
33734Indicates that this compilation produces no output file.
33735
33736@item %o
33737Substitutes the names of all the output files, with spaces
33738automatically placed around them.  You should write spaces
33739around the @samp{%o} as well or the results are undefined.
33740@samp{%o} is for use in the specs for running the linker.
33741Input files whose names have no recognized suffix are not compiled
33742at all, but they are included among the output files, so they are
33743linked.
33744
33745@item %O
33746Substitutes the suffix for object files.  Note that this is
33747handled specially when it immediately follows @samp{%g, %u, or %U},
33748because of the need for those to form complete file names.  The
33749handling is such that @samp{%O} is treated exactly as if it had already
33750been substituted, except that @samp{%g, %u, and %U} do not currently
33751support additional @var{suffix} characters following @samp{%O} as they do
33752following, for example, @samp{.o}.
33753
33754@item %I
33755Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
33756@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
33757@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
33758and @option{-imultilib} as necessary.
33759
33760@item %s
33761Current argument is the name of a library or startup file of some sort.
33762Search for that file in a standard list of directories and substitute
33763the full name found.  The current working directory is included in the
33764list of directories scanned.
33765
33766@item %T
33767Current argument is the name of a linker script.  Search for that file
33768in the current list of directories to scan for libraries. If the file
33769is located insert a @option{--script} option into the command line
33770followed by the full path name found.  If the file is not found then
33771generate an error message.  Note: the current working directory is not
33772searched.
33773
33774@item %e@var{str}
33775Print @var{str} as an error message.  @var{str} is terminated by a newline.
33776Use this when inconsistent options are detected.
33777
33778@item %n@var{str}
33779Print @var{str} as a notice.  @var{str} is terminated by a newline.
33780
33781@item %(@var{name})
33782Substitute the contents of spec string @var{name} at this point.
33783
33784@item %x@{@var{option}@}
33785Accumulate an option for @samp{%X}.
33786
33787@item %X
33788Output the accumulated linker options specified by a @samp{%x} spec string.
33789
33790@item %Y
33791Output the accumulated assembler options specified by @option{-Wa}.
33792
33793@item %Z
33794Output the accumulated preprocessor options specified by @option{-Wp}.
33795
33796@item %M
33797Output @code{multilib_os_dir}.
33798
33799@item %R
33800Output the concatenation of @code{target_system_root} and @code{target_sysroot_suffix}.
33801
33802@item %a
33803Process the @code{asm} spec.  This is used to compute the
33804switches to be passed to the assembler.
33805
33806@item %A
33807Process the @code{asm_final} spec.  This is a spec string for
33808passing switches to an assembler post-processor, if such a program is
33809needed.
33810
33811@item %l
33812Process the @code{link} spec.  This is the spec for computing the
33813command line passed to the linker.  Typically it makes use of the
33814@samp{%L %G %S %D and %E} sequences.
33815
33816@item %D
33817Dump out a @option{-L} option for each directory that GCC believes might
33818contain startup files.  If the target supports multilibs then the
33819current multilib directory is prepended to each of these paths.
33820
33821@item %L
33822Process the @code{lib} spec.  This is a spec string for deciding which
33823libraries are included on the command line to the linker.
33824
33825@item %G
33826Process the @code{libgcc} spec.  This is a spec string for deciding
33827which GCC support library is included on the command line to the linker.
33828
33829@item %S
33830Process the @code{startfile} spec.  This is a spec for deciding which
33831object files are the first ones passed to the linker.  Typically
33832this might be a file named @file{crt0.o}.
33833
33834@item %E
33835Process the @code{endfile} spec.  This is a spec string that specifies
33836the last object files that are passed to the linker.
33837
33838@item %C
33839Process the @code{cpp} spec.  This is used to construct the arguments
33840to be passed to the C preprocessor.
33841
33842@item %1
33843Process the @code{cc1} spec.  This is used to construct the options to be
33844passed to the actual C compiler (@command{cc1}).
33845
33846@item %2
33847Process the @code{cc1plus} spec.  This is used to construct the options to be
33848passed to the actual C++ compiler (@command{cc1plus}).
33849
33850@item %*
33851Substitute the variable part of a matched option.  See below.
33852Note that each comma in the substituted string is replaced by
33853a single space.
33854
33855@item %<S
33856Remove all occurrences of @code{-S} from the command line.  Note---this
33857command is position dependent.  @samp{%} commands in the spec string
33858before this one see @code{-S}, @samp{%} commands in the spec string
33859after this one do not.
33860
33861@item %<S*
33862Similar to @samp{%<S}, but match all switches beginning with @code{-S}.
33863
33864@item %>S
33865Similar to @samp{%<S}, but keep @code{-S} in the GCC command line.
33866
33867@item %:@var{function}(@var{args})
33868Call the named function @var{function}, passing it @var{args}.
33869@var{args} is first processed as a nested spec string, then split
33870into an argument vector in the usual fashion.  The function returns
33871a string which is processed as if it had appeared literally as part
33872of the current spec.
33873
33874The following built-in spec functions are provided:
33875
33876@table @code
33877@item @code{getenv}
33878The @code{getenv} spec function takes two arguments: an environment
33879variable name and a string.  If the environment variable is not
33880defined, a fatal error is issued.  Otherwise, the return value is the
33881value of the environment variable concatenated with the string.  For
33882example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
33883
33884@smallexample
33885%:getenv(TOPDIR /include)
33886@end smallexample
33887
33888expands to @file{/path/to/top/include}.
33889
33890@item @code{if-exists}
33891The @code{if-exists} spec function takes one argument, an absolute
33892pathname to a file.  If the file exists, @code{if-exists} returns the
33893pathname.  Here is a small example of its usage:
33894
33895@smallexample
33896*startfile:
33897crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
33898@end smallexample
33899
33900@item @code{if-exists-else}
33901The @code{if-exists-else} spec function is similar to the @code{if-exists}
33902spec function, except that it takes two arguments.  The first argument is
33903an absolute pathname to a file.  If the file exists, @code{if-exists-else}
33904returns the pathname.  If it does not exist, it returns the second argument.
33905This way, @code{if-exists-else} can be used to select one file or another,
33906based on the existence of the first.  Here is a small example of its usage:
33907
33908@smallexample
33909*startfile:
33910crt0%O%s %:if-exists(crti%O%s) \
33911%:if-exists-else(crtbeginT%O%s crtbegin%O%s)
33912@end smallexample
33913
33914@item @code{if-exists-then-else}
33915The @code{if-exists-then-else} spec function takes at least two arguments
33916and an optional third one. The first argument is an absolute pathname to a
33917file.  If the file exists, the function returns the second argument.
33918If the file does not exist, the function returns the third argument if there
33919is one, or NULL otherwise. This can be used to expand one text, or optionally
33920another, based on the existence of a file.  Here is a small example of its
33921usage:
33922
33923@smallexample
33924-l%:if-exists-then-else(%:getenv(VSB_DIR rtnet.h) rtnet net)
33925@end smallexample
33926
33927@item @code{sanitize}
33928The @code{sanitize} spec function takes no arguments.  It returns non-NULL if
33929any address, thread or undefined behavior sanitizers are active.
33930
33931@smallexample
33932%@{%:sanitize(address):-funwind-tables@}
33933@end smallexample
33934
33935@item @code{replace-outfile}
33936The @code{replace-outfile} spec function takes two arguments.  It looks for the
33937first argument in the outfiles array and replaces it with the second argument.  Here
33938is a small example of its usage:
33939
33940@smallexample
33941%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
33942@end smallexample
33943
33944@item @code{remove-outfile}
33945The @code{remove-outfile} spec function takes one argument.  It looks for the
33946first argument in the outfiles array and removes it.  Here is a small example
33947its usage:
33948
33949@smallexample
33950%:remove-outfile(-lm)
33951@end smallexample
33952
33953@item @code{version-compare}
33954The @code{version-compare} spec function takes four or five arguments of the following
33955form:
33956
33957@smallexample
33958<comparison-op> <arg1> [<arg2>] <switch> <result>
33959@end smallexample
33960
33961It returns @code{result} if the comparison evaluates to true, and NULL if it doesn't.
33962The supported @code{comparison-op} values are:
33963
33964@table @code
33965@item >=
33966True if @code{switch} is a later (or same) version than @code{arg1}
33967
33968@item !>
33969Opposite of @code{>=}
33970
33971@item <
33972True if @code{switch} is an earlier version than @code{arg1}
33973
33974@item !<
33975Opposite of @code{<}
33976
33977@item ><
33978True if @code{switch} is @code{arg1} or later, and earlier than @code{arg2}
33979
33980@item <>
33981True if @code{switch} is earlier than @code{arg1}, or is @code{arg2} or later
33982@end table
33983
33984If the @code{switch} is not present at all, the condition is false unless the first character
33985of the @code{comparison-op} is @code{!}.
33986
33987@smallexample
33988%:version-compare(>= 10.3 mmacosx-version-min= -lmx)
33989@end smallexample
33990
33991The above example would add @option{-lmx} if @option{-mmacosx-version-min=10.3.9} was
33992passed.
33993
33994@item @code{include}
33995The @code{include} spec function behaves much like @code{%include}, with the advantage
33996that it can be nested inside a spec and thus be conditionalized.  It takes one argument,
33997the filename, and looks for it in the startfile path.  It always returns NULL.
33998
33999@smallexample
34000%@{static-libasan|static:%:include(libsanitizer.spec)%(link_libasan)@}
34001@end smallexample
34002
34003@item @code{pass-through-libs}
34004The @code{pass-through-libs} spec function takes any number of arguments.  It
34005finds any @option{-l} options and any non-options ending in @file{.a} (which it
34006assumes are the names of linker input library archive files) and returns a
34007result containing all the found arguments each prepended by
34008@option{-plugin-opt=-pass-through=} and joined by spaces.  This list is
34009intended to be passed to the LTO linker plugin.
34010
34011@smallexample
34012%:pass-through-libs(%G %L %G)
34013@end smallexample
34014
34015@item @code{print-asm-header}
34016The @code{print-asm-header} function takes no arguments and simply
34017prints a banner like:
34018
34019@smallexample
34020Assembler options
34021=================
34022
34023Use "-Wa,OPTION" to pass "OPTION" to the assembler.
34024@end smallexample
34025
34026It is used to separate compiler options from assembler options
34027in the @option{--target-help} output.
34028
34029@item @code{gt}
34030The @code{gt} spec function takes two or more arguments.  It returns @code{""} (the
34031empty string) if the second-to-last argument is greater than the last argument, and NULL
34032otherwise.  The following example inserts the @code{link_gomp} spec if the last
34033@option{-ftree-parallelize-loops=} option given on the command line is greater than 1:
34034
34035@smallexample
34036%@{%:gt(%@{ftree-parallelize-loops=*:%*@} 1):%:include(libgomp.spec)%(link_gomp)@}
34037@end smallexample
34038
34039@item @code{debug-level-gt}
34040The @code{debug-level-gt} spec function takes one argument and returns @code{""} (the
34041empty string) if @code{debug_info_level} is greater than the specified number, and NULL
34042otherwise.
34043
34044@smallexample
34045%@{%:debug-level-gt(0):%@{gdwarf*:--gdwarf2@}@}
34046@end smallexample
34047@end table
34048
34049@item %@{S@}
34050Substitutes the @code{-S} switch, if that switch is given to GCC@.
34051If that switch is not specified, this substitutes nothing.  Note that
34052the leading dash is omitted when specifying this option, and it is
34053automatically inserted if the substitution is performed.  Thus the spec
34054string @samp{%@{foo@}} matches the command-line option @option{-foo}
34055and outputs the command-line option @option{-foo}.
34056
34057@item %W@{S@}
34058Like %@{@code{S}@} but mark last argument supplied within as a file to be
34059deleted on failure.
34060
34061@item %@@@{S@}
34062Like %@{@code{S}@} but puts the result into a @code{FILE} and substitutes
34063@code{@@FILE} if an @code{@@file} argument has been supplied.
34064
34065@item %@{S*@}
34066Substitutes all the switches specified to GCC whose names start
34067with @code{-S}, but which also take an argument.  This is used for
34068switches like @option{-o}, @option{-D}, @option{-I}, etc.
34069GCC considers @option{-o foo} as being
34070one switch whose name starts with @samp{o}.  %@{o*@} substitutes this
34071text, including the space.  Thus two arguments are generated.
34072
34073@item %@{S*&T*@}
34074Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
34075(the order of @code{S} and @code{T} in the spec is not significant).
34076There can be any number of ampersand-separated variables; for each the
34077wild card is optional.  Useful for CPP as @samp{%@{D*&U*&A*@}}.
34078
34079@item %@{S:X@}
34080Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
34081
34082@item %@{!S:X@}
34083Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
34084
34085@item %@{S*:X@}
34086Substitutes @code{X} if one or more switches whose names start with
34087@code{-S} are specified to GCC@.  Normally @code{X} is substituted only
34088once, no matter how many such switches appeared.  However, if @code{%*}
34089appears somewhere in @code{X}, then @code{X} is substituted once
34090for each matching switch, with the @code{%*} replaced by the part of
34091that switch matching the @code{*}.
34092
34093If @code{%*} appears as the last part of a spec sequence then a space
34094is added after the end of the last substitution.  If there is more
34095text in the sequence, however, then a space is not generated.  This
34096allows the @code{%*} substitution to be used as part of a larger
34097string.  For example, a spec string like this:
34098
34099@smallexample
34100%@{mcu=*:--script=%*/memory.ld@}
34101@end smallexample
34102
34103@noindent
34104when matching an option like @option{-mcu=newchip} produces:
34105
34106@smallexample
34107--script=newchip/memory.ld
34108@end smallexample
34109
34110@item %@{.S:X@}
34111Substitutes @code{X}, if processing a file with suffix @code{S}.
34112
34113@item %@{!.S:X@}
34114Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
34115
34116@item %@{,S:X@}
34117Substitutes @code{X}, if processing a file for language @code{S}.
34118
34119@item %@{!,S:X@}
34120Substitutes @code{X}, if not processing a file for language @code{S}.
34121
34122@item %@{S|P:X@}
34123Substitutes @code{X} if either @code{-S} or @code{-P} is given to
34124GCC@.  This may be combined with @samp{!}, @samp{.}, @samp{,}, and
34125@code{*} sequences as well, although they have a stronger binding than
34126the @samp{|}.  If @code{%*} appears in @code{X}, all of the
34127alternatives must be starred, and only the first matching alternative
34128is substituted.
34129
34130For example, a spec string like this:
34131
34132@smallexample
34133%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
34134@end smallexample
34135
34136@noindent
34137outputs the following command-line options from the following input
34138command-line options:
34139
34140@smallexample
34141fred.c        -foo -baz
34142jim.d         -bar -boggle
34143-d fred.c     -foo -baz -boggle
34144-d jim.d      -bar -baz -boggle
34145@end smallexample
34146
34147@item %@{%:@var{function}(@var{args}):X@}
34148
34149Call function named @var{function} with args @var{args}.  If the
34150function returns non-NULL, then @code{X} is substituted, if it returns
34151NULL, it isn't substituted.
34152
34153@item %@{S:X; T:Y; :D@}
34154
34155If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
34156given to GCC, substitutes @code{Y}; else substitutes @code{D}.  There can
34157be as many clauses as you need.  This may be combined with @code{.},
34158@code{,}, @code{!}, @code{|}, and @code{*} as needed.
34159
34160
34161@end table
34162
34163The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
34164or similar construct can use a backslash to ignore the special meaning
34165of the character following it, thus allowing literal matching of a
34166character that is otherwise specially treated.  For example,
34167@samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
34168@option{-std=iso9899:1999} option is given.
34169
34170The conditional text @code{X} in a @samp{%@{S:X@}} or similar
34171construct may contain other nested @samp{%} constructs or spaces, or
34172even newlines.  They are processed as usual, as described above.
34173Trailing white space in @code{X} is ignored.  White space may also
34174appear anywhere on the left side of the colon in these constructs,
34175except between @code{.} or @code{*} and the corresponding word.
34176
34177The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
34178handled specifically in these constructs.  If another value of
34179@option{-O} or the negated form of a @option{-f}, @option{-m}, or
34180@option{-W} switch is found later in the command line, the earlier
34181switch value is ignored, except with @{@code{S}*@} where @code{S} is
34182just one letter, which passes all matching options.
34183
34184The character @samp{|} at the beginning of the predicate text is used to
34185indicate that a command should be piped to the following command, but
34186only if @option{-pipe} is specified.
34187
34188It is built into GCC which switches take arguments and which do not.
34189(You might think it would be useful to generalize this to allow each
34190compiler's spec to say which switches take arguments.  But this cannot
34191be done in a consistent fashion.  GCC cannot even decide which input
34192files have been specified without knowing which switches take arguments,
34193and it must know which input files to compile in order to tell which
34194compilers to run).
34195
34196GCC also knows implicitly that arguments starting in @option{-l} are to be
34197treated as compiler output files, and passed to the linker in their
34198proper position among the other output files.
34199
34200@node Environment Variables
34201@section Environment Variables Affecting GCC
34202@cindex environment variables
34203
34204@c man begin ENVIRONMENT
34205This section describes several environment variables that affect how GCC
34206operates.  Some of them work by specifying directories or prefixes to use
34207when searching for various kinds of files.  Some are used to specify other
34208aspects of the compilation environment.
34209
34210Note that you can also specify places to search using options such as
34211@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}).  These
34212take precedence over places specified using environment variables, which
34213in turn take precedence over those specified by the configuration of GCC@.
34214@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
34215GNU Compiler Collection (GCC) Internals}.
34216
34217@table @env
34218@item LANG
34219@itemx LC_CTYPE
34220@c @itemx LC_COLLATE
34221@itemx LC_MESSAGES
34222@c @itemx LC_MONETARY
34223@c @itemx LC_NUMERIC
34224@c @itemx LC_TIME
34225@itemx LC_ALL
34226@findex LANG
34227@findex LC_CTYPE
34228@c @findex LC_COLLATE
34229@findex LC_MESSAGES
34230@c @findex LC_MONETARY
34231@c @findex LC_NUMERIC
34232@c @findex LC_TIME
34233@findex LC_ALL
34234@cindex locale
34235These environment variables control the way that GCC uses
34236localization information which allows GCC to work with different
34237national conventions.  GCC inspects the locale categories
34238@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
34239so.  These locale categories can be set to any value supported by your
34240installation.  A typical value is @samp{en_GB.UTF-8} for English in the United
34241Kingdom encoded in UTF-8.
34242
34243The @env{LC_CTYPE} environment variable specifies character
34244classification.  GCC uses it to determine the character boundaries in
34245a string; this is needed for some multibyte encodings that contain quote
34246and escape characters that are otherwise interpreted as a string
34247end or escape.
34248
34249The @env{LC_MESSAGES} environment variable specifies the language to
34250use in diagnostic messages.
34251
34252If the @env{LC_ALL} environment variable is set, it overrides the value
34253of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
34254and @env{LC_MESSAGES} default to the value of the @env{LANG}
34255environment variable.  If none of these variables are set, GCC
34256defaults to traditional C English behavior.
34257
34258@item TMPDIR
34259@findex TMPDIR
34260If @env{TMPDIR} is set, it specifies the directory to use for temporary
34261files.  GCC uses temporary files to hold the output of one stage of
34262compilation which is to be used as input to the next stage: for example,
34263the output of the preprocessor, which is the input to the compiler
34264proper.
34265
34266@item GCC_COMPARE_DEBUG
34267@findex GCC_COMPARE_DEBUG
34268Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
34269@option{-fcompare-debug} to the compiler driver.  See the documentation
34270of this option for more details.
34271
34272@item GCC_EXEC_PREFIX
34273@findex GCC_EXEC_PREFIX
34274If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
34275names of the subprograms executed by the compiler.  No slash is added
34276when this prefix is combined with the name of a subprogram, but you can
34277specify a prefix that ends with a slash if you wish.
34278
34279If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
34280an appropriate prefix to use based on the pathname it is invoked with.
34281
34282If GCC cannot find the subprogram using the specified prefix, it
34283tries looking in the usual places for the subprogram.
34284
34285The default value of @env{GCC_EXEC_PREFIX} is
34286@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
34287the installed compiler. In many cases @var{prefix} is the value
34288of @code{prefix} when you ran the @file{configure} script.
34289
34290Other prefixes specified with @option{-B} take precedence over this prefix.
34291
34292This prefix is also used for finding files such as @file{crt0.o} that are
34293used for linking.
34294
34295In addition, the prefix is used in an unusual way in finding the
34296directories to search for header files.  For each of the standard
34297directories whose name normally begins with @samp{/usr/local/lib/gcc}
34298(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
34299replacing that beginning with the specified prefix to produce an
34300alternate directory name.  Thus, with @option{-Bfoo/}, GCC searches
34301@file{foo/bar} just before it searches the standard directory 
34302@file{/usr/local/lib/bar}.
34303If a standard directory begins with the configured
34304@var{prefix} then the value of @var{prefix} is replaced by
34305@env{GCC_EXEC_PREFIX} when looking for header files.
34306
34307@item COMPILER_PATH
34308@findex COMPILER_PATH
34309The value of @env{COMPILER_PATH} is a colon-separated list of
34310directories, much like @env{PATH}.  GCC tries the directories thus
34311specified when searching for subprograms, if it cannot find the
34312subprograms using @env{GCC_EXEC_PREFIX}.
34313
34314@item LIBRARY_PATH
34315@findex LIBRARY_PATH
34316The value of @env{LIBRARY_PATH} is a colon-separated list of
34317directories, much like @env{PATH}.  When configured as a native compiler,
34318GCC tries the directories thus specified when searching for special
34319linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}.  Linking
34320using GCC also uses these directories when searching for ordinary
34321libraries for the @option{-l} option (but directories specified with
34322@option{-L} come first).
34323
34324@item LANG
34325@findex LANG
34326@cindex locale definition
34327This variable is used to pass locale information to the compiler.  One way in
34328which this information is used is to determine the character set to be used
34329when character literals, string literals and comments are parsed in C and C++.
34330When the compiler is configured to allow multibyte characters,
34331the following values for @env{LANG} are recognized:
34332
34333@table @samp
34334@item C-JIS
34335Recognize JIS characters.
34336@item C-SJIS
34337Recognize SJIS characters.
34338@item C-EUCJP
34339Recognize EUCJP characters.
34340@end table
34341
34342If @env{LANG} is not defined, or if it has some other value, then the
34343compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
34344recognize and translate multibyte characters.
34345
34346@item GCC_EXTRA_DIAGNOSTIC_OUTPUT
34347@findex GCC_EXTRA_DIAGNOSTIC_OUTPUT
34348If @env{GCC_EXTRA_DIAGNOSTIC_OUTPUT} is set to one of the following values,
34349then additional text will be emitted to stderr when fix-it hints are
34350emitted.  @option{-fdiagnostics-parseable-fixits} and
34351@option{-fno-diagnostics-parseable-fixits} take precedence over this
34352environment variable.
34353
34354@table @samp
34355@item fixits-v1
34356Emit parseable fix-it hints, equivalent to
34357@option{-fdiagnostics-parseable-fixits}.  In particular, columns are
34358expressed as a count of bytes, starting at byte 1 for the initial column.
34359
34360@item fixits-v2
34361As @code{fixits-v1}, but columns are expressed as display columns,
34362as per @option{-fdiagnostics-column-unit=display}.
34363@end table
34364
34365@end table
34366
34367@noindent
34368Some additional environment variables affect the behavior of the
34369preprocessor.
34370
34371@include cppenv.texi
34372
34373@c man end
34374
34375@node Precompiled Headers
34376@section Using Precompiled Headers
34377@cindex precompiled headers
34378@cindex speed of compilation
34379
34380Often large projects have many header files that are included in every
34381source file.  The time the compiler takes to process these header files
34382over and over again can account for nearly all of the time required to
34383build the project.  To make builds faster, GCC allows you to
34384@dfn{precompile} a header file.
34385
34386To create a precompiled header file, simply compile it as you would any
34387other file, if necessary using the @option{-x} option to make the driver
34388treat it as a C or C++ header file.  You may want to use a
34389tool like @command{make} to keep the precompiled header up-to-date when
34390the headers it contains change.
34391
34392A precompiled header file is searched for when @code{#include} is
34393seen in the compilation.  As it searches for the included file
34394(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
34395compiler looks for a precompiled header in each directory just before it
34396looks for the include file in that directory.  The name searched for is
34397the name specified in the @code{#include} with @samp{.gch} appended.  If
34398the precompiled header file cannot be used, it is ignored.
34399
34400For instance, if you have @code{#include "all.h"}, and you have
34401@file{all.h.gch} in the same directory as @file{all.h}, then the
34402precompiled header file is used if possible, and the original
34403header is used otherwise.
34404
34405Alternatively, you might decide to put the precompiled header file in a
34406directory and use @option{-I} to ensure that directory is searched
34407before (or instead of) the directory containing the original header.
34408Then, if you want to check that the precompiled header file is always
34409used, you can put a file of the same name as the original header in this
34410directory containing an @code{#error} command.
34411
34412This also works with @option{-include}.  So yet another way to use
34413precompiled headers, good for projects not designed with precompiled
34414header files in mind, is to simply take most of the header files used by
34415a project, include them from another header file, precompile that header
34416file, and @option{-include} the precompiled header.  If the header files
34417have guards against multiple inclusion, they are skipped because
34418they've already been included (in the precompiled header).
34419
34420If you need to precompile the same header file for different
34421languages, targets, or compiler options, you can instead make a
34422@emph{directory} named like @file{all.h.gch}, and put each precompiled
34423header in the directory, perhaps using @option{-o}.  It doesn't matter
34424what you call the files in the directory; every precompiled header in
34425the directory is considered.  The first precompiled header
34426encountered in the directory that is valid for this compilation is
34427used; they're searched in no particular order.
34428
34429There are many other possibilities, limited only by your imagination,
34430good sense, and the constraints of your build system.
34431
34432A precompiled header file can be used only when these conditions apply:
34433
34434@itemize
34435@item
34436Only one precompiled header can be used in a particular compilation.
34437
34438@item
34439A precompiled header cannot be used once the first C token is seen.  You
34440can have preprocessor directives before a precompiled header; you cannot
34441include a precompiled header from inside another header.
34442
34443@item
34444The precompiled header file must be produced for the same language as
34445the current compilation.  You cannot use a C precompiled header for a C++
34446compilation.
34447
34448@item
34449The precompiled header file must have been produced by the same compiler
34450binary as the current compilation is using.
34451
34452@item
34453Any macros defined before the precompiled header is included must
34454either be defined in the same way as when the precompiled header was
34455generated, or must not affect the precompiled header, which usually
34456means that they don't appear in the precompiled header at all.
34457
34458The @option{-D} option is one way to define a macro before a
34459precompiled header is included; using a @code{#define} can also do it.
34460There are also some options that define macros implicitly, like
34461@option{-O} and @option{-Wdeprecated}; the same rule applies to macros
34462defined this way.
34463
34464@item If debugging information is output when using the precompiled
34465header, using @option{-g} or similar, the same kind of debugging information
34466must have been output when building the precompiled header.  However,
34467a precompiled header built using @option{-g} can be used in a compilation
34468when no debugging information is being output.
34469
34470@item The same @option{-m} options must generally be used when building
34471and using the precompiled header.  @xref{Submodel Options},
34472for any cases where this rule is relaxed.
34473
34474@item Each of the following options must be the same when building and using
34475the precompiled header:
34476
34477@gccoptlist{-fexceptions}
34478
34479@item
34480Some other command-line options starting with @option{-f},
34481@option{-p}, or @option{-O} must be defined in the same way as when
34482the precompiled header was generated.  At present, it's not clear
34483which options are safe to change and which are not; the safest choice
34484is to use exactly the same options when generating and using the
34485precompiled header.  The following are known to be safe:
34486
34487@gccoptlist{-fmessage-length=  -fpreprocessed  -fsched-interblock @gol
34488-fsched-spec  -fsched-spec-load  -fsched-spec-load-dangerous @gol
34489-fsched-verbose=@var{number}  -fschedule-insns  -fvisibility= @gol
34490-pedantic-errors}
34491
34492@item Address space layout randomization (ASLR) can lead to not binary identical
34493PCH files.  If you rely on stable PCH file contents disable ASLR when generating
34494PCH files.
34495
34496@end itemize
34497
34498For all of these except the last, the compiler automatically
34499ignores the precompiled header if the conditions aren't met.  If you
34500find an option combination that doesn't work and doesn't cause the
34501precompiled header to be ignored, please consider filing a bug report,
34502see @ref{Bugs}.
34503
34504If you do use differing options when generating and using the
34505precompiled header, the actual behavior is a mixture of the
34506behavior for the options.  For instance, if you use @option{-g} to
34507generate the precompiled header but not when using it, you may or may
34508not get debugging information for routines in the precompiled header.
34509
34510@node C++ Modules
34511@section C++ Modules
34512@cindex speed of compilation
34513
34514Modules are a C++20 language feature.  As the name suggests, they
34515provides a modular compilation system, intending to provide both
34516faster builds and better library isolation.  The ``Merging Modules''
34517paper @uref{https://wg21.link/p1103}, provides the easiest to read set
34518of changes to the standard, although it does not capture later
34519changes.
34520
34521@emph{G++'s modules support is not complete.}  Other than bugs, the
34522known missing pieces are:
34523
34524@table @emph
34525
34526@item Private Module Fragment
34527The Private Module Fragment is recognized, but an error is emitted.
34528
34529@item Partition definition visibility rules
34530Entities may be defined in implementation partitions, and those
34531definitions are not available outside of the module.  This is not
34532implemented, and the definitions are available to extra-module use.
34533
34534@item Textual merging of reachable GM entities
34535Entities may be multiply defined across different header-units.
34536These must be de-duplicated, and this is implemented across imports,
34537or when an import redefines a textually-defined entity.  However the
34538reverse is not implemented---textually redefining an entity that has
34539been defined in an imported header-unit.  A redefinition error is
34540emitted.
34541
34542@item Translation-Unit local referencing rules
34543Papers p1815 (@uref{https://wg21.link/p1815}) and p2003
34544(@uref{https://wg21.link/p2003}) add limitations on which entities an
34545exported region may reference (for instance, the entities an exported
34546template definition may reference).  These are not fully implemented.
34547
34548@item Language-linkage module attachment
34549Declarations with explicit language linkage (@code{extern "C"} or
34550@code{extern "C++"}) are attached to the global module, even when in
34551the purview of a named module.  This is not implemented.  Such
34552declarations will be attached to the module, if any, in which they are
34553declared.
34554
34555@item Standard Library Header Units
34556The Standard Library is not provided as importable header units.  If
34557you want to import such units, you must explicitly build them first.
34558If you do not do this with care, you may have multiple declarations,
34559which the module machinery must merge---compiler resource usage can be
34560affected by how you partition header files into header units.
34561
34562@end table
34563
34564Modular compilation is @emph{not} enabled with just the
34565@option{-std=c++20} option.  You must explicitly enable it with the
34566@option{-fmodules-ts} option.  It is independent of the language
34567version selected, although in pre-C++20 versions, it is of course an
34568extension.
34569
34570No new source file suffixes are required or supported.  If you wish to
34571use a non-standard suffix (@pxref{Overall Options}), you also need
34572to provide a @option{-x c++} option too.@footnote{Some users like to
34573distinguish module interface files with a new suffix, such as naming
34574the source @code{module.cppm}, which involves
34575teaching all tools about the new suffix.  A different scheme, such as
34576naming @code{module-m.cpp} would be less invasive.}
34577
34578Compiling a module interface unit produces an additional output (to
34579the assembly or object file), called a Compiled Module Interface
34580(CMI).  This encodes the exported declarations of the module.
34581Importing a module reads in the CMI.  The import graph is a Directed
34582Acyclic Graph (DAG).  You must build imports before the importer.
34583
34584Header files may themselves be compiled to header units, which are a
34585transitional ability aiming at faster compilation.  The
34586@option{-fmodule-header} option is used to enable this, and implies
34587the @option{-fmodules-ts} option.  These CMIs are named by the fully
34588resolved underlying header file, and thus may be a complete pathname
34589containing subdirectories.  If the header file is found at an absolute
34590pathname, the CMI location is still relative to a CMI root directory.
34591
34592As header files often have no suffix, you commonly have to specify a
34593@option{-x} option to tell the compiler the source is a header file.
34594You may use @option{-x c++-header}, @option{-x c++-user-header} or
34595@option{-x c++-system-header}.  When used in conjunction with
34596@option{-fmodules-ts}, these all imply an appropriate
34597@option{-fmodule-header} option.  The latter two variants use the
34598user or system include path to search for the file specified.  This
34599allows you to, for instance, compile standard library header files as
34600header units, without needing to know exactly where they are
34601installed.  Specifying the language as one of these variants also
34602inhibits output of the object file, as header files have no associated
34603object file.
34604
34605The @option{-fmodule-only} option disables generation of the
34606associated object file for compiling a module interface.  Only the CMI
34607is generated.  This option is implied when using the
34608@option{-fmodule-header} option.
34609
34610The @option{-flang-info-include-translate} and
34611@option{-flang-info-include-translate-not} options notes whether
34612include translation occurs or not.  With no argument, the first will
34613note all include translation.  The second will note all
34614non-translations of include files not known to intentionally be
34615textual.  With an argument, queries about include translation of a
34616header files with that particular trailing pathname are noted.  You
34617may repeat this form to cover several different header files.  This
34618option may be helpful in determining whether include translation is
34619happening---if it is working correctly, it behaves as if it isn't
34620there at all.
34621
34622The @option{-flang-info-module-cmi} option can be used to determine
34623where the compiler is reading a CMI from.  Without the option, the
34624compiler is silent when such a read is successful.  This option has an
34625optional argument, which will restrict the notification to just the
34626set of named modules or header units specified.
34627
34628The @option{-Winvalid-imported-macros} option causes all imported macros
34629to be resolved at the end of compilation.  Without this, imported
34630macros are only resolved when expanded or (re)defined.  This option
34631detects conflicting import definitions for all macros.
34632
34633For details of the @option{-fmodule-mapper} family of options,
34634@pxref{C++ Module Mapper}.
34635
34636@menu
34637* C++ Module Mapper::       Module Mapper
34638* C++ Module Preprocessing::  Module Preprocessing
34639* C++ Compiled Module Interface:: Compiled Module Interface
34640@end menu
34641
34642@node C++ Module Mapper
34643@subsection Module Mapper
34644@cindex C++ Module Mapper
34645
34646A module mapper provides a server or file that the compiler queries to
34647determine the mapping between module names and CMI files.  It is also
34648used to build CMIs on demand.  @emph{Mapper functionality is in its
34649infancy and is intended for experimentation with build system
34650interactions.}
34651
34652You can specify a mapper with the @option{-fmodule-mapper=@var{val}}
34653option or @env{CXX_MODULE_MAPPER} environment variable.  The value may
34654have one of the following forms:
34655
34656@table @gcctabopt
34657
34658@item @r{[}@var{hostname}@r{]}:@var{port}@r{[}?@var{ident}@r{]}
34659An optional hostname and a numeric port number to connect to.  If the
34660hostname is omitted, the loopback address is used.  If the hostname
34661corresponds to multiple IPV6 addresses, these are tried in turn, until
34662one is successful.  If your host lacks IPv6, this form is
34663non-functional.  If you must use IPv4 use
34664@option{-fmodule-mapper='|ncat @var{ipv4host} @var{port}'}.
34665
34666@item =@var{socket}@r{[}?@var{ident}@r{]}
34667A local domain socket.  If your host lacks local domain sockets, this
34668form is non-functional.
34669
34670@item |@var{program}@r{[}?@var{ident}@r{]} @r{[}@var{args...}@r{]}
34671A program to spawn, and communicate with on its stdin/stdout streams.
34672Your @var{PATH} environment variable is searched for the program.
34673Arguments are separated by space characters, (it is not possible for
34674one of the arguments delivered to the program to contain a space).  An
34675exception is if @var{program} begins with @@.  In that case
34676@var{program} (sans @@) is looked for in the compiler's internal
34677binary directory.  Thus the sample mapper-server can be specified
34678with @code{@@g++-mapper-server}.
34679
34680@item <>@r{[}?@var{ident}@r{]}
34681@item <>@var{inout}@r{[}?@var{ident}@r{]}
34682@item <@var{in}>@var{out}@r{[}?@var{ident}@r{]}
34683Named pipes or file descriptors to communicate over.  The first form,
34684@option{<>}, communicates over stdin and stdout.  The other forms
34685allow you to specify a file descriptor or name a pipe.  A numeric value
34686is interpreted as a file descriptor, otherwise named pipe is opened.
34687The second form specifies a bidirectional pipe and the last form
34688allows specifying two independent pipes.  Using file descriptors
34689directly in this manner is fragile in general, as it can require the
34690cooperation of intermediate processes.  In particular using stdin &
34691stdout is fraught with danger as other compiler options might also
34692cause the compiler to read stdin or write stdout, and it can have
34693unfortunate interactions with signal delivery from the terminal.
34694
34695@item @var{file}@r{[}?@var{ident}@r{]}
34696A mapping file consisting of space-separated module-name, filename
34697pairs, one per line.  Only the mappings for the direct imports and any
34698module export name need be provided.  If other mappings are provided,
34699they override those stored in any imported CMI files.  A repository
34700root may be specified in the mapping file by using @samp{$root} as the
34701module name in the first active line.  Use of this option will disable
34702any default module->CMI name mapping.
34703
34704@end table
34705
34706As shown, an optional @var{ident} may suffix the first word of the
34707option, indicated by a @samp{?} prefix.  The value is used in the
34708initial handshake with the module server, or to specify a prefix on
34709mapping file lines.  In the server case, the main source file name is
34710used if no @var{ident} is specified.  In the file case, all non-blank
34711lines are significant, unless a value is specified, in which case only
34712lines beginning with @var{ident} are significant.  The @var{ident}
34713must be separated by whitespace from the module name.  Be aware that
34714@samp{<}, @samp{>}, @samp{?}, and @samp{|} characters are often
34715significant to the shell, and therefore may need quoting.
34716
34717The mapper is connected to or loaded lazily, when the first module
34718mapping is required.  The networking protocols are only supported on
34719hosts that provide networking.  If no mapper is specified a default is
34720provided.
34721
34722A project-specific mapper is expected to be provided by the build
34723system that invokes the compiler.  It is not expected that a
34724general-purpose server is provided for all compilations.  As such, the
34725server will know the build configuration, the compiler it invoked, and
34726the environment (such as working directory) in which that is
34727operating.  As it may parallelize builds, several compilations may
34728connect to the same socket.
34729
34730The default mapper generates CMI files in a @samp{gcm.cache}
34731directory.  CMI files have a @samp{.gcm} suffix.  The module unit name
34732is used directly to provide the basename.  Header units construct a
34733relative path using the underlying header file name.  If the path is
34734already relative, a @samp{,} directory is prepended.  Internal
34735@samp{..} components are translated to @samp{,,}.  No attempt is made
34736to canonicalize these filenames beyond that done by the preprocessor's
34737include search algorithm, as in general it is ambiguous when symbolic
34738links are present.
34739
34740The mapper protocol was published as ``A Module Mapper''
34741@uref{https://wg21.link/p1184}.  The implementation is provided by
34742@command{libcody}, @uref{https://github.com/urnathan/libcody},
34743which specifies the canonical protocol definition.  A proof of concept
34744server implementation embedded in @command{make} was described in
34745''Make Me A Module'', @uref{https://wg21.link/p1602}.
34746
34747@node C++ Module Preprocessing
34748@subsection Module Preprocessing
34749@cindex C++ Module Preprocessing
34750
34751Modules affect preprocessing because of header units and include
34752translation.  Some uses of the preprocessor as a separate step either
34753do not produce a correct output, or require CMIs to be available.
34754
34755Header units import macros.  These macros can affect later conditional
34756inclusion, which therefore can cascade to differing import sets.  When
34757preprocessing, it is necessary to load the CMI.  If a header unit is
34758unavailable, the preprocessor issues a warning and continue (when
34759not just preprocessing, an error is emitted).  Detecting such imports
34760requires preprocessor tokenization of the input stream to phase 4
34761(macro expansion).
34762
34763Include translation converts @code{#include}, @code{#include_next} and
34764@code{#import} directives to internal @code{import} declarations.
34765Whether a particular directive is translated is controlled by the
34766module mapper.  Header unit names are canonicalized during
34767preprocessing.
34768
34769Dependency information can be emitted for macro import, extending the
34770functionality of @option{-MD} and @option{-MMD} options.  Detection of
34771import declarations also requires phase 4 preprocessing, and thus
34772requires full preprocessing (or compilation).
34773
34774The @option{-M}, @option{-MM} and @option{-E -fdirectives-only} options halt
34775preprocessing before phase 4.
34776
34777The @option{-save-temps} option uses @option{-fdirectives-only} for
34778preprocessing, and preserve the macro definitions in the preprocessed
34779output.  Usually you also want to use this option when explicitly
34780preprocessing a header-unit, or consuming such preprocessed output:
34781
34782@smallexample
34783g++ -fmodules-ts -E -fdirectives-only my-header.hh -o my-header.ii
34784g++ -x c++-header -fmodules-ts -fpreprocessed -fdirectives-only my-header.ii
34785@end smallexample
34786
34787@node C++ Compiled Module Interface
34788@subsection Compiled Module Interface
34789@cindex C++ Compiled Module Interface
34790
34791CMIs are an additional artifact when compiling named module
34792interfaces, partitions or header units.  These are read when
34793importing.  CMI contents are implementation-specific, and in GCC's
34794case tied to the compiler version.  Consider them a rebuildable cache
34795artifact, not a distributable object.
34796
34797When creating an output CMI, any missing directory components are
34798created in a manner that is safe for concurrent builds creating
34799multiple, different, CMIs within a common subdirectory tree.
34800
34801CMI contents are written to a temporary file, which is then atomically
34802renamed.  Observers either see old contents (if there is an
34803existing file), or complete new contents.  They do not observe the
34804CMI during its creation.  This is unlike object file writing, which
34805may be observed by an external process.
34806
34807CMIs are read in lazily, if the host OS provides @code{mmap}
34808functionality.  Generally blocks are read when name lookup or template
34809instantiation occurs.  To inhibit this, the @option{-fno-module-lazy}
34810option may be used.
34811
34812The @option{--param lazy-modules=@var{n}} parameter controls the limit
34813on the number of concurrently open module files during lazy loading.
34814Should more modules be imported, an LRU algorithm is used to determine
34815which files to close---until that file is needed again.  This limit
34816may be exceeded with deep module dependency hierarchies.  With large
34817code bases there may be more imports than the process limit of file
34818descriptors.  By default, the limit is a few less than the per-process
34819file descriptor hard limit, if that is determinable.@footnote{Where
34820applicable the soft limit is incremented as needed towards the hard limit.}
34821
34822GCC CMIs use ELF32 as an architecture-neutral encapsulation mechanism.
34823You may use @command{readelf} to inspect them, although section
34824contents are largely undecipherable.  There is a section named
34825@code{.gnu.c++.README}, which contains human-readable text.  Other
34826than the first line, each line consists of @code{@var{tag}: @code{value}}
34827tuples.
34828
34829@smallexample
34830> @command{readelf -p.gnu.c++.README gcm.cache/foo.gcm}
34831
34832String dump of section '.gnu.c++.README':
34833  [     0]  GNU C++ primary module interface
34834  [    21]  compiler: 11.0.0 20201116 (experimental) [c++-modules revision 20201116-0454]
34835  [    6f]  version: 2020/11/16-04:54
34836  [    89]  module: foo
34837  [    95]  source: c_b.ii
34838  [    a4]  dialect: C++20/coroutines
34839  [    be]  cwd: /data/users/nathans/modules/obj/x86_64/gcc
34840  [    ee]  repository: gcm.cache
34841  [   104]  buildtime: 2020/11/16 15:03:21 UTC
34842  [   127]  localtime: 2020/11/16 07:03:21 PST
34843  [   14a]  export: foo:part1 foo-part1.gcm
34844@end smallexample
34845
34846Amongst other things, this lists the source that was built, C++
34847dialect used and imports of the module.@footnote{The precise contents
34848of this output may change.} The timestamp is the same value as that
34849provided by the @code{__DATE__} & @code{__TIME__} macros, and may be
34850explicitly specified with the environment variable
34851@code{SOURCE_DATE_EPOCH}.  For further details
34852@pxref{Environment Variables}.
34853
34854A set of related CMIs may be copied, provided the relative pathnames
34855are preserved.
34856
34857The @code{.gnu.c++.README} contents do not affect CMI integrity, and
34858it may be removed or altered.  The section numbering of the sections
34859whose names do not begin with @code{.gnu.c++.}, or are not the string
34860section is significant and must not be altered.
34861