1/* SSA Jump Threading
2   Copyright (C) 2005-2020 Free Software Foundation, Inc.
3   Contributed by Jeff Law  <law@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3.  If not see
19<http://www.gnu.org/licenses/>.  */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "backend.h"
25#include "tree.h"
26#include "gimple.h"
27#include "predict.h"
28#include "ssa.h"
29#include "fold-const.h"
30#include "cfgloop.h"
31#include "gimple-iterator.h"
32#include "tree-cfg.h"
33#include "tree-ssa-threadupdate.h"
34#include "tree-ssa-scopedtables.h"
35#include "tree-ssa-threadedge.h"
36#include "tree-ssa-dom.h"
37#include "gimple-fold.h"
38#include "cfganal.h"
39#include "alloc-pool.h"
40#include "vr-values.h"
41#include "gimple-ssa-evrp-analyze.h"
42
43/* To avoid code explosion due to jump threading, we limit the
44   number of statements we are going to copy.  This variable
45   holds the number of statements currently seen that we'll have
46   to copy as part of the jump threading process.  */
47static int stmt_count;
48
49/* Array to record value-handles per SSA_NAME.  */
50vec<tree> ssa_name_values;
51
52typedef tree (pfn_simplify) (gimple *, gimple *,
53			     class avail_exprs_stack *,
54			     basic_block);
55
56/* Set the value for the SSA name NAME to VALUE.  */
57
58void
59set_ssa_name_value (tree name, tree value)
60{
61  if (SSA_NAME_VERSION (name) >= ssa_name_values.length ())
62    ssa_name_values.safe_grow_cleared (SSA_NAME_VERSION (name) + 1);
63  if (value && TREE_OVERFLOW_P (value))
64    value = drop_tree_overflow (value);
65  ssa_name_values[SSA_NAME_VERSION (name)] = value;
66}
67
68/* Initialize the per SSA_NAME value-handles array.  Returns it.  */
69void
70threadedge_initialize_values (void)
71{
72  gcc_assert (!ssa_name_values.exists ());
73  ssa_name_values.create (num_ssa_names);
74}
75
76/* Free the per SSA_NAME value-handle array.  */
77void
78threadedge_finalize_values (void)
79{
80  ssa_name_values.release ();
81}
82
83/* Return TRUE if we may be able to thread an incoming edge into
84   BB to an outgoing edge from BB.  Return FALSE otherwise.  */
85
86bool
87potentially_threadable_block (basic_block bb)
88{
89  gimple_stmt_iterator gsi;
90
91  /* Special case.  We can get blocks that are forwarders, but are
92     not optimized away because they forward from outside a loop
93     to the loop header.   We want to thread through them as we can
94     sometimes thread to the loop exit, which is obviously profitable.
95     the interesting case here is when the block has PHIs.  */
96  if (gsi_end_p (gsi_start_nondebug_bb (bb))
97      && !gsi_end_p (gsi_start_phis (bb)))
98    return true;
99
100  /* If BB has a single successor or a single predecessor, then
101     there is no threading opportunity.  */
102  if (single_succ_p (bb) || single_pred_p (bb))
103    return false;
104
105  /* If BB does not end with a conditional, switch or computed goto,
106     then there is no threading opportunity.  */
107  gsi = gsi_last_bb (bb);
108  if (gsi_end_p (gsi)
109      || ! gsi_stmt (gsi)
110      || (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
111	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
112	  && gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
113    return false;
114
115  return true;
116}
117
118/* Record temporary equivalences created by PHIs at the target of the
119   edge E.  Record unwind information for the equivalences into
120   CONST_AND_COPIES and EVRP_RANGE_DATA.
121
122   If a PHI which prevents threading is encountered, then return FALSE
123   indicating we should not thread this edge, else return TRUE.  */
124
125static bool
126record_temporary_equivalences_from_phis (edge e,
127    const_and_copies *const_and_copies,
128    evrp_range_analyzer *evrp_range_analyzer)
129{
130  gphi_iterator gsi;
131
132  /* Each PHI creates a temporary equivalence, record them.
133     These are context sensitive equivalences and will be removed
134     later.  */
135  for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
136    {
137      gphi *phi = gsi.phi ();
138      tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
139      tree dst = gimple_phi_result (phi);
140
141      /* If the desired argument is not the same as this PHI's result
142	 and it is set by a PHI in E->dest, then we cannot thread
143	 through E->dest.  */
144      if (src != dst
145	  && TREE_CODE (src) == SSA_NAME
146	  && gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
147	  && gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
148	return false;
149
150      /* We consider any non-virtual PHI as a statement since it
151	 count result in a constant assignment or copy operation.  */
152      if (!virtual_operand_p (dst))
153	stmt_count++;
154
155      const_and_copies->record_const_or_copy (dst, src);
156
157      /* Also update the value range associated with DST, using
158	 the range from SRC.
159
160	 Note that even if SRC is a constant we need to set a suitable
161	 output range so that VR_UNDEFINED ranges do not leak through.  */
162      if (evrp_range_analyzer)
163	{
164	  /* Get an empty new VR we can pass to update_value_range and save
165	     away in the VR stack.  */
166	  vr_values *vr_values = evrp_range_analyzer->get_vr_values ();
167	  value_range_equiv *new_vr = vr_values->allocate_value_range_equiv ();
168	  new (new_vr) value_range_equiv ();
169
170	  /* There are three cases to consider:
171
172	       First if SRC is an SSA_NAME, then we can copy the value
173	       range from SRC into NEW_VR.
174
175	       Second if SRC is an INTEGER_CST, then we can just wet
176	       NEW_VR to a singleton range.
177
178	       Otherwise set NEW_VR to varying.  This may be overly
179	       conservative.  */
180	  if (TREE_CODE (src) == SSA_NAME)
181	    new_vr->deep_copy (vr_values->get_value_range (src));
182	  else if (TREE_CODE (src) == INTEGER_CST)
183	    new_vr->set (src);
184	  else
185	    new_vr->set_varying (TREE_TYPE (src));
186
187	  /* This is a temporary range for DST, so push it.  */
188	  evrp_range_analyzer->push_value_range (dst, new_vr);
189	}
190    }
191  return true;
192}
193
194/* Valueize hook for gimple_fold_stmt_to_constant_1.  */
195
196static tree
197threadedge_valueize (tree t)
198{
199  if (TREE_CODE (t) == SSA_NAME)
200    {
201      tree tem = SSA_NAME_VALUE (t);
202      if (tem)
203	return tem;
204    }
205  return t;
206}
207
208/* Try to simplify each statement in E->dest, ultimately leading to
209   a simplification of the COND_EXPR at the end of E->dest.
210
211   Record unwind information for temporary equivalences onto STACK.
212
213   Use SIMPLIFY (a pointer to a callback function) to further simplify
214   statements using pass specific information.
215
216   We might consider marking just those statements which ultimately
217   feed the COND_EXPR.  It's not clear if the overhead of bookkeeping
218   would be recovered by trying to simplify fewer statements.
219
220   If we are able to simplify a statement into the form
221   SSA_NAME = (SSA_NAME | gimple invariant), then we can record
222   a context sensitive equivalence which may help us simplify
223   later statements in E->dest.  */
224
225static gimple *
226record_temporary_equivalences_from_stmts_at_dest (edge e,
227    const_and_copies *const_and_copies,
228    avail_exprs_stack *avail_exprs_stack,
229    evrp_range_analyzer *evrp_range_analyzer,
230    pfn_simplify simplify)
231{
232  gimple *stmt = NULL;
233  gimple_stmt_iterator gsi;
234  int max_stmt_count;
235
236  max_stmt_count = param_max_jump_thread_duplication_stmts;
237
238  /* Walk through each statement in the block recording equivalences
239     we discover.  Note any equivalences we discover are context
240     sensitive (ie, are dependent on traversing E) and must be unwound
241     when we're finished processing E.  */
242  for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
243    {
244      tree cached_lhs = NULL;
245
246      stmt = gsi_stmt (gsi);
247
248      /* Ignore empty statements and labels.  */
249      if (gimple_code (stmt) == GIMPLE_NOP
250	  || gimple_code (stmt) == GIMPLE_LABEL
251	  || is_gimple_debug (stmt))
252	continue;
253
254      /* If the statement has volatile operands, then we assume we
255	 cannot thread through this block.  This is overly
256	 conservative in some ways.  */
257      if (gimple_code (stmt) == GIMPLE_ASM
258	  && gimple_asm_volatile_p (as_a <gasm *> (stmt)))
259	return NULL;
260
261      /* If the statement is a unique builtin, we cannot thread
262	 through here.  */
263      if (gimple_code (stmt) == GIMPLE_CALL
264	  && gimple_call_internal_p (stmt)
265	  && gimple_call_internal_unique_p (stmt))
266	return NULL;
267
268      /* If duplicating this block is going to cause too much code
269	 expansion, then do not thread through this block.  */
270      stmt_count++;
271      if (stmt_count > max_stmt_count)
272	{
273	  /* If any of the stmts in the PATH's dests are going to be
274	     killed due to threading, grow the max count
275	     accordingly.  */
276	  if (max_stmt_count
277	      == param_max_jump_thread_duplication_stmts)
278	    {
279	      max_stmt_count += estimate_threading_killed_stmts (e->dest);
280	      if (dump_file)
281		fprintf (dump_file, "threading bb %i up to %i stmts\n",
282			 e->dest->index, max_stmt_count);
283	    }
284	  /* If we're still past the limit, we're done.  */
285	  if (stmt_count > max_stmt_count)
286	    return NULL;
287	}
288
289      /* These are temporary ranges, do nto reflect them back into
290	 the global range data.  */
291      if (evrp_range_analyzer)
292	evrp_range_analyzer->record_ranges_from_stmt (stmt, true);
293
294      /* If this is not a statement that sets an SSA_NAME to a new
295	 value, then do not try to simplify this statement as it will
296	 not simplify in any way that is helpful for jump threading.  */
297      if ((gimple_code (stmt) != GIMPLE_ASSIGN
298           || TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
299          && (gimple_code (stmt) != GIMPLE_CALL
300              || gimple_call_lhs (stmt) == NULL_TREE
301              || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
302	continue;
303
304      /* The result of __builtin_object_size depends on all the arguments
305	 of a phi node. Temporarily using only one edge produces invalid
306	 results. For example
307
308	 if (x < 6)
309	   goto l;
310	 else
311	   goto l;
312
313	 l:
314	 r = PHI <&w[2].a[1](2), &a.a[6](3)>
315	 __builtin_object_size (r, 0)
316
317	 The result of __builtin_object_size is defined to be the maximum of
318	 remaining bytes. If we use only one edge on the phi, the result will
319	 change to be the remaining bytes for the corresponding phi argument.
320
321	 Similarly for __builtin_constant_p:
322
323	 r = PHI <1(2), 2(3)>
324	 __builtin_constant_p (r)
325
326	 Both PHI arguments are constant, but x ? 1 : 2 is still not
327	 constant.  */
328
329      if (is_gimple_call (stmt))
330	{
331	  tree fndecl = gimple_call_fndecl (stmt);
332	  if (fndecl
333	      && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
334	      && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
335		  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
336	    continue;
337	}
338
339      /* At this point we have a statement which assigns an RHS to an
340	 SSA_VAR on the LHS.  We want to try and simplify this statement
341	 to expose more context sensitive equivalences which in turn may
342	 allow us to simplify the condition at the end of the loop.
343
344	 Handle simple copy operations as well as implied copies from
345	 ASSERT_EXPRs.  */
346      if (gimple_assign_single_p (stmt)
347          && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
348	cached_lhs = gimple_assign_rhs1 (stmt);
349      else if (gimple_assign_single_p (stmt)
350               && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
351	cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
352      else
353	{
354	  /* A statement that is not a trivial copy or ASSERT_EXPR.
355	     Try to fold the new expression.  Inserting the
356	     expression into the hash table is unlikely to help.  */
357	  /* ???  The DOM callback below can be changed to setting
358	     the mprts_hook around the call to thread_across_edge,
359	     avoiding the use substitution.  The VRP hook should be
360	     changed to properly valueize operands itself using
361	     SSA_NAME_VALUE in addition to its own lattice.  */
362	  cached_lhs = gimple_fold_stmt_to_constant_1 (stmt,
363						       threadedge_valueize);
364          if (NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES) != 0
365	      && (!cached_lhs
366                  || (TREE_CODE (cached_lhs) != SSA_NAME
367                      && !is_gimple_min_invariant (cached_lhs))))
368	    {
369	      /* We're going to temporarily copy propagate the operands
370		 and see if that allows us to simplify this statement.  */
371	      tree *copy;
372	      ssa_op_iter iter;
373	      use_operand_p use_p;
374	      unsigned int num, i = 0;
375
376	      num = NUM_SSA_OPERANDS (stmt, SSA_OP_ALL_USES);
377	      copy = XALLOCAVEC (tree, num);
378
379	      /* Make a copy of the uses & vuses into USES_COPY, then cprop into
380		 the operands.  */
381	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
382		{
383		  tree tmp = NULL;
384		  tree use = USE_FROM_PTR (use_p);
385
386		  copy[i++] = use;
387		  if (TREE_CODE (use) == SSA_NAME)
388		    tmp = SSA_NAME_VALUE (use);
389		  if (tmp)
390		    SET_USE (use_p, tmp);
391		}
392
393	      cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
394
395	      /* Restore the statement's original uses/defs.  */
396	      i = 0;
397	      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
398		SET_USE (use_p, copy[i++]);
399	    }
400	}
401
402      /* Record the context sensitive equivalence if we were able
403	 to simplify this statement.  */
404      if (cached_lhs
405	  && (TREE_CODE (cached_lhs) == SSA_NAME
406	      || is_gimple_min_invariant (cached_lhs)))
407	const_and_copies->record_const_or_copy (gimple_get_lhs (stmt),
408						cached_lhs);
409    }
410  return stmt;
411}
412
413static tree simplify_control_stmt_condition_1 (edge, gimple *,
414					       class avail_exprs_stack *,
415					       tree, enum tree_code, tree,
416					       gcond *, pfn_simplify,
417					       unsigned);
418
419/* Simplify the control statement at the end of the block E->dest.
420
421   To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
422   is available to use/clobber in DUMMY_COND.
423
424   Use SIMPLIFY (a pointer to a callback function) to further simplify
425   a condition using pass specific information.
426
427   Return the simplified condition or NULL if simplification could
428   not be performed.  When simplifying a GIMPLE_SWITCH, we may return
429   the CASE_LABEL_EXPR that will be taken.
430
431   The available expression table is referenced via AVAIL_EXPRS_STACK.  */
432
433static tree
434simplify_control_stmt_condition (edge e,
435				 gimple *stmt,
436				 class avail_exprs_stack *avail_exprs_stack,
437				 gcond *dummy_cond,
438				 pfn_simplify simplify)
439{
440  tree cond, cached_lhs;
441  enum gimple_code code = gimple_code (stmt);
442
443  /* For comparisons, we have to update both operands, then try
444     to simplify the comparison.  */
445  if (code == GIMPLE_COND)
446    {
447      tree op0, op1;
448      enum tree_code cond_code;
449
450      op0 = gimple_cond_lhs (stmt);
451      op1 = gimple_cond_rhs (stmt);
452      cond_code = gimple_cond_code (stmt);
453
454      /* Get the current value of both operands.  */
455      if (TREE_CODE (op0) == SSA_NAME)
456	{
457	  for (int i = 0; i < 2; i++)
458	    {
459	      if (TREE_CODE (op0) == SSA_NAME
460		  && SSA_NAME_VALUE (op0))
461		op0 = SSA_NAME_VALUE (op0);
462	      else
463		break;
464	    }
465	}
466
467      if (TREE_CODE (op1) == SSA_NAME)
468	{
469	  for (int i = 0; i < 2; i++)
470	    {
471	      if (TREE_CODE (op1) == SSA_NAME
472		  && SSA_NAME_VALUE (op1))
473		op1 = SSA_NAME_VALUE (op1);
474	      else
475		break;
476	    }
477	}
478
479      const unsigned recursion_limit = 4;
480
481      cached_lhs
482	= simplify_control_stmt_condition_1 (e, stmt, avail_exprs_stack,
483					     op0, cond_code, op1,
484					     dummy_cond, simplify,
485					     recursion_limit);
486
487      /* If we were testing an integer/pointer against a constant, then
488	 we can use the FSM code to trace the value of the SSA_NAME.  If
489	 a value is found, then the condition will collapse to a constant.
490
491	 Return the SSA_NAME we want to trace back rather than the full
492	 expression and give the FSM threader a chance to find its value.  */
493      if (cached_lhs == NULL)
494	{
495	  /* Recover the original operands.  They may have been simplified
496	     using context sensitive equivalences.  Those context sensitive
497	     equivalences may not be valid on paths found by the FSM optimizer.  */
498	  tree op0 = gimple_cond_lhs (stmt);
499	  tree op1 = gimple_cond_rhs (stmt);
500
501	  if ((INTEGRAL_TYPE_P (TREE_TYPE (op0))
502	       || POINTER_TYPE_P (TREE_TYPE (op0)))
503	      && TREE_CODE (op0) == SSA_NAME
504	      && TREE_CODE (op1) == INTEGER_CST)
505	    return op0;
506	}
507
508      return cached_lhs;
509    }
510
511  if (code == GIMPLE_SWITCH)
512    cond = gimple_switch_index (as_a <gswitch *> (stmt));
513  else if (code == GIMPLE_GOTO)
514    cond = gimple_goto_dest (stmt);
515  else
516    gcc_unreachable ();
517
518  /* We can have conditionals which just test the state of a variable
519     rather than use a relational operator.  These are simpler to handle.  */
520  if (TREE_CODE (cond) == SSA_NAME)
521    {
522      tree original_lhs = cond;
523      cached_lhs = cond;
524
525      /* Get the variable's current value from the equivalence chains.
526
527	 It is possible to get loops in the SSA_NAME_VALUE chains
528	 (consider threading the backedge of a loop where we have
529	 a loop invariant SSA_NAME used in the condition).  */
530      if (cached_lhs)
531	{
532	  for (int i = 0; i < 2; i++)
533	    {
534	      if (TREE_CODE (cached_lhs) == SSA_NAME
535		  && SSA_NAME_VALUE (cached_lhs))
536		cached_lhs = SSA_NAME_VALUE (cached_lhs);
537	      else
538		break;
539	    }
540	}
541
542      /* If we haven't simplified to an invariant yet, then use the
543	 pass specific callback to try and simplify it further.  */
544      if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
545	{
546	  if (code == GIMPLE_SWITCH)
547	    {
548	      /* Replace the index operand of the GIMPLE_SWITCH with any LHS
549		 we found before handing off to VRP.  If simplification is
550	         possible, the simplified value will be a CASE_LABEL_EXPR of
551		 the label that is proven to be taken.  */
552	      gswitch *dummy_switch = as_a<gswitch *> (gimple_copy (stmt));
553	      gimple_switch_set_index (dummy_switch, cached_lhs);
554	      cached_lhs = (*simplify) (dummy_switch, stmt,
555					avail_exprs_stack, e->src);
556	      ggc_free (dummy_switch);
557	    }
558	  else
559	    cached_lhs = (*simplify) (stmt, stmt, avail_exprs_stack, e->src);
560	}
561
562      /* We couldn't find an invariant.  But, callers of this
563	 function may be able to do something useful with the
564	 unmodified destination.  */
565      if (!cached_lhs)
566	cached_lhs = original_lhs;
567    }
568  else
569    cached_lhs = NULL;
570
571  return cached_lhs;
572}
573
574/* Recursive helper for simplify_control_stmt_condition.  */
575
576static tree
577simplify_control_stmt_condition_1 (edge e,
578				   gimple *stmt,
579				   class avail_exprs_stack *avail_exprs_stack,
580				   tree op0,
581				   enum tree_code cond_code,
582				   tree op1,
583				   gcond *dummy_cond,
584				   pfn_simplify simplify,
585				   unsigned limit)
586{
587  if (limit == 0)
588    return NULL_TREE;
589
590  /* We may need to canonicalize the comparison.  For
591     example, op0 might be a constant while op1 is an
592     SSA_NAME.  Failure to canonicalize will cause us to
593     miss threading opportunities.  */
594  if (tree_swap_operands_p (op0, op1))
595    {
596      cond_code = swap_tree_comparison (cond_code);
597      std::swap (op0, op1);
598    }
599
600  /* If the condition has the form (A & B) CMP 0 or (A | B) CMP 0 then
601     recurse into the LHS to see if there is a dominating ASSERT_EXPR
602     of A or of B that makes this condition always true or always false
603     along the edge E.  */
604  if ((cond_code == EQ_EXPR || cond_code == NE_EXPR)
605      && TREE_CODE (op0) == SSA_NAME
606      && integer_zerop (op1))
607    {
608      gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
609      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
610        ;
611      else if (gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR
612	       || gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
613	{
614	  enum tree_code rhs_code = gimple_assign_rhs_code (def_stmt);
615	  const tree rhs1 = gimple_assign_rhs1 (def_stmt);
616	  const tree rhs2 = gimple_assign_rhs2 (def_stmt);
617
618	  /* Is A != 0 ?  */
619	  const tree res1
620	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
621						 rhs1, NE_EXPR, op1,
622						 dummy_cond, simplify,
623						 limit - 1);
624	  if (res1 == NULL_TREE)
625	    ;
626	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res1))
627	    {
628	      /* If A == 0 then (A & B) != 0 is always false.  */
629	      if (cond_code == NE_EXPR)
630	        return boolean_false_node;
631	      /* If A == 0 then (A & B) == 0 is always true.  */
632	      if (cond_code == EQ_EXPR)
633		return boolean_true_node;
634	    }
635	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res1))
636	    {
637	      /* If A != 0 then (A | B) != 0 is always true.  */
638	      if (cond_code == NE_EXPR)
639		return boolean_true_node;
640	      /* If A != 0 then (A | B) == 0 is always false.  */
641	      if (cond_code == EQ_EXPR)
642		return boolean_false_node;
643	    }
644
645	  /* Is B != 0 ?  */
646	  const tree res2
647	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
648						 rhs2, NE_EXPR, op1,
649						 dummy_cond, simplify,
650						 limit - 1);
651	  if (res2 == NULL_TREE)
652	    ;
653	  else if (rhs_code == BIT_AND_EXPR && integer_zerop (res2))
654	    {
655	      /* If B == 0 then (A & B) != 0 is always false.  */
656	      if (cond_code == NE_EXPR)
657	        return boolean_false_node;
658	      /* If B == 0 then (A & B) == 0 is always true.  */
659	      if (cond_code == EQ_EXPR)
660		return boolean_true_node;
661	    }
662	  else if (rhs_code == BIT_IOR_EXPR && integer_nonzerop (res2))
663	    {
664	      /* If B != 0 then (A | B) != 0 is always true.  */
665	      if (cond_code == NE_EXPR)
666		return boolean_true_node;
667	      /* If B != 0 then (A | B) == 0 is always false.  */
668	      if (cond_code == EQ_EXPR)
669		return boolean_false_node;
670	    }
671
672	  if (res1 != NULL_TREE && res2 != NULL_TREE)
673	    {
674	      if (rhs_code == BIT_AND_EXPR
675		  && TYPE_PRECISION (TREE_TYPE (op0)) == 1
676		  && integer_nonzerop (res1)
677		  && integer_nonzerop (res2))
678		{
679		  /* If A != 0 and B != 0 then (bool)(A & B) != 0 is true.  */
680		  if (cond_code == NE_EXPR)
681		    return boolean_true_node;
682		  /* If A != 0 and B != 0 then (bool)(A & B) == 0 is false.  */
683		  if (cond_code == EQ_EXPR)
684		    return boolean_false_node;
685		}
686
687	      if (rhs_code == BIT_IOR_EXPR
688		  && integer_zerop (res1)
689		  && integer_zerop (res2))
690		{
691		  /* If A == 0 and B == 0 then (A | B) != 0 is false.  */
692		  if (cond_code == NE_EXPR)
693		    return boolean_false_node;
694		  /* If A == 0 and B == 0 then (A | B) == 0 is true.  */
695		  if (cond_code == EQ_EXPR)
696		    return boolean_true_node;
697		}
698	    }
699	}
700      /* Handle (A CMP B) CMP 0.  */
701      else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
702	       == tcc_comparison)
703	{
704	  tree rhs1 = gimple_assign_rhs1 (def_stmt);
705	  tree rhs2 = gimple_assign_rhs2 (def_stmt);
706
707	  tree_code new_cond = gimple_assign_rhs_code (def_stmt);
708	  if (cond_code == EQ_EXPR)
709	    new_cond = invert_tree_comparison (new_cond, false);
710
711	  tree res
712	    = simplify_control_stmt_condition_1 (e, def_stmt, avail_exprs_stack,
713						 rhs1, new_cond, rhs2,
714						 dummy_cond, simplify,
715						 limit - 1);
716	  if (res != NULL_TREE && is_gimple_min_invariant (res))
717	    return res;
718	}
719    }
720
721  gimple_cond_set_code (dummy_cond, cond_code);
722  gimple_cond_set_lhs (dummy_cond, op0);
723  gimple_cond_set_rhs (dummy_cond, op1);
724
725  /* We absolutely do not care about any type conversions
726     we only care about a zero/nonzero value.  */
727  fold_defer_overflow_warnings ();
728
729  tree res = fold_binary (cond_code, boolean_type_node, op0, op1);
730  if (res)
731    while (CONVERT_EXPR_P (res))
732      res = TREE_OPERAND (res, 0);
733
734  fold_undefer_overflow_warnings ((res && is_gimple_min_invariant (res)),
735				  stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
736
737  /* If we have not simplified the condition down to an invariant,
738     then use the pass specific callback to simplify the condition.  */
739  if (!res
740      || !is_gimple_min_invariant (res))
741    res = (*simplify) (dummy_cond, stmt, avail_exprs_stack, e->src);
742
743  return res;
744}
745
746/* Copy debug stmts from DEST's chain of single predecessors up to
747   SRC, so that we don't lose the bindings as PHI nodes are introduced
748   when DEST gains new predecessors.  */
749void
750propagate_threaded_block_debug_into (basic_block dest, basic_block src)
751{
752  if (!MAY_HAVE_DEBUG_BIND_STMTS)
753    return;
754
755  if (!single_pred_p (dest))
756    return;
757
758  gcc_checking_assert (dest != src);
759
760  gimple_stmt_iterator gsi = gsi_after_labels (dest);
761  int i = 0;
762  const int alloc_count = 16; // ?? Should this be a PARAM?
763
764  /* Estimate the number of debug vars overridden in the beginning of
765     DEST, to tell how many we're going to need to begin with.  */
766  for (gimple_stmt_iterator si = gsi;
767       i * 4 <= alloc_count * 3 && !gsi_end_p (si); gsi_next (&si))
768    {
769      gimple *stmt = gsi_stmt (si);
770      if (!is_gimple_debug (stmt))
771	break;
772      if (gimple_debug_nonbind_marker_p (stmt))
773	continue;
774      i++;
775    }
776
777  auto_vec<tree, alloc_count> fewvars;
778  hash_set<tree> *vars = NULL;
779
780  /* If we're already starting with 3/4 of alloc_count, go for a
781     hash_set, otherwise start with an unordered stack-allocated
782     VEC.  */
783  if (i * 4 > alloc_count * 3)
784    vars = new hash_set<tree>;
785
786  /* Now go through the initial debug stmts in DEST again, this time
787     actually inserting in VARS or FEWVARS.  Don't bother checking for
788     duplicates in FEWVARS.  */
789  for (gimple_stmt_iterator si = gsi; !gsi_end_p (si); gsi_next (&si))
790    {
791      gimple *stmt = gsi_stmt (si);
792      if (!is_gimple_debug (stmt))
793	break;
794
795      tree var;
796
797      if (gimple_debug_bind_p (stmt))
798	var = gimple_debug_bind_get_var (stmt);
799      else if (gimple_debug_source_bind_p (stmt))
800	var = gimple_debug_source_bind_get_var (stmt);
801      else if (gimple_debug_nonbind_marker_p (stmt))
802	continue;
803      else
804	gcc_unreachable ();
805
806      if (vars)
807	vars->add (var);
808      else
809	fewvars.quick_push (var);
810    }
811
812  basic_block bb = dest;
813
814  do
815    {
816      bb = single_pred (bb);
817      for (gimple_stmt_iterator si = gsi_last_bb (bb);
818	   !gsi_end_p (si); gsi_prev (&si))
819	{
820	  gimple *stmt = gsi_stmt (si);
821	  if (!is_gimple_debug (stmt))
822	    continue;
823
824	  tree var;
825
826	  if (gimple_debug_bind_p (stmt))
827	    var = gimple_debug_bind_get_var (stmt);
828	  else if (gimple_debug_source_bind_p (stmt))
829	    var = gimple_debug_source_bind_get_var (stmt);
830	  else if (gimple_debug_nonbind_marker_p (stmt))
831	    continue;
832	  else
833	    gcc_unreachable ();
834
835	  /* Discard debug bind overlaps.  Unlike stmts from src,
836	     copied into a new block that will precede BB, debug bind
837	     stmts in bypassed BBs may actually be discarded if
838	     they're overwritten by subsequent debug bind stmts.  We
839	     want to copy binds for all modified variables, so that we
840	     retain a bind to the shared def if there is one, or to a
841	     newly introduced PHI node if there is one.  Our bind will
842	     end up reset if the value is dead, but that implies the
843	     variable couldn't have survived, so it's fine.  We are
844	     not actually running the code that performed the binds at
845	     this point, we're just adding binds so that they survive
846	     the new confluence, so markers should not be copied.  */
847	  if (vars && vars->add (var))
848	    continue;
849	  else if (!vars)
850	    {
851	      int i = fewvars.length ();
852	      while (i--)
853		if (fewvars[i] == var)
854		  break;
855	      if (i >= 0)
856		continue;
857	      else if (fewvars.length () < (unsigned) alloc_count)
858		fewvars.quick_push (var);
859	      else
860		{
861		  vars = new hash_set<tree>;
862		  for (i = 0; i < alloc_count; i++)
863		    vars->add (fewvars[i]);
864		  fewvars.release ();
865		  vars->add (var);
866		}
867	    }
868
869	  stmt = gimple_copy (stmt);
870	  /* ??? Should we drop the location of the copy to denote
871	     they're artificial bindings?  */
872	  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
873	}
874    }
875  while (bb != src && single_pred_p (bb));
876
877  if (vars)
878    delete vars;
879  else if (fewvars.exists ())
880    fewvars.release ();
881}
882
883/* See if TAKEN_EDGE->dest is a threadable block with no side effecs (ie, it
884   need not be duplicated as part of the CFG/SSA updating process).
885
886   If it is threadable, add it to PATH and VISITED and recurse, ultimately
887   returning TRUE from the toplevel call.   Otherwise do nothing and
888   return false.
889
890   DUMMY_COND, SIMPLIFY are used to try and simplify the condition at the
891   end of TAKEN_EDGE->dest.
892
893   The available expression table is referenced via AVAIL_EXPRS_STACK.  */
894
895static bool
896thread_around_empty_blocks (edge taken_edge,
897			    gcond *dummy_cond,
898			    class avail_exprs_stack *avail_exprs_stack,
899			    pfn_simplify simplify,
900			    bitmap visited,
901			    vec<jump_thread_edge *> *path)
902{
903  basic_block bb = taken_edge->dest;
904  gimple_stmt_iterator gsi;
905  gimple *stmt;
906  tree cond;
907
908  /* The key property of these blocks is that they need not be duplicated
909     when threading.  Thus they cannot have visible side effects such
910     as PHI nodes.  */
911  if (!gsi_end_p (gsi_start_phis (bb)))
912    return false;
913
914  /* Skip over DEBUG statements at the start of the block.  */
915  gsi = gsi_start_nondebug_bb (bb);
916
917  /* If the block has no statements, but does have a single successor, then
918     it's just a forwarding block and we can thread through it trivially.
919
920     However, note that just threading through empty blocks with single
921     successors is not inherently profitable.  For the jump thread to
922     be profitable, we must avoid a runtime conditional.
923
924     By taking the return value from the recursive call, we get the
925     desired effect of returning TRUE when we found a profitable jump
926     threading opportunity and FALSE otherwise.
927
928     This is particularly important when this routine is called after
929     processing a joiner block.  Returning TRUE too aggressively in
930     that case results in pointless duplication of the joiner block.  */
931  if (gsi_end_p (gsi))
932    {
933      if (single_succ_p (bb))
934	{
935	  taken_edge = single_succ_edge (bb);
936
937	  if ((taken_edge->flags & EDGE_DFS_BACK) != 0)
938	    return false;
939
940	  if (!bitmap_bit_p (visited, taken_edge->dest->index))
941	    {
942	      jump_thread_edge *x
943		= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
944	      path->safe_push (x);
945	      bitmap_set_bit (visited, taken_edge->dest->index);
946	      return thread_around_empty_blocks (taken_edge,
947						 dummy_cond,
948						 avail_exprs_stack,
949						 simplify,
950						 visited,
951						 path);
952	    }
953	}
954
955      /* We have a block with no statements, but multiple successors?  */
956      return false;
957    }
958
959  /* The only real statements this block can have are a control
960     flow altering statement.  Anything else stops the thread.  */
961  stmt = gsi_stmt (gsi);
962  if (gimple_code (stmt) != GIMPLE_COND
963      && gimple_code (stmt) != GIMPLE_GOTO
964      && gimple_code (stmt) != GIMPLE_SWITCH)
965    return false;
966
967  /* Extract and simplify the condition.  */
968  cond = simplify_control_stmt_condition (taken_edge, stmt,
969					  avail_exprs_stack, dummy_cond,
970					  simplify);
971
972  /* If the condition can be statically computed and we have not already
973     visited the destination edge, then add the taken edge to our thread
974     path.  */
975  if (cond != NULL_TREE
976      && (is_gimple_min_invariant (cond)
977	  || TREE_CODE (cond) == CASE_LABEL_EXPR))
978    {
979      if (TREE_CODE (cond) == CASE_LABEL_EXPR)
980	taken_edge = find_edge (bb, label_to_block (cfun, CASE_LABEL (cond)));
981      else
982	taken_edge = find_taken_edge (bb, cond);
983
984      if (!taken_edge
985	  || (taken_edge->flags & EDGE_DFS_BACK) != 0)
986	return false;
987
988      if (bitmap_bit_p (visited, taken_edge->dest->index))
989	return false;
990      bitmap_set_bit (visited, taken_edge->dest->index);
991
992      jump_thread_edge *x
993	= new jump_thread_edge (taken_edge, EDGE_NO_COPY_SRC_BLOCK);
994      path->safe_push (x);
995
996      thread_around_empty_blocks (taken_edge,
997				  dummy_cond,
998				  avail_exprs_stack,
999				  simplify,
1000				  visited,
1001				  path);
1002      return true;
1003    }
1004
1005  return false;
1006}
1007
1008/* We are exiting E->src, see if E->dest ends with a conditional
1009   jump which has a known value when reached via E.
1010
1011   E->dest can have arbitrary side effects which, if threading is
1012   successful, will be maintained.
1013
1014   Special care is necessary if E is a back edge in the CFG as we
1015   may have already recorded equivalences for E->dest into our
1016   various tables, including the result of the conditional at
1017   the end of E->dest.  Threading opportunities are severely
1018   limited in that case to avoid short-circuiting the loop
1019   incorrectly.
1020
1021   DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1022   to avoid allocating memory.
1023
1024   STACK is used to undo temporary equivalences created during the walk of
1025   E->dest.
1026
1027   SIMPLIFY is a pass-specific function used to simplify statements.
1028
1029   Our caller is responsible for restoring the state of the expression
1030   and const_and_copies stacks.
1031
1032   Positive return value is success.  Zero return value is failure, but
1033   the block can still be duplicated as a joiner in a jump thread path,
1034   negative indicates the block should not be duplicated and thus is not
1035   suitable for a joiner in a jump threading path.  */
1036
1037static int
1038thread_through_normal_block (edge e,
1039			     gcond *dummy_cond,
1040			     const_and_copies *const_and_copies,
1041			     avail_exprs_stack *avail_exprs_stack,
1042			     evrp_range_analyzer *evrp_range_analyzer,
1043			     pfn_simplify simplify,
1044			     vec<jump_thread_edge *> *path,
1045			     bitmap visited)
1046{
1047  /* We want to record any equivalences created by traversing E.  */
1048  record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1049
1050  /* PHIs create temporary equivalences.
1051     Note that if we found a PHI that made the block non-threadable, then
1052     we need to bubble that up to our caller in the same manner we do
1053     when we prematurely stop processing statements below.  */
1054  if (!record_temporary_equivalences_from_phis (e, const_and_copies,
1055					        evrp_range_analyzer))
1056    return -1;
1057
1058  /* Now walk each statement recording any context sensitive
1059     temporary equivalences we can detect.  */
1060  gimple *stmt
1061    = record_temporary_equivalences_from_stmts_at_dest (e, const_and_copies,
1062							avail_exprs_stack,
1063							evrp_range_analyzer,
1064							simplify);
1065
1066  /* There's two reasons STMT might be null, and distinguishing
1067     between them is important.
1068
1069     First the block may not have had any statements.  For example, it
1070     might have some PHIs and unconditionally transfer control elsewhere.
1071     Such blocks are suitable for jump threading, particularly as a
1072     joiner block.
1073
1074     The second reason would be if we did not process all the statements
1075     in the block (because there were too many to make duplicating the
1076     block profitable.   If we did not look at all the statements, then
1077     we may not have invalidated everything needing invalidation.  Thus
1078     we must signal to our caller that this block is not suitable for
1079     use as a joiner in a threading path.  */
1080  if (!stmt)
1081    {
1082      /* First case.  The statement simply doesn't have any instructions, but
1083	 does have PHIs.  */
1084      if (gsi_end_p (gsi_start_nondebug_bb (e->dest))
1085	  && !gsi_end_p (gsi_start_phis (e->dest)))
1086	return 0;
1087
1088      /* Second case.  */
1089      return -1;
1090    }
1091
1092  /* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
1093     will be taken.  */
1094  if (gimple_code (stmt) == GIMPLE_COND
1095      || gimple_code (stmt) == GIMPLE_GOTO
1096      || gimple_code (stmt) == GIMPLE_SWITCH)
1097    {
1098      tree cond;
1099
1100      /* Extract and simplify the condition.  */
1101      cond = simplify_control_stmt_condition (e, stmt, avail_exprs_stack,
1102					      dummy_cond, simplify);
1103
1104      if (!cond)
1105	return 0;
1106
1107      if (is_gimple_min_invariant (cond)
1108	  || TREE_CODE (cond) == CASE_LABEL_EXPR)
1109	{
1110	  edge taken_edge;
1111	  if (TREE_CODE (cond) == CASE_LABEL_EXPR)
1112	    taken_edge = find_edge (e->dest,
1113				    label_to_block (cfun, CASE_LABEL (cond)));
1114	  else
1115	    taken_edge = find_taken_edge (e->dest, cond);
1116
1117	  basic_block dest = (taken_edge ? taken_edge->dest : NULL);
1118
1119	  /* DEST could be NULL for a computed jump to an absolute
1120	     address.  */
1121	  if (dest == NULL
1122	      || dest == e->dest
1123	      || (taken_edge->flags & EDGE_DFS_BACK) != 0
1124	      || bitmap_bit_p (visited, dest->index))
1125	    return 0;
1126
1127	  /* Only push the EDGE_START_JUMP_THREAD marker if this is
1128	     first edge on the path.  */
1129	  if (path->length () == 0)
1130	    {
1131              jump_thread_edge *x
1132	        = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1133	      path->safe_push (x);
1134	    }
1135
1136	  jump_thread_edge *x
1137	    = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_BLOCK);
1138	  path->safe_push (x);
1139
1140	  /* See if we can thread through DEST as well, this helps capture
1141	     secondary effects of threading without having to re-run DOM or
1142	     VRP.
1143
1144	     We don't want to thread back to a block we have already
1145 	     visited.  This may be overly conservative.  */
1146	  bitmap_set_bit (visited, dest->index);
1147	  bitmap_set_bit (visited, e->dest->index);
1148	  thread_around_empty_blocks (taken_edge,
1149				      dummy_cond,
1150				      avail_exprs_stack,
1151				      simplify,
1152				      visited,
1153				      path);
1154	  return 1;
1155	}
1156    }
1157  return 0;
1158}
1159
1160/* There are basic blocks look like:
1161   <P0>
1162   p0 = a CMP b ; or p0 = (INT) (a CMP b)
1163   goto <X>;
1164
1165   <P1>
1166   p1 = c CMP d
1167   goto <X>;
1168
1169   <X>
1170   # phi = PHI <p0 (P0), p1 (P1)>
1171   if (phi != 0) goto <Y>; else goto <Z>;
1172
1173   Then, edge (P0,X) or (P1,X) could be marked as EDGE_START_JUMP_THREAD
1174   And edge (X,Y), (X,Z) is EDGE_COPY_SRC_JOINER_BLOCK
1175
1176   Return true if E is (P0,X) or (P1,X)  */
1177
1178bool
1179edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (edge e)
1180{
1181  /* See if there is only one stmt which is gcond.  */
1182  gcond *gs;
1183  if (!(gs = safe_dyn_cast<gcond *> (last_and_only_stmt (e->dest))))
1184    return false;
1185
1186  /* See if gcond's cond is "(phi !=/== 0/1)" in the basic block.  */
1187  tree cond = gimple_cond_lhs (gs);
1188  enum tree_code code = gimple_cond_code (gs);
1189  tree rhs = gimple_cond_rhs (gs);
1190  if (TREE_CODE (cond) != SSA_NAME
1191      || (code != NE_EXPR && code != EQ_EXPR)
1192      || (!integer_onep (rhs) && !integer_zerop (rhs)))
1193    return false;
1194  gphi *phi = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (cond));
1195  if (phi == NULL || gimple_bb (phi) != e->dest)
1196    return false;
1197
1198  /* Check if phi's incoming value is CMP.  */
1199  gassign *def;
1200  tree value = PHI_ARG_DEF_FROM_EDGE (phi, e);
1201  if (TREE_CODE (value) != SSA_NAME
1202      || !has_single_use (value)
1203      || !(def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (value))))
1204    return false;
1205
1206  /* Or if it is (INT) (a CMP b).  */
1207  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
1208    {
1209      value = gimple_assign_rhs1 (def);
1210      if (TREE_CODE (value) != SSA_NAME
1211	  || !has_single_use (value)
1212	  || !(def = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (value))))
1213	return false;
1214    }
1215
1216  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
1217    return false;
1218
1219  return true;
1220}
1221
1222/* We are exiting E->src, see if E->dest ends with a conditional
1223   jump which has a known value when reached via E.
1224
1225   DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1226   to avoid allocating memory.
1227
1228   CONST_AND_COPIES is used to undo temporary equivalences created during the
1229   walk of E->dest.
1230
1231   The available expression table is referenced vai AVAIL_EXPRS_STACK.
1232
1233   SIMPLIFY is a pass-specific function used to simplify statements.  */
1234
1235static void
1236thread_across_edge (gcond *dummy_cond,
1237		    edge e,
1238		    class const_and_copies *const_and_copies,
1239		    class avail_exprs_stack *avail_exprs_stack,
1240		    class evrp_range_analyzer *evrp_range_analyzer,
1241		    pfn_simplify simplify)
1242{
1243  bitmap visited = BITMAP_ALLOC (NULL);
1244
1245  const_and_copies->push_marker ();
1246  avail_exprs_stack->push_marker ();
1247  if (evrp_range_analyzer)
1248    evrp_range_analyzer->push_marker ();
1249
1250  stmt_count = 0;
1251
1252  vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1253  bitmap_clear (visited);
1254  bitmap_set_bit (visited, e->src->index);
1255  bitmap_set_bit (visited, e->dest->index);
1256
1257  int threaded;
1258  if ((e->flags & EDGE_DFS_BACK) == 0)
1259    threaded = thread_through_normal_block (e, dummy_cond,
1260					    const_and_copies,
1261					    avail_exprs_stack,
1262					    evrp_range_analyzer,
1263					    simplify, path,
1264					    visited);
1265  else
1266    threaded = 0;
1267
1268  if (threaded > 0)
1269    {
1270      propagate_threaded_block_debug_into (path->last ()->e->dest,
1271					   e->dest);
1272      const_and_copies->pop_to_marker ();
1273      avail_exprs_stack->pop_to_marker ();
1274      if (evrp_range_analyzer)
1275	evrp_range_analyzer->pop_to_marker ();
1276      BITMAP_FREE (visited);
1277      register_jump_thread (path);
1278      return;
1279    }
1280  else
1281    {
1282      /* Negative and zero return values indicate no threading was possible,
1283	 thus there should be no edges on the thread path and no need to walk
1284	 through the vector entries.  */
1285      gcc_assert (path->length () == 0);
1286      path->release ();
1287      delete path;
1288
1289      /* A negative status indicates the target block was deemed too big to
1290	 duplicate.  Just quit now rather than trying to use the block as
1291	 a joiner in a jump threading path.
1292
1293	 This prevents unnecessary code growth, but more importantly if we
1294	 do not look at all the statements in the block, then we may have
1295	 missed some invalidations if we had traversed a backedge!  */
1296      if (threaded < 0)
1297	{
1298	  BITMAP_FREE (visited);
1299	  const_and_copies->pop_to_marker ();
1300          avail_exprs_stack->pop_to_marker ();
1301	  if (evrp_range_analyzer)
1302	    evrp_range_analyzer->pop_to_marker ();
1303	  return;
1304	}
1305    }
1306
1307 /* We were unable to determine what out edge from E->dest is taken.  However,
1308    we might still be able to thread through successors of E->dest.  This
1309    often occurs when E->dest is a joiner block which then fans back out
1310    based on redundant tests.
1311
1312    If so, we'll copy E->dest and redirect the appropriate predecessor to
1313    the copy.  Within the copy of E->dest, we'll thread one or more edges
1314    to points deeper in the CFG.
1315
1316    This is a stopgap until we have a more structured approach to path
1317    isolation.  */
1318  {
1319    edge taken_edge;
1320    edge_iterator ei;
1321    bool found;
1322
1323    /* If E->dest has abnormal outgoing edges, then there's no guarantee
1324       we can safely redirect any of the edges.  Just punt those cases.  */
1325    FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1326      if (taken_edge->flags & EDGE_COMPLEX)
1327	{
1328	  const_and_copies->pop_to_marker ();
1329          avail_exprs_stack->pop_to_marker ();
1330	  if (evrp_range_analyzer)
1331	    evrp_range_analyzer->pop_to_marker ();
1332	  BITMAP_FREE (visited);
1333	  return;
1334	}
1335
1336    /* Look at each successor of E->dest to see if we can thread through it.  */
1337    FOR_EACH_EDGE (taken_edge, ei, e->dest->succs)
1338      {
1339	if ((e->flags & EDGE_DFS_BACK) != 0
1340	    || (taken_edge->flags & EDGE_DFS_BACK) != 0)
1341	  continue;
1342
1343	/* Push a fresh marker so we can unwind the equivalences created
1344	   for each of E->dest's successors.  */
1345	const_and_copies->push_marker ();
1346	avail_exprs_stack->push_marker ();
1347	if (evrp_range_analyzer)
1348	  evrp_range_analyzer->push_marker ();
1349
1350	/* Avoid threading to any block we have already visited.  */
1351	bitmap_clear (visited);
1352	bitmap_set_bit (visited, e->src->index);
1353	bitmap_set_bit (visited, e->dest->index);
1354	bitmap_set_bit (visited, taken_edge->dest->index);
1355        vec<jump_thread_edge *> *path = new vec<jump_thread_edge *> ();
1356
1357	/* Record whether or not we were able to thread through a successor
1358	   of E->dest.  */
1359        jump_thread_edge *x = new jump_thread_edge (e, EDGE_START_JUMP_THREAD);
1360	path->safe_push (x);
1361
1362        x = new jump_thread_edge (taken_edge, EDGE_COPY_SRC_JOINER_BLOCK);
1363	path->safe_push (x);
1364	found = thread_around_empty_blocks (taken_edge,
1365					    dummy_cond,
1366					    avail_exprs_stack,
1367					    simplify,
1368					    visited,
1369					    path);
1370
1371	if (!found)
1372	  found = thread_through_normal_block (path->last ()->e, dummy_cond,
1373					       const_and_copies,
1374					       avail_exprs_stack,
1375					       evrp_range_analyzer,
1376					       simplify, path,
1377					       visited) > 0;
1378
1379	/* If we were able to thread through a successor of E->dest, then
1380	   record the jump threading opportunity.  */
1381	if (found
1382	    || edge_forwards_cmp_to_conditional_jump_through_empty_bb_p (e))
1383	  {
1384	    if (taken_edge->dest != path->last ()->e->dest)
1385	      propagate_threaded_block_debug_into (path->last ()->e->dest,
1386						   taken_edge->dest);
1387	    register_jump_thread (path);
1388	  }
1389	else
1390	  delete_jump_thread_path (path);
1391
1392	/* And unwind the equivalence table.  */
1393	if (evrp_range_analyzer)
1394	  evrp_range_analyzer->pop_to_marker ();
1395	avail_exprs_stack->pop_to_marker ();
1396	const_and_copies->pop_to_marker ();
1397      }
1398    BITMAP_FREE (visited);
1399  }
1400
1401  if (evrp_range_analyzer)
1402    evrp_range_analyzer->pop_to_marker ();
1403  const_and_copies->pop_to_marker ();
1404  avail_exprs_stack->pop_to_marker ();
1405}
1406
1407/* Examine the outgoing edges from BB and conditionally
1408   try to thread them.
1409
1410   DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
1411   to avoid allocating memory.
1412
1413   CONST_AND_COPIES is used to undo temporary equivalences created during the
1414   walk of E->dest.
1415
1416   The available expression table is referenced vai AVAIL_EXPRS_STACK.
1417
1418   SIMPLIFY is a pass-specific function used to simplify statements.  */
1419
1420void
1421thread_outgoing_edges (basic_block bb, gcond *dummy_cond,
1422		       class const_and_copies *const_and_copies,
1423		       class avail_exprs_stack *avail_exprs_stack,
1424		       class evrp_range_analyzer *evrp_range_analyzer,
1425		       tree (*simplify) (gimple *, gimple *,
1426					 class avail_exprs_stack *,
1427					 basic_block))
1428{
1429  int flags = (EDGE_IGNORE | EDGE_COMPLEX | EDGE_ABNORMAL);
1430  gimple *last;
1431
1432  /* If we have an outgoing edge to a block with multiple incoming and
1433     outgoing edges, then we may be able to thread the edge, i.e., we
1434     may be able to statically determine which of the outgoing edges
1435     will be traversed when the incoming edge from BB is traversed.  */
1436  if (single_succ_p (bb)
1437      && (single_succ_edge (bb)->flags & flags) == 0
1438      && potentially_threadable_block (single_succ (bb)))
1439    {
1440      thread_across_edge (dummy_cond, single_succ_edge (bb),
1441			  const_and_copies, avail_exprs_stack,
1442			  evrp_range_analyzer, simplify);
1443    }
1444  else if ((last = last_stmt (bb))
1445	   && gimple_code (last) == GIMPLE_COND
1446	   && EDGE_COUNT (bb->succs) == 2
1447	   && (EDGE_SUCC (bb, 0)->flags & flags) == 0
1448	   && (EDGE_SUCC (bb, 1)->flags & flags) == 0)
1449    {
1450      edge true_edge, false_edge;
1451
1452      extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1453
1454      /* Only try to thread the edge if it reaches a target block with
1455	 more than one predecessor and more than one successor.  */
1456      if (potentially_threadable_block (true_edge->dest))
1457	thread_across_edge (dummy_cond, true_edge,
1458			    const_and_copies, avail_exprs_stack,
1459			    evrp_range_analyzer, simplify);
1460
1461      /* Similarly for the ELSE arm.  */
1462      if (potentially_threadable_block (false_edge->dest))
1463	thread_across_edge (dummy_cond, false_edge,
1464			    const_and_copies, avail_exprs_stack,
1465			    evrp_range_analyzer, simplify);
1466    }
1467}
1468