1//===-- tsan_interceptors.cc ----------------------------------------------===//
2//
3// This file is distributed under the University of Illinois Open Source
4// License. See LICENSE.TXT for details.
5//
6//===----------------------------------------------------------------------===//
7//
8// This file is a part of ThreadSanitizer (TSan), a race detector.
9//
10// FIXME: move as many interceptors as possible into
11// sanitizer_common/sanitizer_common_interceptors.inc
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_atomic.h"
15#include "sanitizer_common/sanitizer_errno.h"
16#include "sanitizer_common/sanitizer_libc.h"
17#include "sanitizer_common/sanitizer_linux.h"
18#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
19#include "sanitizer_common/sanitizer_platform_limits_posix.h"
20#include "sanitizer_common/sanitizer_placement_new.h"
21#include "sanitizer_common/sanitizer_posix.h"
22#include "sanitizer_common/sanitizer_stacktrace.h"
23#include "sanitizer_common/sanitizer_tls_get_addr.h"
24#include "interception/interception.h"
25#include "tsan_interceptors.h"
26#include "tsan_interface.h"
27#include "tsan_platform.h"
28#include "tsan_suppressions.h"
29#include "tsan_rtl.h"
30#include "tsan_mman.h"
31#include "tsan_fd.h"
32
33
34using namespace __tsan;  // NOLINT
35
36#if SANITIZER_FREEBSD || SANITIZER_MAC
37#define stdout __stdoutp
38#define stderr __stderrp
39#endif
40
41#if SANITIZER_NETBSD
42#define dirfd(dirp) (*(int *)(dirp))
43#define fileno_unlocked(fp)              \
44  (((__sanitizer_FILE *)fp)->_file == -1 \
45       ? -1                              \
46       : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
47
48#define stdout ((__sanitizer_FILE*)&__sF[1])
49#define stderr ((__sanitizer_FILE*)&__sF[2])
50
51#define nanosleep __nanosleep50
52#define vfork __vfork14
53#endif
54
55#if SANITIZER_ANDROID
56#define mallopt(a, b)
57#endif
58
59#ifdef __mips__
60const int kSigCount = 129;
61#else
62const int kSigCount = 65;
63#endif
64
65#ifdef __mips__
66struct ucontext_t {
67  u64 opaque[768 / sizeof(u64) + 1];
68};
69#else
70struct ucontext_t {
71  // The size is determined by looking at sizeof of real ucontext_t on linux.
72  u64 opaque[936 / sizeof(u64) + 1];
73};
74#endif
75
76#if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
77#define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
78#elif defined(__aarch64__) || SANITIZER_PPC64V2
79#define PTHREAD_ABI_BASE  "GLIBC_2.17"
80#endif
81
82extern "C" int pthread_attr_init(void *attr);
83extern "C" int pthread_attr_destroy(void *attr);
84DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
85extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
86extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
87extern "C" int pthread_setspecific(unsigned key, const void *v);
88DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
89DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
90DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
91DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
92extern "C" void *pthread_self();
93extern "C" void _exit(int status);
94#if !SANITIZER_NETBSD
95extern "C" int fileno_unlocked(void *stream);
96extern "C" int dirfd(void *dirp);
97#endif
98#if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
99extern "C" int mallopt(int param, int value);
100#endif
101#if SANITIZER_NETBSD
102extern __sanitizer_FILE __sF[];
103#else
104extern __sanitizer_FILE *stdout, *stderr;
105#endif
106#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
107const int PTHREAD_MUTEX_RECURSIVE = 1;
108const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
109#else
110const int PTHREAD_MUTEX_RECURSIVE = 2;
111const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
112#endif
113#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
114const int EPOLL_CTL_ADD = 1;
115#endif
116const int SIGILL = 4;
117const int SIGABRT = 6;
118const int SIGFPE = 8;
119const int SIGSEGV = 11;
120const int SIGPIPE = 13;
121const int SIGTERM = 15;
122#if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
123const int SIGBUS = 10;
124const int SIGSYS = 12;
125#else
126const int SIGBUS = 7;
127const int SIGSYS = 31;
128#endif
129void *const MAP_FAILED = (void*)-1;
130#if SANITIZER_NETBSD
131const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
132#elif !SANITIZER_MAC
133const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
134#endif
135const int MAP_FIXED = 0x10;
136typedef long long_t;  // NOLINT
137
138// From /usr/include/unistd.h
139# define F_ULOCK 0      /* Unlock a previously locked region.  */
140# define F_LOCK  1      /* Lock a region for exclusive use.  */
141# define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
142# define F_TEST  3      /* Test a region for other processes locks.  */
143
144#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
145const int SA_SIGINFO = 0x40;
146const int SIG_SETMASK = 3;
147#elif defined(__mips__)
148const int SA_SIGINFO = 8;
149const int SIG_SETMASK = 3;
150#else
151const int SA_SIGINFO = 4;
152const int SIG_SETMASK = 2;
153#endif
154
155#define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
156  (!cur_thread()->is_inited)
157
158namespace __tsan {
159struct SignalDesc {
160  bool armed;
161  bool sigaction;
162  __sanitizer_siginfo siginfo;
163  ucontext_t ctx;
164};
165
166struct ThreadSignalContext {
167  int int_signal_send;
168  atomic_uintptr_t in_blocking_func;
169  atomic_uintptr_t have_pending_signals;
170  SignalDesc pending_signals[kSigCount];
171  // emptyset and oldset are too big for stack.
172  __sanitizer_sigset_t emptyset;
173  __sanitizer_sigset_t oldset;
174};
175
176// The sole reason tsan wraps atexit callbacks is to establish synchronization
177// between callback setup and callback execution.
178struct AtExitCtx {
179  void (*f)();
180  void *arg;
181};
182
183// InterceptorContext holds all global data required for interceptors.
184// It's explicitly constructed in InitializeInterceptors with placement new
185// and is never destroyed. This allows usage of members with non-trivial
186// constructors and destructors.
187struct InterceptorContext {
188  // The object is 64-byte aligned, because we want hot data to be located
189  // in a single cache line if possible (it's accessed in every interceptor).
190  ALIGNED(64) LibIgnore libignore;
191  __sanitizer_sigaction sigactions[kSigCount];
192#if !SANITIZER_MAC && !SANITIZER_NETBSD
193  unsigned finalize_key;
194#endif
195
196  BlockingMutex atexit_mu;
197  Vector<struct AtExitCtx *> AtExitStack;
198
199  InterceptorContext()
200      : libignore(LINKER_INITIALIZED), AtExitStack() {
201  }
202};
203
204static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
205InterceptorContext *interceptor_ctx() {
206  return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
207}
208
209LibIgnore *libignore() {
210  return &interceptor_ctx()->libignore;
211}
212
213void InitializeLibIgnore() {
214  const SuppressionContext &supp = *Suppressions();
215  const uptr n = supp.SuppressionCount();
216  for (uptr i = 0; i < n; i++) {
217    const Suppression *s = supp.SuppressionAt(i);
218    if (0 == internal_strcmp(s->type, kSuppressionLib))
219      libignore()->AddIgnoredLibrary(s->templ);
220  }
221  if (flags()->ignore_noninstrumented_modules)
222    libignore()->IgnoreNoninstrumentedModules(true);
223  libignore()->OnLibraryLoaded(0);
224}
225
226}  // namespace __tsan
227
228static ThreadSignalContext *SigCtx(ThreadState *thr) {
229  ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
230  if (ctx == 0 && !thr->is_dead) {
231    ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
232    MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
233    thr->signal_ctx = ctx;
234  }
235  return ctx;
236}
237
238ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
239                                     uptr pc)
240    : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
241  Initialize(thr);
242  if (!thr_->is_inited) return;
243  if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
244  DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
245  ignoring_ =
246      !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses ||
247                                libignore()->IsIgnored(pc, &in_ignored_lib_));
248  EnableIgnores();
249}
250
251ScopedInterceptor::~ScopedInterceptor() {
252  if (!thr_->is_inited) return;
253  DisableIgnores();
254  if (!thr_->ignore_interceptors) {
255    ProcessPendingSignals(thr_);
256    FuncExit(thr_);
257    CheckNoLocks(thr_);
258  }
259}
260
261void ScopedInterceptor::EnableIgnores() {
262  if (ignoring_) {
263    ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
264    if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
265    if (in_ignored_lib_) {
266      DCHECK(!thr_->in_ignored_lib);
267      thr_->in_ignored_lib = true;
268    }
269  }
270}
271
272void ScopedInterceptor::DisableIgnores() {
273  if (ignoring_) {
274    ThreadIgnoreEnd(thr_, pc_);
275    if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
276    if (in_ignored_lib_) {
277      DCHECK(thr_->in_ignored_lib);
278      thr_->in_ignored_lib = false;
279    }
280  }
281}
282
283#define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
284#if SANITIZER_FREEBSD
285# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
286# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
287# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
288#elif SANITIZER_NETBSD
289# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
290# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
291         INTERCEPT_FUNCTION(__libc_##func)
292# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
293         INTERCEPT_FUNCTION(__libc_thr_##func)
294#else
295# define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
296# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
297# define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
298#endif
299
300#define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
301  MemoryAccessRange((thr), (pc), (uptr)(s),                         \
302    common_flags()->strict_string_checks ? (len) + 1 : (n), false)
303
304#define READ_STRING(thr, pc, s, n)                             \
305    READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
306
307#define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
308
309struct BlockingCall {
310  explicit BlockingCall(ThreadState *thr)
311      : thr(thr)
312      , ctx(SigCtx(thr)) {
313    for (;;) {
314      atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
315      if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
316        break;
317      atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
318      ProcessPendingSignals(thr);
319    }
320    // When we are in a "blocking call", we process signals asynchronously
321    // (right when they arrive). In this context we do not expect to be
322    // executing any user/runtime code. The known interceptor sequence when
323    // this is not true is: pthread_join -> munmap(stack). It's fine
324    // to ignore munmap in this case -- we handle stack shadow separately.
325    thr->ignore_interceptors++;
326  }
327
328  ~BlockingCall() {
329    thr->ignore_interceptors--;
330    atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
331  }
332
333  ThreadState *thr;
334  ThreadSignalContext *ctx;
335};
336
337TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
338  SCOPED_TSAN_INTERCEPTOR(sleep, sec);
339  unsigned res = BLOCK_REAL(sleep)(sec);
340  AfterSleep(thr, pc);
341  return res;
342}
343
344TSAN_INTERCEPTOR(int, usleep, long_t usec) {
345  SCOPED_TSAN_INTERCEPTOR(usleep, usec);
346  int res = BLOCK_REAL(usleep)(usec);
347  AfterSleep(thr, pc);
348  return res;
349}
350
351TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
352  SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
353  int res = BLOCK_REAL(nanosleep)(req, rem);
354  AfterSleep(thr, pc);
355  return res;
356}
357
358TSAN_INTERCEPTOR(int, pause, int fake) {
359  SCOPED_TSAN_INTERCEPTOR(pause, fake);
360  return BLOCK_REAL(pause)(fake);
361}
362
363static void at_exit_wrapper() {
364  AtExitCtx *ctx;
365  {
366    // Ensure thread-safety.
367    BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
368
369    // Pop AtExitCtx from the top of the stack of callback functions
370    uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
371    ctx = interceptor_ctx()->AtExitStack[element];
372    interceptor_ctx()->AtExitStack.PopBack();
373  }
374
375  Acquire(cur_thread(), (uptr)0, (uptr)ctx);
376  ((void(*)())ctx->f)();
377  InternalFree(ctx);
378}
379
380static void cxa_at_exit_wrapper(void *arg) {
381  Acquire(cur_thread(), 0, (uptr)arg);
382  AtExitCtx *ctx = (AtExitCtx*)arg;
383  ((void(*)(void *arg))ctx->f)(ctx->arg);
384  InternalFree(ctx);
385}
386
387static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
388      void *arg, void *dso);
389
390#if !SANITIZER_ANDROID
391TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
392  if (UNLIKELY(cur_thread()->in_symbolizer))
393    return 0;
394  // We want to setup the atexit callback even if we are in ignored lib
395  // or after fork.
396  SCOPED_INTERCEPTOR_RAW(atexit, f);
397  return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
398}
399#endif
400
401TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
402  if (UNLIKELY(cur_thread()->in_symbolizer))
403    return 0;
404  SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
405  return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
406}
407
408static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
409      void *arg, void *dso) {
410  AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
411  ctx->f = f;
412  ctx->arg = arg;
413  Release(thr, pc, (uptr)ctx);
414  // Memory allocation in __cxa_atexit will race with free during exit,
415  // because we do not see synchronization around atexit callback list.
416  ThreadIgnoreBegin(thr, pc);
417  int res;
418  if (!dso) {
419    // NetBSD does not preserve the 2nd argument if dso is equal to 0
420    // Store ctx in a local stack-like structure
421
422    // Ensure thread-safety.
423    BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
424
425    res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
426    // Push AtExitCtx on the top of the stack of callback functions
427    if (!res) {
428      interceptor_ctx()->AtExitStack.PushBack(ctx);
429    }
430  } else {
431    res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
432  }
433  ThreadIgnoreEnd(thr, pc);
434  return res;
435}
436
437#if !SANITIZER_MAC && !SANITIZER_NETBSD
438static void on_exit_wrapper(int status, void *arg) {
439  ThreadState *thr = cur_thread();
440  uptr pc = 0;
441  Acquire(thr, pc, (uptr)arg);
442  AtExitCtx *ctx = (AtExitCtx*)arg;
443  ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
444  InternalFree(ctx);
445}
446
447TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
448  if (UNLIKELY(cur_thread()->in_symbolizer))
449    return 0;
450  SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
451  AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
452  ctx->f = (void(*)())f;
453  ctx->arg = arg;
454  Release(thr, pc, (uptr)ctx);
455  // Memory allocation in __cxa_atexit will race with free during exit,
456  // because we do not see synchronization around atexit callback list.
457  ThreadIgnoreBegin(thr, pc);
458  int res = REAL(on_exit)(on_exit_wrapper, ctx);
459  ThreadIgnoreEnd(thr, pc);
460  return res;
461}
462#define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
463#else
464#define TSAN_MAYBE_INTERCEPT_ON_EXIT
465#endif
466
467// Cleanup old bufs.
468static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
469  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
470    JmpBuf *buf = &thr->jmp_bufs[i];
471    if (buf->sp <= sp) {
472      uptr sz = thr->jmp_bufs.Size();
473      internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
474      thr->jmp_bufs.PopBack();
475      i--;
476    }
477  }
478}
479
480static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
481  if (!thr->is_inited)  // called from libc guts during bootstrap
482    return;
483  // Cleanup old bufs.
484  JmpBufGarbageCollect(thr, sp);
485  // Remember the buf.
486  JmpBuf *buf = thr->jmp_bufs.PushBack();
487  buf->sp = sp;
488  buf->mangled_sp = mangled_sp;
489  buf->shadow_stack_pos = thr->shadow_stack_pos;
490  ThreadSignalContext *sctx = SigCtx(thr);
491  buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
492  buf->in_blocking_func = sctx ?
493      atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
494      false;
495  buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
496      memory_order_relaxed);
497}
498
499static void LongJmp(ThreadState *thr, uptr *env) {
500#if SANITIZER_NETBSD
501# ifdef __x86_64__
502  uptr mangled_sp = env[6];
503# else
504#  error Unsupported
505# endif
506#elif defined(__powerpc__)
507  uptr mangled_sp = env[0];
508#elif SANITIZER_FREEBSD
509  uptr mangled_sp = env[2];
510#elif SANITIZER_MAC
511# ifdef __aarch64__
512  uptr mangled_sp =
513      (GetMacosVersion() >= MACOS_VERSION_MOJAVE) ? env[12] : env[13];
514# else
515    uptr mangled_sp = env[2];
516# endif
517#elif SANITIZER_LINUX
518# ifdef __aarch64__
519  uptr mangled_sp = env[13];
520# elif defined(__mips64)
521  uptr mangled_sp = env[1];
522# else
523  uptr mangled_sp = env[6];
524# endif
525#endif
526  // Find the saved buf by mangled_sp.
527  for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
528    JmpBuf *buf = &thr->jmp_bufs[i];
529    if (buf->mangled_sp == mangled_sp) {
530      CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
531      // Unwind the stack.
532      while (thr->shadow_stack_pos > buf->shadow_stack_pos)
533        FuncExit(thr);
534      ThreadSignalContext *sctx = SigCtx(thr);
535      if (sctx) {
536        sctx->int_signal_send = buf->int_signal_send;
537        atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
538            memory_order_relaxed);
539      }
540      atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
541          memory_order_relaxed);
542      JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
543      return;
544    }
545  }
546  Printf("ThreadSanitizer: can't find longjmp buf\n");
547  CHECK(0);
548}
549
550// FIXME: put everything below into a common extern "C" block?
551extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
552  SetJmp(cur_thread(), sp, mangled_sp);
553}
554
555#if SANITIZER_MAC
556TSAN_INTERCEPTOR(int, setjmp, void *env);
557TSAN_INTERCEPTOR(int, _setjmp, void *env);
558TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
559#else  // SANITIZER_MAC
560
561#if SANITIZER_NETBSD
562#define setjmp_symname __setjmp14
563#define sigsetjmp_symname __sigsetjmp14
564#else
565#define setjmp_symname setjmp
566#define sigsetjmp_symname sigsetjmp
567#endif
568
569#define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
570#define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
571#define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
572#define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
573
574#define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
575#define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
576
577// Not called.  Merely to satisfy TSAN_INTERCEPT().
578extern "C" SANITIZER_INTERFACE_ATTRIBUTE
579int TSAN_INTERCEPTOR_SETJMP(void *env);
580extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
581  CHECK(0);
582  return 0;
583}
584
585// FIXME: any reason to have a separate declaration?
586extern "C" SANITIZER_INTERFACE_ATTRIBUTE
587int __interceptor__setjmp(void *env);
588extern "C" int __interceptor__setjmp(void *env) {
589  CHECK(0);
590  return 0;
591}
592
593extern "C" SANITIZER_INTERFACE_ATTRIBUTE
594int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
595extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
596  CHECK(0);
597  return 0;
598}
599
600#if !SANITIZER_NETBSD
601extern "C" SANITIZER_INTERFACE_ATTRIBUTE
602int __interceptor___sigsetjmp(void *env);
603extern "C" int __interceptor___sigsetjmp(void *env) {
604  CHECK(0);
605  return 0;
606}
607#endif
608
609extern "C" int setjmp_symname(void *env);
610extern "C" int _setjmp(void *env);
611extern "C" int sigsetjmp_symname(void *env);
612#if !SANITIZER_NETBSD
613extern "C" int __sigsetjmp(void *env);
614#endif
615DEFINE_REAL(int, setjmp_symname, void *env)
616DEFINE_REAL(int, _setjmp, void *env)
617DEFINE_REAL(int, sigsetjmp_symname, void *env)
618#if !SANITIZER_NETBSD
619DEFINE_REAL(int, __sigsetjmp, void *env)
620#endif
621#endif  // SANITIZER_MAC
622
623#if SANITIZER_NETBSD
624#define longjmp_symname __longjmp14
625#define siglongjmp_symname __siglongjmp14
626#else
627#define longjmp_symname longjmp
628#define siglongjmp_symname siglongjmp
629#endif
630
631TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
632  // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
633  // bad things will happen. We will jump over ScopedInterceptor dtor and can
634  // leave thr->in_ignored_lib set.
635  {
636    SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
637  }
638  LongJmp(cur_thread(), env);
639  REAL(longjmp_symname)(env, val);
640}
641
642TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
643  {
644    SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
645  }
646  LongJmp(cur_thread(), env);
647  REAL(siglongjmp_symname)(env, val);
648}
649
650#if SANITIZER_NETBSD
651TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
652  {
653    SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
654  }
655  LongJmp(cur_thread(), env);
656  REAL(_longjmp)(env, val);
657}
658#endif
659
660#if !SANITIZER_MAC
661TSAN_INTERCEPTOR(void*, malloc, uptr size) {
662  if (UNLIKELY(cur_thread()->in_symbolizer))
663    return InternalAlloc(size);
664  void *p = 0;
665  {
666    SCOPED_INTERCEPTOR_RAW(malloc, size);
667    p = user_alloc(thr, pc, size);
668  }
669  invoke_malloc_hook(p, size);
670  return p;
671}
672
673TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
674  SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
675  return user_memalign(thr, pc, align, sz);
676}
677
678TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
679  if (UNLIKELY(cur_thread()->in_symbolizer))
680    return InternalCalloc(size, n);
681  void *p = 0;
682  {
683    SCOPED_INTERCEPTOR_RAW(calloc, size, n);
684    p = user_calloc(thr, pc, size, n);
685  }
686  invoke_malloc_hook(p, n * size);
687  return p;
688}
689
690TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
691  if (UNLIKELY(cur_thread()->in_symbolizer))
692    return InternalRealloc(p, size);
693  if (p)
694    invoke_free_hook(p);
695  {
696    SCOPED_INTERCEPTOR_RAW(realloc, p, size);
697    p = user_realloc(thr, pc, p, size);
698  }
699  invoke_malloc_hook(p, size);
700  return p;
701}
702
703TSAN_INTERCEPTOR(void, free, void *p) {
704  if (p == 0)
705    return;
706  if (UNLIKELY(cur_thread()->in_symbolizer))
707    return InternalFree(p);
708  invoke_free_hook(p);
709  SCOPED_INTERCEPTOR_RAW(free, p);
710  user_free(thr, pc, p);
711}
712
713TSAN_INTERCEPTOR(void, cfree, void *p) {
714  if (p == 0)
715    return;
716  if (UNLIKELY(cur_thread()->in_symbolizer))
717    return InternalFree(p);
718  invoke_free_hook(p);
719  SCOPED_INTERCEPTOR_RAW(cfree, p);
720  user_free(thr, pc, p);
721}
722
723TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
724  SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
725  return user_alloc_usable_size(p);
726}
727#endif
728
729TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
730  SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
731  uptr srclen = internal_strlen(src);
732  MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
733  MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
734  return REAL(strcpy)(dst, src);  // NOLINT
735}
736
737TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
738  SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
739  uptr srclen = internal_strnlen(src, n);
740  MemoryAccessRange(thr, pc, (uptr)dst, n, true);
741  MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
742  return REAL(strncpy)(dst, src, n);
743}
744
745TSAN_INTERCEPTOR(char*, strdup, const char *str) {
746  SCOPED_TSAN_INTERCEPTOR(strdup, str);
747  // strdup will call malloc, so no instrumentation is required here.
748  return REAL(strdup)(str);
749}
750
751static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
752  if (*addr) {
753    if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
754      if (flags & MAP_FIXED) {
755        errno = errno_EINVAL;
756        return false;
757      } else {
758        *addr = 0;
759      }
760    }
761  }
762  return true;
763}
764
765template <class Mmap>
766static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
767                              void *addr, SIZE_T sz, int prot, int flags,
768                              int fd, OFF64_T off) {
769  if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
770  void *res = real_mmap(addr, sz, prot, flags, fd, off);
771  if (res != MAP_FAILED) {
772    if (fd > 0) FdAccess(thr, pc, fd);
773    if (thr->ignore_reads_and_writes == 0)
774      MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
775    else
776      MemoryResetRange(thr, pc, (uptr)res, sz);
777  }
778  return res;
779}
780
781TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
782  SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
783  if (sz != 0) {
784    // If sz == 0, munmap will return EINVAL and don't unmap any memory.
785    DontNeedShadowFor((uptr)addr, sz);
786    ScopedGlobalProcessor sgp;
787    ctx->metamap.ResetRange(thr->proc(), (uptr)addr, (uptr)sz);
788  }
789  int res = REAL(munmap)(addr, sz);
790  return res;
791}
792
793#if SANITIZER_LINUX
794TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
795  SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
796  return user_memalign(thr, pc, align, sz);
797}
798#define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
799#else
800#define TSAN_MAYBE_INTERCEPT_MEMALIGN
801#endif
802
803#if !SANITIZER_MAC
804TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
805  if (UNLIKELY(cur_thread()->in_symbolizer))
806    return InternalAlloc(sz, nullptr, align);
807  SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
808  return user_aligned_alloc(thr, pc, align, sz);
809}
810
811TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
812  if (UNLIKELY(cur_thread()->in_symbolizer))
813    return InternalAlloc(sz, nullptr, GetPageSizeCached());
814  SCOPED_INTERCEPTOR_RAW(valloc, sz);
815  return user_valloc(thr, pc, sz);
816}
817#endif
818
819#if SANITIZER_LINUX
820TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
821  if (UNLIKELY(cur_thread()->in_symbolizer)) {
822    uptr PageSize = GetPageSizeCached();
823    sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
824    return InternalAlloc(sz, nullptr, PageSize);
825  }
826  SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
827  return user_pvalloc(thr, pc, sz);
828}
829#define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
830#else
831#define TSAN_MAYBE_INTERCEPT_PVALLOC
832#endif
833
834#if !SANITIZER_MAC
835TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
836  if (UNLIKELY(cur_thread()->in_symbolizer)) {
837    void *p = InternalAlloc(sz, nullptr, align);
838    if (!p)
839      return errno_ENOMEM;
840    *memptr = p;
841    return 0;
842  }
843  SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
844  return user_posix_memalign(thr, pc, memptr, align, sz);
845}
846#endif
847
848// __cxa_guard_acquire and friends need to be intercepted in a special way -
849// regular interceptors will break statically-linked libstdc++. Linux
850// interceptors are especially defined as weak functions (so that they don't
851// cause link errors when user defines them as well). So they silently
852// auto-disable themselves when such symbol is already present in the binary. If
853// we link libstdc++ statically, it will bring own __cxa_guard_acquire which
854// will silently replace our interceptor.  That's why on Linux we simply export
855// these interceptors with INTERFACE_ATTRIBUTE.
856// On OS X, we don't support statically linking, so we just use a regular
857// interceptor.
858#if SANITIZER_MAC
859#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
860#else
861#define STDCXX_INTERCEPTOR(rettype, name, ...) \
862  extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
863#endif
864
865// Used in thread-safe function static initialization.
866STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
867  SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
868  for (;;) {
869    u32 cmp = atomic_load(g, memory_order_acquire);
870    if (cmp == 0) {
871      if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
872        return 1;
873    } else if (cmp == 1) {
874      Acquire(thr, pc, (uptr)g);
875      return 0;
876    } else {
877      internal_sched_yield();
878    }
879  }
880}
881
882STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
883  SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
884  Release(thr, pc, (uptr)g);
885  atomic_store(g, 1, memory_order_release);
886}
887
888STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
889  SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
890  atomic_store(g, 0, memory_order_relaxed);
891}
892
893namespace __tsan {
894void DestroyThreadState() {
895  ThreadState *thr = cur_thread();
896  Processor *proc = thr->proc();
897  ThreadFinish(thr);
898  ProcUnwire(proc, thr);
899  ProcDestroy(proc);
900  ThreadSignalContext *sctx = thr->signal_ctx;
901  if (sctx) {
902    thr->signal_ctx = 0;
903    UnmapOrDie(sctx, sizeof(*sctx));
904  }
905  DTLS_Destroy();
906  cur_thread_finalize();
907}
908}  // namespace __tsan
909
910#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
911static void thread_finalize(void *v) {
912  uptr iter = (uptr)v;
913  if (iter > 1) {
914    if (pthread_setspecific(interceptor_ctx()->finalize_key,
915        (void*)(iter - 1))) {
916      Printf("ThreadSanitizer: failed to set thread key\n");
917      Die();
918    }
919    return;
920  }
921  DestroyThreadState();
922}
923#endif
924
925
926struct ThreadParam {
927  void* (*callback)(void *arg);
928  void *param;
929  atomic_uintptr_t tid;
930};
931
932extern "C" void *__tsan_thread_start_func(void *arg) {
933  ThreadParam *p = (ThreadParam*)arg;
934  void* (*callback)(void *arg) = p->callback;
935  void *param = p->param;
936  int tid = 0;
937  {
938    ThreadState *thr = cur_thread();
939    // Thread-local state is not initialized yet.
940    ScopedIgnoreInterceptors ignore;
941#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
942    ThreadIgnoreBegin(thr, 0);
943    if (pthread_setspecific(interceptor_ctx()->finalize_key,
944                            (void *)GetPthreadDestructorIterations())) {
945      Printf("ThreadSanitizer: failed to set thread key\n");
946      Die();
947    }
948    ThreadIgnoreEnd(thr, 0);
949#endif
950    while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
951      internal_sched_yield();
952    Processor *proc = ProcCreate();
953    ProcWire(proc, thr);
954    ThreadStart(thr, tid, GetTid(), /*workerthread*/ false);
955    atomic_store(&p->tid, 0, memory_order_release);
956  }
957  void *res = callback(param);
958  // Prevent the callback from being tail called,
959  // it mixes up stack traces.
960  volatile int foo = 42;
961  foo++;
962  return res;
963}
964
965TSAN_INTERCEPTOR(int, pthread_create,
966    void *th, void *attr, void *(*callback)(void*), void * param) {
967  SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
968
969  MaybeSpawnBackgroundThread();
970
971  if (ctx->after_multithreaded_fork) {
972    if (flags()->die_after_fork) {
973      Report("ThreadSanitizer: starting new threads after multi-threaded "
974          "fork is not supported. Dying (set die_after_fork=0 to override)\n");
975      Die();
976    } else {
977      VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
978          "fork is not supported (pid %d). Continuing because of "
979          "die_after_fork=0, but you are on your own\n", internal_getpid());
980    }
981  }
982  __sanitizer_pthread_attr_t myattr;
983  if (attr == 0) {
984    pthread_attr_init(&myattr);
985    attr = &myattr;
986  }
987  int detached = 0;
988  REAL(pthread_attr_getdetachstate)(attr, &detached);
989  AdjustStackSize(attr);
990
991  ThreadParam p;
992  p.callback = callback;
993  p.param = param;
994  atomic_store(&p.tid, 0, memory_order_relaxed);
995  int res = -1;
996  {
997    // Otherwise we see false positives in pthread stack manipulation.
998    ScopedIgnoreInterceptors ignore;
999    ThreadIgnoreBegin(thr, pc);
1000    res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
1001    ThreadIgnoreEnd(thr, pc);
1002  }
1003  if (res == 0) {
1004    int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1005    CHECK_NE(tid, 0);
1006    // Synchronization on p.tid serves two purposes:
1007    // 1. ThreadCreate must finish before the new thread starts.
1008    //    Otherwise the new thread can call pthread_detach, but the pthread_t
1009    //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
1010    // 2. ThreadStart must finish before this thread continues.
1011    //    Otherwise, this thread can call pthread_detach and reset thr->sync
1012    //    before the new thread got a chance to acquire from it in ThreadStart.
1013    atomic_store(&p.tid, tid, memory_order_release);
1014    while (atomic_load(&p.tid, memory_order_acquire) != 0)
1015      internal_sched_yield();
1016  }
1017  if (attr == &myattr)
1018    pthread_attr_destroy(&myattr);
1019  return res;
1020}
1021
1022TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1023  SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1024  int tid = ThreadTid(thr, pc, (uptr)th);
1025  ThreadIgnoreBegin(thr, pc);
1026  int res = BLOCK_REAL(pthread_join)(th, ret);
1027  ThreadIgnoreEnd(thr, pc);
1028  if (res == 0) {
1029    ThreadJoin(thr, pc, tid);
1030  }
1031  return res;
1032}
1033
1034DEFINE_REAL_PTHREAD_FUNCTIONS
1035
1036TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1037  SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1038  int tid = ThreadTid(thr, pc, (uptr)th);
1039  int res = REAL(pthread_detach)(th);
1040  if (res == 0) {
1041    ThreadDetach(thr, pc, tid);
1042  }
1043  return res;
1044}
1045
1046// Problem:
1047// NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1048// pthread_cond_t has different size in the different versions.
1049// If call new REAL functions for old pthread_cond_t, they will corrupt memory
1050// after pthread_cond_t (old cond is smaller).
1051// If we call old REAL functions for new pthread_cond_t, we will lose  some
1052// functionality (e.g. old functions do not support waiting against
1053// CLOCK_REALTIME).
1054// Proper handling would require to have 2 versions of interceptors as well.
1055// But this is messy, in particular requires linker scripts when sanitizer
1056// runtime is linked into a shared library.
1057// Instead we assume we don't have dynamic libraries built against old
1058// pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1059// that allows to work with old libraries (but this mode does not support
1060// some features, e.g. pthread_condattr_getpshared).
1061static void *init_cond(void *c, bool force = false) {
1062  // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1063  // So we allocate additional memory on the side large enough to hold
1064  // any pthread_cond_t object. Always call new REAL functions, but pass
1065  // the aux object to them.
1066  // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1067  // first word of pthread_cond_t to zero.
1068  // It's all relevant only for linux.
1069  if (!common_flags()->legacy_pthread_cond)
1070    return c;
1071  atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1072  uptr cond = atomic_load(p, memory_order_acquire);
1073  if (!force && cond != 0)
1074    return (void*)cond;
1075  void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1076  internal_memset(newcond, 0, pthread_cond_t_sz);
1077  if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1078      memory_order_acq_rel))
1079    return newcond;
1080  WRAP(free)(newcond);
1081  return (void*)cond;
1082}
1083
1084struct CondMutexUnlockCtx {
1085  ScopedInterceptor *si;
1086  ThreadState *thr;
1087  uptr pc;
1088  void *m;
1089};
1090
1091static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1092  // pthread_cond_wait interceptor has enabled async signal delivery
1093  // (see BlockingCall below). Disable async signals since we are running
1094  // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1095  // since the thread is cancelled, so we have to manually execute them
1096  // (the thread still can run some user code due to pthread_cleanup_push).
1097  ThreadSignalContext *ctx = SigCtx(arg->thr);
1098  CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1099  atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1100  MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1101  // Undo BlockingCall ctor effects.
1102  arg->thr->ignore_interceptors--;
1103  arg->si->~ScopedInterceptor();
1104}
1105
1106INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1107  void *cond = init_cond(c, true);
1108  SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1109  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1110  return REAL(pthread_cond_init)(cond, a);
1111}
1112
1113static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1114                     int (*fn)(void *c, void *m, void *abstime), void *c,
1115                     void *m, void *t) {
1116  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1117  MutexUnlock(thr, pc, (uptr)m);
1118  CondMutexUnlockCtx arg = {si, thr, pc, m};
1119  int res = 0;
1120  // This ensures that we handle mutex lock even in case of pthread_cancel.
1121  // See test/tsan/cond_cancel.cc.
1122  {
1123    // Enable signal delivery while the thread is blocked.
1124    BlockingCall bc(thr);
1125    res = call_pthread_cancel_with_cleanup(
1126        fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1127  }
1128  if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1129  MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1130  return res;
1131}
1132
1133INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1134  void *cond = init_cond(c);
1135  SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1136  return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1137                                     pthread_cond_wait),
1138                   cond, m, 0);
1139}
1140
1141INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1142  void *cond = init_cond(c);
1143  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1144  return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1145                   abstime);
1146}
1147
1148#if SANITIZER_MAC
1149INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1150            void *reltime) {
1151  void *cond = init_cond(c);
1152  SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1153  return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1154                   m, reltime);
1155}
1156#endif
1157
1158INTERCEPTOR(int, pthread_cond_signal, void *c) {
1159  void *cond = init_cond(c);
1160  SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1161  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1162  return REAL(pthread_cond_signal)(cond);
1163}
1164
1165INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1166  void *cond = init_cond(c);
1167  SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1168  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1169  return REAL(pthread_cond_broadcast)(cond);
1170}
1171
1172INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1173  void *cond = init_cond(c);
1174  SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1175  MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1176  int res = REAL(pthread_cond_destroy)(cond);
1177  if (common_flags()->legacy_pthread_cond) {
1178    // Free our aux cond and zero the pointer to not leave dangling pointers.
1179    WRAP(free)(cond);
1180    atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1181  }
1182  return res;
1183}
1184
1185TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1186  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1187  int res = REAL(pthread_mutex_init)(m, a);
1188  if (res == 0) {
1189    u32 flagz = 0;
1190    if (a) {
1191      int type = 0;
1192      if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1193        if (type == PTHREAD_MUTEX_RECURSIVE ||
1194            type == PTHREAD_MUTEX_RECURSIVE_NP)
1195          flagz |= MutexFlagWriteReentrant;
1196    }
1197    MutexCreate(thr, pc, (uptr)m, flagz);
1198  }
1199  return res;
1200}
1201
1202TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1203  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1204  int res = REAL(pthread_mutex_destroy)(m);
1205  if (res == 0 || res == errno_EBUSY) {
1206    MutexDestroy(thr, pc, (uptr)m);
1207  }
1208  return res;
1209}
1210
1211TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1212  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1213  int res = REAL(pthread_mutex_trylock)(m);
1214  if (res == errno_EOWNERDEAD)
1215    MutexRepair(thr, pc, (uptr)m);
1216  if (res == 0 || res == errno_EOWNERDEAD)
1217    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1218  return res;
1219}
1220
1221#if !SANITIZER_MAC
1222TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1223  SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1224  int res = REAL(pthread_mutex_timedlock)(m, abstime);
1225  if (res == 0) {
1226    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1227  }
1228  return res;
1229}
1230#endif
1231
1232#if !SANITIZER_MAC
1233TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1234  SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1235  int res = REAL(pthread_spin_init)(m, pshared);
1236  if (res == 0) {
1237    MutexCreate(thr, pc, (uptr)m);
1238  }
1239  return res;
1240}
1241
1242TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1243  SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1244  int res = REAL(pthread_spin_destroy)(m);
1245  if (res == 0) {
1246    MutexDestroy(thr, pc, (uptr)m);
1247  }
1248  return res;
1249}
1250
1251TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1252  SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1253  MutexPreLock(thr, pc, (uptr)m);
1254  int res = REAL(pthread_spin_lock)(m);
1255  if (res == 0) {
1256    MutexPostLock(thr, pc, (uptr)m);
1257  }
1258  return res;
1259}
1260
1261TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1262  SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1263  int res = REAL(pthread_spin_trylock)(m);
1264  if (res == 0) {
1265    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1266  }
1267  return res;
1268}
1269
1270TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1271  SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1272  MutexUnlock(thr, pc, (uptr)m);
1273  int res = REAL(pthread_spin_unlock)(m);
1274  return res;
1275}
1276#endif
1277
1278TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1279  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1280  int res = REAL(pthread_rwlock_init)(m, a);
1281  if (res == 0) {
1282    MutexCreate(thr, pc, (uptr)m);
1283  }
1284  return res;
1285}
1286
1287TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1288  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1289  int res = REAL(pthread_rwlock_destroy)(m);
1290  if (res == 0) {
1291    MutexDestroy(thr, pc, (uptr)m);
1292  }
1293  return res;
1294}
1295
1296TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1297  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1298  MutexPreReadLock(thr, pc, (uptr)m);
1299  int res = REAL(pthread_rwlock_rdlock)(m);
1300  if (res == 0) {
1301    MutexPostReadLock(thr, pc, (uptr)m);
1302  }
1303  return res;
1304}
1305
1306TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1307  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1308  int res = REAL(pthread_rwlock_tryrdlock)(m);
1309  if (res == 0) {
1310    MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1311  }
1312  return res;
1313}
1314
1315#if !SANITIZER_MAC
1316TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1317  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1318  int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1319  if (res == 0) {
1320    MutexPostReadLock(thr, pc, (uptr)m);
1321  }
1322  return res;
1323}
1324#endif
1325
1326TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1327  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1328  MutexPreLock(thr, pc, (uptr)m);
1329  int res = REAL(pthread_rwlock_wrlock)(m);
1330  if (res == 0) {
1331    MutexPostLock(thr, pc, (uptr)m);
1332  }
1333  return res;
1334}
1335
1336TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1337  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1338  int res = REAL(pthread_rwlock_trywrlock)(m);
1339  if (res == 0) {
1340    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1341  }
1342  return res;
1343}
1344
1345#if !SANITIZER_MAC
1346TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1347  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1348  int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1349  if (res == 0) {
1350    MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1351  }
1352  return res;
1353}
1354#endif
1355
1356TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1357  SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1358  MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1359  int res = REAL(pthread_rwlock_unlock)(m);
1360  return res;
1361}
1362
1363#if !SANITIZER_MAC
1364TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1365  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1366  MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1367  int res = REAL(pthread_barrier_init)(b, a, count);
1368  return res;
1369}
1370
1371TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1372  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1373  MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1374  int res = REAL(pthread_barrier_destroy)(b);
1375  return res;
1376}
1377
1378TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1379  SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1380  Release(thr, pc, (uptr)b);
1381  MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1382  int res = REAL(pthread_barrier_wait)(b);
1383  MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1384  if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1385    Acquire(thr, pc, (uptr)b);
1386  }
1387  return res;
1388}
1389#endif
1390
1391TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1392  SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1393  if (o == 0 || f == 0)
1394    return errno_EINVAL;
1395  atomic_uint32_t *a;
1396
1397  if (SANITIZER_MAC)
1398    a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1399  else if (SANITIZER_NETBSD)
1400    a = static_cast<atomic_uint32_t*>
1401          ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1402  else
1403    a = static_cast<atomic_uint32_t*>(o);
1404
1405  u32 v = atomic_load(a, memory_order_acquire);
1406  if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1407                                               memory_order_relaxed)) {
1408    (*f)();
1409    if (!thr->in_ignored_lib)
1410      Release(thr, pc, (uptr)o);
1411    atomic_store(a, 2, memory_order_release);
1412  } else {
1413    while (v != 2) {
1414      internal_sched_yield();
1415      v = atomic_load(a, memory_order_acquire);
1416    }
1417    if (!thr->in_ignored_lib)
1418      Acquire(thr, pc, (uptr)o);
1419  }
1420  return 0;
1421}
1422
1423#if SANITIZER_LINUX && !SANITIZER_ANDROID
1424TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1425  SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1426  if (fd > 0)
1427    FdAccess(thr, pc, fd);
1428  return REAL(__fxstat)(version, fd, buf);
1429}
1430#define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1431#else
1432#define TSAN_MAYBE_INTERCEPT___FXSTAT
1433#endif
1434
1435TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1436#if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1437  SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1438  if (fd > 0)
1439    FdAccess(thr, pc, fd);
1440  return REAL(fstat)(fd, buf);
1441#else
1442  SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1443  if (fd > 0)
1444    FdAccess(thr, pc, fd);
1445  return REAL(__fxstat)(0, fd, buf);
1446#endif
1447}
1448
1449#if SANITIZER_LINUX && !SANITIZER_ANDROID
1450TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1451  SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1452  if (fd > 0)
1453    FdAccess(thr, pc, fd);
1454  return REAL(__fxstat64)(version, fd, buf);
1455}
1456#define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1457#else
1458#define TSAN_MAYBE_INTERCEPT___FXSTAT64
1459#endif
1460
1461#if SANITIZER_LINUX && !SANITIZER_ANDROID
1462TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1463  SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1464  if (fd > 0)
1465    FdAccess(thr, pc, fd);
1466  return REAL(__fxstat64)(0, fd, buf);
1467}
1468#define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1469#else
1470#define TSAN_MAYBE_INTERCEPT_FSTAT64
1471#endif
1472
1473TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1474  SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1475  READ_STRING(thr, pc, name, 0);
1476  int fd = REAL(open)(name, flags, mode);
1477  if (fd >= 0)
1478    FdFileCreate(thr, pc, fd);
1479  return fd;
1480}
1481
1482#if SANITIZER_LINUX
1483TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1484  SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1485  READ_STRING(thr, pc, name, 0);
1486  int fd = REAL(open64)(name, flags, mode);
1487  if (fd >= 0)
1488    FdFileCreate(thr, pc, fd);
1489  return fd;
1490}
1491#define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1492#else
1493#define TSAN_MAYBE_INTERCEPT_OPEN64
1494#endif
1495
1496TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1497  SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1498  READ_STRING(thr, pc, name, 0);
1499  int fd = REAL(creat)(name, mode);
1500  if (fd >= 0)
1501    FdFileCreate(thr, pc, fd);
1502  return fd;
1503}
1504
1505#if SANITIZER_LINUX
1506TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1507  SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1508  READ_STRING(thr, pc, name, 0);
1509  int fd = REAL(creat64)(name, mode);
1510  if (fd >= 0)
1511    FdFileCreate(thr, pc, fd);
1512  return fd;
1513}
1514#define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1515#else
1516#define TSAN_MAYBE_INTERCEPT_CREAT64
1517#endif
1518
1519TSAN_INTERCEPTOR(int, dup, int oldfd) {
1520  SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1521  int newfd = REAL(dup)(oldfd);
1522  if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1523    FdDup(thr, pc, oldfd, newfd, true);
1524  return newfd;
1525}
1526
1527TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1528  SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1529  int newfd2 = REAL(dup2)(oldfd, newfd);
1530  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1531    FdDup(thr, pc, oldfd, newfd2, false);
1532  return newfd2;
1533}
1534
1535#if !SANITIZER_MAC
1536TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1537  SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1538  int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1539  if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1540    FdDup(thr, pc, oldfd, newfd2, false);
1541  return newfd2;
1542}
1543#endif
1544
1545#if SANITIZER_LINUX
1546TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1547  SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1548  int fd = REAL(eventfd)(initval, flags);
1549  if (fd >= 0)
1550    FdEventCreate(thr, pc, fd);
1551  return fd;
1552}
1553#define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1554#else
1555#define TSAN_MAYBE_INTERCEPT_EVENTFD
1556#endif
1557
1558#if SANITIZER_LINUX
1559TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1560  SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1561  if (fd >= 0)
1562    FdClose(thr, pc, fd);
1563  fd = REAL(signalfd)(fd, mask, flags);
1564  if (fd >= 0)
1565    FdSignalCreate(thr, pc, fd);
1566  return fd;
1567}
1568#define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1569#else
1570#define TSAN_MAYBE_INTERCEPT_SIGNALFD
1571#endif
1572
1573#if SANITIZER_LINUX
1574TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1575  SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1576  int fd = REAL(inotify_init)(fake);
1577  if (fd >= 0)
1578    FdInotifyCreate(thr, pc, fd);
1579  return fd;
1580}
1581#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1582#else
1583#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1584#endif
1585
1586#if SANITIZER_LINUX
1587TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1588  SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1589  int fd = REAL(inotify_init1)(flags);
1590  if (fd >= 0)
1591    FdInotifyCreate(thr, pc, fd);
1592  return fd;
1593}
1594#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1595#else
1596#define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1597#endif
1598
1599TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1600  SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1601  int fd = REAL(socket)(domain, type, protocol);
1602  if (fd >= 0)
1603    FdSocketCreate(thr, pc, fd);
1604  return fd;
1605}
1606
1607TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1608  SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1609  int res = REAL(socketpair)(domain, type, protocol, fd);
1610  if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1611    FdPipeCreate(thr, pc, fd[0], fd[1]);
1612  return res;
1613}
1614
1615TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1616  SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1617  FdSocketConnecting(thr, pc, fd);
1618  int res = REAL(connect)(fd, addr, addrlen);
1619  if (res == 0 && fd >= 0)
1620    FdSocketConnect(thr, pc, fd);
1621  return res;
1622}
1623
1624TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1625  SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1626  int res = REAL(bind)(fd, addr, addrlen);
1627  if (fd > 0 && res == 0)
1628    FdAccess(thr, pc, fd);
1629  return res;
1630}
1631
1632TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1633  SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1634  int res = REAL(listen)(fd, backlog);
1635  if (fd > 0 && res == 0)
1636    FdAccess(thr, pc, fd);
1637  return res;
1638}
1639
1640TSAN_INTERCEPTOR(int, close, int fd) {
1641  SCOPED_TSAN_INTERCEPTOR(close, fd);
1642  if (fd >= 0)
1643    FdClose(thr, pc, fd);
1644  return REAL(close)(fd);
1645}
1646
1647#if SANITIZER_LINUX
1648TSAN_INTERCEPTOR(int, __close, int fd) {
1649  SCOPED_TSAN_INTERCEPTOR(__close, fd);
1650  if (fd >= 0)
1651    FdClose(thr, pc, fd);
1652  return REAL(__close)(fd);
1653}
1654#define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1655#else
1656#define TSAN_MAYBE_INTERCEPT___CLOSE
1657#endif
1658
1659// glibc guts
1660#if SANITIZER_LINUX && !SANITIZER_ANDROID
1661TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1662  SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1663  int fds[64];
1664  int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1665  for (int i = 0; i < cnt; i++) {
1666    if (fds[i] > 0)
1667      FdClose(thr, pc, fds[i]);
1668  }
1669  REAL(__res_iclose)(state, free_addr);
1670}
1671#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1672#else
1673#define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1674#endif
1675
1676TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1677  SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1678  int res = REAL(pipe)(pipefd);
1679  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1680    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1681  return res;
1682}
1683
1684#if !SANITIZER_MAC
1685TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1686  SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1687  int res = REAL(pipe2)(pipefd, flags);
1688  if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1689    FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1690  return res;
1691}
1692#endif
1693
1694TSAN_INTERCEPTOR(int, unlink, char *path) {
1695  SCOPED_TSAN_INTERCEPTOR(unlink, path);
1696  Release(thr, pc, File2addr(path));
1697  int res = REAL(unlink)(path);
1698  return res;
1699}
1700
1701TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1702  SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1703  void *res = REAL(tmpfile)(fake);
1704  if (res) {
1705    int fd = fileno_unlocked(res);
1706    if (fd >= 0)
1707      FdFileCreate(thr, pc, fd);
1708  }
1709  return res;
1710}
1711
1712#if SANITIZER_LINUX
1713TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1714  SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1715  void *res = REAL(tmpfile64)(fake);
1716  if (res) {
1717    int fd = fileno_unlocked(res);
1718    if (fd >= 0)
1719      FdFileCreate(thr, pc, fd);
1720  }
1721  return res;
1722}
1723#define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1724#else
1725#define TSAN_MAYBE_INTERCEPT_TMPFILE64
1726#endif
1727
1728static void FlushStreams() {
1729  // Flushing all the streams here may freeze the process if a child thread is
1730  // performing file stream operations at the same time.
1731  REAL(fflush)(stdout);
1732  REAL(fflush)(stderr);
1733}
1734
1735TSAN_INTERCEPTOR(void, abort, int fake) {
1736  SCOPED_TSAN_INTERCEPTOR(abort, fake);
1737  FlushStreams();
1738  REAL(abort)(fake);
1739}
1740
1741TSAN_INTERCEPTOR(int, rmdir, char *path) {
1742  SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1743  Release(thr, pc, Dir2addr(path));
1744  int res = REAL(rmdir)(path);
1745  return res;
1746}
1747
1748TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1749  SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1750  if (dirp) {
1751    int fd = dirfd(dirp);
1752    FdClose(thr, pc, fd);
1753  }
1754  return REAL(closedir)(dirp);
1755}
1756
1757#if SANITIZER_LINUX
1758TSAN_INTERCEPTOR(int, epoll_create, int size) {
1759  SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1760  int fd = REAL(epoll_create)(size);
1761  if (fd >= 0)
1762    FdPollCreate(thr, pc, fd);
1763  return fd;
1764}
1765
1766TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1767  SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1768  int fd = REAL(epoll_create1)(flags);
1769  if (fd >= 0)
1770    FdPollCreate(thr, pc, fd);
1771  return fd;
1772}
1773
1774TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1775  SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1776  if (epfd >= 0)
1777    FdAccess(thr, pc, epfd);
1778  if (epfd >= 0 && fd >= 0)
1779    FdAccess(thr, pc, fd);
1780  if (op == EPOLL_CTL_ADD && epfd >= 0)
1781    FdRelease(thr, pc, epfd);
1782  int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1783  return res;
1784}
1785
1786TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1787  SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1788  if (epfd >= 0)
1789    FdAccess(thr, pc, epfd);
1790  int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1791  if (res > 0 && epfd >= 0)
1792    FdAcquire(thr, pc, epfd);
1793  return res;
1794}
1795
1796TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1797                 void *sigmask) {
1798  SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1799  if (epfd >= 0)
1800    FdAccess(thr, pc, epfd);
1801  int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1802  if (res > 0 && epfd >= 0)
1803    FdAcquire(thr, pc, epfd);
1804  return res;
1805}
1806
1807#define TSAN_MAYBE_INTERCEPT_EPOLL \
1808    TSAN_INTERCEPT(epoll_create); \
1809    TSAN_INTERCEPT(epoll_create1); \
1810    TSAN_INTERCEPT(epoll_ctl); \
1811    TSAN_INTERCEPT(epoll_wait); \
1812    TSAN_INTERCEPT(epoll_pwait)
1813#else
1814#define TSAN_MAYBE_INTERCEPT_EPOLL
1815#endif
1816
1817// The following functions are intercepted merely to process pending signals.
1818// If program blocks signal X, we must deliver the signal before the function
1819// returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1820// it's better to deliver the signal straight away.
1821TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1822  SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1823  return REAL(sigsuspend)(mask);
1824}
1825
1826TSAN_INTERCEPTOR(int, sigblock, int mask) {
1827  SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1828  return REAL(sigblock)(mask);
1829}
1830
1831TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1832  SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1833  return REAL(sigsetmask)(mask);
1834}
1835
1836TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1837    __sanitizer_sigset_t *oldset) {
1838  SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1839  return REAL(pthread_sigmask)(how, set, oldset);
1840}
1841
1842namespace __tsan {
1843
1844static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1845                                  bool sigact, int sig,
1846                                  __sanitizer_siginfo *info, void *uctx) {
1847  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1848  if (acquire)
1849    Acquire(thr, 0, (uptr)&sigactions[sig]);
1850  // Signals are generally asynchronous, so if we receive a signals when
1851  // ignores are enabled we should disable ignores. This is critical for sync
1852  // and interceptors, because otherwise we can miss syncronization and report
1853  // false races.
1854  int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1855  int ignore_interceptors = thr->ignore_interceptors;
1856  int ignore_sync = thr->ignore_sync;
1857  if (!ctx->after_multithreaded_fork) {
1858    thr->ignore_reads_and_writes = 0;
1859    thr->fast_state.ClearIgnoreBit();
1860    thr->ignore_interceptors = 0;
1861    thr->ignore_sync = 0;
1862  }
1863  // Ensure that the handler does not spoil errno.
1864  const int saved_errno = errno;
1865  errno = 99;
1866  // This code races with sigaction. Be careful to not read sa_sigaction twice.
1867  // Also need to remember pc for reporting before the call,
1868  // because the handler can reset it.
1869  volatile uptr pc =
1870      sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1871  if (pc != sig_dfl && pc != sig_ign) {
1872    if (sigact)
1873      ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1874    else
1875      ((__sanitizer_sighandler_ptr)pc)(sig);
1876  }
1877  if (!ctx->after_multithreaded_fork) {
1878    thr->ignore_reads_and_writes = ignore_reads_and_writes;
1879    if (ignore_reads_and_writes)
1880      thr->fast_state.SetIgnoreBit();
1881    thr->ignore_interceptors = ignore_interceptors;
1882    thr->ignore_sync = ignore_sync;
1883  }
1884  // We do not detect errno spoiling for SIGTERM,
1885  // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1886  // tsan reports false positive in such case.
1887  // It's difficult to properly detect this situation (reraise),
1888  // because in async signal processing case (when handler is called directly
1889  // from rtl_generic_sighandler) we have not yet received the reraised
1890  // signal; and it looks too fragile to intercept all ways to reraise a signal.
1891  if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1892    VarSizeStackTrace stack;
1893    // StackTrace::GetNestInstructionPc(pc) is used because return address is
1894    // expected, OutputReport() will undo this.
1895    ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1896    ThreadRegistryLock l(ctx->thread_registry);
1897    ScopedReport rep(ReportTypeErrnoInSignal);
1898    if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1899      rep.AddStack(stack, true);
1900      OutputReport(thr, rep);
1901    }
1902  }
1903  errno = saved_errno;
1904}
1905
1906void ProcessPendingSignals(ThreadState *thr) {
1907  ThreadSignalContext *sctx = SigCtx(thr);
1908  if (sctx == 0 ||
1909      atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1910    return;
1911  atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1912  atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1913  internal_sigfillset(&sctx->emptyset);
1914  int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1915  CHECK_EQ(res, 0);
1916  for (int sig = 0; sig < kSigCount; sig++) {
1917    SignalDesc *signal = &sctx->pending_signals[sig];
1918    if (signal->armed) {
1919      signal->armed = false;
1920      CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1921          &signal->siginfo, &signal->ctx);
1922    }
1923  }
1924  res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1925  CHECK_EQ(res, 0);
1926  atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1927}
1928
1929}  // namespace __tsan
1930
1931static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1932  return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1933      sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1934      // If we are sending signal to ourselves, we must process it now.
1935      (sctx && sig == sctx->int_signal_send);
1936}
1937
1938void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1939                                          __sanitizer_siginfo *info,
1940                                          void *ctx) {
1941  ThreadState *thr = cur_thread();
1942  ThreadSignalContext *sctx = SigCtx(thr);
1943  if (sig < 0 || sig >= kSigCount) {
1944    VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1945    return;
1946  }
1947  // Don't mess with synchronous signals.
1948  const bool sync = is_sync_signal(sctx, sig);
1949  if (sync ||
1950      // If we are in blocking function, we can safely process it now
1951      // (but check if we are in a recursive interceptor,
1952      // i.e. pthread_join()->munmap()).
1953      (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1954    atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1955    if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1956      atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1957      CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1958      atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1959    } else {
1960      // Be very conservative with when we do acquire in this case.
1961      // It's unsafe to do acquire in async handlers, because ThreadState
1962      // can be in inconsistent state.
1963      // SIGSYS looks relatively safe -- it's synchronous and can actually
1964      // need some global state.
1965      bool acq = (sig == SIGSYS);
1966      CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
1967    }
1968    atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1969    return;
1970  }
1971
1972  if (sctx == 0)
1973    return;
1974  SignalDesc *signal = &sctx->pending_signals[sig];
1975  if (signal->armed == false) {
1976    signal->armed = true;
1977    signal->sigaction = sigact;
1978    if (info)
1979      internal_memcpy(&signal->siginfo, info, sizeof(*info));
1980    if (ctx)
1981      internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
1982    atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
1983  }
1984}
1985
1986static void rtl_sighandler(int sig) {
1987  rtl_generic_sighandler(false, sig, 0, 0);
1988}
1989
1990static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
1991  rtl_generic_sighandler(true, sig, info, ctx);
1992}
1993
1994TSAN_INTERCEPTOR(int, raise, int sig) {
1995  SCOPED_TSAN_INTERCEPTOR(raise, sig);
1996  ThreadSignalContext *sctx = SigCtx(thr);
1997  CHECK_NE(sctx, 0);
1998  int prev = sctx->int_signal_send;
1999  sctx->int_signal_send = sig;
2000  int res = REAL(raise)(sig);
2001  CHECK_EQ(sctx->int_signal_send, sig);
2002  sctx->int_signal_send = prev;
2003  return res;
2004}
2005
2006TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2007  SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2008  ThreadSignalContext *sctx = SigCtx(thr);
2009  CHECK_NE(sctx, 0);
2010  int prev = sctx->int_signal_send;
2011  if (pid == (int)internal_getpid()) {
2012    sctx->int_signal_send = sig;
2013  }
2014  int res = REAL(kill)(pid, sig);
2015  if (pid == (int)internal_getpid()) {
2016    CHECK_EQ(sctx->int_signal_send, sig);
2017    sctx->int_signal_send = prev;
2018  }
2019  return res;
2020}
2021
2022TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2023  SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2024  ThreadSignalContext *sctx = SigCtx(thr);
2025  CHECK_NE(sctx, 0);
2026  int prev = sctx->int_signal_send;
2027  if (tid == pthread_self()) {
2028    sctx->int_signal_send = sig;
2029  }
2030  int res = REAL(pthread_kill)(tid, sig);
2031  if (tid == pthread_self()) {
2032    CHECK_EQ(sctx->int_signal_send, sig);
2033    sctx->int_signal_send = prev;
2034  }
2035  return res;
2036}
2037
2038TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2039  SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2040  // It's intercepted merely to process pending signals.
2041  return REAL(gettimeofday)(tv, tz);
2042}
2043
2044TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2045    void *hints, void *rv) {
2046  SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2047  // We miss atomic synchronization in getaddrinfo,
2048  // and can report false race between malloc and free
2049  // inside of getaddrinfo. So ignore memory accesses.
2050  ThreadIgnoreBegin(thr, pc);
2051  int res = REAL(getaddrinfo)(node, service, hints, rv);
2052  ThreadIgnoreEnd(thr, pc);
2053  return res;
2054}
2055
2056TSAN_INTERCEPTOR(int, fork, int fake) {
2057  if (UNLIKELY(cur_thread()->in_symbolizer))
2058    return REAL(fork)(fake);
2059  SCOPED_INTERCEPTOR_RAW(fork, fake);
2060  ForkBefore(thr, pc);
2061  int pid;
2062  {
2063    // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2064    // we'll assert in CheckNoLocks() unless we ignore interceptors.
2065    ScopedIgnoreInterceptors ignore;
2066    pid = REAL(fork)(fake);
2067  }
2068  if (pid == 0) {
2069    // child
2070    ForkChildAfter(thr, pc);
2071    FdOnFork(thr, pc);
2072  } else if (pid > 0) {
2073    // parent
2074    ForkParentAfter(thr, pc);
2075  } else {
2076    // error
2077    ForkParentAfter(thr, pc);
2078  }
2079  return pid;
2080}
2081
2082TSAN_INTERCEPTOR(int, vfork, int fake) {
2083  // Some programs (e.g. openjdk) call close for all file descriptors
2084  // in the child process. Under tsan it leads to false positives, because
2085  // address space is shared, so the parent process also thinks that
2086  // the descriptors are closed (while they are actually not).
2087  // This leads to false positives due to missed synchronization.
2088  // Strictly saying this is undefined behavior, because vfork child is not
2089  // allowed to call any functions other than exec/exit. But this is what
2090  // openjdk does, so we want to handle it.
2091  // We could disable interceptors in the child process. But it's not possible
2092  // to simply intercept and wrap vfork, because vfork child is not allowed
2093  // to return from the function that calls vfork, and that's exactly what
2094  // we would do. So this would require some assembly trickery as well.
2095  // Instead we simply turn vfork into fork.
2096  return WRAP(fork)(fake);
2097}
2098
2099#if !SANITIZER_MAC && !SANITIZER_ANDROID
2100typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2101                                    void *data);
2102struct dl_iterate_phdr_data {
2103  ThreadState *thr;
2104  uptr pc;
2105  dl_iterate_phdr_cb_t cb;
2106  void *data;
2107};
2108
2109static bool IsAppNotRodata(uptr addr) {
2110  return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2111}
2112
2113static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2114                              void *data) {
2115  dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2116  // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2117  // accessible in dl_iterate_phdr callback. But we don't see synchronization
2118  // inside of dynamic linker, so we "unpoison" it here in order to not
2119  // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2120  // because some libc functions call __libc_dlopen.
2121  if (info && IsAppNotRodata((uptr)info->dlpi_name))
2122    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2123                     internal_strlen(info->dlpi_name));
2124  int res = cbdata->cb(info, size, cbdata->data);
2125  // Perform the check one more time in case info->dlpi_name was overwritten
2126  // by user callback.
2127  if (info && IsAppNotRodata((uptr)info->dlpi_name))
2128    MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2129                     internal_strlen(info->dlpi_name));
2130  return res;
2131}
2132
2133TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2134  SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2135  dl_iterate_phdr_data cbdata;
2136  cbdata.thr = thr;
2137  cbdata.pc = pc;
2138  cbdata.cb = cb;
2139  cbdata.data = data;
2140  int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2141  return res;
2142}
2143#endif
2144
2145static int OnExit(ThreadState *thr) {
2146  int status = Finalize(thr);
2147  FlushStreams();
2148  return status;
2149}
2150
2151struct TsanInterceptorContext {
2152  ThreadState *thr;
2153  const uptr caller_pc;
2154  const uptr pc;
2155};
2156
2157#if !SANITIZER_MAC
2158static void HandleRecvmsg(ThreadState *thr, uptr pc,
2159    __sanitizer_msghdr *msg) {
2160  int fds[64];
2161  int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2162  for (int i = 0; i < cnt; i++)
2163    FdEventCreate(thr, pc, fds[i]);
2164}
2165#endif
2166
2167#include "sanitizer_common/sanitizer_platform_interceptors.h"
2168// Causes interceptor recursion (getaddrinfo() and fopen())
2169#undef SANITIZER_INTERCEPT_GETADDRINFO
2170// There interceptors do not seem to be strictly necessary for tsan.
2171// But we see cases where the interceptors consume 70% of execution time.
2172// Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2173// First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2174// function "writes to" the buffer. Then, the same memory is "written to"
2175// twice, first as buf and then as pwbufp (both of them refer to the same
2176// addresses).
2177#undef SANITIZER_INTERCEPT_GETPWENT
2178#undef SANITIZER_INTERCEPT_GETPWENT_R
2179#undef SANITIZER_INTERCEPT_FGETPWENT
2180#undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2181#undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2182// We define our own.
2183#if SANITIZER_INTERCEPT_TLS_GET_ADDR
2184#define NEED_TLS_GET_ADDR
2185#endif
2186#undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2187#undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2188
2189#define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2190#define COMMON_INTERCEPT_FUNCTION_VER(name, ver)                          \
2191  INTERCEPT_FUNCTION_VER(name, ver)
2192
2193#define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
2194  MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
2195                    ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2196                    true)
2197
2198#define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
2199  MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
2200                    ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2201                    false)
2202
2203#define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
2204  SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
2205  TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2206  ctx = (void *)&_ctx;                                \
2207  (void) ctx;
2208
2209#define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2210  SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2211  TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
2212  ctx = (void *)&_ctx;                                    \
2213  (void) ctx;
2214
2215#define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2216  Acquire(thr, pc, File2addr(path));                  \
2217  if (file) {                                         \
2218    int fd = fileno_unlocked(file);                   \
2219    if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2220  }
2221
2222#define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2223  if (file) {                                    \
2224    int fd = fileno_unlocked(file);              \
2225    if (fd >= 0) FdClose(thr, pc, fd);           \
2226  }
2227
2228#define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2229  libignore()->OnLibraryLoaded(filename)
2230
2231#define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2232  libignore()->OnLibraryUnloaded()
2233
2234#define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2235  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2236
2237#define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2238  Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2239
2240#define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2241  Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2242
2243#define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2244  FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2245
2246#define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2247  FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2248
2249#define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2250  FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2251
2252#define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2253  FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2254
2255#define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2256  ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2257
2258#define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2259  __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2260
2261#define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2262
2263#define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2264  OnExit(((TsanInterceptorContext *) ctx)->thr)
2265
2266#define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2267  MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2268            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2269
2270#define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2271  MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2272            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2273
2274#define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2275  MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2276            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2277
2278#define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2279  MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2280            ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2281
2282#define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2283  MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2284                     ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2285
2286#define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd,  \
2287                                     off)                                   \
2288  do {                                                                      \
2289    return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2290                            off);                                           \
2291  } while (false)
2292
2293#if !SANITIZER_MAC
2294#define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2295  HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2296      ((TsanInterceptorContext *)ctx)->pc, msg)
2297#endif
2298
2299#define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2300  if (TsanThread *t = GetCurrentThread()) {                                    \
2301    *begin = t->tls_begin();                                                   \
2302    *end = t->tls_end();                                                       \
2303  } else {                                                                     \
2304    *begin = *end = 0;                                                         \
2305  }
2306
2307#define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2308  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2309
2310#define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2311  SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2312
2313#include "sanitizer_common/sanitizer_common_interceptors.inc"
2314
2315static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2316                          __sanitizer_sigaction *old);
2317static __sanitizer_sighandler_ptr signal_impl(int sig,
2318                                              __sanitizer_sighandler_ptr h);
2319
2320#define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2321  { return sigaction_impl(signo, act, oldact); }
2322
2323#define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2324  { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2325
2326#include "sanitizer_common/sanitizer_signal_interceptors.inc"
2327
2328int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2329                   __sanitizer_sigaction *old) {
2330  // Note: if we call REAL(sigaction) directly for any reason without proxying
2331  // the signal handler through rtl_sigaction, very bad things will happen.
2332  // The handler will run synchronously and corrupt tsan per-thread state.
2333  SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2334  __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2335  __sanitizer_sigaction old_stored;
2336  if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2337  __sanitizer_sigaction newact;
2338  if (act) {
2339    // Copy act into sigactions[sig].
2340    // Can't use struct copy, because compiler can emit call to memcpy.
2341    // Can't use internal_memcpy, because it copies byte-by-byte,
2342    // and signal handler reads the handler concurrently. It it can read
2343    // some bytes from old value and some bytes from new value.
2344    // Use volatile to prevent insertion of memcpy.
2345    sigactions[sig].handler =
2346        *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2347    sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2348    internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2349                    sizeof(sigactions[sig].sa_mask));
2350#if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2351    sigactions[sig].sa_restorer = act->sa_restorer;
2352#endif
2353    internal_memcpy(&newact, act, sizeof(newact));
2354    internal_sigfillset(&newact.sa_mask);
2355    if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2356      if (newact.sa_flags & SA_SIGINFO)
2357        newact.sigaction = rtl_sigaction;
2358      else
2359        newact.handler = rtl_sighandler;
2360    }
2361    ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2362    act = &newact;
2363  }
2364  int res = REAL(sigaction)(sig, act, old);
2365  if (res == 0 && old) {
2366    uptr cb = (uptr)old->sigaction;
2367    if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2368      internal_memcpy(old, &old_stored, sizeof(*old));
2369    }
2370  }
2371  return res;
2372}
2373
2374static __sanitizer_sighandler_ptr signal_impl(int sig,
2375                                              __sanitizer_sighandler_ptr h) {
2376  __sanitizer_sigaction act;
2377  act.handler = h;
2378  internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2379  act.sa_flags = 0;
2380  __sanitizer_sigaction old;
2381  int res = sigaction_symname(sig, &act, &old);
2382  if (res) return (__sanitizer_sighandler_ptr)sig_err;
2383  return old.handler;
2384}
2385
2386#define TSAN_SYSCALL() \
2387  ThreadState *thr = cur_thread(); \
2388  if (thr->ignore_interceptors) \
2389    return; \
2390  ScopedSyscall scoped_syscall(thr) \
2391/**/
2392
2393struct ScopedSyscall {
2394  ThreadState *thr;
2395
2396  explicit ScopedSyscall(ThreadState *thr)
2397      : thr(thr) {
2398    Initialize(thr);
2399  }
2400
2401  ~ScopedSyscall() {
2402    ProcessPendingSignals(thr);
2403  }
2404};
2405
2406#if !SANITIZER_FREEBSD && !SANITIZER_MAC
2407static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2408  TSAN_SYSCALL();
2409  MemoryAccessRange(thr, pc, p, s, write);
2410}
2411
2412static void syscall_acquire(uptr pc, uptr addr) {
2413  TSAN_SYSCALL();
2414  Acquire(thr, pc, addr);
2415  DPrintf("syscall_acquire(%p)\n", addr);
2416}
2417
2418static void syscall_release(uptr pc, uptr addr) {
2419  TSAN_SYSCALL();
2420  DPrintf("syscall_release(%p)\n", addr);
2421  Release(thr, pc, addr);
2422}
2423
2424static void syscall_fd_close(uptr pc, int fd) {
2425  TSAN_SYSCALL();
2426  FdClose(thr, pc, fd);
2427}
2428
2429static USED void syscall_fd_acquire(uptr pc, int fd) {
2430  TSAN_SYSCALL();
2431  FdAcquire(thr, pc, fd);
2432  DPrintf("syscall_fd_acquire(%p)\n", fd);
2433}
2434
2435static USED void syscall_fd_release(uptr pc, int fd) {
2436  TSAN_SYSCALL();
2437  DPrintf("syscall_fd_release(%p)\n", fd);
2438  FdRelease(thr, pc, fd);
2439}
2440
2441static void syscall_pre_fork(uptr pc) {
2442  TSAN_SYSCALL();
2443  ForkBefore(thr, pc);
2444}
2445
2446static void syscall_post_fork(uptr pc, int pid) {
2447  TSAN_SYSCALL();
2448  if (pid == 0) {
2449    // child
2450    ForkChildAfter(thr, pc);
2451    FdOnFork(thr, pc);
2452  } else if (pid > 0) {
2453    // parent
2454    ForkParentAfter(thr, pc);
2455  } else {
2456    // error
2457    ForkParentAfter(thr, pc);
2458  }
2459}
2460#endif
2461
2462#define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2463  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2464
2465#define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2466  syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2467
2468#define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2469  do {                                       \
2470    (void)(p);                               \
2471    (void)(s);                               \
2472  } while (false)
2473
2474#define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2475  do {                                        \
2476    (void)(p);                                \
2477    (void)(s);                                \
2478  } while (false)
2479
2480#define COMMON_SYSCALL_ACQUIRE(addr) \
2481    syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2482
2483#define COMMON_SYSCALL_RELEASE(addr) \
2484    syscall_release(GET_CALLER_PC(), (uptr)(addr))
2485
2486#define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2487
2488#define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2489
2490#define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2491
2492#define COMMON_SYSCALL_PRE_FORK() \
2493  syscall_pre_fork(GET_CALLER_PC())
2494
2495#define COMMON_SYSCALL_POST_FORK(res) \
2496  syscall_post_fork(GET_CALLER_PC(), res)
2497
2498#include "sanitizer_common/sanitizer_common_syscalls.inc"
2499#include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2500
2501#ifdef NEED_TLS_GET_ADDR
2502// Define own interceptor instead of sanitizer_common's for three reasons:
2503// 1. It must not process pending signals.
2504//    Signal handlers may contain MOVDQA instruction (see below).
2505// 2. It must be as simple as possible to not contain MOVDQA.
2506// 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2507//    is empty for tsan (meant only for msan).
2508// Note: __tls_get_addr can be called with mis-aligned stack due to:
2509// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2510// So the interceptor must work with mis-aligned stack, in particular, does not
2511// execute MOVDQA with stack addresses.
2512TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2513  void *res = REAL(__tls_get_addr)(arg);
2514  ThreadState *thr = cur_thread();
2515  if (!thr)
2516    return res;
2517  DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2518                                        thr->tls_addr + thr->tls_size);
2519  if (!dtv)
2520    return res;
2521  // New DTLS block has been allocated.
2522  MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2523  return res;
2524}
2525#endif
2526
2527#if SANITIZER_NETBSD
2528TSAN_INTERCEPTOR(void, _lwp_exit) {
2529  SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2530  DestroyThreadState();
2531  REAL(_lwp_exit)();
2532}
2533#define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2534#else
2535#define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2536#endif
2537
2538#if SANITIZER_FREEBSD
2539TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2540  SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2541  DestroyThreadState();
2542  REAL(thr_exit(state));
2543}
2544#define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2545#else
2546#define TSAN_MAYBE_INTERCEPT_THR_EXIT
2547#endif
2548
2549TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2550TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2551TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2552TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2553TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2554TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2555TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2556TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2557TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2558TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2559TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2560TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2561TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2562TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2563TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2564TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2565
2566namespace __tsan {
2567
2568static void finalize(void *arg) {
2569  ThreadState *thr = cur_thread();
2570  int status = Finalize(thr);
2571  // Make sure the output is not lost.
2572  FlushStreams();
2573  if (status)
2574    Die();
2575}
2576
2577#if !SANITIZER_MAC && !SANITIZER_ANDROID
2578static void unreachable() {
2579  Report("FATAL: ThreadSanitizer: unreachable called\n");
2580  Die();
2581}
2582#endif
2583
2584void InitializeInterceptors() {
2585#if !SANITIZER_MAC
2586  // We need to setup it early, because functions like dlsym() can call it.
2587  REAL(memset) = internal_memset;
2588  REAL(memcpy) = internal_memcpy;
2589#endif
2590
2591  // Instruct libc malloc to consume less memory.
2592#if SANITIZER_LINUX
2593  mallopt(1, 0);  // M_MXFAST
2594  mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
2595#endif
2596
2597  new(interceptor_ctx()) InterceptorContext();
2598
2599  InitializeCommonInterceptors();
2600  InitializeSignalInterceptors();
2601
2602#if !SANITIZER_MAC
2603  // We can not use TSAN_INTERCEPT to get setjmp addr,
2604  // because it does &setjmp and setjmp is not present in some versions of libc.
2605  using __interception::GetRealFunctionAddress;
2606  GetRealFunctionAddress(TSAN_STRING_SETJMP,
2607                         (uptr*)&REAL(setjmp_symname), 0, 0);
2608  GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2609  GetRealFunctionAddress(TSAN_STRING_SIGSETJMP,
2610                         (uptr*)&REAL(sigsetjmp_symname), 0, 0);
2611#if !SANITIZER_NETBSD
2612  GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2613#endif
2614#endif
2615
2616  TSAN_INTERCEPT(longjmp_symname);
2617  TSAN_INTERCEPT(siglongjmp_symname);
2618#if SANITIZER_NETBSD
2619  TSAN_INTERCEPT(_longjmp);
2620#endif
2621
2622  TSAN_INTERCEPT(malloc);
2623  TSAN_INTERCEPT(__libc_memalign);
2624  TSAN_INTERCEPT(calloc);
2625  TSAN_INTERCEPT(realloc);
2626  TSAN_INTERCEPT(free);
2627  TSAN_INTERCEPT(cfree);
2628  TSAN_INTERCEPT(munmap);
2629  TSAN_MAYBE_INTERCEPT_MEMALIGN;
2630  TSAN_INTERCEPT(valloc);
2631  TSAN_MAYBE_INTERCEPT_PVALLOC;
2632  TSAN_INTERCEPT(posix_memalign);
2633
2634  TSAN_INTERCEPT(strcpy);  // NOLINT
2635  TSAN_INTERCEPT(strncpy);
2636  TSAN_INTERCEPT(strdup);
2637
2638  TSAN_INTERCEPT(pthread_create);
2639  TSAN_INTERCEPT(pthread_join);
2640  TSAN_INTERCEPT(pthread_detach);
2641
2642  TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2643  TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2644  TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2645  TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2646  TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2647  TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2648
2649  TSAN_INTERCEPT(pthread_mutex_init);
2650  TSAN_INTERCEPT(pthread_mutex_destroy);
2651  TSAN_INTERCEPT(pthread_mutex_trylock);
2652  TSAN_INTERCEPT(pthread_mutex_timedlock);
2653
2654  TSAN_INTERCEPT(pthread_spin_init);
2655  TSAN_INTERCEPT(pthread_spin_destroy);
2656  TSAN_INTERCEPT(pthread_spin_lock);
2657  TSAN_INTERCEPT(pthread_spin_trylock);
2658  TSAN_INTERCEPT(pthread_spin_unlock);
2659
2660  TSAN_INTERCEPT(pthread_rwlock_init);
2661  TSAN_INTERCEPT(pthread_rwlock_destroy);
2662  TSAN_INTERCEPT(pthread_rwlock_rdlock);
2663  TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2664  TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2665  TSAN_INTERCEPT(pthread_rwlock_wrlock);
2666  TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2667  TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2668  TSAN_INTERCEPT(pthread_rwlock_unlock);
2669
2670  TSAN_INTERCEPT(pthread_barrier_init);
2671  TSAN_INTERCEPT(pthread_barrier_destroy);
2672  TSAN_INTERCEPT(pthread_barrier_wait);
2673
2674  TSAN_INTERCEPT(pthread_once);
2675
2676  TSAN_INTERCEPT(fstat);
2677  TSAN_MAYBE_INTERCEPT___FXSTAT;
2678  TSAN_MAYBE_INTERCEPT_FSTAT64;
2679  TSAN_MAYBE_INTERCEPT___FXSTAT64;
2680  TSAN_INTERCEPT(open);
2681  TSAN_MAYBE_INTERCEPT_OPEN64;
2682  TSAN_INTERCEPT(creat);
2683  TSAN_MAYBE_INTERCEPT_CREAT64;
2684  TSAN_INTERCEPT(dup);
2685  TSAN_INTERCEPT(dup2);
2686  TSAN_INTERCEPT(dup3);
2687  TSAN_MAYBE_INTERCEPT_EVENTFD;
2688  TSAN_MAYBE_INTERCEPT_SIGNALFD;
2689  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2690  TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2691  TSAN_INTERCEPT(socket);
2692  TSAN_INTERCEPT(socketpair);
2693  TSAN_INTERCEPT(connect);
2694  TSAN_INTERCEPT(bind);
2695  TSAN_INTERCEPT(listen);
2696  TSAN_MAYBE_INTERCEPT_EPOLL;
2697  TSAN_INTERCEPT(close);
2698  TSAN_MAYBE_INTERCEPT___CLOSE;
2699  TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2700  TSAN_INTERCEPT(pipe);
2701  TSAN_INTERCEPT(pipe2);
2702
2703  TSAN_INTERCEPT(unlink);
2704  TSAN_INTERCEPT(tmpfile);
2705  TSAN_MAYBE_INTERCEPT_TMPFILE64;
2706  TSAN_INTERCEPT(abort);
2707  TSAN_INTERCEPT(rmdir);
2708  TSAN_INTERCEPT(closedir);
2709
2710  TSAN_INTERCEPT(sigsuspend);
2711  TSAN_INTERCEPT(sigblock);
2712  TSAN_INTERCEPT(sigsetmask);
2713  TSAN_INTERCEPT(pthread_sigmask);
2714  TSAN_INTERCEPT(raise);
2715  TSAN_INTERCEPT(kill);
2716  TSAN_INTERCEPT(pthread_kill);
2717  TSAN_INTERCEPT(sleep);
2718  TSAN_INTERCEPT(usleep);
2719  TSAN_INTERCEPT(nanosleep);
2720  TSAN_INTERCEPT(pause);
2721  TSAN_INTERCEPT(gettimeofday);
2722  TSAN_INTERCEPT(getaddrinfo);
2723
2724  TSAN_INTERCEPT(fork);
2725  TSAN_INTERCEPT(vfork);
2726#if !SANITIZER_ANDROID
2727  TSAN_INTERCEPT(dl_iterate_phdr);
2728#endif
2729  TSAN_MAYBE_INTERCEPT_ON_EXIT;
2730  TSAN_INTERCEPT(__cxa_atexit);
2731  TSAN_INTERCEPT(_exit);
2732
2733#ifdef NEED_TLS_GET_ADDR
2734  TSAN_INTERCEPT(__tls_get_addr);
2735#endif
2736
2737  TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2738  TSAN_MAYBE_INTERCEPT_THR_EXIT;
2739
2740#if !SANITIZER_MAC && !SANITIZER_ANDROID
2741  // Need to setup it, because interceptors check that the function is resolved.
2742  // But atexit is emitted directly into the module, so can't be resolved.
2743  REAL(atexit) = (int(*)(void(*)()))unreachable;
2744#endif
2745
2746  if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2747    Printf("ThreadSanitizer: failed to setup atexit callback\n");
2748    Die();
2749  }
2750
2751#if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2752  if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2753    Printf("ThreadSanitizer: failed to create thread key\n");
2754    Die();
2755  }
2756#endif
2757
2758  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2759  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2760  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2761  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2762  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2763  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2764  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2765  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2766  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2767  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2768  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2769  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2770  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2771  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2772  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2773  TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2774
2775  FdInit();
2776}
2777
2778}  // namespace __tsan
2779
2780// Invisible barrier for tests.
2781// There were several unsuccessful iterations for this functionality:
2782// 1. Initially it was implemented in user code using
2783//    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2784//    MacOS. Futexes are linux-specific for this matter.
2785// 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2786//    "as-if synchronized via sleep" messages in reports which failed some
2787//    output tests.
2788// 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2789//    visible events, which lead to "failed to restore stack trace" failures.
2790// Note that no_sanitize_thread attribute does not turn off atomic interception
2791// so attaching it to the function defined in user code does not help.
2792// That's why we now have what we have.
2793extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2794void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2795  if (count >= (1 << 8)) {
2796      Printf("barrier_init: count is too large (%d)\n", count);
2797      Die();
2798  }
2799  // 8 lsb is thread count, the remaining are count of entered threads.
2800  *barrier = count;
2801}
2802
2803extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2804void __tsan_testonly_barrier_wait(u64 *barrier) {
2805  unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2806  unsigned old_epoch = (old >> 8) / (old & 0xff);
2807  for (;;) {
2808    unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2809    unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2810    if (cur_epoch != old_epoch)
2811      return;
2812    internal_sched_yield();
2813  }
2814}
2815