1// Special functions -*- C++ -*-
2
3// Copyright (C) 2006-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10//
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15//
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file tr1/bessel_function.tcc
26 *  This is an internal header file, included by other library headers.
27 *  Do not attempt to use it directly. @headername{tr1/cmath}
28 */
29
30/* __cyl_bessel_jn_asymp adapted from GNU GSL version 2.4 specfunc/bessel_j.c
31 * Copyright (C) 1996-2003 Gerard Jungman
32 */
33
34//
35// ISO C++ 14882 TR1: 5.2  Special functions
36//
37
38// Written by Edward Smith-Rowland.
39//
40// References:
41//   (1) Handbook of Mathematical Functions,
42//       ed. Milton Abramowitz and Irene A. Stegun,
43//       Dover Publications,
44//       Section 9, pp. 355-434, Section 10 pp. 435-478
45//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
46//   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
47//       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
48//       2nd ed, pp. 240-245
49
50#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
51#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
52
53#include <tr1/special_function_util.h>
54
55namespace std _GLIBCXX_VISIBILITY(default)
56{
57_GLIBCXX_BEGIN_NAMESPACE_VERSION
58
59#if _GLIBCXX_USE_STD_SPEC_FUNCS
60# define _GLIBCXX_MATH_NS ::std
61#elif defined(_GLIBCXX_TR1_CMATH)
62namespace tr1
63{
64# define _GLIBCXX_MATH_NS ::std::tr1
65#else
66# error do not include this header directly, use <cmath> or <tr1/cmath>
67#endif
68  // [5.2] Special functions
69
70  // Implementation-space details.
71  namespace __detail
72  {
73    /**
74     *   @brief Compute the gamma functions required by the Temme series
75     *          expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
76     *   @f[
77     *     \Gamma_1 = \frac{1}{2\mu}
78     *                [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
79     *   @f]
80     *   and
81     *   @f[
82     *     \Gamma_2 = \frac{1}{2}
83     *                [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
84     *   @f]
85     *   where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
86     *   is the nearest integer to @f$ \nu @f$.
87     *   The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
88     *   are returned as well.
89     * 
90     *   The accuracy requirements on this are exquisite.
91     *
92     *   @param __mu     The input parameter of the gamma functions.
93     *   @param __gam1   The output function \f$ \Gamma_1(\mu) \f$
94     *   @param __gam2   The output function \f$ \Gamma_2(\mu) \f$
95     *   @param __gampl  The output function \f$ \Gamma(1 + \mu) \f$
96     *   @param __gammi  The output function \f$ \Gamma(1 - \mu) \f$
97     */
98    template <typename _Tp>
99    void
100    __gamma_temme(_Tp __mu,
101                  _Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
102    {
103#if _GLIBCXX_USE_C99_MATH_TR1
104      __gampl = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) + __mu);
105      __gammi = _Tp(1) / _GLIBCXX_MATH_NS::tgamma(_Tp(1) - __mu);
106#else
107      __gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
108      __gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
109#endif
110
111      if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
112        __gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
113      else
114        __gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
115
116      __gam2 = (__gammi + __gampl) / (_Tp(2));
117
118      return;
119    }
120
121
122    /**
123     *   @brief  Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
124     *           @f$ N_\nu(x) @f$ functions and their first derivatives
125     *           @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
126     *           These four functions are computed together for numerical
127     *           stability.
128     *
129     *   @param  __nu  The order of the Bessel functions.
130     *   @param  __x   The argument of the Bessel functions.
131     *   @param  __Jnu  The output Bessel function of the first kind.
132     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
133     *   @param  __Jpnu  The output derivative of the Bessel function of the first kind.
134     *   @param  __Npnu  The output derivative of the Neumann function.
135     */
136    template <typename _Tp>
137    void
138    __bessel_jn(_Tp __nu, _Tp __x,
139                _Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
140    {
141      if (__x == _Tp(0))
142        {
143          if (__nu == _Tp(0))
144            {
145              __Jnu = _Tp(1);
146              __Jpnu = _Tp(0);
147            }
148          else if (__nu == _Tp(1))
149            {
150              __Jnu = _Tp(0);
151              __Jpnu = _Tp(0.5L);
152            }
153          else
154            {
155              __Jnu = _Tp(0);
156              __Jpnu = _Tp(0);
157            }
158          __Nnu = -std::numeric_limits<_Tp>::infinity();
159          __Npnu = std::numeric_limits<_Tp>::infinity();
160          return;
161        }
162
163      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
164      //  When the multiplier is N i.e.
165      //  fp_min = N * min()
166      //  Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
167      //const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
168      const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
169      const int __max_iter = 15000;
170      const _Tp __x_min = _Tp(2);
171
172      const int __nl = (__x < __x_min
173                    ? static_cast<int>(__nu + _Tp(0.5L))
174                    : std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
175
176      const _Tp __mu = __nu - __nl;
177      const _Tp __mu2 = __mu * __mu;
178      const _Tp __xi = _Tp(1) / __x;
179      const _Tp __xi2 = _Tp(2) * __xi;
180      _Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
181      int __isign = 1;
182      _Tp __h = __nu * __xi;
183      if (__h < __fp_min)
184        __h = __fp_min;
185      _Tp __b = __xi2 * __nu;
186      _Tp __d = _Tp(0);
187      _Tp __c = __h;
188      int __i;
189      for (__i = 1; __i <= __max_iter; ++__i)
190        {
191          __b += __xi2;
192          __d = __b - __d;
193          if (std::abs(__d) < __fp_min)
194            __d = __fp_min;
195          __c = __b - _Tp(1) / __c;
196          if (std::abs(__c) < __fp_min)
197            __c = __fp_min;
198          __d = _Tp(1) / __d;
199          const _Tp __del = __c * __d;
200          __h *= __del;
201          if (__d < _Tp(0))
202            __isign = -__isign;
203          if (std::abs(__del - _Tp(1)) < __eps)
204            break;
205        }
206      if (__i > __max_iter)
207        std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
208                                       "try asymptotic expansion."));
209      _Tp __Jnul = __isign * __fp_min;
210      _Tp __Jpnul = __h * __Jnul;
211      _Tp __Jnul1 = __Jnul;
212      _Tp __Jpnu1 = __Jpnul;
213      _Tp __fact = __nu * __xi;
214      for ( int __l = __nl; __l >= 1; --__l )
215        {
216          const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
217          __fact -= __xi;
218          __Jpnul = __fact * __Jnutemp - __Jnul;
219          __Jnul = __Jnutemp;
220        }
221      if (__Jnul == _Tp(0))
222        __Jnul = __eps;
223      _Tp __f= __Jpnul / __Jnul;
224      _Tp __Nmu, __Nnu1, __Npmu, __Jmu;
225      if (__x < __x_min)
226        {
227          const _Tp __x2 = __x / _Tp(2);
228          const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
229          _Tp __fact = (std::abs(__pimu) < __eps
230                      ? _Tp(1) : __pimu / std::sin(__pimu));
231          _Tp __d = -std::log(__x2);
232          _Tp __e = __mu * __d;
233          _Tp __fact2 = (std::abs(__e) < __eps
234                       ? _Tp(1) : std::sinh(__e) / __e);
235          _Tp __gam1, __gam2, __gampl, __gammi;
236          __gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
237          _Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
238                   * __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
239          __e = std::exp(__e);
240          _Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
241          _Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
242          const _Tp __pimu2 = __pimu / _Tp(2);
243          _Tp __fact3 = (std::abs(__pimu2) < __eps
244                       ? _Tp(1) : std::sin(__pimu2) / __pimu2 );
245          _Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
246          _Tp __c = _Tp(1);
247          __d = -__x2 * __x2;
248          _Tp __sum = __ff + __r * __q;
249          _Tp __sum1 = __p;
250          for (__i = 1; __i <= __max_iter; ++__i)
251            {
252              __ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
253              __c *= __d / _Tp(__i);
254              __p /= _Tp(__i) - __mu;
255              __q /= _Tp(__i) + __mu;
256              const _Tp __del = __c * (__ff + __r * __q);
257              __sum += __del; 
258              const _Tp __del1 = __c * __p - __i * __del;
259              __sum1 += __del1;
260              if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
261                break;
262            }
263          if ( __i > __max_iter )
264            std::__throw_runtime_error(__N("Bessel y series failed to converge "
265                                           "in __bessel_jn."));
266          __Nmu = -__sum;
267          __Nnu1 = -__sum1 * __xi2;
268          __Npmu = __mu * __xi * __Nmu - __Nnu1;
269          __Jmu = __w / (__Npmu - __f * __Nmu);
270        }
271      else
272        {
273          _Tp __a = _Tp(0.25L) - __mu2;
274          _Tp __q = _Tp(1);
275          _Tp __p = -__xi / _Tp(2);
276          _Tp __br = _Tp(2) * __x;
277          _Tp __bi = _Tp(2);
278          _Tp __fact = __a * __xi / (__p * __p + __q * __q);
279          _Tp __cr = __br + __q * __fact;
280          _Tp __ci = __bi + __p * __fact;
281          _Tp __den = __br * __br + __bi * __bi;
282          _Tp __dr = __br / __den;
283          _Tp __di = -__bi / __den;
284          _Tp __dlr = __cr * __dr - __ci * __di;
285          _Tp __dli = __cr * __di + __ci * __dr;
286          _Tp __temp = __p * __dlr - __q * __dli;
287          __q = __p * __dli + __q * __dlr;
288          __p = __temp;
289          int __i;
290          for (__i = 2; __i <= __max_iter; ++__i)
291            {
292              __a += _Tp(2 * (__i - 1));
293              __bi += _Tp(2);
294              __dr = __a * __dr + __br;
295              __di = __a * __di + __bi;
296              if (std::abs(__dr) + std::abs(__di) < __fp_min)
297                __dr = __fp_min;
298              __fact = __a / (__cr * __cr + __ci * __ci);
299              __cr = __br + __cr * __fact;
300              __ci = __bi - __ci * __fact;
301              if (std::abs(__cr) + std::abs(__ci) < __fp_min)
302                __cr = __fp_min;
303              __den = __dr * __dr + __di * __di;
304              __dr /= __den;
305              __di /= -__den;
306              __dlr = __cr * __dr - __ci * __di;
307              __dli = __cr * __di + __ci * __dr;
308              __temp = __p * __dlr - __q * __dli;
309              __q = __p * __dli + __q * __dlr;
310              __p = __temp;
311              if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
312                break;
313          }
314          if (__i > __max_iter)
315            std::__throw_runtime_error(__N("Lentz's method failed "
316                                           "in __bessel_jn."));
317          const _Tp __gam = (__p - __f) / __q;
318          __Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
319#if _GLIBCXX_USE_C99_MATH_TR1
320          __Jmu = _GLIBCXX_MATH_NS::copysign(__Jmu, __Jnul);
321#else
322          if (__Jmu * __Jnul < _Tp(0))
323            __Jmu = -__Jmu;
324#endif
325          __Nmu = __gam * __Jmu;
326          __Npmu = (__p + __q / __gam) * __Nmu;
327          __Nnu1 = __mu * __xi * __Nmu - __Npmu;
328      }
329      __fact = __Jmu / __Jnul;
330      __Jnu = __fact * __Jnul1;
331      __Jpnu = __fact * __Jpnu1;
332      for (__i = 1; __i <= __nl; ++__i)
333        {
334          const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
335          __Nmu = __Nnu1;
336          __Nnu1 = __Nnutemp;
337        }
338      __Nnu = __Nmu;
339      __Npnu = __nu * __xi * __Nmu - __Nnu1;
340
341      return;
342    }
343
344
345    /**
346     *   @brief This routine computes the asymptotic cylindrical Bessel
347     *          and Neumann functions of order nu: \f$ J_{\nu} \f$,
348     *          \f$ N_{\nu} \f$.
349     *
350     *   References:
351     *    (1) Handbook of Mathematical Functions,
352     *        ed. Milton Abramowitz and Irene A. Stegun,
353     *        Dover Publications,
354     *        Section 9 p. 364, Equations 9.2.5-9.2.10
355     *
356     *   @param  __nu  The order of the Bessel functions.
357     *   @param  __x   The argument of the Bessel functions.
358     *   @param  __Jnu  The output Bessel function of the first kind.
359     *   @param  __Nnu  The output Neumann function (Bessel function of the second kind).
360     */
361    template <typename _Tp>
362    void
363    __cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
364    {
365      const _Tp __mu = _Tp(4) * __nu * __nu;
366      const _Tp __8x = _Tp(8) * __x;
367
368      _Tp __P = _Tp(0);
369      _Tp __Q = _Tp(0);
370
371      _Tp __k = _Tp(0);
372      _Tp __term = _Tp(1);
373
374      int __epsP = 0;
375      int __epsQ = 0;
376
377      _Tp __eps = std::numeric_limits<_Tp>::epsilon();
378
379      do
380        {
381          __term *= (__k == 0
382                     ? _Tp(1)
383                     : -(__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x));
384
385          __epsP = std::abs(__term) < __eps * std::abs(__P);
386          __P += __term;
387
388          __k++;
389
390          __term *= (__mu - (2 * __k - 1) * (2 * __k - 1)) / (__k * __8x);
391          __epsQ = std::abs(__term) < __eps * std::abs(__Q);
392          __Q += __term;
393
394          if (__epsP && __epsQ && __k > (__nu / 2.))
395            break;
396
397          __k++;
398        }
399      while (__k < 1000);
400
401      const _Tp __chi = __x - (__nu + _Tp(0.5L))
402                             * __numeric_constants<_Tp>::__pi_2();
403
404      const _Tp __c = std::cos(__chi);
405      const _Tp __s = std::sin(__chi);
406
407      const _Tp __coef = std::sqrt(_Tp(2)
408                             / (__numeric_constants<_Tp>::__pi() * __x));
409
410      __Jnu = __coef * (__c * __P - __s * __Q);
411      __Nnu = __coef * (__s * __P + __c * __Q);
412
413      return;
414    }
415
416
417    /**
418     *   @brief This routine returns the cylindrical Bessel functions
419     *          of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
420     *          by series expansion.
421     *
422     *   The modified cylindrical Bessel function is:
423     *   @f[
424     *    Z_{\nu}(x) = \sum_{k=0}^{\infty}
425     *              \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
426     *   @f]
427     *   where \f$ \sigma = +1 \f$ or\f$  -1 \f$ for
428     *   \f$ Z = I \f$ or \f$ J \f$ respectively.
429     * 
430     *   See Abramowitz & Stegun, 9.1.10
431     *       Abramowitz & Stegun, 9.6.7
432     *    (1) Handbook of Mathematical Functions,
433     *        ed. Milton Abramowitz and Irene A. Stegun,
434     *        Dover Publications,
435     *        Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
436     *
437     *   @param  __nu  The order of the Bessel function.
438     *   @param  __x   The argument of the Bessel function.
439     *   @param  __sgn  The sign of the alternate terms
440     *                  -1 for the Bessel function of the first kind.
441     *                  +1 for the modified Bessel function of the first kind.
442     *   @return  The output Bessel function.
443     */
444    template <typename _Tp>
445    _Tp
446    __cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
447                           unsigned int __max_iter)
448    {
449      if (__x == _Tp(0))
450	return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
451
452      const _Tp __x2 = __x / _Tp(2);
453      _Tp __fact = __nu * std::log(__x2);
454#if _GLIBCXX_USE_C99_MATH_TR1
455      __fact -= _GLIBCXX_MATH_NS::lgamma(__nu + _Tp(1));
456#else
457      __fact -= __log_gamma(__nu + _Tp(1));
458#endif
459      __fact = std::exp(__fact);
460      const _Tp __xx4 = __sgn * __x2 * __x2;
461      _Tp __Jn = _Tp(1);
462      _Tp __term = _Tp(1);
463
464      for (unsigned int __i = 1; __i < __max_iter; ++__i)
465        {
466          __term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
467          __Jn += __term;
468          if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
469            break;
470        }
471
472      return __fact * __Jn;
473    }
474
475
476    /**
477     *   @brief  Return the Bessel function of order \f$ \nu \f$:
478     *           \f$ J_{\nu}(x) \f$.
479     *
480     *   The cylindrical Bessel function is:
481     *   @f[
482     *    J_{\nu}(x) = \sum_{k=0}^{\infty}
483     *              \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
484     *   @f]
485     *
486     *   @param  __nu  The order of the Bessel function.
487     *   @param  __x   The argument of the Bessel function.
488     *   @return  The output Bessel function.
489     */
490    template<typename _Tp>
491    _Tp
492    __cyl_bessel_j(_Tp __nu, _Tp __x)
493    {
494      if (__nu < _Tp(0) || __x < _Tp(0))
495        std::__throw_domain_error(__N("Bad argument "
496                                      "in __cyl_bessel_j."));
497      else if (__isnan(__nu) || __isnan(__x))
498        return std::numeric_limits<_Tp>::quiet_NaN();
499      else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
500        return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
501      else if (__x > _Tp(1000))
502        {
503          _Tp __J_nu, __N_nu;
504          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
505          return __J_nu;
506        }
507      else
508        {
509          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
510          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
511          return __J_nu;
512        }
513    }
514
515
516    /**
517     *   @brief  Return the Neumann function of order \f$ \nu \f$:
518     *           \f$ N_{\nu}(x) \f$.
519     *
520     *   The Neumann function is defined by:
521     *   @f[
522     *      N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
523     *                        {\sin \nu\pi}
524     *   @f]
525     *   where for integral \f$ \nu = n \f$ a limit is taken:
526     *   \f$ lim_{\nu \to n} \f$.
527     *
528     *   @param  __nu  The order of the Neumann function.
529     *   @param  __x   The argument of the Neumann function.
530     *   @return  The output Neumann function.
531     */
532    template<typename _Tp>
533    _Tp
534    __cyl_neumann_n(_Tp __nu, _Tp __x)
535    {
536      if (__nu < _Tp(0) || __x < _Tp(0))
537        std::__throw_domain_error(__N("Bad argument "
538                                      "in __cyl_neumann_n."));
539      else if (__isnan(__nu) || __isnan(__x))
540        return std::numeric_limits<_Tp>::quiet_NaN();
541      else if (__x > _Tp(1000))
542        {
543          _Tp __J_nu, __N_nu;
544          __cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
545          return __N_nu;
546        }
547      else
548        {
549          _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
550          __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
551          return __N_nu;
552        }
553    }
554
555
556    /**
557     *   @brief  Compute the spherical Bessel @f$ j_n(x) @f$
558     *           and Neumann @f$ n_n(x) @f$ functions and their first
559     *           derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
560     *           respectively.
561     *
562     *   @param  __n  The order of the spherical Bessel function.
563     *   @param  __x  The argument of the spherical Bessel function.
564     *   @param  __j_n  The output spherical Bessel function.
565     *   @param  __n_n  The output spherical Neumann function.
566     *   @param  __jp_n The output derivative of the spherical Bessel function.
567     *   @param  __np_n The output derivative of the spherical Neumann function.
568     */
569    template <typename _Tp>
570    void
571    __sph_bessel_jn(unsigned int __n, _Tp __x,
572                    _Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
573    {
574      const _Tp __nu = _Tp(__n) + _Tp(0.5L);
575
576      _Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
577      __bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
578
579      const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
580                         / std::sqrt(__x);
581
582      __j_n = __factor * __J_nu;
583      __n_n = __factor * __N_nu;
584      __jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
585      __np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
586
587      return;
588    }
589
590
591    /**
592     *   @brief  Return the spherical Bessel function
593     *           @f$ j_n(x) @f$ of order n.
594     *
595     *   The spherical Bessel function is defined by:
596     *   @f[
597     *    j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
598     *   @f]
599     *
600     *   @param  __n  The order of the spherical Bessel function.
601     *   @param  __x  The argument of the spherical Bessel function.
602     *   @return  The output spherical Bessel function.
603     */
604    template <typename _Tp>
605    _Tp
606    __sph_bessel(unsigned int __n, _Tp __x)
607    {
608      if (__x < _Tp(0))
609        std::__throw_domain_error(__N("Bad argument "
610                                      "in __sph_bessel."));
611      else if (__isnan(__x))
612        return std::numeric_limits<_Tp>::quiet_NaN();
613      else if (__x == _Tp(0))
614        {
615          if (__n == 0)
616            return _Tp(1);
617          else
618            return _Tp(0);
619        }
620      else
621        {
622          _Tp __j_n, __n_n, __jp_n, __np_n;
623          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
624          return __j_n;
625        }
626    }
627
628
629    /**
630     *   @brief  Return the spherical Neumann function
631     *           @f$ n_n(x) @f$.
632     *
633     *   The spherical Neumann function is defined by:
634     *   @f[
635     *    n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
636     *   @f]
637     *
638     *   @param  __n  The order of the spherical Neumann function.
639     *   @param  __x  The argument of the spherical Neumann function.
640     *   @return  The output spherical Neumann function.
641     */
642    template <typename _Tp>
643    _Tp
644    __sph_neumann(unsigned int __n, _Tp __x)
645    {
646      if (__x < _Tp(0))
647        std::__throw_domain_error(__N("Bad argument "
648                                      "in __sph_neumann."));
649      else if (__isnan(__x))
650        return std::numeric_limits<_Tp>::quiet_NaN();
651      else if (__x == _Tp(0))
652        return -std::numeric_limits<_Tp>::infinity();
653      else
654        {
655          _Tp __j_n, __n_n, __jp_n, __np_n;
656          __sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
657          return __n_n;
658        }
659    }
660  } // namespace __detail
661#undef _GLIBCXX_MATH_NS
662#if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
663} // namespace tr1
664#endif
665
666_GLIBCXX_END_NAMESPACE_VERSION
667}
668
669#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
670