1//===-- sanitizer_stoptheworld_linux_libcdep.cc ---------------------------===//
2//
3// This file is distributed under the University of Illinois Open Source
4// License. See LICENSE.TXT for details.
5//
6//===----------------------------------------------------------------------===//
7//
8// See sanitizer_stoptheworld.h for details.
9// This implementation was inspired by Markus Gutschke's linuxthreads.cc.
10//
11//===----------------------------------------------------------------------===//
12
13#include "sanitizer_platform.h"
14
15#if SANITIZER_LINUX && \
16		       (defined(__x86_64__) || defined(__mips__) || \
17                        defined(__aarch64__) || defined(__powerpc64__) || \
18                        defined(__s390__) || defined(__i386__) || \
19                        defined(__arm__))
20
21#include "sanitizer_stoptheworld.h"
22
23#include "sanitizer_platform_limits_posix.h"
24#include "sanitizer_atomic.h"
25
26#include <errno.h>
27#include <sched.h> // for CLONE_* definitions
28#include <stddef.h>
29#if SANITIZER_LINUX
30#include <sys/prctl.h> // for PR_* definitions
31#endif
32#include <sys/ptrace.h> // for PTRACE_* definitions
33#include <sys/types.h> // for pid_t
34#include <sys/uio.h> // for iovec
35#include <elf.h> // for NT_PRSTATUS
36#if defined(__aarch64__) && !(SANITIZER_ANDROID || SANITIZER_NETBSD)
37// GLIBC 2.20+ sys/user does not include asm/ptrace.h
38# include <asm/ptrace.h>
39#endif
40#if SANITIZER_LINUX
41#include <sys/user.h>  // for user_regs_struct
42#if SANITIZER_ANDROID && SANITIZER_MIPS
43# include <asm/reg.h>  // for mips SP register in sys/user.h
44#endif
45#elif SANITIZER_NETBSD
46# include <signal.h>
47# define PTRACE_ATTACH PT_ATTACH
48# define PTRACE_GETREGS PT_GETREGS
49# define PTRACE_KILL PT_KILL
50# define PTRACE_DETACH PT_DETACH
51# define PTRACE_CONT PT_CONTINUE
52# define CLONE_UNTRACED 0
53# include <machine/reg.h>
54typedef struct reg user_regs;
55typedef struct reg user_regs_struct;
56#endif
57#include <sys/wait.h> // for signal-related stuff
58
59#ifdef sa_handler
60# undef sa_handler
61#endif
62
63#ifdef sa_sigaction
64# undef sa_sigaction
65#endif
66
67#include "sanitizer_common.h"
68#include "sanitizer_flags.h"
69#include "sanitizer_libc.h"
70#include "sanitizer_linux.h"
71#include "sanitizer_mutex.h"
72#include "sanitizer_placement_new.h"
73
74// Sufficiently old kernel headers don't provide this value, but we can still
75// call prctl with it. If the runtime kernel is new enough, the prctl call will
76// have the desired effect; if the kernel is too old, the call will error and we
77// can ignore said error.
78#ifndef PR_SET_PTRACER
79#define PR_SET_PTRACER 0x59616d61
80#endif
81
82// This module works by spawning a Linux task which then attaches to every
83// thread in the caller process with ptrace. This suspends the threads, and
84// PTRACE_GETREGS can then be used to obtain their register state. The callback
85// supplied to StopTheWorld() is run in the tracer task while the threads are
86// suspended.
87// The tracer task must be placed in a different thread group for ptrace to
88// work, so it cannot be spawned as a pthread. Instead, we use the low-level
89// clone() interface (we want to share the address space with the caller
90// process, so we prefer clone() over fork()).
91//
92// We don't use any libc functions, relying instead on direct syscalls. There
93// are two reasons for this:
94// 1. calling a library function while threads are suspended could cause a
95// deadlock, if one of the treads happens to be holding a libc lock;
96// 2. it's generally not safe to call libc functions from the tracer task,
97// because clone() does not set up a thread-local storage for it. Any
98// thread-local variables used by libc will be shared between the tracer task
99// and the thread which spawned it.
100
101namespace __sanitizer {
102
103class SuspendedThreadsListLinux : public SuspendedThreadsList {
104 public:
105  SuspendedThreadsListLinux() { thread_ids_.reserve(1024); }
106
107  tid_t GetThreadID(uptr index) const;
108  uptr ThreadCount() const;
109  bool ContainsTid(tid_t thread_id) const;
110  void Append(tid_t tid);
111
112  PtraceRegistersStatus GetRegistersAndSP(uptr index, uptr *buffer,
113                                          uptr *sp) const;
114  uptr RegisterCount() const;
115
116 private:
117  InternalMmapVector<tid_t> thread_ids_;
118};
119
120// Structure for passing arguments into the tracer thread.
121struct TracerThreadArgument {
122  StopTheWorldCallback callback;
123  void *callback_argument;
124  // The tracer thread waits on this mutex while the parent finishes its
125  // preparations.
126  BlockingMutex mutex;
127  // Tracer thread signals its completion by setting done.
128  atomic_uintptr_t done;
129  uptr parent_pid;
130};
131
132// This class handles thread suspending/unsuspending in the tracer thread.
133class ThreadSuspender {
134 public:
135  explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
136    : arg(arg)
137    , pid_(pid) {
138      CHECK_GE(pid, 0);
139    }
140  bool SuspendAllThreads();
141  void ResumeAllThreads();
142  void KillAllThreads();
143  SuspendedThreadsListLinux &suspended_threads_list() {
144    return suspended_threads_list_;
145  }
146  TracerThreadArgument *arg;
147 private:
148  SuspendedThreadsListLinux suspended_threads_list_;
149  pid_t pid_;
150  bool SuspendThread(tid_t thread_id);
151};
152
153bool ThreadSuspender::SuspendThread(tid_t tid) {
154  // Are we already attached to this thread?
155  // Currently this check takes linear time, however the number of threads is
156  // usually small.
157  if (suspended_threads_list_.ContainsTid(tid)) return false;
158  int pterrno;
159  if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, nullptr, nullptr),
160                       &pterrno)) {
161    // Either the thread is dead, or something prevented us from attaching.
162    // Log this event and move on.
163    VReport(1, "Could not attach to thread %zu (errno %d).\n", (uptr)tid,
164            pterrno);
165    return false;
166  } else {
167    VReport(2, "Attached to thread %zu.\n", (uptr)tid);
168    // The thread is not guaranteed to stop before ptrace returns, so we must
169    // wait on it. Note: if the thread receives a signal concurrently,
170    // we can get notification about the signal before notification about stop.
171    // In such case we need to forward the signal to the thread, otherwise
172    // the signal will be missed (as we do PTRACE_DETACH with arg=0) and
173    // any logic relying on signals will break. After forwarding we need to
174    // continue to wait for stopping, because the thread is not stopped yet.
175    // We do ignore delivery of SIGSTOP, because we want to make stop-the-world
176    // as invisible as possible.
177    for (;;) {
178      int status;
179      uptr waitpid_status;
180      HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL));
181      int wperrno;
182      if (internal_iserror(waitpid_status, &wperrno)) {
183        // Got a ECHILD error. I don't think this situation is possible, but it
184        // doesn't hurt to report it.
185        VReport(1, "Waiting on thread %zu failed, detaching (errno %d).\n",
186                (uptr)tid, wperrno);
187        internal_ptrace(PTRACE_DETACH, tid, (void*)(uptr)1, nullptr);
188        return false;
189      }
190      if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) {
191        internal_ptrace(PTRACE_CONT, tid, nullptr,
192                        (void*)(uptr)WSTOPSIG(status));
193        continue;
194      }
195      break;
196    }
197    suspended_threads_list_.Append(tid);
198    return true;
199  }
200}
201
202void ThreadSuspender::ResumeAllThreads() {
203  for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) {
204    pid_t tid = suspended_threads_list_.GetThreadID(i);
205    int pterrno;
206    if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, (void*)(uptr)1, nullptr),
207                          &pterrno)) {
208      VReport(2, "Detached from thread %d.\n", tid);
209    } else {
210      // Either the thread is dead, or we are already detached.
211      // The latter case is possible, for instance, if this function was called
212      // from a signal handler.
213      VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno);
214    }
215  }
216}
217
218void ThreadSuspender::KillAllThreads() {
219  for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++)
220    internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i),
221                    nullptr, nullptr);
222}
223
224bool ThreadSuspender::SuspendAllThreads() {
225  ThreadLister thread_lister(pid_);
226  bool retry = true;
227  InternalMmapVector<tid_t> threads;
228  threads.reserve(128);
229  for (int i = 0; i < 30 && retry; ++i) {
230    retry = false;
231    switch (thread_lister.ListThreads(&threads)) {
232      case ThreadLister::Error:
233        ResumeAllThreads();
234        return false;
235      case ThreadLister::Incomplete:
236        retry = true;
237        break;
238      case ThreadLister::Ok:
239        break;
240    }
241    for (tid_t tid : threads)
242      if (SuspendThread(tid))
243        retry = true;
244  };
245  return suspended_threads_list_.ThreadCount();
246}
247
248// Pointer to the ThreadSuspender instance for use in signal handler.
249static ThreadSuspender *thread_suspender_instance = nullptr;
250
251// Synchronous signals that should not be blocked.
252static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS,
253                                    SIGXCPU, SIGXFSZ };
254
255static void TracerThreadDieCallback() {
256  // Generally a call to Die() in the tracer thread should be fatal to the
257  // parent process as well, because they share the address space.
258  // This really only works correctly if all the threads are suspended at this
259  // point. So we correctly handle calls to Die() from within the callback, but
260  // not those that happen before or after the callback. Hopefully there aren't
261  // a lot of opportunities for that to happen...
262  ThreadSuspender *inst = thread_suspender_instance;
263  if (inst && stoptheworld_tracer_pid == internal_getpid()) {
264    inst->KillAllThreads();
265    thread_suspender_instance = nullptr;
266  }
267}
268
269// Signal handler to wake up suspended threads when the tracer thread dies.
270static void TracerThreadSignalHandler(int signum, __sanitizer_siginfo *siginfo,
271                                      void *uctx) {
272  SignalContext ctx(siginfo, uctx);
273  Printf("Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n", signum,
274         ctx.addr, ctx.pc, ctx.sp);
275  ThreadSuspender *inst = thread_suspender_instance;
276  if (inst) {
277    if (signum == SIGABRT)
278      inst->KillAllThreads();
279    else
280      inst->ResumeAllThreads();
281    RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
282    thread_suspender_instance = nullptr;
283    atomic_store(&inst->arg->done, 1, memory_order_relaxed);
284  }
285  internal__exit((signum == SIGABRT) ? 1 : 2);
286}
287
288// Size of alternative stack for signal handlers in the tracer thread.
289static const int kHandlerStackSize = 8192;
290
291// This function will be run as a cloned task.
292static int TracerThread(void* argument) {
293  TracerThreadArgument *tracer_thread_argument =
294      (TracerThreadArgument *)argument;
295
296#ifdef PR_SET_PDEADTHSIG
297  internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
298#endif
299  // Check if parent is already dead.
300  if (internal_getppid() != tracer_thread_argument->parent_pid)
301    internal__exit(4);
302
303  // Wait for the parent thread to finish preparations.
304  tracer_thread_argument->mutex.Lock();
305  tracer_thread_argument->mutex.Unlock();
306
307  RAW_CHECK(AddDieCallback(TracerThreadDieCallback));
308
309  ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
310  // Global pointer for the signal handler.
311  thread_suspender_instance = &thread_suspender;
312
313  // Alternate stack for signal handling.
314  InternalMmapVector<char> handler_stack_memory(kHandlerStackSize);
315  stack_t handler_stack;
316  internal_memset(&handler_stack, 0, sizeof(handler_stack));
317  handler_stack.ss_sp = handler_stack_memory.data();
318  handler_stack.ss_size = kHandlerStackSize;
319  internal_sigaltstack(&handler_stack, nullptr);
320
321  // Install our handler for synchronous signals. Other signals should be
322  // blocked by the mask we inherited from the parent thread.
323  for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
324    __sanitizer_sigaction act;
325    internal_memset(&act, 0, sizeof(act));
326    act.sigaction = TracerThreadSignalHandler;
327    act.sa_flags = SA_ONSTACK | SA_SIGINFO;
328    internal_sigaction_norestorer(kSyncSignals[i], &act, 0);
329  }
330
331  int exit_code = 0;
332  if (!thread_suspender.SuspendAllThreads()) {
333    VReport(1, "Failed suspending threads.\n");
334    exit_code = 3;
335  } else {
336    tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
337                                     tracer_thread_argument->callback_argument);
338    thread_suspender.ResumeAllThreads();
339    exit_code = 0;
340  }
341  RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
342  thread_suspender_instance = nullptr;
343  atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed);
344  return exit_code;
345}
346
347class ScopedStackSpaceWithGuard {
348 public:
349  explicit ScopedStackSpaceWithGuard(uptr stack_size) {
350    stack_size_ = stack_size;
351    guard_size_ = GetPageSizeCached();
352    // FIXME: Omitting MAP_STACK here works in current kernels but might break
353    // in the future.
354    guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_,
355                                   "ScopedStackWithGuard");
356    CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
357  }
358  ~ScopedStackSpaceWithGuard() {
359    UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_);
360  }
361  void *Bottom() const {
362    return (void *)(guard_start_ + stack_size_ + guard_size_);
363  }
364
365 private:
366  uptr stack_size_;
367  uptr guard_size_;
368  uptr guard_start_;
369};
370
371// We have a limitation on the stack frame size, so some stuff had to be moved
372// into globals.
373static __sanitizer_sigset_t blocked_sigset;
374static __sanitizer_sigset_t old_sigset;
375
376class StopTheWorldScope {
377 public:
378  StopTheWorldScope() {
379    // Make this process dumpable. Processes that are not dumpable cannot be
380    // attached to.
381#ifdef PR_GET_DUMPABLE
382    process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0);
383    if (!process_was_dumpable_)
384      internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
385#endif
386  }
387
388  ~StopTheWorldScope() {
389#ifdef PR_GET_DUMPABLE
390    // Restore the dumpable flag.
391    if (!process_was_dumpable_)
392      internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
393#endif
394  }
395
396 private:
397  int process_was_dumpable_;
398};
399
400// When sanitizer output is being redirected to file (i.e. by using log_path),
401// the tracer should write to the parent's log instead of trying to open a new
402// file. Alert the logging code to the fact that we have a tracer.
403struct ScopedSetTracerPID {
404  explicit ScopedSetTracerPID(uptr tracer_pid) {
405    stoptheworld_tracer_pid = tracer_pid;
406    stoptheworld_tracer_ppid = internal_getpid();
407  }
408  ~ScopedSetTracerPID() {
409    stoptheworld_tracer_pid = 0;
410    stoptheworld_tracer_ppid = 0;
411  }
412};
413
414void StopTheWorld(StopTheWorldCallback callback, void *argument) {
415  StopTheWorldScope in_stoptheworld;
416  // Prepare the arguments for TracerThread.
417  struct TracerThreadArgument tracer_thread_argument;
418  tracer_thread_argument.callback = callback;
419  tracer_thread_argument.callback_argument = argument;
420  tracer_thread_argument.parent_pid = internal_getpid();
421  atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed);
422  const uptr kTracerStackSize = 2 * 1024 * 1024;
423  ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
424  // Block the execution of TracerThread until after we have set ptrace
425  // permissions.
426  tracer_thread_argument.mutex.Lock();
427  // Signal handling story.
428  // We don't want async signals to be delivered to the tracer thread,
429  // so we block all async signals before creating the thread. An async signal
430  // handler can temporary modify errno, which is shared with this thread.
431  // We ought to use pthread_sigmask here, because sigprocmask has undefined
432  // behavior in multithreaded programs. However, on linux sigprocmask is
433  // equivalent to pthread_sigmask with the exception that pthread_sigmask
434  // does not allow to block some signals used internally in pthread
435  // implementation. We are fine with blocking them here, we are really not
436  // going to pthread_cancel the thread.
437  // The tracer thread should not raise any synchronous signals. But in case it
438  // does, we setup a special handler for sync signals that properly kills the
439  // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers
440  // in the tracer thread won't interfere with user program. Double note: if a
441  // user does something along the lines of 'kill -11 pid', that can kill the
442  // process even if user setup own handler for SEGV.
443  // Thing to watch out for: this code should not change behavior of user code
444  // in any observable way. In particular it should not override user signal
445  // handlers.
446  internal_sigfillset(&blocked_sigset);
447  for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
448    internal_sigdelset(&blocked_sigset, kSyncSignals[i]);
449  int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset);
450  CHECK_EQ(rv, 0);
451  uptr tracer_pid = internal_clone(
452      TracerThread, tracer_stack.Bottom(),
453      CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED,
454      &tracer_thread_argument, nullptr /* parent_tidptr */,
455      nullptr /* newtls */, nullptr /* child_tidptr */);
456  internal_sigprocmask(SIG_SETMASK, &old_sigset, 0);
457  int local_errno = 0;
458  if (internal_iserror(tracer_pid, &local_errno)) {
459    VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
460    tracer_thread_argument.mutex.Unlock();
461  } else {
462    ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
463    // On some systems we have to explicitly declare that we want to be traced
464    // by the tracer thread.
465    internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0);
466    // Allow the tracer thread to start.
467    tracer_thread_argument.mutex.Unlock();
468    // NOTE: errno is shared between this thread and the tracer thread.
469    // internal_waitpid() may call syscall() which can access/spoil errno,
470    // so we can't call it now. Instead we for the tracer thread to finish using
471    // the spin loop below. Man page for sched_yield() says "In the Linux
472    // implementation, sched_yield() always succeeds", so let's hope it does not
473    // spoil errno. Note that this spin loop runs only for brief periods before
474    // the tracer thread has suspended us and when it starts unblocking threads.
475    while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0)
476      sched_yield();
477    // Now the tracer thread is about to exit and does not touch errno,
478    // wait for it.
479    for (;;) {
480      uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL);
481      if (!internal_iserror(waitpid_status, &local_errno))
482        break;
483      if (local_errno == EINTR)
484        continue;
485      VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
486              local_errno);
487      break;
488    }
489  }
490}
491
492// Platform-specific methods from SuspendedThreadsList.
493#if SANITIZER_ANDROID
494# if defined(__arm__)
495typedef pt_regs regs_struct;
496#  define PTRACE_REG_SP(r) (r)->ARM_sp
497# endif
498
499#elif SANITIZER_LINUX
500# if defined(__arm__)
501typedef user_regs regs_struct;
502#  define PTRACE_REG_SP(r) (r)->uregs[13]
503
504# elif defined(__i386__)
505typedef user_regs_struct regs_struct;
506#  define PTRACE_REG_SP(r) (r)->esp
507
508# elif defined(__x86_64__)
509typedef user_regs_struct regs_struct;
510#  define PTRACE_REG_SP(r) (r)->rsp
511
512# elif defined(__powerpc__) || defined(__powerpc64__)
513typedef pt_regs regs_struct;
514#  define PTRACE_REG_SP(r) (r)->gpr[PT_R1]
515# elif defined(__mips__)
516
517typedef struct user regs_struct;
518#  if SANITIZER_ANDROID
519#   define REG_SP regs[EF_R29]
520#  else
521#   define REG_SP regs[EF_REG29]
522#  endif
523# elif defined(__aarch64__)
524
525typedef struct user_pt_regs regs_struct;
526#  define PTRACE_REG_SP(r) (r)->sp
527#  define ARCH_IOVEC_FOR_GETREGSET
528# endif
529#elif SANITIZER_NETBSD
530typedef reg regs_struct;
531
532#elif defined(__s390__)
533typedef _user_regs_struct regs_struct;
534#define REG_SP gprs[15]
535#define ARCH_IOVEC_FOR_GETREGSET
536
537#else
538#error "Unsupported architecture"
539#endif
540
541tid_t SuspendedThreadsListLinux::GetThreadID(uptr index) const {
542  CHECK_LT(index, thread_ids_.size());
543  return thread_ids_[index];
544}
545
546uptr SuspendedThreadsListLinux::ThreadCount() const {
547  return thread_ids_.size();
548}
549
550bool SuspendedThreadsListLinux::ContainsTid(tid_t thread_id) const {
551  for (uptr i = 0; i < thread_ids_.size(); i++) {
552    if (thread_ids_[i] == thread_id) return true;
553  }
554  return false;
555}
556
557void SuspendedThreadsListLinux::Append(tid_t tid) {
558  thread_ids_.push_back(tid);
559}
560
561PtraceRegistersStatus SuspendedThreadsListLinux::GetRegistersAndSP(
562    uptr index, uptr *buffer, uptr *sp) const {
563  pid_t tid = GetThreadID(index);
564  regs_struct regs;
565  int pterrno;
566#ifdef ARCH_IOVEC_FOR_GETREGSET
567  struct iovec regset_io;
568  regset_io.iov_base = &regs;
569  regset_io.iov_len = sizeof(regs_struct);
570  bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGSET, tid,
571                                (void*)NT_PRSTATUS, (void*)&regset_io),
572                                &pterrno);
573#else
574  bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGS, tid, nullptr,
575                                &regs), &pterrno);
576#endif
577  if (isErr) {
578    VReport(1, "Could not get registers from thread %d (errno %d).\n", tid,
579            pterrno);
580    // ESRCH means that the given thread is not suspended or already dead.
581    // Therefore it's unsafe to inspect its data (e.g. walk through stack) and
582    // we should notify caller about this.
583    return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL
584                            : REGISTERS_UNAVAILABLE;
585  }
586
587  *sp = PTRACE_REG_SP(&regs);
588  internal_memcpy(buffer, &regs, sizeof(regs));
589  return REGISTERS_AVAILABLE;
590}
591
592uptr SuspendedThreadsListLinux::RegisterCount() const {
593  return sizeof(regs_struct) / sizeof(uptr);
594}
595} // namespace __sanitizer
596
597#endif  // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__)
598        // || defined(__aarch64__) || defined(__powerpc64__)
599        // || defined(__s390__) || defined(__i386__) || defined(__arm__)
600