1/* Target macros for the FRV port of GCC.
2   Copyright (C) 1999-2022 Free Software Foundation, Inc.
3   Contributed by Red Hat Inc.
4
5   This file is part of GCC.
6
7   GCC is free software; you can redistribute it and/or modify it
8   under the terms of the GNU General Public License as published
9   by the Free Software Foundation; either version 3, or (at your
10   option) any later version.
11
12   GCC is distributed in the hope that it will be useful, but WITHOUT
13   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15   License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with GCC; see the file COPYING3.  If not see
19   <http://www.gnu.org/licenses/>.  */
20
21#ifndef __FRV_H__
22#define __FRV_H__
23
24/* Frv general purpose macros.  */
25/* Align an address.  */
26#define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
27
28/* Driver configuration.  */
29
30/* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
31    FDPIC which multilib to use depends on whether FDPIC is in use or
32    not.  The trick we use is to introduce -multilib-library-pic as a
33    pseudo-flag that selects the library-pic multilib, and map fpic
34    and fPIC to it only if fdpic is not selected.  Also, if fdpic is
35    selected and no PIC/PIE options are present, we imply -fPIE.
36    Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
37    speed, or if we have -On with n>=3, enable inlining of PLTs.  As
38    for -mgprel-ro, we want to enable it by default, but not for -fpic or
39    -fpie.  */
40
41#define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
42"%{mno-pack:\
43   %{!mhard-float:-msoft-float}\
44   %{!mmedia:-mno-media}}\
45 %{!mfdpic:%{" FPIC_SPEC ": -multilib-library-pic}}\
46 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
47   	    %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
48	  %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{" FPIC_SPEC ":-minline-plt} \
49                    %{" NO_FPIC_SPEC ":%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}} \
50	  %{!mno-gprel-ro:%{" NO_FPIE1_AND_FPIC1_SPEC ":-mgprel-ro}}} \
51"
52#ifndef SUBTARGET_DRIVER_SELF_SPECS
53# define SUBTARGET_DRIVER_SELF_SPECS
54#endif
55
56#undef  ASM_SPEC
57#define ASM_SPEC "\
58%{G*} \
59%{mtomcat-stats} \
60%{!mno-eflags: \
61    %{mcpu=*} \
62    %{mgpr-*} %{mfpr-*} \
63    %{msoft-float} %{mhard-float} \
64    %{mdword} %{mno-dword} \
65    %{mdouble} %{mno-double} \
66    %{mmedia} %{mno-media} \
67    %{mmuladd} %{mno-muladd} \
68    %{mpack} %{mno-pack} \
69    %{mno-fdpic:-mnopic} %{mfdpic} \
70    %{" FPIE1_OR_FPIC1_SPEC ":-mpic} %{" FPIE2_OR_FPIC2_SPEC ":-mPIC} %{mlibrary-pic}}"
71
72#undef  STARTFILE_SPEC
73#define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
74
75#undef  ENDFILE_SPEC
76#define ENDFILE_SPEC "frvend%O%s"
77
78
79#define MASK_DEFAULT_FRV	\
80  (MASK_MEDIA			\
81   | MASK_DOUBLE		\
82   | MASK_MULADD		\
83   | MASK_DWORD			\
84   | MASK_PACK)
85
86#define MASK_DEFAULT_FR500 \
87  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
88
89#define MASK_DEFAULT_FR550 \
90  (MASK_MEDIA | MASK_DWORD | MASK_PACK)
91
92#define MASK_DEFAULT_FR450	\
93  (MASK_GPR_32			\
94   | MASK_FPR_32		\
95   | MASK_MEDIA			\
96   | MASK_SOFT_FLOAT		\
97   | MASK_DWORD			\
98   | MASK_PACK)
99
100#define MASK_DEFAULT_FR400	\
101  (MASK_GPR_32			\
102   | MASK_FPR_32		\
103   | MASK_MEDIA			\
104   | MASK_ACC_4			\
105   | MASK_SOFT_FLOAT		\
106   | MASK_DWORD			\
107   | MASK_PACK)
108
109#define MASK_DEFAULT_SIMPLE \
110  (MASK_GPR_32 | MASK_SOFT_FLOAT)
111
112/* A C string constant that tells the GCC driver program options to pass to
113   `cc1'.  It can also specify how to translate options you give to GCC into
114   options for GCC to pass to the `cc1'.
115
116   Do not define this macro if it does not need to do anything.  */
117/* For ABI compliance, we need to put bss data into the normal data section.  */
118#define CC1_SPEC "%{G*}"
119
120#undef	LINK_SPEC
121#define LINK_SPEC "\
122%{h*} %{v:-V} \
123%{mfdpic:-melf32frvfd -z text} \
124%{static:-dn -Bstatic} \
125%{shared:-Bdynamic} \
126%{symbolic:-Bsymbolic} \
127%{G*}"
128
129#undef  LIB_SPEC
130#define LIB_SPEC "--start-group -lc -lsim --end-group"
131
132#ifndef CPU_TYPE
133#define CPU_TYPE		FRV_CPU_FR500
134#endif
135
136/* Run-time target specifications */
137
138#define TARGET_CPU_CPP_BUILTINS()					\
139  do									\
140    {									\
141      int issue_rate;							\
142									\
143      builtin_define ("__frv__");					\
144      builtin_assert ("machine=frv");					\
145									\
146      issue_rate = frv_issue_rate ();					\
147      if (issue_rate > 1)						\
148	builtin_define_with_int_value ("__FRV_VLIW__", issue_rate);	\
149      builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS);		\
150      builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS);		\
151      builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS);		\
152									\
153      switch (frv_cpu_type)						\
154	{								\
155	case FRV_CPU_GENERIC:						\
156	  builtin_define ("__CPU_GENERIC__");				\
157	  break;							\
158	case FRV_CPU_FR550:						\
159	  builtin_define ("__CPU_FR550__");				\
160	  break;							\
161	case FRV_CPU_FR500:						\
162	case FRV_CPU_TOMCAT:						\
163	  builtin_define ("__CPU_FR500__");				\
164	  break;							\
165	case FRV_CPU_FR450:						\
166	  builtin_define ("__CPU_FR450__");				\
167	  break;							\
168	case FRV_CPU_FR405:						\
169	  builtin_define ("__CPU_FR405__");				\
170	  break;							\
171	case FRV_CPU_FR400:						\
172	  builtin_define ("__CPU_FR400__");				\
173	  break;							\
174	case FRV_CPU_FR300:						\
175	case FRV_CPU_SIMPLE:						\
176	  builtin_define ("__CPU_FR300__");				\
177	  break;							\
178	}								\
179									\
180      if (TARGET_HARD_FLOAT)						\
181	builtin_define ("__FRV_HARD_FLOAT__");				\
182      if (TARGET_DWORD)							\
183	builtin_define ("__FRV_DWORD__");				\
184      if (TARGET_FDPIC)							\
185	builtin_define ("__FRV_FDPIC__");				\
186      if (flag_leading_underscore > 0)					\
187	builtin_define ("__FRV_UNDERSCORE__");				\
188    }									\
189  while (0)
190
191
192#define TARGET_HAS_FPRS		(TARGET_HARD_FLOAT || TARGET_MEDIA)
193
194#define NUM_GPRS		(TARGET_GPR_32? 32 : 64)
195#define NUM_FPRS		(!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
196#define NUM_ACCS		(!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
197
198/* X is a valid accumulator number if (X & ACC_MASK) == X.  */
199#define ACC_MASK						\
200  (!TARGET_MEDIA ? 0						\
201   : TARGET_ACC_4 ? 3						\
202   : frv_cpu_type == FRV_CPU_FR450 ? 11				\
203   : 7)
204
205/* Macros to identify the blend of media instructions available.  Revision 1
206   is the one found on the FR500.  Revision 2 includes the changes made for
207   the FR400.
208
209   Treat the generic processor as a revision 1 machine for now, for
210   compatibility with earlier releases.  */
211
212#define TARGET_MEDIA_REV1					\
213  (TARGET_MEDIA							\
214   && (frv_cpu_type == FRV_CPU_GENERIC				\
215       || frv_cpu_type == FRV_CPU_FR500))
216
217#define TARGET_MEDIA_REV2					\
218  (TARGET_MEDIA							\
219   && (frv_cpu_type == FRV_CPU_FR400				\
220       || frv_cpu_type == FRV_CPU_FR405				\
221       || frv_cpu_type == FRV_CPU_FR450				\
222       || frv_cpu_type == FRV_CPU_FR550))
223
224#define TARGET_MEDIA_FR450					\
225  (frv_cpu_type == FRV_CPU_FR450)
226
227#define TARGET_FR500_FR550_BUILTINS				\
228   (frv_cpu_type == FRV_CPU_FR500				\
229    || frv_cpu_type == FRV_CPU_FR550)
230
231#define TARGET_FR405_BUILTINS					\
232  (frv_cpu_type == FRV_CPU_FR405				\
233   || frv_cpu_type == FRV_CPU_FR450)
234
235#ifndef HAVE_AS_TLS
236#define HAVE_AS_TLS 0
237#endif
238
239#define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
240
241/* Small Data Area Support.  */
242/* Maximum size of variables that go in .sdata/.sbss.
243   The -msdata=foo switch also controls how small variables are handled.  */
244#ifndef SDATA_DEFAULT_SIZE
245#define SDATA_DEFAULT_SIZE 8
246#endif
247
248
249/* Storage Layout */
250
251/* Define this macro to have the value 1 if the most significant bit in a byte
252   has the lowest number; otherwise define it to have the value zero.  This
253   means that bit-field instructions count from the most significant bit.  If
254   the machine has no bit-field instructions, then this must still be defined,
255   but it doesn't matter which value it is defined to.  This macro need not be
256   a constant.
257
258   This macro does not affect the way structure fields are packed into bytes or
259   words; that is controlled by `BYTES_BIG_ENDIAN'.  */
260#define BITS_BIG_ENDIAN 1
261
262/* Define this macro to have the value 1 if the most significant byte in a word
263   has the lowest number.  This macro need not be a constant.  */
264#define BYTES_BIG_ENDIAN 1
265
266/* Define this macro to have the value 1 if, in a multiword object, the most
267   significant word has the lowest number.  This applies to both memory
268   locations and registers; GCC fundamentally assumes that the order of
269   words in memory is the same as the order in registers.  This macro need not
270   be a constant.  */
271#define WORDS_BIG_ENDIAN 1
272
273/* Number of storage units in a word; normally 4.  */
274#define UNITS_PER_WORD 4
275
276/* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
277   which has the specified mode and signedness is to be stored in a register.
278   This macro is only called when TYPE is a scalar type.
279
280   On most RISC machines, which only have operations that operate on a full
281   register, define this macro to set M to `word_mode' if M is an integer mode
282   narrower than `BITS_PER_WORD'.  In most cases, only integer modes should be
283   widened because wider-precision floating-point operations are usually more
284   expensive than their narrower counterparts.
285
286   For most machines, the macro definition does not change UNSIGNEDP.  However,
287   some machines, have instructions that preferentially handle either signed or
288   unsigned quantities of certain modes.  For example, on the DEC Alpha, 32-bit
289   loads from memory and 32-bit add instructions sign-extend the result to 64
290   bits.  On such machines, set UNSIGNEDP according to which kind of extension
291   is more efficient.
292
293   Do not define this macro if it would never modify MODE.  */
294#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)	\
295  do						\
296    {						\
297      if (GET_MODE_CLASS (MODE) == MODE_INT	\
298	  && GET_MODE_SIZE (MODE) < 4)		\
299	(MODE) = SImode;			\
300    }						\
301  while (0)
302
303/* Normal alignment required for function parameters on the stack, in bits.
304   All stack parameters receive at least this much alignment regardless of data
305   type.  On most machines, this is the same as the size of an integer.  */
306#define PARM_BOUNDARY 32
307
308/* Define this macro if you wish to preserve a certain alignment for the stack
309   pointer.  The definition is a C expression for the desired alignment
310   (measured in bits).
311
312   If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
313   specified boundary.  If `PUSH_ROUNDING' is defined and specifies a less
314   strict alignment than `STACK_BOUNDARY', the stack may be momentarily
315   unaligned while pushing arguments.  */
316#define STACK_BOUNDARY 64
317
318/* Alignment required for a function entry point, in bits.  */
319#define FUNCTION_BOUNDARY 128
320
321/* Biggest alignment that any data type can require on this machine,
322   in bits.  */
323#define BIGGEST_ALIGNMENT 64
324
325/* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
326   some reason.  */
327#ifdef IN_TARGET_LIBS
328#define BIGGEST_FIELD_ALIGNMENT 64
329#else
330/* An expression for the alignment of a structure field FIELD if the
331   alignment computed in the usual way is COMPUTED.  GCC uses this
332   value instead of the value in `BIGGEST_ALIGNMENT' or
333   `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only.  */
334#define ADJUST_FIELD_ALIGN(FIELD, TYPE, COMPUTED) 			\
335  frv_adjust_field_align (FIELD, COMPUTED)
336#endif
337
338/* If defined, a C expression to compute the alignment for a static variable.
339   TYPE is the data type, and ALIGN is the alignment that the object
340   would ordinarily have.  The value of this macro is used instead of that
341   alignment to align the object.
342
343   If this macro is not defined, then ALIGN is used.
344
345   One use of this macro is to increase alignment of medium-size data to make
346   it all fit in fewer cache lines.  Another is to cause character arrays to be
347   word-aligned so that `strcpy' calls that copy constants to character arrays
348   can be done inline.  */
349#define DATA_ALIGNMENT(TYPE, ALIGN)		\
350  (TREE_CODE (TYPE) == ARRAY_TYPE		\
351   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
352   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
353
354/* Define this macro to be the value 1 if instructions will fail to work if
355   given data not on the nominal alignment.  If instructions will merely go
356   slower in that case, define this macro as 0.  */
357#define STRICT_ALIGNMENT 1
358
359#define PCC_BITFIELD_TYPE_MATTERS 1
360
361
362/* Layout of Source Language Data Types.  */
363
364#define CHAR_TYPE_SIZE         8
365#define SHORT_TYPE_SIZE       16
366#define INT_TYPE_SIZE         32
367#define LONG_TYPE_SIZE        32
368#define LONG_LONG_TYPE_SIZE   64
369#define FLOAT_TYPE_SIZE       32
370#define DOUBLE_TYPE_SIZE      64
371#define LONG_DOUBLE_TYPE_SIZE 64
372
373/* An expression whose value is 1 or 0, according to whether the type `char'
374   should be signed or unsigned by default.  The user can always override this
375   default with the options `-fsigned-char' and `-funsigned-char'.  */
376#define DEFAULT_SIGNED_CHAR 1
377
378#undef  SIZE_TYPE
379#define SIZE_TYPE "unsigned int"
380
381#undef  PTRDIFF_TYPE
382#define PTRDIFF_TYPE "int"
383
384#undef  WCHAR_TYPE
385#define WCHAR_TYPE "long int"
386
387#undef  WCHAR_TYPE_SIZE
388#define WCHAR_TYPE_SIZE BITS_PER_WORD
389
390
391/* General purpose registers.  */
392#define GPR_FIRST       0                       /* First gpr */
393#define GPR_LAST        (GPR_FIRST + 63)        /* Last gpr */
394#define GPR_R0          GPR_FIRST               /* R0, constant 0 */
395#define GPR_FP          (GPR_FIRST + 2)         /* Frame pointer */
396#define GPR_SP          (GPR_FIRST + 1)         /* Stack pointer */
397						/* small data register */
398#define SDA_BASE_REG    ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
399#define PIC_REGNO       (GPR_FIRST + (TARGET_FDPIC?15:17))        /* PIC register.  */
400#define FDPIC_FPTR_REGNO  (GPR_FIRST + 14)        /* uClinux PIC function pointer register.  */
401#define FDPIC_REGNO   (GPR_FIRST + 15)        /* uClinux PIC register.  */
402
403#define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
404
405#define OUR_FDPIC_REG	get_hard_reg_initial_val (SImode, FDPIC_REGNO)
406
407#define FPR_FIRST       64			/* First FP reg */
408#define FPR_LAST        127			/* Last  FP reg */
409
410#define GPR_TEMP_NUM	frv_condexec_temps	/* # gprs to reserve for temps */
411
412/* We reserve the last CR and CCR in each category to be used as a reload
413   register to reload the CR/CCR registers.  This is a kludge.  */
414#define CC_FIRST	128			/* First ICC/FCC reg */
415#define CC_LAST		135			/* Last  ICC/FCC reg */
416#define ICC_FIRST	(CC_FIRST + 4)		/* First ICC reg */
417#define ICC_LAST	(CC_FIRST + 7)		/* Last  ICC reg */
418#define ICC_TEMP	(CC_FIRST + 7)		/* Temporary ICC reg */
419#define FCC_FIRST	(CC_FIRST)		/* First FCC reg */
420#define FCC_LAST	(CC_FIRST + 3)		/* Last  FCC reg */
421
422/* Amount to shift a value to locate a ICC or FCC register in the CCR
423   register and shift it to the bottom 4 bits.  */
424#define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
425
426/* Mask to isolate a single ICC/FCC value.  */
427#define CC_MASK		0xf
428
429/* Masks to isolate the various bits in an ICC field.  */
430#define ICC_MASK_N	0x8	/* negative */
431#define ICC_MASK_Z	0x4	/* zero */
432#define ICC_MASK_V	0x2	/* overflow */
433#define ICC_MASK_C	0x1	/* carry */
434
435/* Mask to isolate the N/Z flags in an ICC.  */
436#define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
437
438/* Mask to isolate the Z/C flags in an ICC.  */
439#define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
440
441/* Masks to isolate the various bits in a FCC field.  */
442#define FCC_MASK_E	0x8	/* equal */
443#define FCC_MASK_L	0x4	/* less than */
444#define FCC_MASK_G	0x2	/* greater than */
445#define FCC_MASK_U	0x1	/* unordered */
446
447/* For CCR registers, the machine wants CR4..CR7 to be used for integer
448   code and CR0..CR3 to be used for floating point.  */
449#define CR_FIRST	136			/* First CCR */
450#define CR_LAST		143			/* Last  CCR */
451#define CR_NUM		(CR_LAST-CR_FIRST+1)	/* # of CCRs (8) */
452#define ICR_FIRST	(CR_FIRST + 4)		/* First integer CCR */
453#define ICR_LAST	(CR_FIRST + 7)		/* Last  integer CCR */
454#define ICR_TEMP	ICR_LAST		/* Temp  integer CCR */
455#define FCR_FIRST	(CR_FIRST + 0)		/* First float CCR */
456#define FCR_LAST	(CR_FIRST + 3)		/* Last  float CCR */
457
458/* Amount to shift a value to locate a CR register in the CCCR special purpose
459   register and shift it to the bottom 2 bits.  */
460#define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
461
462/* Mask to isolate a single CR value.  */
463#define CR_MASK		0x3
464
465#define ACC_FIRST	144			/* First acc register */
466#define ACC_LAST	155			/* Last  acc register */
467
468#define ACCG_FIRST	156			/* First accg register */
469#define ACCG_LAST	167			/* Last  accg register */
470
471#define AP_FIRST	168			/* fake argument pointer */
472
473#define SPR_FIRST	169
474#define SPR_LAST	172
475#define LR_REGNO	(SPR_FIRST)
476#define LCR_REGNO	(SPR_FIRST + 1)
477#define IACC_FIRST	(SPR_FIRST + 2)
478#define IACC_LAST	(SPR_FIRST + 3)
479
480#define GPR_P(R)	IN_RANGE (R, GPR_FIRST, GPR_LAST)
481#define GPR_OR_AP_P(R)	(GPR_P (R) || (R) == ARG_POINTER_REGNUM)
482#define FPR_P(R)	IN_RANGE (R, FPR_FIRST, FPR_LAST)
483#define CC_P(R)		IN_RANGE (R, CC_FIRST, CC_LAST)
484#define ICC_P(R)	IN_RANGE (R, ICC_FIRST, ICC_LAST)
485#define FCC_P(R)	IN_RANGE (R, FCC_FIRST, FCC_LAST)
486#define CR_P(R)		IN_RANGE (R, CR_FIRST, CR_LAST)
487#define ICR_P(R)	IN_RANGE (R, ICR_FIRST, ICR_LAST)
488#define FCR_P(R)	IN_RANGE (R, FCR_FIRST, FCR_LAST)
489#define ACC_P(R)	IN_RANGE (R, ACC_FIRST, ACC_LAST)
490#define ACCG_P(R)	IN_RANGE (R, ACCG_FIRST, ACCG_LAST)
491#define SPR_P(R)	IN_RANGE (R, SPR_FIRST, SPR_LAST)
492
493#define GPR_OR_PSEUDO_P(R)	(GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
494#define FPR_OR_PSEUDO_P(R)	(FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
495#define GPR_AP_OR_PSEUDO_P(R)	(GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
496#define CC_OR_PSEUDO_P(R)	(CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
497#define ICC_OR_PSEUDO_P(R)	(ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
498#define FCC_OR_PSEUDO_P(R)	(FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
499#define CR_OR_PSEUDO_P(R)	(CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
500#define ICR_OR_PSEUDO_P(R)	(ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
501#define FCR_OR_PSEUDO_P(R)	(FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
502#define ACC_OR_PSEUDO_P(R)	(ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
503#define ACCG_OR_PSEUDO_P(R)	(ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
504
505#define MAX_STACK_IMMEDIATE_OFFSET 2047
506
507
508/* Register Basics.  */
509
510/* Number of hardware registers known to the compiler.  They receive numbers 0
511   through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
512   really is assigned the number `FIRST_PSEUDO_REGISTER'.  */
513#define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
514
515/* The first/last register that can contain the arguments to a function.  */
516#define FIRST_ARG_REGNUM	(GPR_FIRST + 8)
517#define LAST_ARG_REGNUM		(FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
518
519/* Registers used by the exception handling functions.  These should be
520   registers that are not otherwise used by the calling sequence.  */
521#define FIRST_EH_REGNUM		14
522#define LAST_EH_REGNUM		15
523
524/* Scratch registers used in the prologue, epilogue and thunks.
525   OFFSET_REGNO is for loading constant addends that are too big for a
526   single instruction.  TEMP_REGNO is used for transferring SPRs to and from
527   the stack, and various other activities.  */
528#define OFFSET_REGNO		4
529#define TEMP_REGNO		5
530
531/* Registers used in the prologue.  OLD_SP_REGNO is the old stack pointer,
532   which is sometimes used to set up the frame pointer.  */
533#define OLD_SP_REGNO		6
534
535/* Registers used in the epilogue.  STACKADJ_REGNO stores the exception
536   handler's stack adjustment.  */
537#define STACKADJ_REGNO		6
538
539/* Registers used in thunks.  JMP_REGNO is used for loading the target
540   address.  */
541#define JUMP_REGNO		6
542
543#define EH_RETURN_DATA_REGNO(N)	((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
544				 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
545#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (SImode, STACKADJ_REGNO)
546#define EH_RETURN_HANDLER_RTX   RETURN_ADDR_RTX (0, frame_pointer_rtx)
547
548#define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
549
550/* An initializer that says which registers are used for fixed purposes all
551   throughout the compiled code and are therefore not available for general
552   allocation.  These would include the stack pointer, the frame pointer
553   (except on machines where that can be used as a general register when no
554   frame pointer is needed), the program counter on machines where that is
555   considered one of the addressable registers, and any other numbered register
556   with a standard use.
557
558   This information is expressed as a sequence of numbers, separated by commas
559   and surrounded by braces.  The Nth number is 1 if register N is fixed, 0
560   otherwise.
561
562   The table initialized from this macro, and the table initialized by the
563   following one, may be overridden at run time either automatically, by the
564   actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
565   command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.  */
566
567/* gr0  -- Hard Zero
568   gr1  -- Stack Pointer
569   gr2  -- Frame Pointer
570   gr3  -- Hidden Parameter
571   gr16 -- Small Data reserved
572   gr17 -- Pic reserved
573   gr28 -- OS reserved
574   gr29 -- OS reserved
575   gr30 -- OS reserved
576   gr31 -- OS reserved
577   cr3  -- reserved to reload FCC registers.
578   cr7  -- reserved to reload ICC registers.  */
579#define FIXED_REGISTERS							\
580{	/* Integer Registers */						\
581	1, 1, 1, 1, 0, 0, 0, 0,		/* 000-007, gr0  - gr7  */	\
582	0, 0, 0, 0, 0, 0, 0, 0,		/* 008-015, gr8  - gr15 */	\
583	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
584	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
585	0, 0, 0, 0, 0, 0, 0, 0,		/* 032-039, gr32 - gr39 */	\
586	0, 0, 0, 0, 0, 0, 0, 0,		/* 040-040, gr48 - gr47 */	\
587	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
588	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
589	/* Float Registers */						\
590	0, 0, 0, 0, 0, 0, 0, 0,		/* 064-071, fr0  - fr7  */	\
591	0, 0, 0, 0, 0, 0, 0, 0,		/* 072-079, fr8  - fr15 */	\
592	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
593	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
594	0, 0, 0, 0, 0, 0, 0, 0,		/* 096-103, fr32 - fr39 */	\
595	0, 0, 0, 0, 0, 0, 0, 0,		/* 104-111, fr48 - fr47 */	\
596	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
597	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
598	/* Condition Code Registers */					\
599	0, 0, 0, 0,			/* 128-131, fcc0 - fcc3  */	\
600	0, 0, 0, 1,			/* 132-135, icc0 - icc3 */	\
601	/* Conditional execution Registers (CCR) */			\
602	0, 0, 0, 0, 0, 0, 0, 1,		/* 136-143, cr0 - cr7 */	\
603	/* Accumulators */						\
604	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0  - acc7 */	\
605	1, 1, 1, 1,			/* 152-155, acc8  - acc11 */	\
606	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
607	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
608	/* Other registers */						\
609	1,				/* 168, AP   - fake arg ptr */	\
610	1,				/* 169, LR   - Link register*/	\
611	0,				/* 170, LCR  - Loop count reg*/	\
612	1, 1				/* 171-172, iacc0 */		\
613}
614
615/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
616   general) by function calls as well as for fixed registers.  This macro
617   therefore identifies the registers that are not available for general
618   allocation of values that must live across function calls.
619
620   If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
621   saves it on function entry and restores it on function exit, if the register
622   is used within the function.  */
623#define CALL_USED_REGISTERS						\
624{	/* Integer Registers */						\
625	1, 1, 1, 1, 1, 1, 1, 1,		/* 000-007, gr0  - gr7  */	\
626	1, 1, 1, 1, 1, 1, 1, 1,		/* 008-015, gr8  - gr15 */	\
627	1, 1, 0, 0, 0, 0, 0, 0,		/* 016-023, gr16 - gr23 */	\
628	0, 0, 0, 0, 1, 1, 1, 1,		/* 024-031, gr24 - gr31 */	\
629	1, 1, 1, 1, 1, 1, 1, 1,		/* 032-039, gr32 - gr39 */	\
630	1, 1, 1, 1, 1, 1, 1, 1,		/* 040-040, gr48 - gr47 */	\
631	0, 0, 0, 0, 0, 0, 0, 0,		/* 048-055, gr48 - gr55 */	\
632	0, 0, 0, 0, 0, 0, 0, 0,		/* 056-063, gr56 - gr63 */	\
633	/* Float Registers */						\
634	1, 1, 1, 1, 1, 1, 1, 1,		/* 064-071, fr0  - fr7  */	\
635	1, 1, 1, 1, 1, 1, 1, 1,		/* 072-079, fr8  - fr15 */	\
636	0, 0, 0, 0, 0, 0, 0, 0,		/* 080-087, fr16 - fr23 */	\
637	0, 0, 0, 0, 0, 0, 0, 0,		/* 088-095, fr24 - fr31 */	\
638	1, 1, 1, 1, 1, 1, 1, 1,		/* 096-103, fr32 - fr39 */	\
639	1, 1, 1, 1, 1, 1, 1, 1,		/* 104-111, fr48 - fr47 */	\
640	0, 0, 0, 0, 0, 0, 0, 0,		/* 112-119, fr48 - fr55 */	\
641	0, 0, 0, 0, 0, 0, 0, 0,		/* 120-127, fr56 - fr63 */	\
642	/* Condition Code Registers */					\
643	1, 1, 1, 1,			/* 128-131, fcc0 - fcc3 */	\
644	1, 1, 1, 1,			/* 132-135, icc0 - icc3  */	\
645	/* Conditional execution Registers (CCR) */			\
646	1, 1, 1, 1, 1, 1, 1, 1,		/* 136-143, cr0 - cr7 */	\
647	/* Accumulators */						\
648	1, 1, 1, 1, 1, 1, 1, 1,		/* 144-151, acc0 - acc7 */	\
649	1, 1, 1, 1,			/* 152-155, acc8 - acc11 */	\
650	1, 1, 1, 1, 1, 1, 1, 1,		/* 156-163, accg0 - accg7 */	\
651	1, 1, 1, 1,			/* 164-167, accg8 - accg11 */	\
652	/* Other registers */						\
653	1,				/* 168, AP  - fake arg ptr */	\
654	1,				/* 169, LR  - Link register*/	\
655	1,				/* 170, LCR - Loop count reg */	\
656	1, 1				/* 171-172, iacc0 */		\
657}
658
659
660/* Order of allocation of registers.  */
661
662/* If defined, an initializer for a vector of integers, containing the numbers
663   of hard registers in the order in which GCC should prefer to use them
664   (from most preferred to least).
665
666   If this macro is not defined, registers are used lowest numbered first (all
667   else being equal).
668
669   One use of this macro is on machines where the highest numbered registers
670   must always be saved and the save-multiple-registers instruction supports
671   only sequences of consecutive registers.  On such machines, define
672   `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
673   allocatable register first.  */
674
675/* On the FRV, allocate GR16 and GR17 after other saved registers so that we
676   have a better chance of allocating 2 registers at a time and can use the
677   double word load/store instructions in the prologue.  */
678#define REG_ALLOC_ORDER							\
679{									\
680  /* volatile registers */						\
681  GPR_FIRST  +  4, GPR_FIRST  +  5, GPR_FIRST  +  6, GPR_FIRST 	+  7,	\
682  GPR_FIRST  +  8, GPR_FIRST  +  9, GPR_FIRST  + 10, GPR_FIRST 	+ 11,	\
683  GPR_FIRST  + 12, GPR_FIRST  + 13, GPR_FIRST  + 14, GPR_FIRST 	+ 15,	\
684  GPR_FIRST  + 32, GPR_FIRST  + 33, GPR_FIRST  + 34, GPR_FIRST 	+ 35,	\
685  GPR_FIRST  + 36, GPR_FIRST  + 37, GPR_FIRST  + 38, GPR_FIRST 	+ 39,	\
686  GPR_FIRST  + 40, GPR_FIRST  + 41, GPR_FIRST  + 42, GPR_FIRST 	+ 43,	\
687  GPR_FIRST  + 44, GPR_FIRST  + 45, GPR_FIRST  + 46, GPR_FIRST 	+ 47,	\
688									\
689  FPR_FIRST  +  0, FPR_FIRST  +  1, FPR_FIRST  +  2, FPR_FIRST 	+  3,	\
690  FPR_FIRST  +  4, FPR_FIRST  +  5, FPR_FIRST  +  6, FPR_FIRST 	+  7,	\
691  FPR_FIRST  +  8, FPR_FIRST  +  9, FPR_FIRST  + 10, FPR_FIRST 	+ 11,	\
692  FPR_FIRST  + 12, FPR_FIRST  + 13, FPR_FIRST  + 14, FPR_FIRST 	+ 15,	\
693  FPR_FIRST  + 32, FPR_FIRST  + 33, FPR_FIRST  + 34, FPR_FIRST 	+ 35,	\
694  FPR_FIRST  + 36, FPR_FIRST  + 37, FPR_FIRST  + 38, FPR_FIRST 	+ 39,	\
695  FPR_FIRST  + 40, FPR_FIRST  + 41, FPR_FIRST  + 42, FPR_FIRST 	+ 43,	\
696  FPR_FIRST  + 44, FPR_FIRST  + 45, FPR_FIRST  + 46, FPR_FIRST 	+ 47,	\
697									\
698  ICC_FIRST  +  0, ICC_FIRST  +  1, ICC_FIRST  +  2, ICC_FIRST 	+  3,	\
699  FCC_FIRST  +  0, FCC_FIRST  +  1, FCC_FIRST  +  2, FCC_FIRST 	+  3,	\
700  CR_FIRST   +  0, CR_FIRST   +  1, CR_FIRST   +  2, CR_FIRST  	+  3,	\
701  CR_FIRST   +  4, CR_FIRST   +  5, CR_FIRST   +  6, CR_FIRST  	+  7,	\
702									\
703  /* saved registers */							\
704  GPR_FIRST  + 18, GPR_FIRST  + 19,					\
705  GPR_FIRST  + 20, GPR_FIRST  + 21, GPR_FIRST  + 22, GPR_FIRST 	+ 23,	\
706  GPR_FIRST  + 24, GPR_FIRST  + 25, GPR_FIRST  + 26, GPR_FIRST 	+ 27,	\
707  GPR_FIRST  + 48, GPR_FIRST  + 49, GPR_FIRST  + 50, GPR_FIRST 	+ 51,	\
708  GPR_FIRST  + 52, GPR_FIRST  + 53, GPR_FIRST  + 54, GPR_FIRST 	+ 55,	\
709  GPR_FIRST  + 56, GPR_FIRST  + 57, GPR_FIRST  + 58, GPR_FIRST 	+ 59,	\
710  GPR_FIRST  + 60, GPR_FIRST  + 61, GPR_FIRST  + 62, GPR_FIRST 	+ 63,	\
711  GPR_FIRST  + 16, GPR_FIRST  + 17,					\
712									\
713  FPR_FIRST  + 16, FPR_FIRST  + 17, FPR_FIRST  + 18, FPR_FIRST 	+ 19,	\
714  FPR_FIRST  + 20, FPR_FIRST  + 21, FPR_FIRST  + 22, FPR_FIRST 	+ 23,	\
715  FPR_FIRST  + 24, FPR_FIRST  + 25, FPR_FIRST  + 26, FPR_FIRST 	+ 27,	\
716  FPR_FIRST  + 28, FPR_FIRST  + 29, FPR_FIRST  + 30, FPR_FIRST 	+ 31,	\
717  FPR_FIRST  + 48, FPR_FIRST  + 49, FPR_FIRST  + 50, FPR_FIRST 	+ 51,	\
718  FPR_FIRST  + 52, FPR_FIRST  + 53, FPR_FIRST  + 54, FPR_FIRST 	+ 55,	\
719  FPR_FIRST  + 56, FPR_FIRST  + 57, FPR_FIRST  + 58, FPR_FIRST 	+ 59,	\
720  FPR_FIRST  + 60, FPR_FIRST  + 61, FPR_FIRST  + 62, FPR_FIRST 	+ 63,	\
721									\
722  /* special or fixed registers */					\
723  GPR_FIRST  +  0, GPR_FIRST  +  1, GPR_FIRST  +  2, GPR_FIRST 	+  3,	\
724  GPR_FIRST  + 28, GPR_FIRST  + 29, GPR_FIRST  + 30, GPR_FIRST 	+ 31,	\
725  ACC_FIRST  +  0, ACC_FIRST  +  1, ACC_FIRST  +  2, ACC_FIRST 	+  3,	\
726  ACC_FIRST  +  4, ACC_FIRST  +  5, ACC_FIRST  +  6, ACC_FIRST 	+  7,	\
727  ACC_FIRST  +  8, ACC_FIRST  +  9, ACC_FIRST  + 10, ACC_FIRST 	+ 11,	\
728  ACCG_FIRST +  0, ACCG_FIRST +  1, ACCG_FIRST +  2, ACCG_FIRST	+  3,	\
729  ACCG_FIRST +  4, ACCG_FIRST +  5, ACCG_FIRST +  6, ACCG_FIRST	+  7,	\
730  ACCG_FIRST +  8, ACCG_FIRST +  9, ACCG_FIRST + 10, ACCG_FIRST	+ 11,	\
731  AP_FIRST, 	   LR_REGNO,       LCR_REGNO,				\
732  IACC_FIRST +  0, IACC_FIRST +  1					\
733}
734
735
736/* Define this macro if the compiler should avoid copies to/from CCmode
737   registers.  You should only define this macro if support fo copying to/from
738   CCmode is incomplete.  */
739#define AVOID_CCMODE_COPIES
740
741
742/* Register Classes.  */
743
744/* An enumeral type that must be defined with all the register class names as
745   enumeral values.  `NO_REGS' must be first.  `ALL_REGS' must be the last
746   register class, followed by one more enumeral value, `LIM_REG_CLASSES',
747   which is not a register class but rather tells how many classes there are.
748
749   Each register class has a number, which is the value of casting the class
750   name to type `int'.  The number serves as an index in many of the tables
751   described below.  */
752enum reg_class
753{
754  NO_REGS,
755  ICC_REGS,
756  FCC_REGS,
757  CC_REGS,
758  ICR_REGS,
759  FCR_REGS,
760  CR_REGS,
761  LCR_REG,
762  LR_REG,
763  GR8_REGS,
764  GR9_REGS,
765  GR89_REGS,
766  FDPIC_REGS,
767  FDPIC_FPTR_REGS,
768  FDPIC_CALL_REGS,
769  SPR_REGS,
770  QUAD_ACC_REGS,
771  ACCG_REGS,
772  QUAD_FPR_REGS,
773  QUAD_REGS,
774  GPR_REGS,
775  ALL_REGS,
776  LIM_REG_CLASSES
777};
778
779#define GENERAL_REGS GPR_REGS
780
781/* The number of distinct register classes, defined as follows:
782
783        #define N_REG_CLASSES (int) LIM_REG_CLASSES  */
784#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
785
786/* An initializer containing the names of the register classes as C string
787   constants.  These names are used in writing some of the debugging dumps.  */
788#define REG_CLASS_NAMES {						\
789   "NO_REGS",								\
790   "ICC_REGS",								\
791   "FCC_REGS",								\
792   "CC_REGS",								\
793   "ICR_REGS",								\
794   "FCR_REGS",								\
795   "CR_REGS",								\
796   "LCR_REG",								\
797   "LR_REG",								\
798   "GR8_REGS",                                                          \
799   "GR9_REGS",                                                          \
800   "GR89_REGS",                                                         \
801   "FDPIC_REGS",							\
802   "FDPIC_FPTR_REGS",							\
803   "FDPIC_CALL_REGS",							\
804   "SPR_REGS",								\
805   "QUAD_ACC_REGS",							\
806   "ACCG_REGS",								\
807   "QUAD_FPR_REGS",							\
808   "QUAD_REGS",								\
809   "GPR_REGS",								\
810   "ALL_REGS"								\
811}
812
813/* An initializer containing the contents of the register classes, as integers
814   which are bit masks.  The Nth integer specifies the contents of class N.
815   The way the integer MASK is interpreted is that register R is in the class
816   if `MASK & (1 << R)' is 1.
817
818   When the machine has more than 32 registers, an integer does not suffice.
819   Then the integers are replaced by sub-initializers, braced groupings
820   containing several integers.  Each sub-initializer must be suitable as an
821   initializer for the type `HARD_REG_SET' which is defined in
822   `hard-reg-set.h'.  */
823#define REG_CLASS_CONTENTS						       \
824{  /* gr0-gr31 gr32-gr63  fr0-fr31   fr32-fr-63 cc/ccr/acc ap/spr */	       \
825  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS  */\
826  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
827  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
828  { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS  */\
829  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
830  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
831  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS  */\
832  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
833  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS  */\
834  { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
835  { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
836  { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
837  { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
838  { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
839  { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
840  { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
841  { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
842  { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
843  { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
844  { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
845  { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
846  { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
847}
848
849#define EVEN_ACC_REGS   QUAD_ACC_REGS
850#define ACC_REGS        QUAD_ACC_REGS
851#define FEVEN_REGS      QUAD_FPR_REGS
852#define FPR_REGS        QUAD_FPR_REGS
853#define EVEN_REGS       QUAD_REGS
854
855/* A C expression whose value is a register class containing hard register
856   REGNO.  In general there is more than one such class; choose a class which
857   is "minimal", meaning that no smaller class also contains the register.  */
858
859extern enum reg_class regno_reg_class[];
860#define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
861
862/* A macro whose definition is the name of the class to which a valid base
863   register must belong.  A base register is one used in an address which is
864   the register value plus a displacement.  */
865#define BASE_REG_CLASS GPR_REGS
866
867/* A macro whose definition is the name of the class to which a valid index
868   register must belong.  An index register is one used in an address where its
869   value is either multiplied by a scale factor or added to another register
870   (as well as added to a displacement).  */
871#define INDEX_REG_CLASS GPR_REGS
872
873/* A C expression which is nonzero if register number NUM is suitable for use
874   as a base register in operand addresses.  It may be either a suitable hard
875   register or a pseudo register that has been allocated such a hard register.  */
876#define REGNO_OK_FOR_BASE_P(NUM)           \
877  ((NUM) < FIRST_PSEUDO_REGISTER           \
878   ? GPR_P (NUM)                           \
879   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
880
881/* A C expression which is nonzero if register number NUM is suitable for use
882   as an index register in operand addresses.  It may be either a suitable hard
883   register or a pseudo register that has been allocated such a hard register.
884
885   The difference between an index register and a base register is that the
886   index register may be scaled.  If an address involves the sum of two
887   registers, neither one of them scaled, then either one may be labeled the
888   "base" and the other the "index"; but whichever labeling is used must fit
889   the machine's constraints of which registers may serve in each capacity.
890   The compiler will try both labelings, looking for one that is valid, and
891   will reload one or both registers only if neither labeling works.  */
892#define REGNO_OK_FOR_INDEX_P(NUM)                                       \
893  ((NUM) < FIRST_PSEUDO_REGISTER                                        \
894   ? GPR_P (NUM)                                                        \
895   : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
896
897#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
898  frv_secondary_reload_class (CLASS, MODE, X)
899
900#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
901  frv_secondary_reload_class (CLASS, MODE, X)
902
903#define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
904
905#define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
906
907
908/* Basic Stack Layout.  */
909
910/* Structure to describe information about a saved range of registers */
911
912typedef struct frv_stack_regs {
913  const char * name;		/* name of the register ranges */
914  int first;			/* first register in the range */
915  int last;			/* last register in the range */
916  int size_1word;		/* # of bytes to be stored via 1 word stores */
917  int size_2words;		/* # of bytes to be stored via 2 word stores */
918  unsigned char field_p;	/* true if the registers are a single SPR */
919  unsigned char dword_p;	/* true if we can do dword stores */
920  unsigned char special_p;	/* true if the regs have a fixed save loc.  */
921} frv_stack_regs_t;
922
923/* Register ranges to look into saving.  */
924#define STACK_REGS_GPR		0	/* Gprs (normally gr16..gr31, gr48..gr63) */
925#define STACK_REGS_FPR		1	/* Fprs (normally fr16..fr31, fr48..fr63) */
926#define STACK_REGS_LR		2	/* LR register */
927#define STACK_REGS_CC		3	/* CCrs (normally not saved) */
928#define STACK_REGS_LCR		5	/* lcr register */
929#define STACK_REGS_STDARG	6	/* stdarg registers */
930#define STACK_REGS_STRUCT	7	/* structure return (gr3) */
931#define STACK_REGS_FP		8	/* FP register */
932#define STACK_REGS_MAX		9	/* # of register ranges */
933
934/* Values for save_p field.  */
935#define REG_SAVE_NO_SAVE	0	/* register not saved */
936#define REG_SAVE_1WORD		1	/* save the register */
937#define REG_SAVE_2WORDS		2	/* save register and register+1 */
938
939/* Structure used to define the frv stack.  */
940
941typedef struct frv_stack {
942  int total_size;		/* total bytes allocated for stack */
943  int vars_size;		/* variable save area size */
944  int parameter_size;		/* outgoing parameter size */
945  int stdarg_size;		/* size of regs needed to be saved for stdarg */
946  int regs_size;		/* size of the saved registers */
947  int regs_size_1word;		/* # of bytes to be stored via 1 word stores */
948  int regs_size_2words;		/* # of bytes to be stored via 2 word stores */
949  int header_size;		/* size of the old FP, struct ret., LR save */
950  int pretend_size;		/* size of pretend args */
951  int vars_offset;		/* offset to save local variables from new SP*/
952  int regs_offset;		/* offset to save registers from new SP */
953				/* register range information */
954  frv_stack_regs_t regs[STACK_REGS_MAX];
955				/* offset to store each register */
956  int reg_offset[FIRST_PSEUDO_REGISTER];
957				/* whether to save register (& reg+1) */
958  unsigned char save_p[FIRST_PSEUDO_REGISTER];
959} frv_stack_t;
960
961/* Define this macro if pushing a word onto the stack moves the stack pointer
962   to a smaller address.  */
963#define STACK_GROWS_DOWNWARD 1
964
965/* Define this macro to nonzero if the addresses of local variable slots
966   are at negative offsets from the frame pointer.  */
967#define FRAME_GROWS_DOWNWARD 1
968
969/* Offset from the stack pointer register to the first location at which
970   outgoing arguments are placed.  If not specified, the default value of zero
971   is used.  This is the proper value for most machines.
972
973   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
974   location at which outgoing arguments are placed.  */
975#define STACK_POINTER_OFFSET 0
976
977/* Offset from the argument pointer register to the first argument's address.
978   On some machines it may depend on the data type of the function.
979
980   If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
981   argument's address.  */
982#define FIRST_PARM_OFFSET(FUNDECL) 0
983
984/* A C expression whose value is RTL representing the address in a stack frame
985   where the pointer to the caller's frame is stored.  Assume that FRAMEADDR is
986   an RTL expression for the address of the stack frame itself.
987
988   If you don't define this macro, the default is to return the value of
989   FRAMEADDR--that is, the stack frame address is also the address of the stack
990   word that points to the previous frame.  */
991#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
992
993/* A C expression whose value is RTL representing the value of the return
994   address for the frame COUNT steps up from the current frame, after the
995   prologue.  FRAMEADDR is the frame pointer of the COUNT frame, or the frame
996   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
997   defined.
998
999   The value of the expression must always be the correct address when COUNT is
1000   zero, but may be `NULL_RTX' if there is not way to determine the return
1001   address of other frames.  */
1002#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1003
1004#define RETURN_POINTER_REGNUM LR_REGNO
1005
1006/* A C expression whose value is RTL representing the location of the incoming
1007   return address at the beginning of any function, before the prologue.  This
1008   RTL is either a `REG', indicating that the return value is saved in `REG',
1009   or a `MEM' representing a location in the stack.
1010
1011   You only need to define this macro if you want to support call frame
1012   debugging information like that provided by DWARF 2.  */
1013#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1014
1015
1016/* Register That Address the Stack Frame.  */
1017
1018/* The register number of the stack pointer register, which must also be a
1019   fixed register according to `FIXED_REGISTERS'.  On most machines, the
1020   hardware determines which register this is.  */
1021#define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1022
1023/* The register number of the frame pointer register, which is used to access
1024   automatic variables in the stack frame.  On some machines, the hardware
1025   determines which register this is.  On other machines, you can choose any
1026   register you wish for this purpose.  */
1027#define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1028
1029/* The register number of the arg pointer register, which is used to access the
1030   function's argument list.  On some machines, this is the same as the frame
1031   pointer register.  On some machines, the hardware determines which register
1032   this is.  On other machines, you can choose any register you wish for this
1033   purpose.  If this is not the same register as the frame pointer register,
1034   then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1035   arrange to be able to eliminate it.  */
1036
1037/* On frv this is a fake register that is eliminated in
1038   terms of either the frame pointer or stack pointer.  */
1039#define ARG_POINTER_REGNUM AP_FIRST
1040
1041/* Register numbers used for passing a function's static chain pointer.  If
1042   register windows are used, the register number as seen by the called
1043   function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1044   seen by the calling function is `STATIC_CHAIN_REGNUM'.  If these registers
1045   are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1046
1047   The static chain register need not be a fixed register.
1048
1049   If the static chain is passed in memory, these macros should not be defined;
1050   instead, the next two macros should be defined.  */
1051#define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1052#define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1053
1054
1055/* Eliminating the Frame Pointer and the Arg Pointer.  */
1056
1057/* If defined, this macro specifies a table of register pairs used to eliminate
1058   unneeded registers that point into the stack frame.  If it is not defined,
1059   the only elimination attempted by the compiler is to replace references to
1060   the frame pointer with references to the stack pointer.
1061
1062   The definition of this macro is a list of structure initializations, each of
1063   which specifies an original and replacement register.
1064
1065   On some machines, the position of the argument pointer is not known until
1066   the compilation is completed.  In such a case, a separate hard register must
1067   be used for the argument pointer.  This register can be eliminated by
1068   replacing it with either the frame pointer or the argument pointer,
1069   depending on whether or not the frame pointer has been eliminated.
1070
1071   In this case, you might specify:
1072        #define ELIMINABLE_REGS  \
1073        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1074         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1075         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1076
1077   Note that the elimination of the argument pointer with the stack pointer is
1078   specified first since that is the preferred elimination.  */
1079
1080#define ELIMINABLE_REGS							\
1081{									\
1082  {ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM},				\
1083  {ARG_POINTER_REGNUM,	 FRAME_POINTER_REGNUM},				\
1084  {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}				\
1085}
1086
1087/* This macro returns the initial difference between the specified pair
1088   of registers.  */
1089
1090#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
1091  (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1092
1093
1094/* Passing Function Arguments on the Stack.  */
1095
1096/* If defined, the maximum amount of space required for outgoing arguments will
1097   be computed and placed into the variable
1098   `crtl->outgoing_args_size'.  No space will be pushed onto the
1099   stack for each call; instead, the function prologue should increase the
1100   stack frame size by this amount.
1101
1102   Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1103   proper.  */
1104#define ACCUMULATE_OUTGOING_ARGS 1
1105
1106
1107/* The number of register assigned to holding function arguments.  */
1108
1109#define FRV_NUM_ARG_REGS        6
1110
1111/* A C type for declaring a variable that is used as the first argument of
1112   `FUNCTION_ARG' and other related values.  For some target machines, the type
1113   `int' suffices and can hold the number of bytes of argument so far.
1114
1115   There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1116   that have been passed on the stack.  The compiler has other variables to
1117   keep track of that.  For target machines on which all arguments are passed
1118   on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1119   however, the data structure must exist and should not be empty, so use
1120   `int'.  */
1121#define CUMULATIVE_ARGS int
1122
1123/* A C statement (sans semicolon) for initializing the variable CUM for the
1124   state at the beginning of the argument list.  The variable has type
1125   `CUMULATIVE_ARGS'.  The value of FNTYPE is the tree node for the data type
1126   of the function which will receive the args, or 0 if the args are to a
1127   compiler support library function.  The value of INDIRECT is nonzero when
1128   processing an indirect call, for example a call through a function pointer.
1129   The value of INDIRECT is zero for a call to an explicitly named function, a
1130   library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1131   arguments for the function being compiled.
1132
1133   When processing a call to a compiler support library function, LIBNAME
1134   identifies which one.  It is a `symbol_ref' rtx which contains the name of
1135   the function, as a string.  LIBNAME is 0 when an ordinary C function call is
1136   being processed.  Thus, each time this macro is called, either LIBNAME or
1137   FNTYPE is nonzero, but never both of them at once.  */
1138
1139#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1140  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1141
1142/* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1143   arguments for the function being compiled.  If this macro is undefined,
1144   `INIT_CUMULATIVE_ARGS' is used instead.
1145
1146   The value passed for LIBNAME is always 0, since library routines with
1147   special calling conventions are never compiled with GCC.  The argument
1148   LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'.  */
1149
1150#define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1151  frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1152
1153/* A C expression that is nonzero if REGNO is the number of a hard register in
1154   which function arguments are sometimes passed.  This does *not* include
1155   implicit arguments such as the static chain and the structure-value address.
1156   On many machines, no registers can be used for this purpose since all
1157   function arguments are pushed on the stack.  */
1158#define FUNCTION_ARG_REGNO_P(REGNO) \
1159  ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1160
1161
1162/* How Scalar Function Values are Returned.  */
1163
1164/* The number of the hard register that is used to return a scalar value from a
1165   function call.  */
1166#define RETURN_VALUE_REGNUM	(GPR_FIRST + 8)
1167
1168#define FUNCTION_VALUE_REGNO_P(REGNO) frv_function_value_regno_p (REGNO)
1169
1170
1171/* How Large Values are Returned.  */
1172
1173/* The number of the register that is used to pass the structure
1174   value address.  */
1175#define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1176
1177
1178/* Function Entry and Exit.  */
1179
1180/* Define this macro as a C expression that is nonzero if the return
1181   instruction or the function epilogue ignores the value of the stack pointer;
1182   in other words, if it is safe to delete an instruction to adjust the stack
1183   pointer before a return from the function.
1184
1185   Note that this macro's value is relevant only for functions for which frame
1186   pointers are maintained.  It is never safe to delete a final stack
1187   adjustment in a function that has no frame pointer, and the compiler knows
1188   this regardless of `EXIT_IGNORE_STACK'.  */
1189#define EXIT_IGNORE_STACK 1
1190
1191/* Generating Code for Profiling.  */
1192
1193/* A C statement or compound statement to output to FILE some assembler code to
1194   call the profiling subroutine `mcount'.  Before calling, the assembler code
1195   must load the address of a counter variable into a register where `mcount'
1196   expects to find the address.  The name of this variable is `LP' followed by
1197   the number LABELNO, so you would generate the name using `LP%d' in a
1198   `fprintf'.
1199
1200   The details of how the address should be passed to `mcount' are determined
1201   by your operating system environment, not by GCC.  To figure them out,
1202   compile a small program for profiling using the system's installed C
1203   compiler and look at the assembler code that results.
1204
1205   This declaration must be present, but it can be an abort if profiling is
1206   not implemented.  */
1207
1208#define FUNCTION_PROFILER(FILE, LABELNO)
1209
1210/* Trampolines for Nested Functions.  */
1211
1212/* A C expression for the size in bytes of the trampoline, as an integer.  */
1213#define TRAMPOLINE_SIZE frv_trampoline_size ()
1214
1215/* Alignment required for trampolines, in bits.
1216
1217   If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1218   aligning trampolines.  */
1219#define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1220
1221/* Define this macro if trampolines need a special subroutine to do their work.
1222   The macro should expand to a series of `asm' statements which will be
1223   compiled with GCC.  They go in a library function named
1224   `__transfer_from_trampoline'.
1225
1226   If you need to avoid executing the ordinary prologue code of a compiled C
1227   function when you jump to the subroutine, you can do so by placing a special
1228   label of your own in the assembler code.  Use one `asm' statement to
1229   generate an assembler label, and another to make the label global.  Then
1230   trampolines can use that label to jump directly to your special assembler
1231   code.  */
1232
1233#ifdef __FRV_UNDERSCORE__
1234#define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1235#else
1236#define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1237#endif
1238
1239#define Twrite _write
1240
1241#if ! __FRV_FDPIC__
1242#define TRANSFER_FROM_TRAMPOLINE					\
1243extern int Twrite (int, const void *, unsigned);			\
1244									\
1245void									\
1246__trampoline_setup (short * addr, int size, int fnaddr, int sc)		\
1247{									\
1248  extern short __trampoline_template[];					\
1249  short * to = addr;							\
1250  short * from = &__trampoline_template[0];				\
1251  int i;								\
1252									\
1253  if (size < 20)							\
1254    {									\
1255      Twrite (2, "__trampoline_setup bad size\n",			\
1256	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1257      exit (-1);							\
1258    }									\
1259									\
1260  to[0] = from[0];							\
1261  to[1] = (short)(fnaddr);						\
1262  to[2] = from[2];							\
1263  to[3] = (short)(sc);							\
1264  to[4] = from[4];							\
1265  to[5] = (short)(fnaddr >> 16);					\
1266  to[6] = from[6];							\
1267  to[7] = (short)(sc >> 16);						\
1268  to[8] = from[8];							\
1269  to[9] = from[9];							\
1270									\
1271  for (i = 0; i < 20; i++)						\
1272    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1273}									\
1274									\
1275__asm__("\n"								\
1276	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1277	"\t.text\n"							\
1278	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1279	"\tsetlos #0, gr6\n"	/* jump register */			\
1280	"\tsetlos #0, gr7\n"	/* static chain */			\
1281	"\tsethi #0, gr6\n"						\
1282	"\tsethi #0, gr7\n"						\
1283	"\tjmpl @(gr0,gr6)\n");
1284#else
1285#define TRANSFER_FROM_TRAMPOLINE					\
1286extern int Twrite (int, const void *, unsigned);			\
1287									\
1288void									\
1289__trampoline_setup (addr, size, fnaddr, sc)				\
1290     short * addr;							\
1291     int size;								\
1292     int fnaddr;							\
1293     int sc;								\
1294{									\
1295  extern short __trampoline_template[];					\
1296  short * from = &__trampoline_template[0];				\
1297  int i;								\
1298  short **desc = (short **)addr;					\
1299  short * to = addr + 4;						\
1300									\
1301  if (size != 32)							\
1302    {									\
1303      Twrite (2, "__trampoline_setup bad size\n",			\
1304	      sizeof ("__trampoline_setup bad size\n") - 1);		\
1305      exit (-1);							\
1306    }									\
1307									\
1308  /* Create a function descriptor with the address of the code below	\
1309     and NULL as the FDPIC value.  We don't need the real GOT value	\
1310     here, since we don't use it, so we use NULL, that is just as	\
1311     good.  */								\
1312  desc[0] = to;								\
1313  desc[1] = NULL;							\
1314  size -= 8;								\
1315									\
1316  to[0] = from[0];							\
1317  to[1] = (short)(fnaddr);						\
1318  to[2] = from[2];							\
1319  to[3] = (short)(sc);							\
1320  to[4] = from[4];							\
1321  to[5] = (short)(fnaddr >> 16);					\
1322  to[6] = from[6];							\
1323  to[7] = (short)(sc >> 16);						\
1324  to[8] = from[8];							\
1325  to[9] = from[9];							\
1326  to[10] = from[10];							\
1327  to[11] = from[11];							\
1328									\
1329  for (i = 0; i < size; i++)						\
1330    __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1331}									\
1332									\
1333__asm__("\n"								\
1334	"\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n"			\
1335	"\t.text\n"							\
1336	TRAMPOLINE_TEMPLATE_NAME ":\n"					\
1337	"\tsetlos #0, gr6\n"	/* Jump register.  */			\
1338	"\tsetlos #0, gr7\n"	/* Static chain.  */			\
1339	"\tsethi #0, gr6\n"						\
1340	"\tsethi #0, gr7\n"						\
1341	"\tldd @(gr6,gr0),gr14\n"					\
1342	"\tjmpl @(gr14,gr0)\n"						\
1343	);
1344#endif
1345
1346
1347/* Addressing Modes.  */
1348
1349/* A number, the maximum number of registers that can appear in a valid memory
1350   address.  Note that it is up to you to specify a value equal to the maximum
1351   number that `TARGET_LEGITIMATE_ADDRESS_P' would ever accept.  */
1352#define MAX_REGS_PER_ADDRESS 2
1353
1354/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1355   use as a base register.  For hard registers, it should always accept those
1356   which the hardware permits and reject the others.  Whether the macro accepts
1357   or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
1358   described above.  This usually requires two variant definitions, of which
1359   `REG_OK_STRICT' controls the one actually used.  */
1360#ifdef REG_OK_STRICT
1361#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
1362#else
1363#define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
1364#endif
1365
1366/* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
1367   use as an index register.
1368
1369   The difference between an index register and a base register is that the
1370   index register may be scaled.  If an address involves the sum of two
1371   registers, neither one of them scaled, then either one may be labeled the
1372   "base" and the other the "index"; but whichever labeling is used must fit
1373   the machine's constraints of which registers may serve in each capacity.
1374   The compiler will try both labelings, looking for one that is valid, and
1375   will reload one or both registers only if neither labeling works.  */
1376#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
1377
1378#define FIND_BASE_TERM frv_find_base_term
1379
1380/* The load-and-update commands allow pre-modification in addresses.
1381   The index has to be in a register.  */
1382#define HAVE_PRE_MODIFY_REG 1
1383
1384
1385/* We define extra CC modes in frv-modes.def so we need a selector.  */
1386
1387#define SELECT_CC_MODE frv_select_cc_mode
1388
1389/* A C expression whose value is one if it is always safe to reverse a
1390   comparison whose mode is MODE.  If `SELECT_CC_MODE' can ever return MODE for
1391   a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
1392   must be zero.
1393
1394   You need not define this macro if it would always returns zero or if the
1395   floating-point format is anything other than `IEEE_FLOAT_FORMAT'.  For
1396   example, here is the definition used on the SPARC, where floating-point
1397   inequality comparisons are always given `CCFPEmode':
1398
1399        #define REVERSIBLE_CC_MODE(MODE)  ((MODE) != CCFPEmode)  */
1400
1401/* On frv, don't consider floating point comparisons to be reversible.  In
1402   theory, fp equality comparisons can be reversible.  */
1403#define REVERSIBLE_CC_MODE(MODE) \
1404  ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
1405
1406
1407/* Describing Relative Costs of Operations.  */
1408
1409/* A C expression for the cost of a branch instruction.  A value of 1 is the
1410   default; other values are interpreted relative to that.  */
1411#define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
1412
1413/* Define this macro as a C expression which is nonzero if accessing less than
1414   a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1415   word of memory, i.e., if such access require more than one instruction or if
1416   there is no difference in cost between byte and (aligned) word loads.
1417
1418   When this macro is not defined, the compiler will access a field by finding
1419   the smallest containing object; when it is defined, a fullword load will be
1420   used if alignment permits.  Unless bytes accesses are faster than word
1421   accesses, using word accesses is preferable since it may eliminate
1422   subsequent memory access if subsequent accesses occur to other fields in the
1423   same word of the structure, but to different bytes.  */
1424#define SLOW_BYTE_ACCESS 1
1425
1426/* Define this macro if it is as good or better to call a constant function
1427   address than to call an address kept in a register.  */
1428#define NO_FUNCTION_CSE 1
1429
1430
1431/* Dividing the output into sections.  */
1432
1433/* A C expression whose value is a string containing the assembler operation
1434   that should precede instructions and read-only data.  Normally `".text"' is
1435   right.  */
1436#define TEXT_SECTION_ASM_OP "\t.text"
1437
1438/* A C expression whose value is a string containing the assembler operation to
1439   identify the following data as writable initialized data.  Normally
1440   `".data"' is right.  */
1441#define DATA_SECTION_ASM_OP "\t.data"
1442
1443#define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
1444
1445/* Short Data Support */
1446#define SDATA_SECTION_ASM_OP	"\t.section .sdata,\"aw\""
1447
1448#undef	INIT_SECTION_ASM_OP
1449#undef	FINI_SECTION_ASM_OP
1450#define INIT_SECTION_ASM_OP	"\t.section .init,\"ax\""
1451#define FINI_SECTION_ASM_OP	"\t.section .fini,\"ax\""
1452
1453#undef CTORS_SECTION_ASM_OP
1454#undef DTORS_SECTION_ASM_OP
1455#define CTORS_SECTION_ASM_OP	"\t.section\t.ctors,\"a\""
1456#define DTORS_SECTION_ASM_OP	"\t.section\t.dtors,\"a\""
1457
1458/* A C expression whose value is a string containing the assembler operation to
1459   switch to the fixup section that records all initialized pointers in a -fpic
1460   program so they can be changed program startup time if the program is loaded
1461   at a different address than linked for.  */
1462#define FIXUP_SECTION_ASM_OP	"\t.section .rofixup,\"a\""
1463
1464/* Position Independent Code.  */
1465
1466/* A C expression that is nonzero if X is a legitimate immediate operand on the
1467   target machine when generating position independent code.  You can assume
1468   that X satisfies `CONSTANT_P', so you need not check this.  You can also
1469   assume FLAG_PIC is true, so you need not check it either.  You need not
1470   define this macro if all constants (including `SYMBOL_REF') can be immediate
1471   operands when generating position independent code.  */
1472#define LEGITIMATE_PIC_OPERAND_P(X)					\
1473  (   GET_CODE (X) == CONST_INT						\
1474   || GET_CODE (X) == CONST_DOUBLE					\
1475   || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT)	\
1476   || got12_operand (X, VOIDmode))					\
1477
1478
1479/* The Overall Framework of an Assembler File.  */
1480
1481/* A C string constant describing how to begin a comment in the target
1482   assembler language.  The compiler assumes that the comment will end at the
1483   end of the line.  */
1484#define ASM_COMMENT_START ";"
1485
1486/* A C string constant for text to be output before each `asm' statement or
1487   group of consecutive ones.  Normally this is `"#APP"', which is a comment
1488   that has no effect on most assemblers but tells the GNU assembler that it
1489   must check the lines that follow for all valid assembler constructs.  */
1490#define ASM_APP_ON "#APP\n"
1491
1492/* A C string constant for text to be output after each `asm' statement or
1493   group of consecutive ones.  Normally this is `"#NO_APP"', which tells the
1494   GNU assembler to resume making the time-saving assumptions that are valid
1495   for ordinary compiler output.  */
1496#define ASM_APP_OFF "#NO_APP\n"
1497
1498
1499/* Output of Data.  */
1500
1501/* This is how to output a label to dwarf/dwarf2.  */
1502#define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL)				\
1503do {									\
1504  fprintf (STREAM, "\t.picptr\t");					\
1505  assemble_name (STREAM, LABEL);					\
1506} while (0)
1507
1508/* Whether to emit the gas specific dwarf2 line number support.  */
1509#define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
1510
1511/* Output of Uninitialized Variables.  */
1512
1513/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1514   assembler definition of a local-common-label named NAME whose size is SIZE
1515   bytes.  The variable ROUNDED is the size rounded up to whatever alignment
1516   the caller wants.
1517
1518   Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
1519   before and after that, output the additional assembler syntax for defining
1520   the name, and a newline.
1521
1522   This macro controls how the assembler definitions of uninitialized static
1523   variables are output.  */
1524#undef ASM_OUTPUT_LOCAL
1525
1526#undef ASM_OUTPUT_ALIGNED_LOCAL
1527
1528/* This is for final.cc, because it is used by ASM_DECLARE_OBJECT_NAME.  */
1529extern int size_directive_output;
1530
1531/* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
1532   parameter - the DECL of variable to be output, if there is one.
1533   This macro can be called with DECL == NULL_TREE.  If you define
1534   this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
1535   `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
1536   handling the destination of the variable.  */
1537#undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
1538#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN)	\
1539do {                                                                   	\
1540  if ((SIZE) > 0 && (SIZE) <= (unsigned HOST_WIDE_INT) g_switch_value)	\
1541    switch_to_section (get_named_section (NULL, ".sbss", 0));           \
1542  else                                                                 	\
1543    switch_to_section (bss_section);                                  	\
1544  ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT));     	\
1545  ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL);                        	\
1546  ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1);                       	\
1547} while (0)
1548
1549
1550/* Output and Generation of Labels.  */
1551
1552/* A C statement (sans semicolon) to output to the stdio stream STREAM the
1553   assembler definition of a label named NAME.  Use the expression
1554   `assemble_name (STREAM, NAME)' to output the name itself; before and after
1555   that, output the additional assembler syntax for defining the name, and a
1556   newline.  */
1557#define ASM_OUTPUT_LABEL(STREAM, NAME)					\
1558do {									\
1559  assemble_name (STREAM, NAME);						\
1560  fputs (":\n", STREAM);						\
1561} while (0)
1562
1563/* Globalizing directive for a label.  */
1564#define GLOBAL_ASM_OP "\t.globl "
1565
1566#undef ASM_GENERATE_INTERNAL_LABEL
1567#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)			\
1568do {									\
1569  sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM);			\
1570} while (0)
1571
1572
1573/* Macros Controlling Initialization Routines.  */
1574
1575#undef INIT_SECTION_ASM_OP
1576
1577/* If defined, `main' will call `__main' despite the presence of
1578   `INIT_SECTION_ASM_OP'.  This macro should be defined for systems where the
1579   init section is not actually run automatically, but is still useful for
1580   collecting the lists of constructors and destructors.  */
1581#define INVOKE__main
1582
1583/* Output of Assembler Instructions.  */
1584
1585/* A C initializer containing the assembler's names for the machine registers,
1586   each one as a C string constant.  This is what translates register numbers
1587   in the compiler into assembler language.  */
1588#define REGISTER_NAMES							\
1589{									\
1590 "gr0",  "sp",   "fp",   "gr3",  "gr4",  "gr5",  "gr6",  "gr7",		\
1591  "gr8",  "gr9",  "gr10", "gr11", "gr12", "gr13", "gr14", "gr15",	\
1592  "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23",	\
1593  "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31",	\
1594  "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39",	\
1595  "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47",	\
1596  "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55",	\
1597  "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63",	\
1598									\
1599  "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",	\
1600  "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",	\
1601  "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",	\
1602  "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",	\
1603  "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",	\
1604  "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",	\
1605  "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",	\
1606  "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",	\
1607									\
1608  "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3",	\
1609  "cc0",  "cc1",  "cc2",  "cc3",  "cc4",  "cc5",  "cc6",  "cc7",	\
1610  "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7",	\
1611  "acc8", "acc9", "acc10", "acc11",					\
1612  "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7",	\
1613  "accg8", "accg9", "accg10", "accg11",					\
1614  "ap",   "lr",   "lcr",  "iacc0h", "iacc0l"				\
1615}
1616
1617/* Define this macro if you are using an unusual assembler that
1618   requires different names for the machine instructions.
1619
1620   The definition is a C statement or statements which output an
1621   assembler instruction opcode to the stdio stream STREAM.  The
1622   macro-operand PTR is a variable of type `char *' which points to
1623   the opcode name in its "internal" form--the form that is written
1624   in the machine description.  The definition should output the
1625   opcode name to STREAM, performing any translation you desire, and
1626   increment the variable PTR to point at the end of the opcode so
1627   that it will not be output twice.
1628
1629   In fact, your macro definition may process less than the entire
1630   opcode name, or more than the opcode name; but if you want to
1631   process text that includes `%'-sequences to substitute operands,
1632   you must take care of the substitution yourself.  Just be sure to
1633   increment PTR over whatever text should not be output normally.
1634
1635   If you need to look at the operand values, they can be found as the
1636   elements of `recog_operand'.
1637
1638   If the macro definition does nothing, the instruction is output in
1639   the usual way.  */
1640
1641#define ASM_OUTPUT_OPCODE(STREAM, PTR)\
1642   (PTR) = frv_asm_output_opcode (STREAM, PTR)
1643
1644/* If defined, a C statement to be executed just prior to the output
1645   of assembler code for INSN, to modify the extracted operands so
1646   they will be output differently.
1647
1648   Here the argument OPVEC is the vector containing the operands
1649   extracted from INSN, and NOPERANDS is the number of elements of
1650   the vector which contain meaningful data for this insn.  The
1651   contents of this vector are what will be used to convert the insn
1652   template into assembler code, so you can change the assembler
1653   output by changing the contents of the vector.
1654
1655   This macro is useful when various assembler syntaxes share a single
1656   file of instruction patterns; by defining this macro differently,
1657   you can cause a large class of instructions to be output
1658   differently (such as with rearranged operands).  Naturally,
1659   variations in assembler syntax affecting individual insn patterns
1660   ought to be handled by writing conditional output routines in
1661   those patterns.
1662
1663   If this macro is not defined, it is equivalent to a null statement.  */
1664
1665#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
1666  frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
1667
1668#undef USER_LABEL_PREFIX
1669#define USER_LABEL_PREFIX ""
1670#define REGISTER_PREFIX ""
1671#define LOCAL_LABEL_PREFIX "."
1672#define IMMEDIATE_PREFIX "#"
1673
1674
1675/* Output of dispatch tables.  */
1676
1677/* This macro should be provided on machines where the addresses in a dispatch
1678   table are relative to the table's own address.
1679
1680   The definition should be a C statement to output to the stdio stream STREAM
1681   an assembler pseudo-instruction to generate a difference between two labels.
1682   VALUE and REL are the numbers of two internal labels.  The definitions of
1683   these labels are output using `(*targetm.asm_out.internal_label)', and they must be
1684   printed in the same way here.  For example,
1685
1686        fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL)  */
1687#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1688fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
1689
1690/* This macro should be provided on machines where the addresses in a dispatch
1691   table are absolute.
1692
1693   The definition should be a C statement to output to the stdio stream STREAM
1694   an assembler pseudo-instruction to generate a reference to a label.  VALUE
1695   is the number of an internal label whose definition is output using
1696   `(*targetm.asm_out.internal_label)'.  For example,
1697
1698        fprintf (STREAM, "\t.word L%d\n", VALUE)  */
1699#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1700fprintf (STREAM, "\t.word .L%d\n", VALUE)
1701
1702#define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1703
1704/* Assembler Commands for Exception Regions.  */
1705
1706/* Define this macro to 0 if your target supports DWARF 2 frame unwind
1707   information, but it does not yet work with exception handling.  Otherwise,
1708   if your target supports this information (if it defines
1709   `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide
1710   a default definition of 1.
1711
1712   If this macro is defined to 1, the DWARF 2 unwinder will be the default
1713   exception handling mechanism; otherwise, setjmp/longjmp will be used by
1714   default.
1715
1716   If this macro is defined to anything, the DWARF 2 unwinder will be used
1717   instead of inline unwinders and __unwind_function in the non-setjmp case.  */
1718#define DWARF2_UNWIND_INFO 1
1719
1720#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
1721
1722/* Assembler Commands for Alignment.  */
1723
1724#undef  ASM_OUTPUT_SKIP
1725#define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
1726  fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
1727
1728/* A C statement to output to the stdio stream STREAM an assembler command to
1729   advance the location counter to a multiple of 2 to the POWER bytes.  POWER
1730   will be a C expression of type `int'.  */
1731#define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1732  fprintf ((STREAM), "\t.p2align %d\n", (POWER))
1733
1734/* Inside the text section, align with unpacked nops rather than zeros.  */
1735#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
1736  fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
1737
1738/* Macros Affecting all Debug Formats.  */
1739
1740/* A C expression that returns the DBX register number for the compiler
1741   register number REGNO.  In simple cases, the value of this expression may be
1742   REGNO itself.  But sometimes there are some registers that the compiler
1743   knows about and DBX does not, or vice versa.  In such cases, some register
1744   may need to have one number in the compiler and another for DBX.
1745
1746   If two registers have consecutive numbers inside GCC, and they can be
1747   used as a pair to hold a multiword value, then they *must* have consecutive
1748   numbers after renumbering with `DBX_REGISTER_NUMBER'.  Otherwise, debuggers
1749   will be unable to access such a pair, because they expect register pairs to
1750   be consecutive in their own numbering scheme.
1751
1752   If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
1753   preserve register pairs, then what you must do instead is redefine the
1754   actual register numbering scheme.
1755
1756   This declaration is required.  */
1757#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1758
1759#undef  PREFERRED_DEBUGGING_TYPE
1760#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1761
1762/* Miscellaneous Parameters.  */
1763
1764/* An alias for a machine mode name.  This is the machine mode that elements of
1765   a jump-table should have.  */
1766#define CASE_VECTOR_MODE SImode
1767
1768/* Define this macro if operations between registers with integral mode smaller
1769   than a word are always performed on the entire register.  Most RISC machines
1770   have this property and most CISC machines do not.  */
1771#define WORD_REGISTER_OPERATIONS 1
1772
1773/* Define this macro to be a C expression indicating when insns that read
1774   memory in MODE, an integral mode narrower than a word, set the bits outside
1775   of MODE to be either the sign-extension or the zero-extension of the data
1776   read.  Return `SIGN_EXTEND' for values of MODE for which the insn
1777   sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
1778   modes.
1779
1780   This macro is not called with MODE non-integral or with a width greater than
1781   or equal to `BITS_PER_WORD', so you may return any value in this case.  Do
1782   not define this macro if it would always return `UNKNOWN'.  On machines where
1783   this macro is defined, you will normally define it as the constant
1784   `SIGN_EXTEND' or `ZERO_EXTEND'.  */
1785#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1786
1787/* Define if loading short immediate values into registers sign extends.  */
1788#define SHORT_IMMEDIATES_SIGN_EXTEND 1
1789
1790/* The maximum number of bytes that a single instruction can move quickly from
1791   memory to memory.  */
1792#define MOVE_MAX 8
1793
1794/* An alias for the machine mode for pointers.  On most machines, define this
1795   to be the integer mode corresponding to the width of a hardware pointer;
1796   `SImode' on 32-bit machine or `DImode' on 64-bit machines.  On some machines
1797   you must define this to be one of the partial integer modes, such as
1798   `PSImode'.
1799
1800   The width of `Pmode' must be at least as large as the value of
1801   `POINTER_SIZE'.  If it is not equal, you must define the macro
1802   `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'.  */
1803#define Pmode SImode
1804
1805/* An alias for the machine mode used for memory references to functions being
1806   called, in `call' RTL expressions.  On most machines this should be
1807   `QImode'.  */
1808#define FUNCTION_MODE QImode
1809
1810/* A C expression for the maximum number of instructions to execute via
1811   conditional execution instructions instead of a branch.  A value of
1812   BRANCH_COST+1 is the default if the machine does not use
1813   cc0, and 1 if it does use cc0.  */
1814#define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
1815
1816/* A C expression to modify the code described by the conditional if
1817   information CE_INFO, possibly updating the tests in TRUE_EXPR, and
1818   FALSE_EXPR for converting if-then and if-then-else code to conditional
1819   instructions.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
1820   tests cannot be converted.  */
1821#define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR)		\
1822frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
1823
1824/* A C expression to modify the code described by the conditional if
1825   information CE_INFO, for the basic block BB, possibly updating the tests in
1826   TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
1827   if-then-else code to conditional instructions.  OLD_TRUE and OLD_FALSE are
1828   the previous tests.  Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
1829   the tests cannot be converted.  */
1830#define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
1831frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
1832
1833/* A C expression to modify the code described by the conditional if
1834   information CE_INFO with the new PATTERN in INSN.  If PATTERN is a null
1835   pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
1836   insn cannot be converted to be executed conditionally.  */
1837#define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
1838(PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
1839
1840/* A C expression to perform any final machine dependent modifications in
1841   converting code to conditional execution in the code described by the
1842   conditional if information CE_INFO.  */
1843#define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
1844
1845/* A C expression to cancel any machine dependent modifications in converting
1846   code to conditional execution in the code described by the conditional if
1847   information CE_INFO.  */
1848#define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
1849
1850/* Initialize the machine-specific static data for if-conversion.  */
1851#define IFCVT_MACHDEP_INIT(CE_INFO) frv_ifcvt_machdep_init (CE_INFO)
1852
1853/* The definition of the following macro results in that the 2nd jump
1854   optimization (after the 2nd insn scheduling) is minimal.  It is
1855   necessary to define when start cycle marks of insns (TImode is used
1856   for this) is used for VLIW insn packing.  Some jump optimizations
1857   make such marks invalid.  These marks are corrected for some
1858   (minimal) optimizations.  ??? Probably the macro is temporary.
1859   Final solution could making the 2nd jump optimizations before the
1860   2nd instruction scheduling or corrections of the marks for all jump
1861   optimizations.  Although some jump optimizations are actually
1862   deoptimizations for VLIW (super-scalar) processors.  */
1863
1864#define MINIMAL_SECOND_JUMP_OPTIMIZATION
1865
1866
1867/* If the following macro is defined and nonzero and deterministic
1868   finite state automata are used for pipeline hazard recognition, we
1869   will try to exchange insns in queue ready to improve the schedule.
1870   The more macro value, the more tries will be made.  */
1871#define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
1872
1873/* The following macro is used only when value of
1874   FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero.  The more macro value,
1875   the more tries will be made to choose better schedule.  If the
1876   macro value is zero or negative there will be no multi-pass
1877   scheduling.  */
1878#define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
1879
1880enum frv_builtins
1881{
1882  FRV_BUILTIN_MAND,
1883  FRV_BUILTIN_MOR,
1884  FRV_BUILTIN_MXOR,
1885  FRV_BUILTIN_MNOT,
1886  FRV_BUILTIN_MAVEH,
1887  FRV_BUILTIN_MSATHS,
1888  FRV_BUILTIN_MSATHU,
1889  FRV_BUILTIN_MADDHSS,
1890  FRV_BUILTIN_MADDHUS,
1891  FRV_BUILTIN_MSUBHSS,
1892  FRV_BUILTIN_MSUBHUS,
1893  FRV_BUILTIN_MPACKH,
1894  FRV_BUILTIN_MQADDHSS,
1895  FRV_BUILTIN_MQADDHUS,
1896  FRV_BUILTIN_MQSUBHSS,
1897  FRV_BUILTIN_MQSUBHUS,
1898  FRV_BUILTIN_MUNPACKH,
1899  FRV_BUILTIN_MDPACKH,
1900  FRV_BUILTIN_MBTOH,
1901  FRV_BUILTIN_MHTOB,
1902  FRV_BUILTIN_MCOP1,
1903  FRV_BUILTIN_MCOP2,
1904  FRV_BUILTIN_MROTLI,
1905  FRV_BUILTIN_MROTRI,
1906  FRV_BUILTIN_MWCUT,
1907  FRV_BUILTIN_MSLLHI,
1908  FRV_BUILTIN_MSRLHI,
1909  FRV_BUILTIN_MSRAHI,
1910  FRV_BUILTIN_MEXPDHW,
1911  FRV_BUILTIN_MEXPDHD,
1912  FRV_BUILTIN_MMULHS,
1913  FRV_BUILTIN_MMULHU,
1914  FRV_BUILTIN_MMULXHS,
1915  FRV_BUILTIN_MMULXHU,
1916  FRV_BUILTIN_MMACHS,
1917  FRV_BUILTIN_MMACHU,
1918  FRV_BUILTIN_MMRDHS,
1919  FRV_BUILTIN_MMRDHU,
1920  FRV_BUILTIN_MQMULHS,
1921  FRV_BUILTIN_MQMULHU,
1922  FRV_BUILTIN_MQMULXHU,
1923  FRV_BUILTIN_MQMULXHS,
1924  FRV_BUILTIN_MQMACHS,
1925  FRV_BUILTIN_MQMACHU,
1926  FRV_BUILTIN_MCPXRS,
1927  FRV_BUILTIN_MCPXRU,
1928  FRV_BUILTIN_MCPXIS,
1929  FRV_BUILTIN_MCPXIU,
1930  FRV_BUILTIN_MQCPXRS,
1931  FRV_BUILTIN_MQCPXRU,
1932  FRV_BUILTIN_MQCPXIS,
1933  FRV_BUILTIN_MQCPXIU,
1934  FRV_BUILTIN_MCUT,
1935  FRV_BUILTIN_MCUTSS,
1936  FRV_BUILTIN_MWTACC,
1937  FRV_BUILTIN_MWTACCG,
1938  FRV_BUILTIN_MRDACC,
1939  FRV_BUILTIN_MRDACCG,
1940  FRV_BUILTIN_MTRAP,
1941  FRV_BUILTIN_MCLRACC,
1942  FRV_BUILTIN_MCLRACCA,
1943  FRV_BUILTIN_MDUNPACKH,
1944  FRV_BUILTIN_MBTOHE,
1945  FRV_BUILTIN_MQXMACHS,
1946  FRV_BUILTIN_MQXMACXHS,
1947  FRV_BUILTIN_MQMACXHS,
1948  FRV_BUILTIN_MADDACCS,
1949  FRV_BUILTIN_MSUBACCS,
1950  FRV_BUILTIN_MASACCS,
1951  FRV_BUILTIN_MDADDACCS,
1952  FRV_BUILTIN_MDSUBACCS,
1953  FRV_BUILTIN_MDASACCS,
1954  FRV_BUILTIN_MABSHS,
1955  FRV_BUILTIN_MDROTLI,
1956  FRV_BUILTIN_MCPLHI,
1957  FRV_BUILTIN_MCPLI,
1958  FRV_BUILTIN_MDCUTSSI,
1959  FRV_BUILTIN_MQSATHS,
1960  FRV_BUILTIN_MQLCLRHS,
1961  FRV_BUILTIN_MQLMTHS,
1962  FRV_BUILTIN_MQSLLHI,
1963  FRV_BUILTIN_MQSRAHI,
1964  FRV_BUILTIN_MHSETLOS,
1965  FRV_BUILTIN_MHSETLOH,
1966  FRV_BUILTIN_MHSETHIS,
1967  FRV_BUILTIN_MHSETHIH,
1968  FRV_BUILTIN_MHDSETS,
1969  FRV_BUILTIN_MHDSETH,
1970  FRV_BUILTIN_SMUL,
1971  FRV_BUILTIN_UMUL,
1972  FRV_BUILTIN_PREFETCH0,
1973  FRV_BUILTIN_PREFETCH,
1974  FRV_BUILTIN_SMASS,
1975  FRV_BUILTIN_SMSSS,
1976  FRV_BUILTIN_SMU,
1977  FRV_BUILTIN_SCUTSS,
1978  FRV_BUILTIN_ADDSS,
1979  FRV_BUILTIN_SUBSS,
1980  FRV_BUILTIN_SLASS,
1981  FRV_BUILTIN_IACCreadll,
1982  FRV_BUILTIN_IACCreadl,
1983  FRV_BUILTIN_IACCsetll,
1984  FRV_BUILTIN_IACCsetl,
1985  FRV_BUILTIN_SCAN,
1986  FRV_BUILTIN_READ8,
1987  FRV_BUILTIN_READ16,
1988  FRV_BUILTIN_READ32,
1989  FRV_BUILTIN_READ64,
1990  FRV_BUILTIN_WRITE8,
1991  FRV_BUILTIN_WRITE16,
1992  FRV_BUILTIN_WRITE32,
1993  FRV_BUILTIN_WRITE64
1994};
1995#define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
1996
1997/* Enable prototypes on the call rtl functions.  */
1998#define MD_CALL_PROTOTYPES 1
1999
2000#define CPU_UNITS_QUERY 1
2001
2002#endif /* __FRV_H__ */
2003