1/* Copyright (C) 2000-2022 Free Software Foundation, Inc.
2
3This file is part of GCC.
4
5GCC is free software; you can redistribute it and/or modify it under
6the terms of the GNU General Public License as published by the Free
7Software Foundation; either version 3, or (at your option) any later
8version.
9
10GCC is distributed in the hope that it will be useful, but WITHOUT ANY
11WARRANTY; without even the implied warranty of MERCHANTABILITY or
12FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13for more details.
14
15Under Section 7 of GPL version 3, you are granted additional
16permissions described in the GCC Runtime Library Exception, version
173.1, as published by the Free Software Foundation.
18
19You should have received a copy of the GNU General Public License and
20a copy of the GCC Runtime Library Exception along with this program;
21see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
22<http://www.gnu.org/licenses/>.  */
23
24/* Standard register usage.  */
25
26/* Number of actual hardware registers.
27   The hardware registers are assigned numbers for the compiler
28   from 0 to just below FIRST_PSEUDO_REGISTER.
29   All registers that the compiler knows about must be given numbers,
30   even those that are not normally considered general registers.
31
32   HP-PA 1.0 has 32 fullword registers and 16 floating point
33   registers. The floating point registers hold either word or double
34   word values.
35
36   16 additional registers are reserved.
37
38   HP-PA 1.1 has 32 fullword registers and 32 floating point
39   registers. However, the floating point registers behave
40   differently: the left and right halves of registers are addressable
41   as 32-bit registers. So, we will set things up like the 68k which
42   has different fp units: define separate register sets for the 1.0
43   and 1.1 fp units.  */
44
45#define FIRST_PSEUDO_REGISTER 90  /* 32 general regs + 56 fp regs +
46				     + 1 shift reg + frame pointer */
47
48/* 1 for registers that have pervasive standard uses
49   and are not available for the register allocator.
50
51   On the HP-PA, these are:
52   Reg 0	= 0 (hardware). However, 0 is used for condition code,
53                  so is not fixed.
54   Reg 1	= ADDIL target/Temporary (hardware).
55   Reg 2	= Return Pointer
56   Reg 3	= Frame Pointer
57   Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)
58   Reg 4-18	= Preserved Registers
59   Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.
60   Reg 20-22	= Temporary Registers
61   Reg 23-26	= Temporary/Parameter Registers
62   Reg 27	= Global Data Pointer (hp)
63   Reg 28	= Temporary/Return Value register
64   Reg 29	= Temporary/Static Chain/Return Value register #2
65   Reg 30	= stack pointer
66   Reg 31	= Temporary/Millicode Return Pointer (hp)
67
68   Freg 0-3	= Status Registers	 -- Not known to the compiler.
69   Freg 4-7	= Arguments/Return Value
70   Freg 8-11	= Temporary Registers
71   Freg 12-15	= Preserved Registers
72
73   Freg 16-31	= Reserved
74
75   On the Snake, fp regs are
76
77   Freg 0-3	= Status Registers	-- Not known to the compiler.
78   Freg 4L-7R	= Arguments/Return Value
79   Freg 8L-11R	= Temporary Registers
80   Freg 12L-21R	= Preserved Registers
81   Freg 22L-31R = Temporary Registers
82
83*/
84
85#define FIXED_REGISTERS  \
86 {0, 0, 0, 0, 0, 0, 0, 0, \
87  0, 0, 0, 0, 0, 0, 0, 0, \
88  0, 0, 0, 0, 0, 0, 0, 0, \
89  0, 0, 0, 1, 0, 0, 1, 0, \
90  /* fp registers */	  \
91  0, 0, 0, 0, 0, 0, 0, 0, \
92  0, 0, 0, 0, 0, 0, 0, 0, \
93  0, 0, 0, 0, 0, 0, 0, 0, \
94  0, 0, 0, 0, 0, 0, 0, 0, \
95  0, 0, 0, 0, 0, 0, 0, 0, \
96  0, 0, 0, 0, 0, 0, 0, 0, \
97  0, 0, 0, 0, 0, 0, 0, 0, \
98  /* shift register and soft frame pointer */ \
99  0, 1}
100
101/* 1 for registers not available across function calls.
102   These must include the FIXED_REGISTERS and also any
103   registers that can be used without being saved.
104   The latter must include the registers where values are returned
105   and the register where structure-value addresses are passed.
106   Aside from that, you can include as many other registers as you like.  */
107#define CALL_USED_REGISTERS  \
108 {1, 1, 1, 0, 0, 0, 0, 0, \
109  0, 0, 0, 0, 0, 0, 0, 0, \
110  0, 0, 0, 1, 1, 1, 1, 1, \
111  1, 1, 1, 1, 1, 1, 1, 1, \
112  /* fp registers */	  \
113  1, 1, 1, 1, 1, 1, 1, 1, \
114  1, 1, 1, 1, 1, 1, 1, 1, \
115  0, 0, 0, 0, 0, 0, 0, 0, \
116  0, 0, 0, 0, 0, 0, 0, 0, \
117  0, 0, 0, 0, 1, 1, 1, 1, \
118  1, 1, 1, 1, 1, 1, 1, 1, \
119  1, 1, 1, 1, 1, 1, 1, 1, \
120  /* shift register and soft frame pointer */ \
121  1, 1}
122
123/* Allocate the call used registers first.  This should minimize
124   the number of registers that need to be saved (as call used
125   registers will generally not be allocated across a call).
126
127   Experimentation has shown slightly better results by allocating
128   FP registers first.  We allocate the caller-saved registers more
129   or less in reverse order to their allocation as arguments.
130
131   FP registers are ordered so that all L registers are selected before
132   R registers.  This works around a false dependency interlock on the
133   PA8000 when accessing the high and low parts of an FP register
134   independently.  */
135
136#define REG_ALLOC_ORDER \
137 {					\
138  /* caller-saved fp regs.  */		\
139  68, 70, 72, 74, 76, 78, 80, 82,	\
140  84, 86, 40, 42, 44, 46, 38, 36,	\
141  34, 32,				\
142  69, 71, 73, 75, 77, 79, 81, 83,	\
143  85, 87, 41, 43, 45, 47, 39, 37,	\
144  35, 33,				\
145  /* caller-saved general regs.  */	\
146  28, 19, 20, 21, 22, 31, 27, 29,	\
147  23, 24, 25, 26,  2,			\
148  /* callee-saved fp regs.  */		\
149  48, 50, 52, 54, 56, 58, 60, 62,	\
150  64, 66,				\
151  49, 51, 53, 55, 57, 59, 61, 63,	\
152  65, 67,				\
153  /* callee-saved general regs.  */	\
154   3,  4,  5,  6,  7,  8,  9, 10, 	\
155  11, 12, 13, 14, 15, 16, 17, 18,	\
156  /* special registers.  */		\
157   1, 30,  0, 88, 89}
158
159
160/* Return number of consecutive hard regs needed starting at reg REGNO
161   to hold something of mode MODE.
162   This is ordinarily the length in words of a value of mode MODE
163   but can be less for certain modes in special long registers.
164
165   On the HP-PA, general registers are 32 bits wide.  The floating
166   point registers are 64 bits wide.  Snake fp regs are treated as
167   32 bits wide since the left and right parts are independently
168   accessible.  */
169#define PA_HARD_REGNO_NREGS(REGNO, MODE)				\
170  (FP_REGNO_P (REGNO)							\
171   ? (!TARGET_PA_11							\
172      ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
173      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) 	                        \
174   : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
175
176/* There are no instructions that use DImode in PA 1.0, so we only
177   allow it in PA 1.1 and later.  */
178#define VALID_FP_MODE_P(MODE)						\
179  ((MODE) == SFmode || (MODE) == DFmode					\
180   || (MODE) == SCmode || (MODE) == DCmode				\
181   || (MODE) == SImode || (TARGET_PA_11 && (MODE) == DImode))
182
183/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
184
185   On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
186   For the 64-bit modes, we choose a set of non-overlapping general registers
187   that includes the incoming arguments and the return value.  We specify a
188   set with no overlaps so that we don't have to specify that the destination
189   register is an early clobber in patterns using this mode.  Except for the
190   return value, the starting registers are odd.  For 128 and 256 bit modes,
191   we similarly specify non-overlapping sets of cpu registers.  However,
192   there aren't any patterns defined for modes larger than 64 bits at the
193   moment.
194
195   We limit the modes allowed in the floating point registers to the
196   set of modes used in the machine definition.  In addition, we allow
197   the complex modes SCmode and DCmode.  The real and imaginary parts
198   of complex modes are allocated to separate registers.  This might
199   allow patterns to be defined in the future to operate on these values.
200
201   The PA 2.0 architecture specifies that quad-precision floating-point
202   values should start on an even floating point register.  Thus, we
203   choose non-overlapping sets of registers starting on even register
204   boundaries for large modes.  However, there is currently no support
205   in the machine definition for modes larger than 64 bits.  TFmode is
206   supported under HP-UX using libcalls.  Since TFmode values are passed
207   by reference, they never need to be loaded into the floating-point
208   registers.  */
209#define PA_HARD_REGNO_MODE_OK(REGNO, MODE) \
210  ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\
211   : (REGNO) == 88 ? SCALAR_INT_MODE_P (MODE)				\
212   : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\
213     ? (VALID_FP_MODE_P (MODE)						\
214	&& (GET_MODE_SIZE (MODE) <= 8					\
215	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)))	\
216   : FP_REGNO_P (REGNO)							\
217     ? (VALID_FP_MODE_P (MODE)						\
218	&& (GET_MODE_SIZE (MODE) <= 4					\
219	    || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0)	\
220	    || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0)	\
221	    || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0)))	\
222   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\
223      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\
224	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\
225      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\
226	  && ((REGNO) & 3) == 3 && (REGNO) <= 23)			\
227      || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD			\
228	  && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
229
230/* How to renumber registers for dbx and gdb.
231
232   Registers 0  - 31 remain unchanged.
233
234   Registers 32 - 87 are mapped to 72 - 127
235
236   Register 88 is mapped to 32.  */
237
238#define DBX_REGISTER_NUMBER(REGNO) \
239  ((REGNO) <= 31 ? (REGNO) :						\
240   ((REGNO) <= 87 ? (REGNO) + 40 : 32))
241
242/* We must not use the DBX register numbers for the DWARF 2 CFA column
243   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
244   Instead use the identity mapping.  */
245#define DWARF_FRAME_REGNUM(REG) REG
246
247/* Define the classes of registers for register constraints in the
248   machine description.  Also define ranges of constants.
249
250   One of the classes must always be named ALL_REGS and include all hard regs.
251   If there is more than one class, another class must be named NO_REGS
252   and contain no registers.
253
254   The name GENERAL_REGS must be the name of a class (or an alias for
255   another name such as ALL_REGS).  This is the class of registers
256   that is allowed by "g" or "r" in a register constraint.
257   Also, registers outside this class are allocated only when
258   instructions express preferences for them.
259
260   The classes must be numbered in nondecreasing order; that is,
261   a larger-numbered class must never be contained completely
262   in a smaller-numbered class.
263
264   For any two classes, it is very desirable that there be another
265   class that represents their union.  */
266
267  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
268     1.1 fp regs, and the high 1.1 fp regs, to which the operands of
269     fmpyadd and fmpysub are restricted.  */
270
271enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,
272		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
273
274#define N_REG_CLASSES (int) LIM_REG_CLASSES
275
276/* Give names of register classes as strings for dump file.  */
277
278#define REG_CLASS_NAMES \
279  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
280   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
281
282/* Define which registers fit in which classes.
283   This is an initializer for a vector of HARD_REG_SET
284   of length N_REG_CLASSES. Register 0, the "condition code" register,
285   is in no class.  */
286
287#define REG_CLASS_CONTENTS	\
288 {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\
289  {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\
290  {0xfffffffe, 0x00000000, 0x02000000},	/* GENERAL_REGS */		\
291  {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\
292  {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\
293  {0xfffffffe, 0xffffffff, 0x02ffffff},	/* GENERAL_OR_FP_REGS */	\
294  {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\
295  {0xfffffffe, 0xffffffff, 0x03ffffff}}	/* ALL_REGS */
296
297/* Return the class number of the smallest class containing
298   reg number REGNO.  This could be a conditional expression
299   or could index an array.  */
300
301#define REGNO_REG_CLASS(REGNO)						\
302  ((REGNO) == 0 ? NO_REGS 						\
303   : (REGNO) == 1 ? R1_REGS						\
304   : (REGNO) < 32 || (REGNO) == 89 ? GENERAL_REGS			\
305   : (REGNO) < 56 ? FP_REGS						\
306   : (REGNO) < 88 ? FPUPPER_REGS					\
307   : SHIFT_REGS)
308
309/* Return the maximum number of consecutive registers
310   needed to represent mode MODE in a register of class CLASS.  */
311#define CLASS_MAX_NREGS(CLASS, MODE)					\
312  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\
313   ? (!TARGET_PA_11							\
314      ? COMPLEX_MODE_P (MODE) ? 2 : 1					\
315      : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)				\
316   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
317
318/* 1 if N is a possible register number for function argument passing.  */
319
320#define FUNCTION_ARG_REGNO_P(N) \
321  (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
322
323/* How to refer to registers in assembler output.
324   This sequence is indexed by compiler's hard-register-number (see above).  */
325
326#define REGISTER_NAMES \
327{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \
328 "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \
329 "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \
330 "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \
331 "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \
332 "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \
333 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
334 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
335 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
336 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
337 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
338 "SAR",   "sfp"}
339
340#define ADDITIONAL_REGISTER_NAMES \
341{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\
342 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\
343 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\
344 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\
345 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\
346 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\
347 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\
348 {"%cr11",88}}
349
350#define FP_SAVED_REG_LAST 66
351#define FP_SAVED_REG_FIRST 48
352#define FP_REG_STEP 2
353#define FP_REG_FIRST 32
354#define FP_REG_LAST 87
355